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Abstract

We study the typical height of the (2+1)-dimensional solid-on-solid surface with pinning interacting
ith an impenetrable wall in the delocalization phase. More precisely, let ΛN be a N × N box of
2, and we consider a nonnegative integer-valued field (φ(x))x∈ΛN with zero boundary conditions (i.e.
|
Λ∁

N
= 0) associated with the energy functional

V(φ) = β
∑
x∼y

|φ(x) − φ(y)| −

∑
x

h1{φ(x)=0},

where β > 0 is the inverse temperature and h ≥ 0 is the pinning parameter. Lacoin has shown that
for sufficiently large β, there is a phase transition between delocalization and localization at the critical
point

hw(β) = log

(
e4β

e4β − 1

)
.

n this paper we show that for β ≥ 1 and h ∈ (0, hw), the values of φ concentrate at the height
H = ⌊(4β)−1 log N⌋ with constant order fluctuations. Moreover, at criticality h = hw , we provide
vidence for the conjectured typical height Hw = ⌊(6β)−1 log N⌋.
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1. Introduction

1.1. Background

The solid-on-solid (SOS) model, introduced in [5,21], is a crystal surface model, which acts
s a qualitative approximation of the Ising model in low temperature (see [6] for more details).

Now we formally describe the (d + 1)-dimensional solid-on-solid model on the lattice Zd .
Let ΛN := [[1, N ]]d denote a box of size N in the lattice Zd and we define its external boundary
to be

∂ΛN :=
{

x ∈ Zd
\ ΛN : ∃y ∈ ΛN , x ∼ y

}
where x ∼ y denotes that x and y are nearest neighbors in the lattice Zd . Given φ ∈ Ω̃ΛN :=

ZΛN , we define the Hamiltonian for the solid-on-solid model with zero boundary condition as

HN (φ) :=

∑
{x,y}⊂ΛN

x∼y

|φ(x) − φ(y)| +

∑
x∈ΛN , y∈∂ΛN

x∼y

|φ(x)|. (1)

Then for β > 0 (inverse temperature), we define a probability measure on Ω̃N = ZΛN as
follows

∀φ ∈ Ω̃N , PβN (φ) :=
1

Z̃β

N

e−βHN (φ) (2)

here

Z̃β

N :=

∑
ψ∈Ω̃N

e−βHN (ψ)
≤

(
1 + e−dβ

1 − e−dβ

)|ΛN |

and we refer to [18, Equations (3.8)-(3.10)] for a proof of the last inequality. It is known
(see [9,21,22]) that for any β > 0, the (1+1)-dimensional SOS surface is rough (delocalized),
which means the expectation of the absolute value of the height at the center diverges in the
thermodynamic limit. However, for d ≥ 3, it is shown in [4] by Peierls argument that for any
β > 0, the (d + 1)-dimensional SOS surface is rigid (localized), that is, the expectation of
the absolute value of the height at the center is uniformly bounded. The interesting case is
d = 2 which exhibits a phase transition between rough (for small β, cf. [10–12]) and rigid
(for large β, cf. [2,13]). Moreover, numerical simulations suggest that βc ≈ 0.806 is where the
delocalization/localization transition occurs [6].

1.2. The (2 + 1)-dimensional SOS surface above a wall

The probability distribution of the (2+1)-dimensional SOS interface above an impenetrable
wall (taking non-negative integer values) is the conditional distribution

∀φ ∈ ΩN :=
{
φ ∈ Ω̃N : φ ≥ 0

}
, PβN (φ) := PβN (φ) /P

β

N (ΩN ) . (3)

In [3, Theorem 4.1], Bricmont, Mellouki, and Fröhlich showed that for large β, the average
height of the surface satisfies

1
Cβ

log N ≤
1

N 2 E
β

N

⎡⎣∑ φ(x)

⎤⎦ ≤
C
β

log N

x∈ΛN
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where EβN is the expectation corresponding to the law PβN . Later in [6], Caputo, Lubetzky,
Martinelli, Sly and Toninelli showed that for β ≥ 1, the typical height of the surface
concentrates at

H =

⌊
1

4β
log N

⌋
ith fluctuations of order O(1), where ⌊x⌋ := sup{n ∈ Z : n ≤ x}, as follows.

heorem A ([6, Theorem 3.1]). There exist two universal constants C, K > 0 such that for
all β ≥ 1 and all integer k ≥ K , we have for all N ,

PβN
(
|{x ∈ ΛN : φ(x) ≥ H + k}| > e−2βk N 2)

≤ e−Ce−2βk N
(

1∧e−2βk N log−8 N
)
,

nd

PβN
(
|{x ∈ ΛN : φ(x) ≤ H − k}| > e−2βk N 2)

≤ e−eβk N .

