Preprints
A sharp transition in zero overcrowding and undercrowding probabilities for Stationary Gaussian Processes
Naomi Feldheim, Ohad Feldheim, Lakshmi Priya
arXiv:2303.14808
Persistence and Ball Exponents for Gaussian Stationary Processes
Naomi Feldheim, Ohad Feldheim, Sumit Mukherjee
arXiv:2112.04820
Published Papers
Typical height of the (2+1)-D Solid-on-Solid surface with pinning above a wall in the delocalized phase
Naomi Feldheim, Shangjie Yang
Stochastic Processes and their Applications, Volume 165 (2023), pages 168-182.
An asymptotic formula for the variance of the number of zeroes of a stationary Gaussian process
Eran Assaf, Jeremiah Buckley, Naomi Feldheim
Probability Theory and Related Fields (2023)
Slides
Efficient computation of the zeros of the Bargmann transform under additive white noise
Luis Alberto Escudero, Naomi Feldheim, Günther Koliander, José Luis Romero
Foundations of Computational Mathematics (2022)
Mean and minimum of independent random variables
Naomi Feldheim, Ohad Feldheim
Israel Journal of Mathematics (2021), vol. 244, 857–882.
Persistence of Gaussian stationary processes: a spectral perspective
Naomi Feldheim, Ohad Feldheim, Shahaf Nitzan
Annals of Probability (2021), vol. 49 (3), pp. 1067 - 1096.
Slides
Convergence of the quantile admission process with veto power
Naomi Feldheim, Ohad Feldheim
Stoch. Proc. and Appl. (2020), vol. 130 (7), pp. 4294--4325
Exponential concentration for zeroes of stationary Gaussian processes
Riddhipratim Basu, Amir Dembo, Naomi Feldheim, Ofer Zeitouni
Inter. Math. Res. Notices (2020), Issue 23, November 2020, pp. 9769--9796.
(online)
On the probability that a stationary Gaussian process with spectral gap remains non-negative on a long interval
Naomi Feldheim, Ohad Feldheim, Benjamin Jaye, Fedor Nazarov, Shahaf Nitzan
Inter. Math. Res. Notices (2020), Issue 23, November 2020, pp. 9210--9227.
(online)
Variance of the number of zeroes of stationary Gaussian Analytic functions
Naomi Feldheim
Israel Journal of Mathematics (2018), vol. 227 (2), pp. 753-792.
The winding of Stationary Gaussian processes
Jeremiah Buckley, Naomi Feldheim
Probability Theory and Related Fields (2018), no. 1-2, pp. 583-614.
(online)
A note on the convex infimum convolution inequality
Naomi Feldheim, Arnaud Marsiglietti, Piotr Nayar, Jing Wang
Bernoulli (2018), vol. 24 no. 1, pp. 257-270.
The two-dimensional small ball inequality and binary nets
Dmitriy Bilyk, Naomi Feldheim
Jour. Fourier Anal. Appl. (2017) vol. 23, pp. 817-833.
(online)
Slides
Long gaps between sign-changes of Gaussian stationary processes
Naomi D. Feldheim , Ohad N. Feldheim
Inter. Math. Res. Notices (2015) vol. 11, pp. 3012-3034.
Zeroes of Gaussian Analytic Functions with
Translation-Invariant Distribution
Naomi D. Feldheim
Israel Journal of Mathematics 195 (2013), no. 1, pp 317-345.
Other
Ph.D. Thesis: zeroes of Gaussian stationary functions
Simulations of a probabilistic
algorithm to generate square free words
|