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Abstract

Consider a real Gaussian stationary process f,, indexed on either R or Z and admitting a
spectral measure p. We study 95 = — Th_r}r;o % log P (infte[o’T] folt) > 2)7 the persistence exponent
of f,. We show that, if p has a positive density at the origin, then the persistence exponent
exists; moreover, if p has an absolutely continuous component, then Hﬁ > 0 if and only if this
spectral density at the origin is finite. We further establish continuity of Hﬁ in ¢, in p (under a
suitable metric) and, if p is compactly supported, also in dense sampling. Analogous continuity
properties are shown for 1/)5 =— Th_rgo % log P (infte[o’T] lfo()] < 6)7 the ball exponent of f,, and

it is shown to be positive if and only if p has an absolutely continuous component.

1 Introduction

Persistence, namely the event that a real stochastic process f stays above a level £ over a long time
interval [0, T], is a well studied object since the 1950s, especially for centered Gaussian stationary
processes (GSP) in discrete or continuous time (c.f. 7 (13} 16, 43, |45 47, 49, |55} |57, 58] and the
references therein). This has been studied in particular for the critical case ¢ = 0 (c.f. [27, [28] |34,
51]), with applications to statistical mechanics (c.f. |14} |25 42, 48, 62]). The persistence exponent
of a GSP f over level ¢ is defined as the exponential rate of decay of the persistence probability,
namely,

1
0t = — lim —logP ([ inf f(t) >/
j=—jm —log <t€1[%7T]f()> >

whenever the limit exists.

Slepian, in his celebrated 1962 paper [57], conjectured that a persistence exponent should exist
under mild conditions. The validity of this conjecture has often been taken for granted in the physics
literature [22, 24]. Prior to this work, the only cases in which an exponent was shown to exist were
non-negative correlated processes [20] (using a subadditivity argument), Markov processes (using

Perron-Frobenius), and m-dependent processes (using independence properties) [6].
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Every continuous GSP f : R — R is characterized by a covariance kernel r(t) = cov (f(0), f(t)),
or, equivalently, by a spectral measure, that is, a finite, non-negative, symmetric measure p on R
such that:

i) =50 = [ ™ dol).

We denote by f,, 7, 92 the process, covariance kernel and persistence exponents associated with p.

In recent years it became evident that it is possible to obtain a much more precise understanding
of persistence in terms of the spectral measure of f (c.f. [26, 27, |2§]). Our main result is that
existence of a positive spectral density in the origin is sufficient for the existence of 9;;.

1.1 Main results

Throughout, we require p to belong to the following class of measures with finite log—(1 + )
moment:

L= {,06 § |136>0: /Ooomax<log1+ﬂ)\, 1)dp()\) < oo},

where 8 is the set of all spectral measures (symmetric, non-negative, finite measures on R). The

requirement p € £ is a rather mild condition which ensures continuity of the process (see |1, Sec. 1]).

While we state our results for GSPs on R, all theorems are valid for processes on Z as well, in which

case p is supported on [—m, 7] and the condition p € £ is always satisfied (see Remark . Define
p'(0) := lim op([—¢,€])

e—0

whenever the limit exists, and

M= {pe S | p0) e (o,oo]}.

We use the notation pg. to denote the absolutely-continuous component of the measure p.

Theorem 1. Let p € L NM. Then, for all £ € R a persistence exponent Gﬁ € [0,00) ewists.
Moreover, under the further assumption pge. # 0, we have Hf, > 0 if and only if p'(0) < co.

Remark 1. Tightness of the condition p € M is demonstrated by a counter-example, provided in
Section There we show that for the spectral density (A + B cos(%))lﬁ Al<1 in a certain range
of 0 < B < A, the exponent 92 does not exist. In this example the density is bounded, compactly
supported, and continuous on [—1,1] \ {0}. We note that it is possible to construct examples of
non-existence of Gf; for any level £ > 0, and even for all levels at once.

Remark 2. For p € £ with p,c # 0 and p/(0) = 0, we have Hf) = oo for all £ > 0. This is not
covered by Theorem |1} but follows from Lemma below. The conditions for positivity of Hf, in
the case pac = 0 presently remain unknown.

Remark 3. For / < 0 and p € M, it follows from our results that 9;; is positive if and only if
Pac 7 0 . For £ > 0 and p € M we conjecture that Gﬁ is always positive.

A ball event is the event that a real stochastic process f stays in [—/, {] over a long time interval
[0,T]. This event is well-studied (c.f. |4 33, 135, 39], for a complete bibliography, see [37]) with



various applications (c.f. [36, 38]). Given a spectral measure p, denote the ¢-ball exponent of p by
wﬁ = — lim llog]P’ sup |f(t)] < €] .
T—o0 T’ te[0,T]

This exponent is known to exist for all spectral measures in £ using a subadditivity argument
together with Khatri-Sidak [56] inequality (see e.g. [35]). Our main result concerning ball events
is the following analogue of Theorem

Theorem 2. Let p € £. For all ¢ the ball exponent wf, is positive if and only if pac # 0.

We further obtain three results concerning with the continuity and comparison of persistence
and ball exponents. The first is the fact that the persistence and ball exponents are monotone in
the spectral measure (in an appropriate sense), and are unaffected by the singular component.

Theorem 3. Let £ € R and p,v € L. Then:
D) Yo = U

(I1) 6°

oty = Hf,, provided that p € M and v'(0) = 0.

Further, equality holds in both and if v is purely-singular.
Observe that Theorem [2| is an immediate corollary of Theorem
Remark 4. We conjecture that equality in Theorem [3] holds if and only if v is purely-singular.

The second result is continuity of exponents in the level ¢ and in the measure p, with respect
to a suitable metric topology. Stating the result requires the following definitions.
For two finite measures p1, p2, define the total variation distance

drv(pr, p2) = sup{lp1(E) — pa(E)| : E CR}.

If p1, p2 also have a finite density at the origin, we define the metric

drv,(p1, p2) = drv(p1, p2) + |p1(0) — po(0)]. (1.1)

Fix a,d’, A, 3, B > 0 and consider the classes of measures
Mqarya = {p €8 |a< p(_;;’x) <o \Vre (o,A)},

» (1.2)
Lop = {,0 €s | /0 max (1og1+ﬂ A 1)dp()\) < B}.

Theorem 4.

(I) The ball exponent d}f; is locally-Lipschitz continuous in £ € (0,00) and uniformly drpvy-
continuous in p € Lg B.

(IT) The persistence exponent Gf; 15 locally-Lipschitz continuous in £ € R and uniformly drv,-
continuous in p € Lg g N Mg,a,4 N M.



Remark 5. The function ¢ +— wﬁ is convex (by log-concavity of centered Gaussian processes),
and hence continuous. In contrast, continuity of £ — Hf) is not immediate nor is it true for all
spectral measures p. Consider, for example, y = %(51 + d_1), which corresponds to the process
fu(t) = Cicos(t) + (o sin(t) where (1, (2 ~ N(0, 1) are independent. A direct analysis yields

ot — o, £>0,
" lo, ¢<o0

Note that the only discontinuity in this example is at the level £ = 0. In fact, even when p’(0) = 0,
we can establish continuity of Hf; in ¢ (assuming it exists), for all £ < 0. When, in addition, pa. # 0
we have 9‘; = oo for all £ > 0 (by Remark . Therefore whenever p,. # 0, the map ¢ — 9;; is
always continuous away from 0. We conjecture this to hold also for purely singular measures.

The third continuity result is concerned with discrete sampling. For a spectral measure p define

1
0! \ = — lim — logP inf A) >/
P T T 08 <nez, nAe[0.T] Jo(nd) > ) ’

1
YA =— lim = logP sup |fo(nA) < 2],
' T—oo T' n€eZ,nA€0,T]
whenever the limit exists. These are the persistence and ball exponents of the Gaussian stationary
sequence generated by sampling f in A-intervals. Our next result provides conditions for conver-
gence of Hf); A to Hﬁ and of Qﬁﬁ; A to @/}ﬁ, as the sampling interval A approaches 0.

Theorem 5. Let { € R and p € L. Then:

(1) lim 0f 5 = o,

(IT) iim0 Oﬁ_A = 0/‘;, provided that p € M has compact support.
H ’

Remark 6. The second part of Theorem [5| may be extended to non-compactly supported spectral
measures with sufficient rate of decay at infinity (for instance, ones which have density p’ satisfying
supyeg [AT70 (N) < oo for some n > 0). However, it does not extend to all p € LN M. A
counter-example is provided in Section [7.3]

Remark 7. As we have mentioned earlier, Theorems and [ hold true also for Gaussian
processes in discrete time. The proofs remain valid without any change. For such processes the
condition p € £ holds trivially.

Remark 8. A natural generalization of the problem presented here is the so called two sided barrier
problem (considered by Shinozuka [53]), i.e. the probability that a GSP persists within a set [a, b]
where a # —b and —00 < a < b < 0o. Somewhat surprisingly the methods used here do not seem
to generalize directly to this case as several monotonicity properties are lost. Thus the problem
remains open. It is possible to show that when a < 0 < b, an exponential-type behavior is always
demonstrated, while if 0 < a < b such exponential-type behavior holds only when the spectral
measure is well behaved about the origin. We conjecture that, in both cases, the existence of a
two-sided barrier exponent should hold whenever p € £ N M.



1.2 Background
1.2.1 Gaussian stationary processes and persistence

Gaussian processes provide good approximations for natural phenomena in which a random function
is generated as a sum of nearly independent random contributions of similar scale (due to the
functional CLT). When the process has a time invariant distribution, stationarity occurs and the
approximating process becomes a GSP. This makes GSP an excellent model for noise, such as
static interference, liquid surface fluctuations, gas density fluctuations or the shot effect fluctuation
in thermionic emission. GSPs have therefore been extensively studied with motivation stemming
from mathematics, physics and engineering. For an introduction to Gaussian processes see e.g. [1,
38]. In 1944, Rice |49] studied the zeroes of GSPs, introduces the notion of persistence and presented
the asymptotics of the probability of persistence in short intervals [0,7] as T tends to 0. In the
same paper the problem of estimating persistence probability decay as T' tends to oo was first posed.
Motivated by this problem, Slepian [57] introduced in 1962 his famous inequality, and estimated
the persistence probability of several examples. He conjectured that under mild decay conditions,
the persistence should decay exponentially. In his words:

“Intuition would indicate exponential falloff for a wide class of covariances.”

Slepian also called for a study of continuity properties of the persistence exponent (in terms of the
covariance kernel), and for numerical methods for estimating it.

Newell and Rosenblatt [45] were quick to extend Slepian’s work and apply his methods to obtain
rough bounds for the persistence probability for GSPs with polynomially decaying covariance.
These were far from being tight, but remained the state-of-the-art for at least fifty years.

In the 1990’s the interest of the physics community in persistence revived, as it turned out to
be of use for analyzing rare events in spin systems and heat flows (see e.g. [22,|42] and the extensive
survey [14]). Indeed, the authors of [22] were somewhat disappointed at the state of the problem:

“To our surprise, given the correlation function of the Gaussian process the determina-
tion of this asymptotic decay turns out to be a hard unsolved problem.”

In the late 2010’s, Dembo and the third author [19, 20], seeking to study both the solutions
of the heat equation initiated by white noise and the probability that a random polynomial has
no roots, revisited Slepian’s method. They observed that in the restricted case of GSPs with non-
negative covariance, it is possible to use probabilistic arguments and tools from linear algebra to
extend the method and obtain the exact rate of the decay of the persistence up to sub-exponential
factors. Developing on this, in [5, Lem. 3.2] Aurzada and Mukherjee showed that a GSP with non-
negative covariance has a positive persistence exponent if and only if its correlation is integrable.
In addition, they obtain continuity results in terms of the covariance kernel for this set of processes.

The first process with sign-changing covariance kernel for which exponential-type decay was
established is the sinc kernel process. This result, due to Antezana, Buckley, Marzo and Olsen [2],
was a tour de force of analytic methods and direct computations. A study of this result, has led the
first two authors to introduce spectral conditions which ensure exponential bounds on persistence,
requiring the spectral measure to have a polynomial decay and a bounded spectral density in a
small vicinity of the origin [26]. This was extended together with Nitzan [2§] to conditions under



which persistence decays sub- or super-exponentially, providing also new examples for extremely
fast decaying persistence probabilities. All of these conditions depend on the interplay between the
spectral behavior near the origin and the decay of the spectral measure near infinity. The special
case of a “spectral gap” (i.e., a spectral measure which vanishes on an interval near the origin) was
treated in more detail in [27].