This result describes the effect of the impenetrable wall in the large β regime, as the surface
s pushed up to the height of order 1

4β log N , instead of remaining uniformly bounded when
o wall is present. This effect is often called entropic repulsion. Furthermore, in [7] these
uthors provided a full description of the macroscopic shape of the SOS surface, including
he scaling limit and fluctuations of the rescaled macroscopic level lines. In particular, they
how in [7, Theorem 1] that the surface concentrates on two values: H and H − 1. Moreover,
oncerning 3D Ising interfaces conditioned to stay above a floor at a negative level, Gheissari
nd Lubetzky [14] proved a phase transition in the occurrence of entropic repulsion when
ariating the level of the floor. Thus, similar results are believed to hold for (2 + 1)-D SOS
urface above a hard wall.

.3. The (2 + 1)-dimensional SOS surface with pinning above a wall

In this paper, we are interested in the case where the (2+1)-dimensional SOS surface above
a wall interacts with a pinning (or wetting) attraction to the wall.

More precisely, we model this surface in the box ΛN ⊂ Z2 by an element of ΩN = ZΛN
+ ,

where Z+ := Z ∩ [0,∞). Given β > 0 and h ≥ 0, we define the probability measure for
the (2 + 1)-dimensional SOS surface above a wall with zero boundary conditions and pinning
reward h, namely Pβ,hN on ΩN , by

Pβ,hN (φ) :=
1

Zβ,h
N

e−βHN (φ)+h|{x∈ΛN : φ(x)=0}|, (4)

here

Zβ,h
N :=

∑
φ∈ΩN

e−βHN (φ)+h|{x∈Λ: φ(x)=0}|
≤ eh|ΛN |

(
1 + e−2β

1 − e−2β

)|ΛN |

. (5)

y [18, Equation (2.9)], we know the existence of the following limit

F(β, h) := lim
N→∞

1
N 2 logZβ,h

N

which is called the free energy. By Hölder’s inequality, for θ ∈ [0, 1] we have

Zβ,θh1+(1−θ )h2
≤

(
Zβ,h1

)θ
·

(
Zβ,h2

)1−θ

,
N N N
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and then F(β, h) is increasing and convex in h since F(β, h) is the limit of a sequence of
ncreasing and convex functions in h. Therefore, at points where F(β, h) is differentiable in h,
he convexity (cf. [15, Appendix A.1.1]) allows us to exchange the order of limit and derivative
o obtain the asymptotic contact fraction

∂h F(β, h) = lim
N→∞

1
N 2 E

β,h
N

[
|φ−1(0)|

]
,

here we have used the notation φ−1(A) := {x ∈ ΛN : φ(x) ∈ A} for A ⊂ Z, and
−1(k) := φ−1({k}) for k ∈ Z. In [8], Chalker showed that there exists a critical value

hw(β) := sup {h ∈ R+ : F(β, h) = F(β, 0)} (6)

hich is positive for all β > 0, thus separating the delocalized phase (∂h F(β, h) = 0) from
he localized phase (∂h F(β, h) > 0). We refer to the surveys [17,23] for a comprehensive
ibliography on the subject of localization/delocalization of surface models. Chalker further
howed that for all β > 0,

log
(

e4β

e4β − 1

)
≤ hw(β) ≤ log

(
16(e4β

+ 1)
e4β − 1

)
. (7)

ater, Alexander, Dunlop and Miracle-Solé [1] showed that the lower bound in (7) is asymptoti-
cally sharp, and when h decreases to hw the system undergoes a sequence of layering transitions
(i.e. the typical height of the surface varies as h decreases to hw). More recently, Lacoin proved
n [18, Proposition 5.1] that for β > β1 (where β1 ∈ (log 2, log 3) is given by [18, (2.20)]), we
ave

hw(β) = log
(

e4β

e4β − 1

)
, (8)

nd there exists a constant Cβ such that

∀u ∈ (0, 1], C−1
β u3

≤ F(β, u + hw(β)) − F(β, hw(β)) ≤ Cβu3.

In fact, this constant Cβ can be determined more precisely under additional conditions on β,
for which we refer to [18, Theorem 2.1]. Furthermore, when h > hw, a complete picture of
the typical height, the Gibbs states and regularity of the free energy is provided in [19].