Here, we go beyond establishing exponential-type behavior of persistence: we show the existence
of a persistence exponent and provide several new continuity results. We do so by combining and
expanding the spectral method of [28] and the covariance method of [20].

1.2.2 Related processes and events

Persistence is sometimes regarded more generally, as the event that a given stochastic process takes
values in a specific set over a long time interval. Such events have received significant attention for a
large class of examples, including random walks |11}, 29] (see references there-in), Lévy processes |10,
23], Markov processes |17, 18], random polynomials |21} 41] and (spatial) processes driven by
either stochastic differential equations, or by partial differential equations with random initial
configuration [51} 52].

For point configurations in the plane, much attention is given to the persistence-type event
of having no points at all in a large region. This event, which reflects the rigidity of the model,
was studied for zeroes of random analytic functions [15, |46, [58], Coulomb gas [31] and random
matrices [9], among other examples. In some cases, even very advanced questions such as the
conditional behavior of the model could be handled [3} |30} |32].

The study of ball probabilities is also old and active, often referred to as “small deviations”.
These were studied for various models and metrics, with considerable interest in Gaussian processes
and the L., metric. Here the challenge is not to show existence of an exponent, but rather to
compute or estimate it, especially when the width of the ball tends to zero. First results in the
context of GSPs were obtained by Newell [44]. A classical bound is due to Lifshitz and Tsirelson [39],
and improvements were made by Aurzada, Ibragimov, Lifshitz and van Zanten [4] as well as by
Weber [63, 64].

1.3 Comparison lemmata for persistence probabilities

In this section we present three results which act as basic tools in our treatment of persistence prob-
abilities, but are also of independent interest. These are three comparison properties of persistence
probabilities: under change of level, under change of measure and under smoothing.

Denote

P(T) =P <tei[%fT] (1) > e> 0T = —% log P4(T). (1.3)

and recall that #¢ = lim #(T) whenever the limit exists.
P T—oo P

Throughout the remainder of the paper, we fix the level £ € R and parameters o, 8, B > 0, and



consider measures in the class
p(—z, x)
Ma,a = U Mia,an,4 = {P €S |a< oy Vo e (OaA)},
a’>0
and in £g g, as introduced in ([1.2)). Constants may depend on (¢, o, 8, B) implicitly. Since in some

applications the parameter A > 0 will be varying with 7', the dependence on it is made explicit.

Lemma 1.1 (continuity in levels). There exists C > 0 such that, for any p € Mg aNLgp, § >0
and T > max{4, %}, we have
045 l—45
0<6,7(T)—0,°(T) < Cb.

Lemma 1.2 (smoothing lemma). Let h be a spectral density such that h(0) = 1, h >0 and h is

supported on [—5,§]. Then for any spectral measures pu and v:

rJ)Z

ptv (T + a) S :Pé (T)

u+h2v

Lemma 1.3 (continuity in measure). Let p € Mo 4 N Lgp and v € Lg p be such that v(R) < ¢
for some ¢ > 0.

(I) For all T > max{4, 5}, we have

where C, obeys limg_,o Ce = 0.

(II) There exist ¢, o and Ty(e) such that for alle < g9 and T > max{Ty, %}, if v([—

Nl
35
A\
™
Nl

0, (T(1 =) < 0,,,(T) +C-,

2 .
where L =/ =, n= (ce)'/* and gl_rg%Cg =0.

1.4 Examples

We conclude the introduction by discussing several noteworthy processes for which the existence
of persistence exponents is first established by Theorem
sin(7rt)

it

spectral measure has density I[_ ). It is clear that p € M N £, so by Theorem (1, for any

1. Sinc kernel. Consider the process with kernel r(t) = sinc(t) = . The corresponding
¢ € R the exponent 0/‘; exists in (0,00). This process received much attention [2] and has
various applications to statistics and signal processing [61].

2. Zero-order Bessel kernel. Let r(t) = Jo(t) = > % The corresponding spectral

m=0 2m(
measure p has a density \/%71[[_171} (see [60]). As p € M N L, Theorem [1| yields that, for

any ¢ € R, the exponent Gﬁ exists in (0, 00).



3. Moving Average over i.i.d. For a sequence {Uy}x € Z such that 3", ., UZ < 0o, we define
the moving average process by

X; =Y UpZjx = (U * Z)(j),

kEZ

where {Zj }rez are i.i.d. N(0,1) random variables. The corresponding spectral measure p has
density |U(\)|2, where U(\) = > ez Uke™. Assume that U is continuous in a neighborhood
of 0 (in the wide sense) and note that U(0) = > kez U. Then p/(0) = lim, o 2 Iy |U(N)[2dA
exists and equals |U(0)|2. By Theorem I and Remarks [2/ and [7} the persistence exponent 6
exists in [0, 00| for any ¢ € R, and

0k =00 <= Y Up=0, while 05=0«= |> Uil=
keZ keZ

4. Moving Average over a GSP. More generally, let {Y; }er be a GSP over T € {Z,R} with
spectral measure p € M N L. Let U : T'— R be such that (7 fT )e'*Adt is continuous
(in the wide sense) in a neighborhood of 0, and further [ |U \2dp( ) < oo. Then the
moving-average process defined by X (t) = (U*Y)(t) is a GSP (see Obs. 2.7 below), for which
0% exists for all £ € R. If U(0) and p/(0) both lie in (0, 00), then 64 € (0,00).

5. Absolutely summable correlations. Suppose that [; [r(t)|dt < oo and [ r(t)dt > 0.
Then p € M with p/(0) € (0, 00), and Theoremllmphes Hﬁ (0, 00) for every £. Prior to our
work, such results were only known under the additional assumption that r > 0, see [5, 19].

Additional examples could be generated on noting that the class of measures £L NM is closed
under addition, truncation, and convolution.

1.5 Outline of the paper

The paper is organized as follows. In Section [2] we present various tools needed in our proofs. In
Section [3] we prove the comparison results: Lemmata [1.2] and The rest of the paper is
dedicated to the proofs of Theorems 1-5. The order in which these were presented is not the order
of their establishment. In Section [4] we prove Theorem [2] concerning ball exponents and singular
measures. In Section [ we prove the existence of a persistence exponent as stated in Theorem [T}, and
the continuity of ball and persistence exponents as stated in Theorem [4 we also provide a class of
non-existence examples. In Section[6]we prove monotonicity and indifference of the exponents to the
singular part, namely, Theorem [3| Lastly, in Section [7| we prove Theorem [5| regarding convergence
of persistence exponents under sampling; an example of non-convergence is also provided.

2 Preliminaries

In this section we collect tools and observations that will serve us in the rest of the paper. Through-
out the paper, we denote by f, the GSP corresponding to a spectral measure p. The notation py, is
used for the restriction of a measure p onto the interval [—L, L]. We use both F[p] and p to denote
the Fourier transform of a finite measure p.



2.1 Gaussian measures on Euclidean spaces

In this section we recall several classical properties of Gaussian measures on R¢. We start with
standard estimates of the one-dimensional Gaussian distribution (see, e.g., [28, Lem. 3.13]).

Lemma 2.1. Let Z ~ N(0,1). For all z > 0 we have:

L (1 1\ a2 11 o
a —(=-—=]e <P(Z>2)< ———e /2
( ) \/ﬂ <x x?’) - ( )— \/ﬂx
In particular, for x > 2: e < P(Z > ) < o2%/2.
2
) e < Bz < 0) <1
T
1
In particular, for 0 < x < 1: i <P(Z| <z) <z

We continue with a few facts about Gaussian measures and intersections or homothety.

Observation 2.2. Let v4 be a centered Gaussian measure in R?, and let K C R? be a convex
domain containing the origin. Then for any a > 1, ya(aK) < a%y(K).

Proof. Let (©,r) denote the polar coordinates in RY (where © = (6y,...,604_1)). We have for any
convex body K:

where go(r) the density of 74 on the ray defined by ©, Rk (©) is the radius of K in direction ©,
and r¢~1.J(©) is the appropriate Jacobian. Using a simple change of variable we have:

aRk(©) s Rk (©)
va(aK) = /@ {/0 g (r) dr} J(@)d@[ = }ad/e {/0 sd_lg@(as)ds} J(©)de

<ot | { [ sd-lge<s>ds} J(©)d0 = ayy(K),
(€] 0

where the inequality is due to the fact that go(s) is decreasing in s € [0, 00). O

We shall employ the Khatri-Sidak’s inequality (see [56] or |40, Ch. 2.4]). This classical result is
a particular case of the celebrated Gaussian correlation inequality for general convex sets, proved
by Royen [50] in 2014.

Proposition 2.3 (Khatri-Sidak’s inequality). If (Z1,...,Zq) is a centered Gaussian vector in R?,
then for any {Ej}?zl C (0,00) one has P (ﬂ;»lzl {I1Z;| < Ej}) > H?ZI]IDOZjl < 4).

An immediate consequence is the following.



Corollary 2.4. Let f be a Gaussian process which is almost surely continuous on an interval
[0,a + b]. Then for every £ >0,

]P( sup |f| <€> 2P<sup|f| <€>IP’< sup |f| <€).
[0,a+b] [0,a] la,a+b]

In the case of stationarity, Corollary together with Fekete’s subadditivity lemma yield the
existence of the ball exponent. As per (|1.3), denote

wﬁ(T) = —%logﬁ” ( sup |f,(t)] < €> . (2.1)

te[0,7]

Corollary 2.5. For any spectral measure p € £ and any £ > 0, the ball exponent Tj)f; = limp_ 00 d}ﬁ(T)
exists and lies in [0, 00).

Proposition is also the main ingredient in the proof of the following result.

Proposition 2.6. Let y4 be the standard Gaussian measure in R, Then there exists a constant
k > 0 such that, for any n > d and any collection of unit vectors ui, ..., un € S*1, we have

n d
ze R |(z,u;)| <1 >(—5 .
Vd ]Q{ ‘( ]>’— } = <\/m)

The analogue of Proposition [2.6|in which « is replaced with the Lebesgue measure is a theorem
by Ball and Pajor [8]. The Gaussian case should follow from the Euclidean one (allowing for different
constants), however, we give here a direct Gaussian proof suggested to us by Ori Gurel-Gurevitch.

Proof. Denote S; = {x € R% : |(z,u;)| < 1}. Let @ > 1 (to be chosen later). By Observation
and Proposition [2.3] we have:

(15) = (2 (@) 2 a5 (@8) = au(a8))" = a3 (= al)"
j=1 i=1

j=1

where v, is the standard Gaussian measure in R. Set o« = /1 4 2log (%) The result will follow

once we show that i ([—a, a])% > & for all n > d and some constant s > 0 which is independent
of nand d. If 5 < e?, we bound by

n(=asal)"* = 3([-1,1),
while if § > e? we apply the first part of Lemma to get

n(aal) > (12 BON©.1) > ) > (1 2077 z(l—zj) > -2,

Taking x = 0.05 < min {fyl([—l, 1])62, 6*2}, the result follows. O]

10



2.2 Operations on GSPs

This section collects observations about the spectral measure of a GSP which was generated from
another GSP by a single operation, such as: convolution with a fixed kernel, scaling, lattice sampling
and discrete derivation. In what follows, p is a spectral measure and f, is the corresponding GSP.

Observation 2.7. Assume that h € L%(R). Then f, * h is a GSP with covariance kernel
D hx (ﬁ(—)) and spectral measure |h(\)|2dp(\).

Proof. Denote H = h. The random process W(z) = (f, x H)(z) = [ f,(t)H(x — t)dt is Gaussian,
with covariance kernel given by:

E[W (@)W (y)] = E [ [ ante =0 at [ g0 —5)m(s) as

/ / ELf,(x — 1) f,(y — $H(®)H(s) dt ds
—//ﬁ(x—y—i—s—t)H(t)H(s) dt ds
= /(ﬁ* H)(x —y+s)H(s) ds

= (px Hx (H(=)) (z —y) = F[|h*p] (x - y). O
Observation 2.8. For any ¢ > 0, the sequence {f,(je)}jcz has the folded spectral measure p;,
which is supported on [~Z, %] and given by:
P10 =p (U<I+ iw) .
ne”Z

Proof. pZ is the unique spectral measure supported on [—7, Z] such that F[pf](je) = Fp|(je) for
any j € Z. O

2.3 Decompositions of GSPs

The following claims provide two types of decompositions of a GSP into independent components.
The first is a series representation, which may be found in [28, Claim 3.8].

Lemma 2.9 (Hilbert decomposition). Let p € £ and let gpn be an orthonormal basis in L%(T*)
which satisfies, for every n € N, ¢, (=\) = @n(X). Denote @, ( = [pe M (N)dp(N). Then

)= (a®u(t), Gu~N(0,1) iid.

is a continuous GSP over T with spectral measure p.
Lemma has the following useful consequence.

Corollary 2.10 (one component) Let ,0 € L and let p € L% be a real symmetric function such
that H‘PHH =1. Write ®(t) = [z e ?p(N)dp(A), then we have the decomposition

) L¢-t) oy,

11



where ¢ ~ N(0,1) and g is a Gaussian process which is independent of (.
The second is the spectral decomposition which appeared in |26, Obs. 1].

Lemma 2.11 (spectral decomposition). If p; is a spectral measure for j € {0,1,2} and py = p1+p2,
d
then foo = for ® fps-

One application of the spectral decomposition is the following simple yet useful lemma. Recall

the notation (1.3) and (2.1),

Lemma 2.12. For any spectral measure p,v and any £ € R, § > 0 and T > 0, we have the
following.

(a) Py (T) < 4y °(T) +4)(T).

(b) 54, (T) < 6,7 (T) + ().

Proof. Part (a). Using Lemma we have

IP>< inf]prﬂ,(t) > 6) = IP( inf (f,(t) ® fu(t)) > Z) > IP’( inf f,(t) > £+5> P ( sup |f,(t)| < 6) ,

te(0,T t€(0,T] te[0,T] t€[0,T)
which upon taking log and dividing by T yields the desired inequality.
Part (b). Again using Lemma we have

P( sup_ [ fyra0) <e> :P( sup [£,(t) @ 1, ()] <e> 2P< sup_[£,(0) <£—6>P< sup |£,(0) <5),

te[0,T] t€[0,T t€[0,T] t€[0,T

which upon taking log and dividing by T yields the desired inequality.

2.4 Classical Gaussian tools

In this section we recall classical tools from the theory of Gaussian processes. We start with the
celebrated Slepian’s lemma, see |1, Thm. 2.1.2] or [57].

Proposition 2.13 (Slepian). Let X andY be centered Gaussian processes on I C R. Suppose that
E[X;X,] <E[V;Y:], E[X?] =E[Y?], Vtsecl.
Then for any ¢ € R one has
P <s1}pX > €> <P <SLI1pY > E) .

The following famous concentration bound is due to Borell and Tsirelson-Ibragimov-Sudakov,
see [1, Thm. 2.1.1].
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Proposition 2.14 (Borell-TIS). Let X be a centered Gaussian process on I which is almost surely
bounded. Then for all u > 0 we have:

u2

P (supX —Esup X > u) < exp (—) ,
I I 20
where o = sup;cy var X (t).

The expected supremum of a Gaussian process is often bounded using Dudley’s metric-entropy
method [1, Thm. 1.3.3]. For a Gaussian process H on an interval I, we let

=/E(H(a)— H(}))2, abel (2.2)
be the canonical semi-metric induced by H, and denote diamg (/) = sup, pcs du(a,b). For any
x > 0, the covering number Ny (z) is the minimal number of dg-balls of radius = which cover I.

Proposition 2.15 (Dudley’s bound). There exists a universal constant K > 0 such that for any
Gaussian process H on I we have

diampg (I)
Esup H < K/ V1og Ny (z) dz.
I 0

Lastly we recall a comparison between ball probabilities due to Anderson |40, Ch. 2.3].

Proposition 2.16 (Anderson). Let X,Y be two independent, centered Gaussian processes on I.
Then for any £ > 0,
P(sup\X dY| < f) < P(Sup |1 X| < E).
I I

2.5 Supremum

In this section we apply tools from Section [2.4]in order to estimate events concerning the supremum
a GSP whose spectral measure is in the class £3 p.

Lemma 2.17. Suppose that 3 < e—1 and B > 0. Then for every p € Lz p we have

3B
0<7r(0)—r(t) < W.

Proof. Recall that t < 1 and observe that:

r(O)—r(t):/R(l—cos()\t)>dp()\) </| +/|A> 1 ) (1—cos()\t)>dp()\)
<7 >/

242
<f = dp(2) | / og1*# X dp(N)
A< 2 1/t

2B
log!*7(1/ t) Og”ﬂ (1/t)

< Bt+

In the last step we used that 14+ 8 < e.

13



If p is compactly supported, then Lemma [2.17] may be replaced by the following observation.

Observation 2.18. Suppose that p is supported on [—D, D]. Then
0 < r(0) —r(t) < 1D*r(0)¢?
Proof. 7(0) = r(t) = [p(1 = cos(At))dp(N) < [y <p Xa-dp(N) < Brr(0)2. O

Lemma 2.19. There ezists C = C(, B) such that for any p € Lgp and any h <1,

5
Esup |f,| < C sup |r(0) —r(t)]20+A).
(0,h] t€[0,h]

Proof. Let dy be the canonical semi-metric induced by f (defined via (2.2)). Using stationarity
and Lemma we have, for any s € R and ¢ > 0,

de(s,s+1t) =/2|r(0) —r(t _L =: ().

1+ﬁ /2(1/t)

£)"])

diamy(I) = sup dy(x,y) < sup /2(r(0) —r(t)).

zyel te[0,h]

This yields that for an interval I = [0, h] we have

Ny(x) < max (1, w_‘{él’)) = max (1 h exp

and

By Dudley’s bound (Proposition [2.15]) there exists a universal constant K > 0 such that

diam(/ 6B diam(I) )
Esup |f,| <K/ < 2) +logh dx < K(6B)? (1+5) / 148 dx

C(8,B) sup [r(0) — r(t)| 705, 0
t€[0,h]

Lemma 2.20. There exist C1,Cy > 0 (depending only on 3, B) such that for any v € Lz p and
any m > 0,

B
P (Sup |ful > (Cim + C2) y(R)mw)) < 9e—/2,
[0.1]

Proof. Denote I = [0,1]. Note that

B8
supvar f,(t) = /r(0) = \/v(R) < C1v(R)20+8)

tel

and by Lemma [2.19] we have
_B
Esup |f,| < Cov(R)20+5)
I

14



where C7 and Cy depend only on 3, B. By Proposition (Borell-TIS theorem), we have for any
m > 0:

8
v (sup fo > (Cim + Co)v(R) Q(HB)) =P (Sup fv > Esup f, +m_[supvar fu(t)> <e ™2,
I 7 :

tel
The statement then follows using symmetry of f, and —f, and a union bound. O

Lemma 2.21. Let W be a centered Gaussian process on [0,T], satisfying

sup var W(t) < <° (2.3)
t€[0,T T

sup var (W (t+h) —W(t)) < *h?, (2.4)
te€[0,T]

for some e € (0,1) and ¢ > 0 and all h > 0. Then for any 6 > 0 there exists Ty = To(0, ) such that
if T > To(0,c¢) we have:

2
P(sup|W|>d| < 2¢= 57
[0,T]

Proof. Let dy be the canonical semi-metric induced by W, as in ([2.2]). Using (2.4) we have

dw (t,t + h) = \/var (W(t + h) — W(t)) < ch,

for any ¢, h > 0. This yields that the covering number Ny (x) of the interval [0, 7] in the dy-metric
obeys Ny (x) < % Moreover using ([2.3) we have diamy ([0,7]) = mz[xx }dw(x,y) < 25 <
€fo,T

)

\/% . Consequently by Dudley’s bound (Proposition [2.15)):

B} 2
\g cT 2 \/; 1
Esup |[W| < K 5 log ?dac <K \/; log(cT) + /0 log (E)dm

[0,7]

Hence there exists Tp = Tp(6, ¢) such that if T' > Tj(d, ¢) we obtain

)
Esup |[W| < = (2.5)
[0.7] 2
Using Borell-TIS (Proposition [2.14) with (2.3)) and (2.5) we obtain that, for 7" > T,
5 2
P(sup|W|>d| <2P|supW >4 | <2P|supW —Esup W > — SQe_g?T. O
[0,T7] [0,T] [0,77] [0,T7]

2.6 Bounds on ball and persistence exponents

In this section we present apriori bounds on ball and persistence probabilities, which hold uniformly
for spectral measures in the class L5 p or My 4 N Lg g and a given level £. The first such bound is
a slightly stronger version of [28, Lemma 3.12] or [59], as we assume a finite log-moment instead of
a finite polynomial moment.
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Lemma 2.22. There exists C = C (8, B, () € (0,00) such that for all p € Lgp and T > 1:
P (sup |fol < €> > e T or equivalently wﬁ(T) <C.
[0,7]

Proof. By Khatri-Sidak’s inequality (Cor. we have, for any h > 0,

T/h
P <sup | fol < E) >P (sup | fol < €> . (2.6)
(0,7 [0,7]

)

Combining Lemma and Lemma [2.19 we have

Esup |f,| < Clog™#/? (%) .
[0,h]

Consequently there exists h, depending on ¢, 3, B, such that Esupyg ) Ifo] < %. An application of
Markov’s inequality gives P (sup[O,T] | fol > E) < % For this h, inequality (2.6) gives

P (sup|f,| <] >2"T/h O
[0,7]

The next result is a somewhat more general version of [26, Theorem 2].

Lemma 2.23. There exists C € (0,00) such that for all p € Mo aNLgp and all T > %:
fPﬁ(T) >e T or equivalently, Hﬁ(T) <C.

Proof. Recall the notation pr, = p||_p, 1) for the restriction of a measure p to the interval [~L, L].
For a fixed (arbitrary) m > 0 we have

05(T) < 057 (T) + 4L, (T) < 055 (T) + 4 (1),

where the first inequality holds by Lemma [2.12(b), and the second one follows from the inequali-
ties by Anderson (Proposition [2.16) and Khatri-Sidak (Proposition [2.3). The covariance function
corresponding to py /7 is
1T
Tl = [ | eos()dp(3) 2 pll— b eosto)

Notice that the RHS of the last inequality is the covariance function of the process

ar cos(3t) + brsin(Lt),  where ar,br ~ N (0,p ([—%, 7])) are i.id.
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By Slepian’s inequality (Proposition [2.13)) we have

m 1
Gﬁ;T(T) < —TlogIP’ (Vt € [0,T] : arcos(t) + brsin(5t) > €+ m)
1 1
< ——logP(ar ”S"f) — —logP (by > 0)

N

¢ T
1 ¢ log 2
< —plogP <\/p([—T hZ> C;”f) +

where Z ~ N(0,1). We have thus proved that for any p € L3 p,

hmsup@g( ) < ¥ (1) —limsup%log}P’ <\/ (=7, %) Z > ﬁ;"f) (2.7)

T—o0 T—o0

By Lemma -, it holds that ¢7*(1) < C(8,B) < oco. To see that the second term is bounded,
recall that p([—7, %)) > 22 whenever T > %, and thus

2
lim sup 857™(T) < —%logIF’ <Z > M\ﬁ) < S (E—f—m) .

Tooo VT V2acos 1 ~ 2a \ cosl
The last step uses Lemma and assumes that m is such that % > 2. ]

The reverse direction of Lemma [2.23| requires some extra assumptions.

Lemma 2.24. Letp € Lg p and ¢ € R. Suppose p is such that p((—z,x)) < 2a’z for allz € (0, A").
Suppose further that dp > m1g(A)d\ where dX is the Lebesque measure, m > 0 and E is a Lebesgue-
measurable set of positive measure. Then there exist C = C(o, A', B, B, ¢, m,|E|) > 0 such that for
allT > 1:

fPf,(T) <e T or equivalently, Hﬁ(T) > C.

If £ >0, then the constant C satisfies limy o C(a/) = oc.

Proof. This inequality was proved in [28, Prop. 3], which is a corollary of Theorem 5.1 there. The
assumption throughout that paper is that [ IN%dp()\) < oo for some § > 0 and that £ = 0; however,
the proof in our case (corresponding to v = 1 and b = o’ there) applies as soon as p € £ and for
any level £ € R. The dependence of C on the parameter o follows from [28, Remark 2]. O
Proposition 2.25. Let p € £ and £ € R. If hr% 5 228 — oo then 95 =0.

E—r

Proof of Proposition[2.25 Fix a large parameter m > 0. Using Lemma [2.I] and the fact that

limy 0 Tp([—%, %]) = 00, we deduce that

1
limsupTlogIP’< p([—T —])Z > ﬁg‘:f) =0.

T—o0

Plugging this into (2.7)) we obtain

0< hmsup9 (T) <4 (1).