1.4. Subcritical regime

In this paper, our goal is to describe the typical height of the (2 + 1)-dimensional SOS
surface above a wall with pinning parameter h ∈ (0, hw). Our main result is a generalization
of Theorem A to the subcritical pinning regime. We note that for h ∈ (0, hw) we have
e−h

+ e−4β > 1, and then define for δ > 0,

κ(β, h, δ) :=
4β + δ

log
(
e−h + e−4β

) . (9)

heorem 1.1. Fix β ≥ 1, h ∈ (0, hw) and N ≥ 1. Let H =

⌊
1

4β log N
⌋

.

(i) There exist two universal constants C, K > 0 such that for all integer m ≥ K ,

Pβ,h
(⏐⏐φ−1([H + m,∞))

⏐⏐ > e−2βm N 2)
≤ e−Ce−2βm N

(
1∧e−2βm N log−8 N

)
.
N
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(ii) For δ > 0 and m ∈ N we have

Pβ,hN

(⏐⏐φ−1([0, H − m])
⏐⏐ > 2e−2βm N 2)

≤ 3e− min
(

1
2 e2βm

−4β(1+κ), δ
)

N
,

where κ is defined in (9).

We expect that similarly, for h ∈ (0, hw), the surface concentrates on two values H − c(h)
and H − c(h) − 1 where c(h) ∈ Z+ tends to infinity when h tends to hw.

1.5. Behavior at criticality

Next we consider the behavior at critical h = hw, as defined in (6). Our main result is that
the amount of non-isolated zeros is at most of order N with high probability. For φ ∈ ΩN , we
define its isolated and non-isolated zeros to be respectively

q1(φ) := {x ∈ ΛN : φ(x) = 0,∀y ∈ ΛN , y ∼ x, φ(y) ≥ 1} ,

q2+(φ) := {x ∈ ΛN : φ(x) = 0, ∃y ∈ ΛN , y ∼ x, φ(y) = 0} .
(10)

e prove the following theorem.

heorem 1.2. For β ≥ 1 and h = hw, we have for all N ∈ N and C > 0,

Pβ,hwN (φ ∈ ΩN : |q2+(φ)| ≥ C N ) ≤ e−N
(

C
20 e−6β

−4β
)
.

When h = hw, it is conjectured that the surface height concentrates around the value

Hw =

⌊
1

6β
log N

⌋
, (11)

ith fluctuations similar to Theorem 1.1 [20]. The intuition for this different typical height is a
alance at criticality between entropic cost of lifting the surface up and the reward for isolated
eros. Theorem 1.2 indicates that non-isolated zeros should not contribute to this balance.

Our last result gives further evidence for the conjecture. We show that the probability of
ownwards fluctuations from the conjectured typical height Hw is very small, if the amount of

zeros is at most of order N 4/3.

Proposition 1.3. For all β ≥ 1, C > 0, h = hw, N ∈ N and m ∈ N, letting Hw = ⌊
1

6β log N⌋

e have

Pβ,hwN

({
|φ−1(0)| ≤ C N

4
3

}⋂{⏐⏐φ−1([1, Hw − m])
⏐⏐ ≥ 2e−2βm N 2})

≤ 2 exp
(

4βN + 4βC N
4
3 −

1
2 e2βm N

4
3

)
.

As a consequence of Theorem 1.2 and Proposition 1.3, it is enough to prove that for large
nough C > 0, we have

Pβ,hwN

(
|q1(φ)| > C N 4/3)

= o(1), N → ∞ (12)

n order to obtain a lower bound on the typical height of the surface at criticality, matching the
onjectured height in (11).

.6. Open problems and heuristic arguments

Subcritical regime. Theorem 1.1 opens the door to more advanced questions about the
structure of the surface when h ∈ (0, h ). Shape results similar to [7] are expected to hold. In
w
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particular, we expect that for h ∈ (0, hw), the surface concentrates on two values H − c(h) and
H − c(h) − 1, where c(h) ∈ Z+ tends to infinity when h tends to hw.

At criticality. The behavior of the surface at h = hw remains to be analyzed. In particular,
proving an analogous result to Theorem 1.1 with typical height as in (11) is of interest, as
are more advanced shape results (similar to [7, Theorems 1 and 2]). As mentioned earlier, our
results would imply a lower bound matching this typical height, provided that (12) holds. We
turn to offer heuristic arguments for the conjectured estimates (11) regarding the typical height
and (12) regarding the number of isolated zeros.