T—o00

The desired conclusion follows on letting m — oc. O
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3 Proofs of the comparison lemmata

3.1 Proof of Lemma continuity in levels

Fix T > 0, 6 > 0. The inequality i]’ffr‘s(T) < Tf;_‘s(T), or equivalently Hﬁ_‘s(T) < Gﬁ”(T), follows
from inclusion of events. It remains to bound the difference Hﬁ”(T) - Qﬁ*‘s(T). Let

1 ) 1/T
o7 —Il where o ::/ du(A),
(%, L]s T oy (A)

so that o7 € £2 and ngTHLz = 1. Denote ¢r(z) = [p e or(A)du(\) and invoke Corollary
to obtain the decomp031t10n

Fult) L Cpr(t) ® Ro(t),

where ¢ ~ N(0,1) and Ry is a centered Gaussian process on [0, 7]. Note that on the interval [0, T
the function 7 satisfies

AV
Y

DO | =
9}
3

Yr(z) = = /T cos(xA)du(N) > = cos (%) o7

_1 or

forTZ%andc:\/g.
Denote f(z) = (¢ — ¢6v/T)¢r(z) & Rp(z) and observe that

f(@) = F@) + VT (),
and f(z) 4 Coor(z) & Ry(z) with ¢ ~ N(—cdv/T, 1). Since 26 - cv/Tepp(x) > 28, we have
PEO(T) =P(f > £+ 6 on [0,T]) > P(f > £ — & on [0, T)). (3.1)

By Lemma [2.23] there exists M € (0, 00) such that Tﬁ(T) > 4e~MT/2 Taking M > 1, invoke
Part (a) of Lemma [2.1| for T > 4, to obtain 2e~M7/2 > P(|¢| > vV MT), getting

(—48 14
PEO(T) > PL(T) > 2P(|¢| > VMT). (3.2)
Starting from (3.1) and using Radon-Nikodim derivative estimate we obtain

PLEO(T) > P(fz ¢—6on0,7],|¢| < \/MT)

>|z\<lr\l/L dC (f>€ d on [0,T],[¢| <\/7>
VT x

? v (P(f = =06 0n[0.7]) ~P(¢| = VMT))

> %e—csx/MTIP’(f >/{¢— 0 on [O,T]) — %6_05‘/%%‘5@),
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where the last inequality is due to (3.2). Taking logarithm, this yields

log P470(T') — log P4H(T) < C4T,

for some C' > 0 and all T > max(4, %), as required.

3.2 Proof of Lemma (1.2 smoothing increases persistence

Denoting H = ﬁ, the assumptions of the lemma are H > 0, [ H = 1 and sprt H C [-%,5].

By Observation the measure h?v is the spectral measure of the GSP f, *+ H. Therefore our
objective is to show that

IP’(fMEBf,, > f on [0,T+a]) < ]P)(fu@(fy*H) > f on [o,T]). (3.3)

Gaussian measures are well-known to be log-concave (see |12, Example 2.3]). In particular,
/H(s) logIP’(X(t) (s, t) >0, V€ [O,T]> ds < 1ogIP’<X(t) n /H(s)v(s, t)ds > £, Vit € [O,T]),

where v(s,t) : R x [0,7] — R is continuous in ¢ for every fixed s € R. Thus, given a continuous
function v : R — R, we may apply this with v(s,t) = v(t — s) to obtain

(x) = /H(s) log (X (1) + o(t — ) > £, vt € [0,7]) < log P(X (1) + (H «v)(t) > €, ¥ € [0.7]).
When X is stationary, we have
(%) = /RH(S) log]P’(X(t +s)+o(t) >0 Ve [-s,T — s]) ds
> /RH(S) log P(X(t +5) +v(t) > £, Vi € [, T +4]) ds
- /RH(S) log (X (1) +v(t) > €, ¥t € [-5.7+ §]) ds
- logIP’<X(t) +o(t) > 6 Ve [-3,T+3),
where the last line uses h(0) = [, H(s)ds = 1. Putting these together, we obtain
P(X(t) +u(t) > 6 Vte -2, T+ %]) < P(X(t) +(Hxv)(t) > 0, Vt e [O,T]).

Given a real valued stochastic process Y, independent of X, with almost-surely continuous path,
we may apply this to deduce to deduce that

P(XM)@Y(t)> L Ve [-4,T+8]) <P(X() @ (H=Y)(t) > L, vt e [0,T]),

When Y is also stationary, we may replace the interval [—5,T 4 %] in the last inequality with
[0,T 4 a]. Applying this to X = f, and Y = f,, we obtain (3.3) as required.
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3.3 Proof of Lemma continuity in measure
3.3.1 Proof of Part [I
Let 6 > 0 (to be chosen later). By Lemma [2.12((b) we have:

0140 (T) = 6,7°(1) < 4)(T). (3-4)

By Corollary we have for T' > 1

s 1
Po(T) = —TlogP<]fV| < d on [O,T]) < —2logIP’<?OL’11[]) Iful < 5). (3.5)

Next apply Lemma with u = y/2log(1/¢), using the fact that v(R) < ¢, to get

B
- logIP’(?uI? |fol < (Civ/2log(1/e) + 02)82““*)) < —log(1 - 2¢) < 2,
0,1

where C; = C;(8, B) for i € {1,2}. Thus choosing J(e C1y/2log(1/e) + Co)e R we have
lim.,0d(¢) = 0 and
- log]P’(sup |fu] < 5(5)) < 4e. (3.6)
[0,1]
Combining (3.4} and (3.6) we obtain:
044, (T) — 0470E(T) < 4e.

By Lemma [I.1]
6,7 N(T) — 6,(T) < Co(e),

where C' > 0 and T' > max(4, %) The last two inequalities together yield the desired conclusion.

3.4 An auxiliary result

For proving Lemma we shall need the following proposition.

Proposition 3.1. For any n € (0, %) there exists To(n) with the following property. Let m > 0,
T > max{Ty, A} and L € (max (%77” 71%) ,T). Let 1 € Mo aNLgp and v € Lgp be such that
v((—%, L)) <m&. Then

14 ¢

O in2, (T =) < 6,4, (T)+Cy,

where h(z) = hy,7(z) = max (0,1 — L1z|) and lim,_,0 C, = 0.

Proof. Fix n,m, L as in the proposition, and let T > 0. Denote H(x) = iAL(x) = %simc2 (%az) (where

sinc(x) = %) Denote
U(z) = H(2) Lz <yT} V(z) == H(x) Lz >yry,
u =31 U], v :=FV].
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By Observation [2.7]

fu*Hgthw fV*Ugquw fl’*vgfvzw

and by spectral decomposition (Lemma ,

d
fh21/ = quV @ f’UQV'

(3.7)

Equipped with Lemma [I.1} in order to establish the proposition it would suffice to show that

there exists some ¢ = §(n), satisfying lim, o d(n) = 0, for which

0 e, (T(L =) < 0y, (T) + Cy,

where lim, o C;, = 0. Denoting I7 = [0, (1 — )T, we have

]P’(fu@fhz,, >{—§on IT)

]P)(fu D fu2y D fp2, > € — 3 on IT>

> P(fu & fiay > £ sup|fya,| < 6 on It ).
E]P’(fu@fuzy>£0n IT) —]P’(sup|fvzy| >(5>. (3.8)
It
To establish the proposition it would therefore suffice to show
c,T
P(fu® fuz > Con I) = P(fu® f, > Lon [0,7])eT, (3.9)
P(sup | fo2u| > 5> < %P(fu @ fy2, > L on IT>, (3.10)
It

where lim,_,o 577 = 0. To see (3.9) we first note that U is compactly supported on [—nT,nT].

Hence, by Lemma [1.2] we have

P(fu® fuz > LonIr) > P(f, fu, > Lon Ir),

where a = a(L,n) = [pU = ffzn sinc?(x)dz. Since L > 77% we have

&0 2
a(n) =1-— 2/ sinc?(z)dz > 1 — =57
1 ™

/n
so that
l
logIP’<fu€Bfal, > { on [O,T]) = 1ogIP’(fa_1H+,, > % on [O,T])
> logIP’(fHJr,, > % on [O,T]) - 07(71)T
> logIP’<fH+l, > { on [O,T]> — C7(72)T,

where lim,_,o C\) = 0 for i = 1,2. This establishes (3.9).
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To see (3.10)), it is our purpose to apply Lemma Since h is supported on [—%, %], we
deduce that the same is true for v and v, by (3.7). We compute

LT

var ((fa0)(8) = / odv

—L/T

L/T 2 L
< (supfu])Q/ dv < </ |V\> m—
R —L/T T

L/{1\* 4m 1 7
<dmz | — ) =505 < o 3.12
= mT<nL> 2L T= 1T (3.12)
where the last step uses L > %. Applying Observation we have
L\? n
war () - GunO) < () - 12 <2 (3.13)

Plugging (3.12]) and (3.13)) into Lemma we obtain

52

_8%a-n)p _2 7
P{sup|fyp,|>0d] <2 8 < 2e 160"
It
provided that L > % and T > Tp(n). Next, we use the existence of an a priori bound,

P(fu @ (f, * Hr) > £ on IT) > ¢~ MT

which is guaranteed to hold for all T > % and some M € (0,00), by Lemma Setting
0 = +/32nM we have

IP’(sup Ify * Vir| > 5) <eMT < IP’(fH ® (fy2) > € — 6 on IT), (3.14)
It
which establishes (3.10)) and thus the proposition. O

For the next result, recall that puy = u][_ r,1] is the restriction of the measure p onto [—L, L]
Corollary 3.2 (truncation). For any n € (0, %) there exists To(n) with the following property. For
any T > max{Tp, %}, L e (n%,T), weMyanLpp andv € Lgp it holds that:

0@

u+l/% (T(l - 77)) < 08 (T) + Cna

ptv
where lim,_,o C, = 0.

Proof. Note that (v — v|r,/r) vanishes on the interval (—%, %) By Proposition 3.1 with m = 0, we
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have
Oy (T =) = Ol hotyry) (T =) < G, (T) 4 C

for all L > 772 and T > max{Ty(n), %} The first equality in the last display uses the fact that

h?(v — vy) is the identically 0 measure. O
T

3.5 Proof of Part [Tl

By Lemma there exists M € (0, 00) such that

VI >4 P ([%)njf} fu>1t— 1) > e MT, (3.15)

Choose = (eM)/* and L = \/ =37, and note that L > n% By Corollary we have

O, (T(1 =) < 6,1, (T) +CLY, (3.16)
T
for all T > max{T(l)(g) 11, where lim cM =o.
0 rAD e—0

Denoting m = v([—%, &]) we observe that F[u+v1] < Flu+mdo], so that Slepian’s inequality
T

(Proposition [2.13)) yields

Oprems, (T(L =) < Qﬁ—f—u% (T(1=mn)). (3.17)

Proceeding to estimate the LHS of (3.17), with Z ~ N(0,1) we have

P <[ inf : Jutmso > 5) =P <[ inf ) fu®VmZ > €>

0,7(1—n 0,7(1—n

<p(z>(L " +P( inf f,>€— (mT)V/*
B m 070" " (3.18)

T
<P|Z> +P inf >€—\/5L>,
( \/EL> <[0,T<1n>1 I

where the last inequality uses the given assumption that m < 5%. Since eL < 1 for all £ < gy,
we have, by , that the second term in the RHS of is bounded below by e M7 for
T > 2max{4, 5}. By Lemma the first term in the RHS of is bounded above by 6_%,
for all T > 4v/eL. Thus for € < g9 and T > 2 max{4, %} the second term is larger than the first,
and we get

P( inf mee >0 ) <2P( inf >0 — 5L1/4>.
([o,mnn Fucemao )‘ ([O,Tun)] I (L)

By taking log and dividing by 7" we obtain, for 7' > max{7Ty(e), %}, that

6 4 msy (T(L— 1)) = 65V (T(1 — ) + &2, (3.19)
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Finally, using Lemma [I.1] we have

6! (T(1—n)) < 65 VEE(T(1— ) + OO (3.20)

for some C¥) such that lim._,o C¥) = 0. Combining (3.16)), (3.17), (3.19) and (3.20) we get

6, (T(1—n)) <64, (T) +C:

for T > max{Ty(¢), %}, which is the desired conclusion.

4 Ball exponent of singular measures

In this section we establish Theorem [2l We rely on the following proposition.