For large β (low temperature), neighboring vertices tend to have close values. Thus the
surface is expected to be nearly flat — most of the vertices will take a certain value Hw,
up to the inner boundary. Nonetheless, some vertices will take the value zero (even without
pinning, as proved in [3]). As the zeros are believed to have a spatial mixing property (see
the intuitive argument of [18, Equation (3.13)]), their appearance could be approximated by an
i.i.d. process, where each vertex is an isolated zero with probability e−4βHw (stemming from
having 4 neighbors at height Hw) and two adjacent vertices are a pair of zeros with probability
e−6βHw (stemming from having 6 neighbors at height Hw). At criticality, the pinning reward is
not influenced at all by isolated zeros (see (24)), and the main contribution is therefore from
pairs of neighboring zeros, whose amount is typically N 2e−6βHw . The main penalty to the

amiltonian (1) is from lifting the inner boundary up to Hw while the outer boundary remains
t 0, thus contributing e−4βN Hw to the computation of probability in (4). The value of Hw is
ne which balances these two factors, that is,

exp
(
hwN 2e−6βHw

)
e−4βN Hw ≍ 1,

hich implies Hw = ⌊
1

6β log N⌋ as in (11). Now, by the i.i.d. model for zeros, the mean number
f isolated zeros is

N 2e−4βHw = N 4/3,

hich implies (12).

.7. Outline of the paper

The paper is organized as follows. Section 2 is devoted to Theorem 1.1–(i) about upward
uctuations in the subcritical regime. Section 3 is about Theorem 1.1–(ii) concerning downward
uctuations in the subcritical regime. In Section 4, we prove Theorem 1.2 and Proposition 1.3
t criticality.

. Theorem 1.1-(1): Upward fluctuations for h ∈ (0, hw)

Intuitively, the height of the (2+1)-dimensional SOS surface above a wall with pinning (i.e.
h ≥ 0) is stochastically dominated by that without pinning (i.e. h = 0). We use this comparison
between Pβ,hN and Pβ,0N to prove part (i), where Pβ,0N = PβN is defined in Section 1.2.

2.1. Partial order and stochastic domination

We define a partial order “≤” on ΩN × ΩN as follows

φ ≤ ψ ⇔ ∀x ∈ Λ , φ(x) ≤ ψ(x).
N
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Moreover, a function f : ΩN ↦→ R is increasing if

φ ≤ ψ ⇒ f (φ) ≤ f (ψ).

imilarly, an event A ⊂ ΩN is increasing if its indicator function 1A is increasing. For two
robability measures µ1, µ2 on ΩN , we say that µ2 dominates µ1, denoted by µ1 ⪯ µ2, if for
ny bounded increasing function f : ΩN ↦→ R, we have

µ1( f ) ≤ µ2( f ).

emma 2.1. For all β > 0 and 0 ≤ h1 ≤ h2, we have

Pβ,h2
N ⪯ Pβ,h1

N . (13)

roof. Since [16, Theorem 6] is applied for finite distributive lattice, we set

An :=

{
φ ∈ ΩN : max

x∈ΛN
φ(x) ≤ n

}
.

t is fundamental to verify Holley’s condition [16, Equation (7)] to obtain

Pβ,h2
N (· | An) ⪯ Pβ,h1

N (· | An) ,

nd then for any bounded increasing function f : ΩN ↦→ R we have

Eβ,h2
N [ f 1An ]

Pβ,h2
N (An)

≤
Eβ,h1

N [ f 1An ]

Pβ,h1
N (An)

. (14)

oreover, by the dominate convergence theorem, for all h ≥ 0 we have

Eβ,hN [ f ] = lim
n→∞

Eβ,hN [ f 1An ]

Pβ,hN (An)
. (15)

ombining (14) and (15), we conclude the proof. □

.2. Proof of Theorem 1.1–(i).

Note that for any integer m, the event{
φ ∈ ΩN : |{x ∈ ΛN : φ(x) ≥ H + m}| > e−2βm N 2}

s increasing. We combine Lemma 2.1 and Theorem A to conclude the proof. □

. Theorem 1.1-(ii): downward fluctuations for h ∈ (0, hw)

To prove part (ii) of Theorem 1.1, we first show that |φ−1(0)| is at most of order N , with
igh probability, adopting the strategy in [6, Theorem 3.1].

emma 3.1. For all β ≥ 1, h ∈ [0, hw), δ > 0 and N ≥ 1, we have

Pβ,hN

(
|φ−1(0)| ≥ κN

)
≤ e−δN ,
here κ = κ(β, h, δ) is defined in (9).
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Proof. For φ ∈ ΩN and each A ⊆ φ−1(0), we define UAφ : ΛN ↦→ Z+ as follows

(UAφ)(x) :=

{
φ(x) + 1, if x /∈ A,
0, if x ∈ A.