Proposition 4.1. Let p be a purely-singular measure supported on [—m,w|. Then any § > 0 satisfies

1
0 : .
1 = lim logP u 6| =0.
@Z’p,l Tl T g (j [%71} |fp(])| < >

Using this, we prove Theorem [2] in Section We discuss a useful approximation method of
a GSP with compactly supported spectral measure in Section This method is used to prove

Proposition [4.1] in Section
4.1 Proof of Theorem [2} characterization of vanishing ball exponent

Let p € £ and £ > 0. Assume first that p is purely singular. For any given € > 0, we define:

foie() = 1o (5 LgJ) :

Note that f,.. is a centered Gaussian process, though it is not stationary. By Khatri-Sidak’s
inequality (Proposition [2.3)):

Y5(T) < YH2(T) —log P (?315’ \fp — Foel < ‘)

By letting T' — oo and using Proposition we get

0< 1/12 < wﬁ;/f —logP (sulplfp—fp;q < g) = —logP <su%)]fp—fp;5| < g) .

) )

The desired conclusion follows by letting € — 0, and noting that sup | f, — fy:e| converges to 0 almost
surely (by continuity of sample paths).

Assume now that p is not purely singular, that is, p,c # 0. By [28, Claim 3.4], there exist
A = {\,} of positive density a, and a constant b > 0, such that f(\,) 4 bZ, ® gn, where Z,
are i.i.d. standard normal random variables and g, is a Gaussian process on Z. By Anderson’s
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inequality (Proposition [2.16), this implies

P <P L
(s 191<) < (g 901 <)

/¢ L%TJ
<P| max [bZ,| </ :]P’(]Z\ < ) <e °T,
nGNﬁ[O,%T} b

where C' > 0 depends on ¢ and the spectral measure p. Thus wf; > C > 0, as required.

4.2 A spectral approximation method

The following lemma presents an approximation method for GSPs with compactly supported spec-
tral measure.

Lemma 4.2. Let p be a spectral measure supported on [—D, D]. Forn € N we denote the intervals
=10, %], I, = [—%,0) and I, = +=((j — ne S da Dl for j € {2,...,n}, as well as

Cit) = / cos(M)dp(A),  S;(t) = / sin(\M)dp(N). (4.1)

1 1
p(L5) Ji, ’ p(L5) J1,

Z\/ﬁ (G030 @ miSi(0)) © Ralt), 4.2

where {¢;}]_y U {n;}7_y are i.i.d. N(0,1)-distributed random variables, and Ry(t) is a Gaussian

Then,

process independent of them for which

1 /DT\?
s v (1) < (2F) st-n.0) (43)
and for any h € R,
var (R, (t) — Ru(t + b)) < D?p([-D, D])h. (4.4)

Proof. Notice that

and

1
H P (T, £ 1) (]Ii- + Hafj)dp =

20(L;)

Since {1[1]. + 1Ty }?:0 is an orthogonal system in L%, by the Hilbert decomposition (Lemma D
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we have the representation (4.2)). Let ¢ € [0,T]. By (4.2),

var (Ry(t)) = p([~D, D]) — var Zm(g £ @ n;S5(1))

Z JUL) (1 —(C2(t) + sf(t»). (4.5)

Using (4.1)) we compute, for each j € [n], that

2 2
/ cos(At)dp(A)) + (/ sin()\t)dp(/\)>
I I

J J

1
C2(t) + S2(t) = 7 (
- p(;ﬂ)Q /I /I <COS()‘175) cos(Aat) + sin(A1t) sin()\zt)>dp()\1)dp(/\2)
_ p(Ilj)Q /] /[ cos((A1 — A2)t)dp(A1)dp(A2)

D372

— M)t?) dp(M)dp(X2) > 1 — S

where in the last step we used that (A1 — A2)t| < 2T for any Ay, s € I and t € [0,T]. From (4.5)
we now obtain:

var ()0 < 5 (2 )Zp JUT) = ;(DT)Qp([—D,DD, vie 0,71,

n
thus verifying . Moreover, we have by Anderson’s lemma and Observation

var (Ru(t) — Ru(t + 1)) < var (£,(t) — f,(t + 1)) < D*p(|~D, D)1,
which establishes ([4.4)). O

4.3 Proof of Proposition

Assume without loss of generality that p([—7,7]) = 1. Let n € N and D = 7, and for |j| € [n] :=
{1,2,...,n} define C; and S; as in (4.1). Then by Jensen’s inequality we have

sup {150 + 1587} <1 (46)

By Lemma H the decomposition (4.2 . holds, with bounds as in and .
Fix € > 0 and partition the indices in [n] into

Ane = {7 el pguLy) = T}
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defining accordingly the functions

Z Ve Ulg) (CJ t) ®n;S ())

JEAnRe
= > oL UL (GO0 @S0
JEBn e
so that (4.2)) becomes
fo L Ane ® B, ® R, (4.8)

Observe that

P(|f,l <& on [0,7]NZ) zP([O?%%ZyAn,€|<g)]?([os;p |Bpe| < )P([Os;p [Ra| < §)

Given T' € N, we carry out this decomposition with n = mT (the parameter m € N will be
chosen later). Proposition reduces to the following claims.

Claim 4.3. For any fited m € N and € > 0,

lim —logIP’ <sup ‘AmTE‘ < ) 0.
T—o00 T [OT

Claim 4.4. For any m € N,

0.

e (;“g’BmTE’ ) )

Claim 4.5.
0.

lim lim flogIP’ (sup ‘Rmﬂ < 3)

We turn to verify the claims.

Proof of Claim[4.5 Fix m € N and € > 0. We begin by showing that

A

= 0. 4.9
T—o00 T ( )

To this end we use the following classical fact (see [54, Chapter VIL.6, Thm 2]): given a filtration
Fr /' F, a measure p is purely singular with respect to another measure p if and only if

lim sy was. 0.
T—oo0 dji|5,

Since almost sure convergence implies convergence in probability, this implies that if p is singular
w.r.t. u then for any € > 0 we have

d
Jim u( Plar g) —0. (4.10)



We apply this, taking p to be the given spectral measure, p — the Lebesgue measure on [—m, 7| and
ng == O-({I;nT}IS‘]‘SmT) ObSGI‘Vng that

mT mT
dplg, _ Z p([j )HI _ Z p<Ij ) 1,
mT j i
e G2 PAT) e ™ (MT)
we obtain from (4.10)):
p(I7"T) m|{je{£l,...,EmT} : p(I;) > Zre}| 7500
——F 1. = UL — 0. 4.11
Z 7/(mT) I =€ mT 0 (4.11)

Combining this with (4.7)), and recalling that p(1;) > p(I_;) for j > 1 (equality holds for j # 1) we
obtain that '
o Mmrel _ i€ ln] s o) 2 el
T—o00 T T—o0 T

thus (4.9) is established.

Denoting d = 2|Arc|, we recall that A7 -(t) = (u(t),) is an inner product in R? between

=0,

u(t) = (/oL U L5)C5(0). /oI U T)S5(0))

jEAmT,E

and a standard d-dimensional multi-normal random vector ¢ ~ =4 . Note that, by (4.6]),

@I = > pUICE)+SF) < Y pjUIy) = p([=ma]) = 1.

jE‘AmT,E 0§]<mT

=
kol
D
~—~
N
3
S
(L)

z
A\
Wl >
H,—/
N——
Il
2

bl
D

CERY: (G ulk)| < g})

{
{cer: (¢ mmn)| <3}

T
(ﬂ ) (k)| <1
k=1
T
6 d. (k) .
> (2)° {cer®: (¢ )| < 1}) by Obs.
k=1
d
0K
> ——— ] by Prop.
3y/1+2log L
where k is a universal constant. Thus we obtain
T
. 2/ Amre] cd
5 mT,e o
hm —logIP ({ O ‘AmT8 3}) > Th—{%o T log - =0,
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where ¢ > 0 is a universal constant, and the last equality follows from (4.9)). The Claim follows. [

Proof of Claim[{.} Fix m € N. Using (4.6) and (4.7)), we have for any 0 <¢ < T and € > 0,

var Bore(t) = Y p(I;UI;) (C7(t) + S3(t))

jeng,E

< Burel -2 max p(I;) sup (C3(t)+ S3(t))
J€BmT,e t€[0,T]

2
<mT-mi;-1:27rs.

Using Khatri-Sidak’s inequality (Proposition and Lemma we have:

T
1 1
—— logP Bmst <§ < log P Bmgt <§
T (tE(%l,lT%ﬂN‘ (1) 3)‘ T;Og (1Bmre(t)| < 3)

< —logP (\/27T5|N(0, 1] < g)

2
< —log (1—26_3gws> =%0. O

Proof of Claim[{.3 By (4.3)),

2

var (RmT)(t) S 27”12,

vVt € [0,T].

Now using Khatri-Sidak’s inequality (Proposition and a tail estimate (Lemma , we have:

T
1 1
—— log P R,,r(t <é < __ log P (| R, (t <§
T (te(%?]%ml\l‘ r(t) 3)- T;"g (|Rmr(t)] < %)

< —logP(Z-IN(0,1)] < §)

2
< —log (1 - 26512’“2> 7, O

5 Existence and continuity of the persistence exponent

In this section we prove Theorems [[Jand [d} Our method is to approximate the spectral measure by
smooth spectral measures, for which it is easier to prove the existence of the exponent, and then
use the comparison lemmata (proved in Section [3|) in order to retrieve existence for the original
measure. To make this idea concrete, we formulate three auxiliary results. The first provides
existence of the persistence exponent for smooth compactly supported spectral densities.

Proposition 5.1. Let p be an absolutely continuous spectral measure with compactly supported
density which is twice differentiable on R. Then Hf, = limp_ oo Gﬁ(T) exists in (0, 00].

The second result states that persistence exponents are close if the spectral measures are equal

near the origin and close in total variation.
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Proposition 5.2. There exist ¢ and eg > 0 such that for all € < g there exist To(e) with the
following property: denoting L = \/2 and n = (ce)'/*, if T > max{Ty, %} and p,v € Ma,aNLa B

ce

are such that dry (p,v) < € and ,u\[ L L) = V‘[ié L), then
T'T T'T

6, (T(1—n)) < 6,(T) + C-

where lim C, = 0.
e—0

By the last result, persistence exponents are close also when the spectral measures are equal
away from the origin and close near the origin.

Proposition 5.3. Fiz L,e,m > 0. There exists Ty = To(L,e,m) such that, for all T > Ty,
the following holds: Suppose that p,v € Mg 17 N Lp p are such that M|R\[7£ L= V‘R\[ié L] and
T'T T'T
YA€ (0,L/T) ¢ |pu(—=AA)—v(=AN)| < 2eX, while alsov (=%, %)) <m& andp ((—%, %)) <mk.
Then
10,,(T) = 6,(T)| < C,

where C; = C-(L,m) and lim C. = 0.
e—0

We proceed as follows. First we prove Theorems [I] and [4] in Sections and respectively.
Then we present the proofs of the auxiliary results (Propositions and in Section To
show the tightness of our conditions, we provide in Section [5.4] a counter-example to the existence
of a persistence exponent.

5.1 Proof of Theorem [I existence of the persistence exponent

Let pe MN L. If p'(0) = oo, then it follows from Proposition w that Gf) =0 for all £ € R. Thus
we assume p'(0) < oo. Consequently, p € My a4 N Lp p for some a,a’, A, 3, B > 0 which are
fixed throughout the proof.

Let ¢,e9 > 0 be the constants whose existence is guaranteed by Proposition Given ¢ < gg,
denote

L) = /=, ne) = (ee) "

For a given T' > 0, we approximate the spectral measure in several steps by smoother and smoother
measures, without altering the persistence exponent Hf,(T) significantly. We treat separately the
_L L

%], and the measure away from the origin, on the

measure near the origin, i.e., in the interval [—7%, 7

remainder of R.

Step 1: discarding the singular part away from the origin. We write p = pac + psing
where pq is absolutely continuous and pging is purely singular. For a given T' > 0, define

wr = p— (Psing}R\[_£7£]> = p‘[—%,%] + Pac}R\[_%7%]'

T'T

1

Let us show that upper and lower limits of Qf,(T) and QﬁT (T') are close. Noting that L > g we
may apply Corollary to obatin the existence of T7(e, A) such that for all ' > T} we have
14 4 1
6. (L= m)T) < 6, (T) +CLY, (5.1)
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where lim._,o C{") = 0. On the other hand, for 7' > T5(A) we have

Y4 (— 2
0,(T) <0, (T) + c? by Lemma [I.1
Y4 2
< HﬂT (T) + szinglR\[i%y%] (T) + Cé ) by Lemma m(b)
< efLT (T) + 1/’;sing (T) + 05(2)7 by Proposition [2.16

where lim._,q CE(Q) = 0. By Theorem [2| we have lim 1/1; _(T) =0, so that
T—soo = Psing

lim sup Gﬁ(T) < lim sup GfLT (T) + C?.
T—o0 T—o00

Together with (5.1)) we conclude that

liminf 6%, (7) — CY < liminf 6°(T) < limsup 65(T) < limsup 6%, (T) + C?. (5.2)

T—o0 T—o0 T—00 T—00

Step 2: smooth approximation away from the origin. We shall employ the following
approximation claim, which could be proved by standard analysis arguments.