Since the action UA increases the height of each site in ΛN \ A by one, we have

HN (UAφ) ≤ HN (φ) + 4|A| + 4N ,

|φ−1(0)| − |(UAφ)−1(0)| = |φ−1(0) \ A|.
(16)

herefore,

Pβ,hN (UAφ) ≥ Pβ,hN (φ) · exp
(
−h|φ−1(0) \ A| − 4β|A| − 4βN

)
,

nd then∑
A⊆φ−1(0)

Pβ,hN (UAφ) ≥ e−4βN
· Pβ,hN (φ)

∑
A⊆φ−1(0)

exp
(
−h|φ−1(0) \ A| − 4β|A|

)

= e−4βN−h|φ−1(0)|
· Pβ,hN (φ)

|φ−1(0)|∑
n=0

∑
A⊆φ−1(0)

|A|=n

exp (−n(4β − h))

= e−4βN−h|φ−1(0)| (1 + e−(4β−h))|φ−1(0)| Pβ,hN (φ) .

(17)

bserve that for A, A′
⊆ φ−1(0) with A ̸= A′, we have

UAφ ̸= UA′φ.

urthermore, for φ ̸= ψ , if A ⊆ φ−1(0) and B ⊆ ψ−1(0), we have

UAφ ̸= UBψ,

ecause we can recover A from UAφ by zero-value sites and then proceed to recover φ.
herefore

∑
φ∈ΩN

∑
A⊂φ−1(0) P

β,h
N (UAφ) ≤ 1. In particular, using (17) we obtain

1 ≥

∑
φ: |φ−1(0)|≥κN

∑
A⊂φ−1(0)

Pβ,hN (UAφ)

≥

∑
φ: |φ−1(0)|≥κN

e−4βN−h|φ−1(0)| (1 + e−(4β−h))|φ−1(0)| Pβ,hN (φ)

≥ e−4βN (e−h
+ e−4β)κN Pβ,hN

(
|φ−1(0)| ≥ κN

)
(18)

here in the last inequality we have used that e−h
+e−4β > 1 for h ∈ [0, hw). By the definition

f κ in (9) we have(
e−h

+ e−4β)κ e−4β
= eδ.

lugging this into (18), we conclude the proof of Lemma 3.1. □

emma 3.2. Let β ≥ 1, h ∈ [0, hw) and κ > 0. Then for all m > ⌈
1

2β log (8β(1 + κ))⌉ and
N ≥ 1 we have

Pβ,hN

({
|φ−1(0)| ≤ κN

}⋂{⏐⏐φ−1([1, H − m])
⏐⏐ ≥

e−2βm

1 − e−2β N 2
})

≤
1

e−

(
1
2 e2βm

−4β(1+κ)
)

N
.

1 − e−βN
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Remark 1. The condition m > 1
2β log (8β(1 + κ)) is only to ensure that 1

2 e2βm
−4β(1+κ) > 0.

Proof. Fix an integer ℓ ∈ [1, H −m]. For any subset A ⊆ φ−1(ℓ), we define VAφ : ΛN ↦→ Z+

s follows

(VAφ)(x) :=

⎧⎪⎨⎪⎩
0, if x ∈ φ−1(0),
1, if x ∈ A,
φ(x) + 1, if x /∈ A ∪ φ−1(0).

(19)

bserve that for x ∈ A and y /∈ A ∪ φ−1(0) with x ∼ y,

|(VAφ)(x) − (VAφ)(y)| = φ(y) ≤ |ℓ− φ(y)| + ℓ,

nd then

HN (VAφ) ≤ HN (φ) + 4N + 4|φ−1(0)| + 4ℓ|A|.

oreover, as |(VAφ)−1(0)| = |φ−1(0)|, we obtain

Pβ,hN (VAφ) ≥ Pβ,hN (φ) e−4βN−4β|φ−1(0)|−4βℓ|A|.

imilarly to (17), we have∑
A⊆φ−1(ℓ)

Pβ,hN (VAφ) ≥ Pβ,hN (φ)
∑

A⊆φ−1(ℓ)

e−4βN−4β|φ−1(0)|−4βℓ|A|

= Pβ,hN (φ) e−4βN−4β|φ−1(0)| (1 + e−4βℓ)|φ−1(ℓ)|

≥ Pβ,hN (φ) exp
(
−4βN − 4β|φ−1(0)| +

1
2 e−4βℓ

|φ−1(ℓ)|
) (20)

here we have used (1 + x) ≥ ex/2 for x ∈ [0, 1] in the last inequality.
Note that for A, A′