Claim 5.4. Let p € M N Mya1y,4 N LB, and let g € LY (R) be the density of pac. Let e > 0 be
gwen. Then there exists an absolutely continuous measure v € M N My o1y N Lg g with smooth
and compactly supported density h € C§°(R) satisfying

/R\h—g\ <e, and VX€E(—¢g,e): h(\)=p(0).

Let v be the measure obtained by applying Claim with our given p and €. For any given
T > 0, define the measure o which approximates the measure p away from the origin by the
smooth measure v:

0T = Pl L )+ VlRy L Ly

Note that dry (o7, ur) = %fR\[—%,#] |lh—g| < 5. By Proposition ife <epand T > T3(e), then

0y (T(1— 1) < 04 () + CF), 0, (1) <0t (1) +C9)

where lim._q 05(3) = 0. We conclude that

liminf 6%, (1 —m)T) — CH < liminf 0, (T) < limsup6’, (T) < limsup 65, (1%7) +C®. (5.3)

T—o0 T—o0 T—00 T—00

Step 3: smooth approximation near the origin. Next we verify the conditions of Propo-

sition which will allow us to compare 65 _(T') and 6. (T). First we note that UT\R\[_ Ly =

I/|R\[_%7%]. Recalling that on the interval [—%, %] we have op = p and dv = p/(0)d)\, we obtain
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that op,v € M(O"a,)’% N Lz B Moreover, for any A € (0, T) we have

lor(=A,A) = v(=A )|

sup = sup

re(0.%) 2A re(0,%)

p(_)U >‘) _
2

where lim._,0 0(¢) = 0. We may thus apply Proposition to get that, for T > Ty(e, o/, A),

00, (L=mD) =0, (1 —mD)| <, ot (Z5) -00 ()| <

where lim._,q 05(4) =0 (here C§4) depends on p).

Step 4: smooth measures have an exponent. Since v has a smooth and compactly
supported density, by Proposition lim7 o0 05(T) = 0% exists. Thus, for T > Ty(e, o/, A), we
have

lim sup 94( ) — liminf Gf;( ) < limsup (96 () — liminf 9,€T (T)+cW + @ by (5.2))
T— o0 T—oo T—oo T—o0
3
< lim sup '957 (%) — liminf 6% or (L=1)T) + Z cu) by (5.3))
T—o0 T—o0 =1
4
< limsup 6/, (L) — liminf 6/ (1 — n)T G) by (-4
< limsup L (55) — limint 0} (1 —n) )+;CE y B4
4 .
= Z cY), by Prop.
j=1

We conclude that hm sup 94( ) = hm 1nf 04T ,(T), as required.

As a by- product of our proof, we have shown the following.

Proposition 5.5. Let p e M N L and € > 0, and let v be the corresponding smooth measure from
Claim[5.4 Then

Y4 Y4
05— 05| < .,

where lim._,0 C: = 0 and C; depends on p.

5.2 Proof of Theorem [4: Continuity
5.2.1 Part [} continuity of the ball exponent

Continuity in ¢: The function £ — Q,Z)p on (0,00) is finite-valued (by Lemma -D and convex
(by log-concavity of Gaussian measures). Hence ¢ — Q,Z)p is continuous and differentiable almost
everywhere. Furthetmore,

_Mw Yt =y =~y > —C,

where C' = C(f, B) is the constant from Lemma This shows that £ — d)ﬁ is locally Lipshitz
and uniformly continuous in the class p € L3 .

Continuity in TV: We start with a general claim.
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Claim 5.6. Suppose p and v are two spectral measures. Then there exists a spectral measure
such that v > max{u, v} and max {dpv (v, ), drv(v,v)} < 2dpv(p,v). Moreover, if 4 = v on an
interval I, then vy =v on I.

Proof. Setting ¢ = 1 — v, we note that ¢ is a finite signed measure. Let ¢ = 04 — og_ be the
Hahn-Jordan decomposition. Define v := v + o4. Clearly, if 4 = v on an interval I then v = v
on I. Next observe that v > v and v = v+ 04 > v+ o = u. Moreover, by the Hahn-Jordan
theorem,

drv(v,v) =dry(o4,0) < drv(p,v),
drv (v, 1) < drv(v,v) +drv(v, p) < 2dpyv (i, v). O

Let p,v € £ such that dpy(u,v) < €. Let v be the spectral measure constructed in Claim
Since v > max{u, v} we have for arbitrary § € (0,¢) that

U <l <yl 4+l

where the first inequality is due to Anderson (Proposition , and the second is Lemma (a).
Applying Khatri-Sidak (Proposition and Lemma there is a choice of § = §(g) with
lim.,0d(¢) = 0 and

WO < 0O 1y <o

y—v = ¥Yy—v

By the uniform continuity of £ — wﬁ in the class £ p (proven above), it holds that
¢£_6(€) S ¢l€ + C€7

where hH(l) C. = 0. We deduce that wf; < b+ 65, where lim._,o C- = 0. Since the roles of (,v)
e—

are symmetric, we conclude our proof.

5.2.2 Part [[T; continuity of the persistence exponent

Continuity in /: is an immediate consequence of Lemma [T.1]
Continuity in TV(: Recall the definitions in (1.2)), and let yu,v € M N M4 a4 N Lg. be such
that drv,(p,v) < €. Let ¢,e9 be the constants whose existence is guaranteed by Proposition

Let € < gg and set L = ‘/c%’ n = (c)/*. For a given T > 0 define
O =L L TV Ly

and note that o € M_ L NLg p. Using Propositionwith w and o we conclude that, for T > T} (¢),
T
we have
0, (T (1 —n)) < 05(T) +CLY,

: (1 _ : L L L L .
where ;1_% C:’ = 0. Since u € Mg ary,4, We have pu((—7, 7)) < 2a'7 for all T' > Z, which also

implies 0((—%, %)) < 20/%. A similar statement holds for v € M, o) 4. Applying Proposition
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with o and v we get that, for T > T3(g, o),
05(T) < 6,(T) +C

where 05(2) = 05(2) (/) satisfies lim 05(2) = 0. Combining the last two displayed formulas, we get:

e—0
0, (T(1 =) < 0,(T) + CV + CP).
By Theorem [1| we may take the limit as T" — co to obtain
0L <05 +C +C).

Since the roles of (u,v) are symmetric, the uniform continuity of p — Gf; in M N Mg,ay,4 0 Ls B
follows.

5.3 Proofs of the auxiliary propositions

5.3.1 Proof of Proposition [5.1

We begin by stating a comparison lemma for persistence probabilities of “approximately stationary”
Gaussian processes, which implies Proposition [5.1] and is useful in the proof of Theorem

Lemma 5.7. Let n > 1 and ¢ > 0. Suppose that {X(t)}+>0 is a centered Gaussian process with
EX (t)? = 1, such that
EX(s)X(s+1t)<c[t|™, forall s,t>0.

Fiz p € Mo aNLg p and set

P (inf 3,8 X(t) >
Evye = sup  sup (m tefs,s+M] X ( ) u)

: —1.
wele—1,041] 520 | P (infrepo g fu(t) > u)

Then there exist C = C(n), such that, for all T > M,

6L (M) — 04(T) < CM =5 + %

9

where 0°(T) := — % log P(inf o 17 X (£) > £).

Lemma implies Proposition [5.1] Given p as Proposition there exists ¢ = ¢(p) such that

~,

5(t) < ﬁ,w cR.

Then, setting X (-) = f,(-), we satisfy the conditions of Lemma with u7p = 0 and n = 2. The
lemma thus yields the existence of C' < 0o such that, for all T' > M we have

05(M) < 05(T) + CM /4,
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Upon taking lim sup,;_,, liminf7r_,o, we arrive at

lim sup Oﬁ(M) < liTm inf Gﬁ(T),
M—oo —o0

and the existence of lim7_, Gf;(T) follows. The limit must be positive by Lemma ]

Proof of Lemmal[5.7. We extend the methods of Dembo-Mukherjee appearing in [19, Theorem 1.6]
(see also [20, Lemma 3.1]) to the case where correlations are not necessarily non-negative.
Let § = C'M*1 where C' = C’(n) > 0 will be chosen later. Let T'> M be given.
Fori>1,set s; ;== (14+0)Mi, I; :=[s; — M, s;] and N := Lmj Note that {I;} are disjoint
and UY, I; C [0, T]. Consequently,

]P’(inf X(t) > €> S]P’( inf  X(¢) >€> .
[O,T] tEUﬁilli

Define an N x N matrix By by setting By (4,7) := 1 and, for i # j,

S c i g
By(i,j):=— sup |s—t| "< —2—
(0,9) Vseli,telj| | yMn§n

where v 1= yar5 = 4c(0M) ™" >"2, i7", so that

2 — 1

S i, j) < Y i< -

1SN #,BN(”” S oM At
JFi =

Thus, by the Gershgorin circle theorem, all the eigenvalues of B lie within the interval [%, %], and

hence By is positive definite. Setting r(s,t) := EX(s)X(t), we claim that for any s € I;,t € I; we
have

F(5,8) < (1= 7)r(s, )Ty + 4B (i, ). (5.5)
To see this, observe that (5.5)) is equivalent to
1—v)r(s,t)+1, 1=7,
r(s’t)§{< Mrsdi=i
CSUDser, ter; |S — 77, i #

both of which are immediate from our assumptions. The RHS of (5.5) is the correlation function
of the centered non-stationary Gaussian process on UY I; defined by ¢ — /T — X @ (t) + Vi
for t € I;, where

o Z:=(Zy,---,Zn) is a centered Gaussian vector with covariance By,

o {X(i)} are i.i.d. copies of X(-), independent of Z.
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Using Slepian’s inequality (Proposition [2.13)) together with (5.5 yields

IP( inf X(t)>€>§IP><inf 1—7X(i)(t)+ﬁZi>€,1§i§N>
teUN | I; tel;
__VT
HP(tléleX ) >4 \/ﬁz’ Z
N
. _ , —-1/2
EE[P(;&X@)>€ 25>+]1{ZZ>57 }}

N
<1 (g 50> 205w s3] oo

IA

for any € € (0, ) where the one before last line uses the fact that /T —~ > 1 5 for M large enough

(depending on 7). Next we note that for any collection of distinct mdlces i1, ,im € [N], the
covariance matrix ¥ of (Z;,, ..., Z;,) has eignevalues within [3, 3]. Consequently,
1
P <Zig >ey V2 1<0< m) = det(Z)_I/z(Qﬂ')m/Q/ e 2% 7y,
(6’)’_1/2,00)"L

om/2 1 12
< / o 51213 4
(27T)m/2 (67—1/2700)711

= 3m/2p (Z > \/557—1/2) ,

where Z ~ N(0,1). Along with (5.6)), this gives

N N N—m m
(nt X0 >0) <3 (1) [ (at, 0 > 0= ) Qe e (2 i)

m=0

— [p < inf f,(t) >0 — 25> (1+&are) + V3P <Z > \/gm—l/?ﬂ ! (5.7)

te[0,M]

Standard bounds on Gaussian tails (Lemma [2.1)), and the fact that v = c(n)~1(6M) ", give

2
P <Z > \/g67_1/2> < exp (—;) = exp (—0(77)62677M77)

for some ¢(n) > 0. By Lemma there exists K € (0, 00) such that, for all M > 1,

P( inf f,(t)>€—2e)>P( inf f,(t)>0—1)>e KM, (5.8)
(te : > < g >

[0,M] t€[0,M]

Thus, there exist C' = C’(n) such that for the choice ¢ = § = C'MZ and all M > 0 we have

V3P <Z > \/gsfy_lm) <P <tel[8§\/l fu(t) >0 — 25) .
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Plugging this into (5.7)) yields

N
p (nt X0 ¢) < e at gier>0-2:)] "

0,7

Taking log on both sides and dividing by 1" gives

1 . N I—9e
— < —
log P <[1nf] X(t) > E) < (log2 +log (14 &nre) + log P (M))