⊆ φ−1(ℓ) with A ̸= A′, we have

VAφ ̸= VA′φ.

oreover, for φ ̸= ψ ∈ ΩN , A ⊂ φ−1(ℓ) and B ⊂ ψ−1(ℓ), we have

VAφ ̸= VBψ,

ince we can recover A by 1− valued sites of VAφ and then proceed to recover φ. Therefore,
y (20), denoting j = H − ℓ we obtain

1 ≥

∑
φ: |φ−1(ℓ)|≥e−2β j N2

|φ−1(0)|≤κN

∑
A⊂φ−1(ℓ)

Pβ,hN (VAφ)

≥ exp
(
−4βN − 4βκN +

1
2 e2β j N

)
Pβ,hN

(
{|φ−1(ℓ)| ≥ e−2β j N 2

} ∩ {|φ−1(0)| ≤ κN }
)
.

(21)

oreover, as{
|φ−1([1, H − m])| ≥

e−2βm

1 − e−2β N 2
}

⊂

H−1⋃ {
|φ−1(H − j)| ≥ e−2β j N 2} ,
j=m
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by union bound and (21) we obtain

Pβ,hN

({
|φ−1([1, H − m])| ≥

e−2βm

1 − e−2β N 2
}⋂{

|φ−1(0)| ≤ κN
})

≤

H−1∑
j=m

Pβ,hN

(
{|φ−1(H − j)| ≥ e−2β j N 2

}

⋂{
|φ−1(0)| ≤ κN

})

≤

H−1∑
j=m

exp
(
4βN + 4βκN −

1
2 e2β j N

)
≤

1
1 − e−βN

exp
(
4βN + 4βκN −

1
2 e2βm N

)
,

here in the last inequality we have used that for j ≥ 0,

exp
(
−

1
2 e2β( j+1) N

)
exp

(
−

1
2 e2β j N

) ≤ exp
(
−βe2β j N

)
≤ e−βN .

his concludes the proof. □

.1. Proof of Theorem 1.1–(ii)

For all N ≥ 1, we have

Pβ,hN

(⏐⏐φ−1([0, H − m])
⏐⏐ > 2e−2βm N 2)

≤ Pβ,hN

(⏐⏐φ−1(0)
⏐⏐ > κN

)
+

Pβ,hN

({
|φ−1(0)| ≤ κN

}⋂{⏐⏐φ−1([1, H − m])
⏐⏐ ≥

e−2βm

1 − e−2β N 2
})

≤ e−δN
+

1
1 − e−βN

exp
(
−
( 1

2 e2βm
− 4β(1 + κ)

)
N
)

≤ 3 exp
(
− min

( 1
2 e2βm

− 4β(1 + κ), δ
)

N
)
,

where we have applied Lemmas 3.1 and 3.2 in the second inequality. □

4. Theorem 1.2 : Upper bound on non-isolated zeros at criticality

This section is devoted to the proof of Theorem 1.2. Inspired by [18, Lemma 3.1], we first
observe that for x1, x2, x3, x4 ∈ Z+,

0∑
k=−∞

exp

(
−β

4∑
i=1

|xi − k|

)
= exp

(
hw − β

4∑
i=1

xi

)
. (22)

Define a new state space

Ω∗

N := {ψ : ΛN → Z | if ψ(x) ≤ −1,∀y ∈ ΛN , y ∼ x, ψ(y) ≥ 1} . (23)

Notice that if ψ ∈ Ω∗

N , then max(ψ, 0) ∈ ΩN (as defined in (3)). By (22), we have

Zβ,hw
N =

∑
∗

exp (−βHN (ψ) + hw|q2+(ψ)|)

ψ∈ΩN
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where Zβ,hw
N is defined in (5) and HN is defined in (1) with zero boundary condition. Define

new probability measure P̃N on Ω∗

N as follows:

∀ψ ∈ Ω∗

N , P̃N (ψ) :=
1

Zβ,hw
N

exp (−βHN (ψ) + hw|q2+(ψ)|) . (24)

bservation (22) yields the following relation between P̃N and Pβ,hwN : for any φ ∈ ΩN ,

Pβ,hwN (φ) = P̃N
({
ψ ∈ Ω∗

N : max(ψ, 0) = φ
})
.