)

N

log P2 (M) + ‘ ( — 1) log fPf;—%(M)'

o log2 fM,Z_i_i
T M

- M + M M
< log2 + K + &y
- M

1
+ M IOg :P,ﬁ_Qa(M)’

where in the last step we used (5.8)) and the fact that M N <T < M(N +1). Applying Lemma
and noting that e = § > -, we obtain

0 (M) — 04(T) < C"6 + %

The proof is concluded on recalling the definition of §. O

5.3.2 Proof of Proposition [5.2

Let € > 0. Let ¢ > 0 be the constant whose existence is given by Part [T of Lemma and define
L= \/%, n= (05)1/4. For a given T' > 0, let u,v € My 4 N Lg g be such that dpy (p,v) < € and
,u|[ L L= 1/|[7£ L. By Claim W, there exists a measure 7 such that

T'T

T'T

e v > max {u,v},
e max {drv (v, 1), drv(y,v)} < 2¢, and
e y=p=von[-£ £

Using Part [I| of Lemma if T > max{4, A~'} then

04(T) < 0°(T) + CY, (5.9)

e—0

where lim Ce(l) = 0. By Part [[I| of Lemma there exist ¢ and Ty = Tp(e) such that, if € < gq
and T > max{Tp, %}, we have

0, (T(1 - n)) < 64(T) + C, (5.10)
where lim C¢® = 0. Combining (5.9) and (5.10) yields
e—
0% (T(1 —n)) < 0,(T) + CH +C2,

provided that 7' > max{Tp, %} and € < ¢, as desired.
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5.3.3 Proof of Proposition

Proof. Let p = M|R\[_£ L = I/|R\[_£ Ly and fix 7 = 7(L,e,m) > 0 to be chosen later. Write
T T'T

n = [%] and let {/;};c+[n be the decomposition of [—%, %] used in Lemma For x € {u,v},

we write x/ := x(I; UI_;) and

n

UX(H) = >V (G en)sym).

j=1
Using Lemma [4.2] we obtain the decomposition
Fx (@) = Ux(t) & Ry(t) @ fo(t),
where RY is a Gaussian process, which satisfies for all T' > Ty (L),

var (RX(t)) < 57x([~ 7. 7) < 37°m7,

)
var (R%(t) - R%(t—l— h)) < (%)2)(([_%’ %])hQ < m(%)ghg‘ (5.11)

Next, we couple f, and f, by taking (§' = ¢¥ and 7} = n? with (Uy(t), Ru(t)) and (Uy (1), Ry, (1))
independent. Observe that by containment of events, we have for all § > 0,

fPﬁ(T) <P+ P (sup UK —UY| > 5) +P (sup |RE| > 5) +P (sup |Ry| > 5) .

[0,T] [0,7] [0,T]

In the remainder of the proof, we show that for a particular choice of 6 = (e, L, m) tending to
0 as € — 0, we have

PLT
wT) >P(sup|US—Uy|>6 | +P|sup|RE| >0 | +P|sup|R;|>0]. (5.12)
2 [0,7] [0,7] [0,7]

Indeed, this will imply that 6/,(T) < 0L=3%(T) + 1°g2 , from which, using continuity of 6%(T) as a
function of ¢ (Lemma, we will obtain 0/{ (T) < 06( )+ C.. As p1 and v are interchangeable, the
proposition will readily follow.

We first bound P (sup[oj] |RY| > 5) for x € {p,v}. By (5.11) we may apply Lemma [2.21| to
obtain that, for T' > Ty(L, e, m),

2
P (sup |RY| > 6| < 2 w2 ?. (5.13)
0.7]

Next we bound P (supwﬂ UL —UY| > 5). Once again we wish to apply Lemma [2.21} let us

verify its conditions. We first compute

n

var (UR(t) — U (¢ —Z(mc“ Ve () )+ (Viisy (o x/ﬁs;(t)f. (5.14)
j=1

7=1
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We bound the first term by
S (Vo —viiciw)' < 2ZM (crw - cyw) + 2 (Vi —vad) cr?,
j=1 J=1

We note that

(CH(t) — cos(j )|_/]j (cos(hr) = con(j 7)) 17

so that

L 2 L L
Z::l/ﬂ (C]‘.‘(t) - C;’(t)) < 472 Zuﬂ < 47'2mf.

Jj=1

Next we notice that, if max{y/, 7} < 72, then

(V7)<

while if max{p/, 17} > 7= then

AL (1 —vi)* T i iy?
<\//7 ) (\/EjL\/ﬁ)QSTEn(M )

Using the assumption that |u(—X, ) — v(—=X, A)| < 2 for all A € (0, «), we have

o (50,5 o (-3, )

W v < fu (<5 ) v (-5 )|+

Recalling that C(t) < 1, we obtain

" . -\ 2 TEN T nre\ 2 eL?
\/J—\/7> cr?<n (8 —-(4—) —17n- 0 < o7,
;( pom vy J()—”(T+Tsn T " T T

where the last step uses n = [%] < 2%. Putting this together with (5.16]) into (5.15)), we get

Zn: (\/,ECJ“(t) — \/ﬁC’}’(t))Z < 28£ (T2m + 5£> )

, T
7=1

(5.15)

(5.16)

JTe

T

2
Applying the same chain of arguments yields Z?Zl (x/,ujS;-‘(t) — \/ES;’(t)) < 28% (T?m + 5%)

Plugging these bounds into (5.14)), we conclude that,

y L L
var (UK (t) = UY(t)) < 28T (7’2m + 57_) .

Next, writing AU (t) = UxX(t + h) — Ux(t), we compute var (AU} (t) — AUY(t)).
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var (AU (t) — AU (t)) < 2var (AU (t)) + 2var (AU} (t))

2
2var (fu, (t+ h) = fui (8)) + 2var (fu, (E+h) = fu, (1))
(u([=1,1]) + w([~1,1])) n?

IA N

where the last inequality uses Obs. (Note that we assume T > L, so that [—£, £] C [-1,1].)

Since p, v € Lg p, the quantities p([—1,1]) and v([—1, 1]) have an upper bound depending only on
B and B. We have thus shown the existance of ¢ = ¢(, B) for which
var (AU (t) — AUy (t)) < *h?.

Applying Lemma we have, for T' > To(L,e,m),

52
P U -UY|>6) <2 — T]. 5.17
(s 0 = U1 > ) < 200 (=i (5.17)

1 .
We now select 7 = (%) /3 and obtain

52
w_ v -
P(E]ujp] \UF —UY| > 6) < 2exp < 217 L7€2)1/3T> : (5.18)

Applying Lemma there exists M € (0,00) such that Tﬁ(T) > e MT for all T > 1. Using
(5.13) and (5.18)), we reduce ((5.12) into showing that

7LT ,LT
efMT > 9 212(L72m)l/3 + de 4(L72m)1/3°

Setting 62 = 2'3M (L72m)'/3, this indeed holds for all large enough T O

5.4 An example of non-existence

In this section we prove Remark[I] More precisely, we show that, for some values of 0 < a < b < oo,
the absolutely continuous measure p = p,; whose density is

b+a b—a
wa,b(/\)=< 5 T3 COSG)) 15 <1

does not admit existence of the 0-level persistence exponent 92.

Clearly a < wg (M) < b for all |A] < 1. We observe that

hrn mf pa,b([}\oa)\]) =a, hm sup W

=b. .1
A—0 A—0 (5 9)

Next, we make use of results from [28], simplifying many constants due to our specific form of
spectral density. For instance, due to the fact that dp()\) > all|_ 3j(A)dA, we may take [E| = 2 and
v = a in the notations of that paper. Applying |28, Thm. 5.1 and Rmk. 2] with the appropriate
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parameters, namely
~v =1 (implying £k =0,s = 1,r = %,9: 1),|E|=2,v=a,q=1,

we have, for all fixed ¢ > 0 and all T' > T(¢), that

coT
p([(),%])ﬁa;g = PUT) <P (Vatez > T)+2P(e/1- 2512 <t), (5.20)

where ¢; and ¢ are universal constants and Z ~ N(0,1) is a standard normal random variable.
Next by |28, Theorem 4.1] we have, for all £ > ¢4(b) and all " > 0, that

p([O,%J)Zb;S = in(T)ZIP’(\/b—sZ>£ﬁ)-P(ﬁ(b) |Z|<€)T, (5.21)

where (o(b) and [(b) are constants which depends only on b.
We proceed by applying the above with € = §. For a given b > 0, fix ¢; > {(b). By Lemma
there exists 61 > 0 such that

P (\/5722 > elﬁ) ~P(ﬁ(b) 17| < &)T > e 7

for all large enough T'. Now fix 6» > 61, and choose £5 > 0 such that

coT
2P (01\/5 ’Z‘ < £2> S %6_02T.
Again by Lemma [2.1| we may choose a € (0, %) so small that
2P ( 37> @ﬁ) < le7fT,

Combining these choices with (5.20) and (5.21]), we obtain that
b .
(042t = 9 e,
3a -
p([0.7]) <o = PHT) <e ™,
2T
for all large enough T'. Recalling ([5.19) and the definition of GS(T) in ([1.3), we conclude that

lim inf §9(T) < 61 < 6 < limsup 6)(T),

T—o0 T—o00

which implies that the persistence exponent 92 does not exist.
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6 Monotonicity of the ball and persistence exponents

6.1 Proof of Theorem

Let 8, B > 0 be such that p,v € L3 . We may assume that £ > 0, since otherwise @Z)ﬁ+y

By Lemma we have f,1, 4 fo® fu. An application of Anderson’s inequality (Proposition |2.16))

gives

0 14
wp S ¢p+y .

Next assume that v is purely-singular. Using Lemma [2.12(a) we get ¢ﬁ+y < %‘;75 + 9%, Using
Theorem [2, we obtain that % = 0. By Theorem we have wﬁ*‘s < wﬁ + Cs, where %in% Cs = 0.
—
We conclude that

Wl <l <Y+ Cs,

where upon taking § — 0 yields wf; = wﬁ.

6.2 Proof of Theorem

Let o, A, 5, B > 0 be such that p € MNMy 4NLg p and v € Lz p. Assume that /(0) = 0. Fixing
1,€ > 0 and using Corollary with L = T, there exists To(n) such that for all T > max {7y, %}
we have

05

ptve (T(l - 77)) < 96 (T) + C777

ptv

where lim,_,o C;, = 0. Letting T" — oo and using Theorem (1] we get

¢ 14

0p+V& < 9p+u + C77‘
Letting n — 0 we then get

08, <05, (6.1)
Finally note that
d1va(p+ Ve, p) = V(0) + v([~2,6]) = 0, ase -0,
_ . . . Z _ e . .
as V//(0) = 0. Thus, invoking Theorem 4| we get ;1_1)% 05+, = 0,. Along with (6.1]), we obtain
4 14
0,<0,..,
thus verifying the inequality of Part .
Assume now that v is purely singular. Lemma [2.12(b) yields that, for any § > 0,
04, <050 ). (6.2)

Since v is purely singular, Theorem |2| yields that wl‘i = 0; while from Lemma we deduce that

yn% 0f,+5 = Hf,. Using these two facts in (6.2]) yields 92 0 < 92, which completes the proof.
%
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7 Exponents under sampling

In this section we prove Theorem [5|concerning the convergence of the ball and persistence exponents
of fine mesh sampling of a continuous-time process, to its continuous-time exponent. This is done
in Sections[7.1] and Then, in Section [7.3| we establish the tightness of our criterion by providing

an instructive example of non-convergence.

7.1 Proof of Theorem : ball exponent under sampling
Let p € £ and ¢ > 0. Fix A > 0. Complementing the definition in (2.1]), we set

wé;A(T) = —llogIP’ ( sup |fo(nA)| < K) .