n particular, we have

Pβ,hwN ({φ ∈ ΩN : |q2+(φ)| ≥ C N }) = P̃N
({
ψ ∈ Ω∗

N : |q2+(ψ)| ≥ C N
})
, (25)

ince for any ψ ∈ Ω∗

N , we have q2+(max(ψ, 0)) = q2+(ψ).
From now on, we deal with the r.h.s. of (25). For any subset A ⊆ q2+(ψ), we let N (A) be

he edge boundary of A, defined by

N (A) :=

{
{x, y} ∈ E(Z2) : x ∈ A, y ∈ A∁

}
, (26)

nd define UAψ ∈ Ω∗

N as

(UAψ)(x) :=

{
ψ(x) + 1 if x /∈ A,
0 if x ∈ A.

or ease of notation, we fix ψ ∈ Ω∗

N and write q2+(A) := q2+(UAψ) in the sequel. Observing
N (UAψ) ≤ HN (ψ) + 4βN + β|N (A)|, we have by (24):

P̃N (UAψ) ≥ P̃N (ψ) exp (−4βN − β|N (A)| − hw (|q2+(ψ)| − |q2+(A)|)) .

et V1, V2, . . . , Vk be the connected components of q2+(ψ), and write Ai = A ∩ Vi . We sum
ver all subsets A ⊆ q2+(ψ) to obtain∑

A⊆q2+(ψ )̃

PN (UAψ)

≥ P̃N (ψ) exp (−4βN − hw|q2+(ψ)|)
∑

A⊆q2+(ψ)

exp (−β|N (A)| + hw|q2+(A)|)

= P̃N (ψ) exp (−4βN − hw|q2+(ψ)|)

×

∑
A1,...,Ak

k∏
i=1

exp (−β|N (Ai )| + hw|q2+(Ai )|)

= P̃N (ψ) exp (−4βN )
k∏

i=1

exp (−hw|Vi |)
∑

Ai ⊆Vi

exp (−β|N (Ai )| + hw|q2+(Ai )|)

(27)

here we have used that q2+(ψ) = V1 ∪ V2 · · · ∪ Vk is the disjoint union of V1, V2, . . . , Vk .
Note that for any finite connected subgraph of Z2, after deleting some edges (but keeping

ll the vertices), the graph can be decomposed into a disjoint union of patterns from Fig. 1 (up
o rotation and reflection). From now on, we focus on one connected component Vi in the r.h.s.

f (27). Denote by Ei the set of edges in this disjoint union of patterns. In the graph (Ai , Ei )
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Fig. 1. The vertices of any connected set of size at least 2 can be covered by a disjoint union of these four patterns.
(The two configurations in (2) are considered as the same pattern, as both have 3 vertices and 8 boundary edges).

we define the count of non-isolated spikes (similar to (10)) by

q̃2+(Ai ) := {x ∈ Ai : ψ(x) = 0, ∃y ∈ Ai , (x, y) ∈ Ei , ψ(y) = 0} ,

nd the edge boundary, similar to (26), by

Ñ (Ai ) = {{x, y} /∈ Ei : x ∈ Ai ∨ y ∈ Ai } .

bserve that

|̃q2+(Ai )| ≤ |q2+(Ai )|, and |Ñ (Ai )| ≥ |N (Ai )|. (28)

he next lemma will therefore provide a lower bound on the r.h.s. in (27).

emma 4.1. If β ≥ 1 and V is the vertex set of one of the patterns shown in Fig. 1, then

exp (−hw|V |)
∑
B⊆V

exp (−β|N (B)| + hw|q2+(B)|) ≥ 1 +
1
2

e−6β . (29)

Proof. For simplicity of notation, we write h = hw. We will repeatedly use that e−h
= 1−e−4β

nd β ≥ 1 without further reference. We consider the four patterns in Fig. 1, case by case. If
V | = 2 (i.e. (1) in Fig. 1), then the l.h.s. of (29) equals

e−2h (1 + 2e−4β
+ e−6β+2h) 7 = (1 − e−4β)2(1 + 2e−4β) + e−6β

≥ 1 + e−6β(1 − 3e−2β) > 1 +
1
2

e−6β .

In the case |V | = 3 (pattern (2) in Fig. 1), the l.h.s. of (29) equals

e−3h (1 + 3e−4β
+ e−8β

+ 2e−6β+2h
+ e−8β+3h)

≥ (1 − e−4β)3 (1 + 3e−4β)
+ 2e−6β−h

≥ 1 + 2e−6β (1 − 3e−2β
− e−4β)

≥ 1 + e−6β .

Consider now the case |V | = 4, corresponding to pattern (3) in Fig. 1. By counting
onnected subsets of size at most two, the l.h.s. of (29) is bounded from below by

e−4h (1 + 4e−4β
+ 3e−6β+2h)

≥ (1 − e−4β)4 (1 + 4e−4β)
+ 3e−6β−2h

−8β −6β−2h −6β

≥ 1 − 10e + 3e ≥ 1 + e .
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Lastly, consider the case |V | = 5, corresponding to pattern (4) in Fig. 1. By counting
onnected subsets of size at most two, the l.h.s. of (29) is larger than

e−5h (1 + 5e−4β
+ 4e−6β+2h)

≥ 1 − 15e−8β
+ 4e−6β+2h(1 − 5e−4β)

≥ 1 + e−6β
(

4
1 − 5e−4β

(1 − e−4β)2 − 15e−2β
)

≥ 1 + e−6β .

his concludes the proof. □

With Lemma 4.1 at hand, we are ready to prove Theorem 1.2.

roof of Theorem 1.2. Using (28) and (29), we may continue the inequality (27) to obtain∑
A⊆q2+(ψ)

P̃N (UAψ) ≥ e−4βN P̃N (ψ)
(

1 +
1
2

e−6β
)|q2+(ψ)|/5

, (30)

here we have used that the total numbers of patterns covering q2+(ψ) are at least |q2+(ψ)|/5.
ote that for A ̸= B ⊂ q2+(ψ) we have UAψ ̸= UBψ since (UAψ)|A\B = 0 and

UBψ)|A\B = 1. Moreover, for ψ,ψ ′
∈ Ω∗

N and A ⊂ q2+(ψ), A′
⊂ q2+(ψ ′), we have

UAψ ̸= UA′ψ ′.

o see this, note that

A = {x ∈ ΛN : (UAψ)(x) = 0, ∃y ∈ ΛN , y ∼ x, (UAψ)(y) ∈ {0, 1}}.

hus, given UAψ , we can first recover the set A and then proceed to recover ψ . Therefore,
rom (30) we obtain

1 ≥

∑
ψ∈Ω∗

N : |q2+(ψ)|≥C N

∑
A⊂q2+(ψ)

P̃N (UAψ)

≥

∑
ψ∈Ω∗

N : |q2+(ψ)|≥C N

e−4βN P̃N (ψ)
(
1 +

1
2 e−6β)|q2+(ψ)|/5

≥ e−4βN (1 +
1
2 e−6β)C N/5 P̃N

({
ψ ∈ Ω∗

N : |q2+(ψ)| ≥ C N
})

≥ e−4βN e
C
20 e−6βN P̃N

(
{ψ ∈ Ω∗

N : |q2+(ψ)| ≥ C N }
)
,

here the last step used the inequality 1 + x ≥ e
1
2 x for x ∈ [0, 1]. By (25), this concludes the

roof. □

Now we move to prove Proposition 1.3.

roof of Proposition 1.3. For ℓ ∈ [[1, Hw − m]], with exactly the same argument as in (20)
nd (21), setting m = Hw − ℓ we have

1 ≥

∑
ψ : |ψ−1(ℓ)|≥e−2βm N2

|ψ−1(0)|≤C N
4
3

∑
A⊂φ−1(ℓ)

Pβ,hwN (VAφ)

≥ exp
(

−4βN − 4βC N
4
3 +

1
2

e2βm N
4
3

)
×Pβ,hw

(
{|φ−1(ℓ)| ≥ e−2βm N 2

} ∩ {|φ−1(0)| ≤ C N
4
3 }

)
(31)
N
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where VAφ is defined in (19). Moreover, as (1 − e−2β)−1
≤ 2 and{

|φ−1([1, Hw − m])| ≥
e−2βm

1 − e−2β N 2
}

⊂

Hw−1⋃
i=m

{
|φ−1(Hw − i)| ≥ e−2βi N 2} ,

by union bound and (31) we obtain

Pβ,hwN

({
|φ−1([1, Hw − m])| ≥

e−2βm

1 − e−2β N 2
}⋂{

|φ−1(0)| ≤ C N
4
3

})
≤

Hw−1∑
i=m

exp
(

4βN + 4βC N
4
3 −

1
2

e2βi N
4
3

)
≤

1

1 − e−βN
4
3

exp
(

4βN + 4βC N
4
3 −

1
2

e2βm N
4
3

)
,

where in the last inequality we have used that for j ≥ 0,

exp
(
−

1
2 e2β( j+1) N

4
3

)
exp

(
−

1
2 e2β j N

4
3

) ≤ exp
(
−βe2β j N

4
3

)
≤ e−βN

4
3
. □
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