T n€Z,nA€[0,T]

Define the centered Gaussian (non-stationary) process Xa(t) := f, <A[£]), and note that

1 1
z/;ﬁ;A(T) = —TlogIP’ (sup | XAl < 6) < —TlogIP’ (sup 1ol < €> = z/;ﬁ(T).
(0,71

[0,7]

By Corollary (valid also for discrete processes by Remark , we may take limits as T' — oo to
obtain ¢f;_ A< 1/1f,. It remains to show that

VTP
Y, < hg;nolf VoA (7.1)

To this end, fix 6 > 0 and apply Khatri-Sidak Inequality (Proposition to get

P (sup |fo] < E—I—(S) >P (sup | XAl < £,sup | XA — fp] < 5)

) [0,7] [0,7]
[TT]
2P(sup|XA|<E>P<sup|XA—fp<6) .
[0,7] (0,1]

Upon taking log, dividing by T" and letting T' — co we have

ﬁ+6 < d)ﬁ.A +10g}P<sup|XA — fol < 5).
’ [0,1]

The sample path continuity of f,(.) yields that supjg 1) [Xa — fyl 2 0as A — 0, and so
l+6 s Y4
Y, ° < hrAn _l)gf Y-

Finally, letting § — 0 and using Lemma gives ([7.1)), as required.
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7.2 Proof of Theorem : persistence exponent under sampling

For / € R, A > 0 and a spectral measure p, we complement the definitions in (|1.3)) by setting

1

¢ L . Y4 = Y4
P A(T) =P <nez,i%fe[om fo(nA) > e) L 0ha(T) =~ log PhA(T), (7.2)

Theorem is a consequence of the following.
Proposition 7.1. Suppose p € M has density p' € C?(R) which is compactly supported. Then

lim sup | 0%  (T) — Hﬁ(T)‘ —0. (7.3)
T—o0
A—0

Proposz'tz'on yields Theorem @» Let p € L N M be compactly supported, and let € > 0.
Write v for the smooth measure with dry(p,v) < e from Claim m By the triangle inequality we
have

10— 06a| < |0 — 0] +

14 ¢
91/ - QI/;A‘ +

91€;A - aﬁ;A‘ (74)

By Proposition [5.5| we have

‘aﬁ —¢t| <., (7.5)

where lim._,o C. = 0 and C. depends on p.

By Observation for any A > 0, the spectral measure of the discrete-time process { f(jA)}jez
is ph(I) = p (Upez {I +27%}) (supported in [—X, X], the dual space of AZ). Since p and v are
compactly supported, p\ = p and v = v for all small enough A. Applying Proposition to the
sequence {f,(jA)}jez (possible by Remark , we conclude that, for small enough A,

\9,% - eﬁ;A] <C.. (7.6)
By Proposition [7.1] we have

lim 6% — 6, A( ~0. (7.7)

A—0 ’

Taking lim sup as A tends to 0 on ([7.4)), and plugging in (7.5)), (7.6 and (7.7]), yields

lim sup ‘9/{ - Gﬁ.A’ < 2C,.
A—0 ’

As lim._,o C; = 0, the proposition follows. O

Proof of Proposition[7.1. The proof is an application of Lemma Fixing A > 0 define a (non-
stationary) Gaussian process Xa(-) by setting

XA(t) :fp(A L%J)

Then fixing M > 0 we have

P( inf  Xa(t) > u) =P min foiA) >u | =P min fo(iA) >u |,
te(s,s+M)| s+M s+M
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which converges to P (iﬂfte[o,M] fo(t) > u) uniformly in s >0 andinu € [( — 1,0+ 1] as A — 0, by
stationarity and continuity of sample paths. Therefore

P (inf XA(t) >u
5]%4( — sup sup ( ‘te[s,s—&-M] A( ) ) .
T ettty 550 | P (infyepo ng fo(t) > u)
satisfies iimo ¢85 , = 0. Moreover, for some ¢ = ¢(p) > 0 we have |r(t)| = |p(t)| < ﬁ, since p is
% K
compactly supported with C2-density. This implies

~ s s s -2 d
EXa(s)Xals+0)| = (ALR) ~ ALE) < el AR - ALF|T < 1
The convergence in ([7.3) then follows from Lemma ]

7.3 An example of non-convergence under sampling

In this section we give an example of an absolutely continuous spectral measure p, such that the
limit of the sampled process’ exponents 02; L for k € N tends to 0 as k — oo, while 92 exists, and is
strictly positive.

Let p be the the absolutely continuous measure with density

(1 — elMdist(\, 27Z))
p,()\> = |)\‘ e I[|)\|>7'l' + I[|/\‘<7'r'

It is clear that p is non—negative and symmetric. To see that p’ € L'(R), note that for any
n € N we have: f27m+ﬁ p'(N)d\ < e~2™ Tt is also clear that p € LNM (in fact, p has a finite

2mn—m
exponential moment). Thus Theorem I implies the existence of 92 € (0,00). Now let us consider

2wn s

the sampled process. By Observation for any k € N, the discrete-time process j — f (%) has
the spectral measure pf(I) = p (U,ez {I + 2mnk}). The local density of this measure at 0 is

((2mnk — e, 2nnk 1
liminf =8~ 727 pil(=e.¢) > hIIllIlfp ™ €, 2mnk + ¢)) = E =
e—0 0 2¢e 2mnk
nez nez

Applying Proposition [2.25[ to p}, we obtain that 6%, = 92;; = 0. As we have seen that «92 > 0,

p7 k
we conclude that lim 90 L F 90
k—oo Pig

ACKNOWLEDGMENTS: We acknowledge AIM (the American Institute of Mathematics) for the
support and hospitality during a SQuaRE meeting on Persistence probabilities (2017), where this
project was initiated. We are grateful to Amir Dembo and Mikhail Sodin for useful discussions and
encouragement. We thank Mikhail Lifshits for simplifying arguments regarding ball probabilities,
Liran Rotem for information about log-concavity which led to Lemma [I.2] Ori Gurell-Gurevitch
for the idea of proof of Proposition Bo’az Klartag for pointing out the reference [§] and Zemer
Kozloff for the reference [54].

45



References

[13]

[14]

[15]

[16]

R. J. Adler and J. E. Taylor. Random fields and geometry. Springer, 2009.

J. Antezana, J. Buckley, J. Marzo, and J.-F. Olsen. “Gap probabilities for the cardinal sine”.
Journal of Mathematical Analysis and Applications 396.2 (2012), pp. 466-472.

S. N. Armstrong, S. Serfaty, and O. Zeitouni. “Remarks on a Constrained Optimization
Problem for the Ginibre Ensemble”. Potential Analysis 41 (2014), pp. 945-958.

F. Aurzada, I. A. Ibragimov, M. A. Lifshits, and J. H. Van Zanten. “Small deviations of
smooth stationary Gaussian processes”. Theory of Probability & Its Applications 53.4 (2009),
pp. 697-707.

F. Aurzada and S. Mukherjee. “Persistence probabilities of weighted sums of stationary Gaus-
sian sequences”. arXiv preprint (2020). arXiv:2003.01192.

F. Aurzada, S. Mukherjee, and O. Zeitouni. “Persistence exponents in Markov chains”. An-
nales de Institut Henri Poincaré, Probabilités et Statistiques 57.3 (2021), pp. 1411 —1441.

F. Aurzada and T. Simon. “Persistence probabilities and exponents”. Lévy matters V. Springer,
2015, pp. 183-224.

K. Ball and A. Pajor. “Convex bodies with few faces”. Proceedings of the American Mathe-
matical Society (1990), pp. 225-231.

G. Ben Arous and O. Zeitouni. “Large deviations from the circular law”. ESAIM: Probability
and Statistics 2 (1998), pp. 123-134.

J. Bertoin. Lévy processes. Vol. 121. Cambridge university press Cambridge, 1996.

N. Bingham. “Random walk and fluctuation theory”. Stochastic Processes: Theory and Meth-
ods. Vol. 19. Handbook of Statistics. Elsevier, 2001, pp. 171 —213.

S. G. Bobkov and J. Melbourne. “Hyperbolic measures on infinite dimensional spaces”. Prob-
ability Surveys 13 (2016), pp. 57-88.

C. Borell. “The brunn-minkowski inequality in gauss space”. Inventiones mathematicae 30.2
(1975), pp. 207-216.

A. J. Bray, S. N. Majumdar, and G. Schehr. “Persistence and first-passage properties in
nonequilibrium systems”. Advances in Physics 62.3 (2013), pp. 225-361.

J. A. Buckley, A. Nishry, R. Peled, and M. Sodin. “Hole probability for zeroes of Gaussian
Taylor series with finite radii of convergence”. Probability Theory and Related Fields 171.1-2
(2018), pp. 377-430.

B. S. Cirel’son, I. A. Ibragimov, and V. N. Sudakov. “Norms of Gaussian sample functions”.
Proceedings of the Third Japan—USSR Symposium on Probability Theory. Springer. 1976,
pp. 20-41.

P. Collet, S. Martinez, and J. San Martin. Quasi-stationary distributions. Probability and its
Applications. 2013.

J. N. Darroch and E. Seneta. “On quasi-stationary distributions in absorbing discrete-time
finite Markov chains”. Journal of Applied Probability 2.1 (1965), pp. 88-100.

46



[19]

[20]

[21]

A. Dembo and S. Mukherjee. “No zero-crossings for random polynomials and the heat equa-
tion”. The Annals of Probability 43.1 (2015), pp. 85-118.

A. Dembo and S. Mukherjee. “Persistence of Gaussian processes: non-summable correlations”.
Probability Theory and Related Fields 169.3-4 (2017), pp. 1007-1039.

A. Dembo, B. Poonen, Q.-M. Shao, and O. Zeitouni. “Random polynomials having few or no
real zeros”. Journal of the American Mathematical Society 15.4 (2002), pp. 857-892.

B. Derrida, V. Hakim, and R. Zeitak. “Persistent spins in the linear diffusion approximation
of phase ordering and zeros of stationary gaussian processes”. Physical review letters 77.14
(1996), p. 2871.

R. Doney. “Fluctuation theory for Lévy processes”. Lévy processes. Springer, 2001, pp. 57-66.

G. C. Ehrhardt and A. J. Bray. “Series Expansion Calculation of Persistence Exponents”.
Physical review letters 88.7 (2002), p. 070601.

G. C. Ehrhardt, A. J. Bray, and S. N. Majumdar. “Persistence of a continuous stochastic
process with discrete-time sampling: Non-Markov processes”. Physical Review E 65.4 (2002),
p- 041102.

N. Feldheim and O. Feldheim. “Long gaps between sign-changes of Gaussian stationary pro-
cesses”. International Mathematics Research Notices 2015.11 (2015), pp. 3021-3034.

N. Feldheim, O. Feldheim, B. Jaye, F. Nazarov, and S. Nitzan. “On the probability that
a stationary Gaussian process with spectral gap remains non-negative on a long interval”.
International Mathematics Research Notices 2020.23 (2020), pp. 9210-9227.

N. Feldheim, O. Feldheim, and S. Nitzan. “Persistence of Gaussian stationary processes: a
spectral perspective”. The Annals of Probability 49.3 (2021), pp. 1067-1096.

W. Feller. “An Introduction to Probability Theory and its applications”. Stochastic Processes:
Theory and Methods. Vol. 11. Handbook of Statistics. Elsevier, 1971.

S. Ghosh and A. Nishry. “Gaussian complex zeros on the hole event: the emergence of a
forbidden region”. Communications on Pure and Applied Mathematics 72 (2016).

S. Ghosh and A. Nishry. “Point processes, hole events, and large deviations: random complex
zeros and Coulomb gases”. Constructive Approzimation 48.1 (2018), pp. 101-136.

S. Ghosh and Y. Peres. “Rigidity and tolerance in point processes: Gaussian zeros and Ginibre
eigenvalues”. Duke Math. Journal 166.10 (2017), pp. 1789-1858.

S. Y. Hong, M. Lifshits, A. Nazarov, et al. “Small deviations in L_2-norm for Gaussian
dependent sequences”. Electronic Communications in Probability 21 (2016).

M. Krishna and M. Krishnapur. “Persistence probabilities in centered, stationary, Gaussian
processes in discrete time”. Indian Journal of Pure and Applied Mathematics 47.2 (2016),
pp. 183-194.

W. Li. “A Gaussian correlation inequality and its applications to small ball probabilities”.
Electronic Communications in Probability 4 (1999), pp. 111-118.

47



[47]

[48]

[49]

[50]

[54]

W. Li and Q.-M. Shao. “Gaussian processes: Inequalities, small ball probabilities and applica-
tions”. Stochastic Processes: Theory and Methods. Vol. 19. Handbook of Statistics. Elsevier,
2001, pp. 533-597.

M. A. Lifshits. “Bibliography on small deviation probabilities”. https: //airtable. com/
ShrMGOnNz19S1GrII/ tb17Xj1mZW2VuYurm (2021).

M. A. Lifshits. Gaussian random functions. Vol. 322. Springer, 2013.

M. A. Lifshits and B. S. Tsirelson. “Small deviations of Gaussian fields”. Theory of probability
and its applications. Vol. 31. 3. STAM publications. 1987, pp. 557-558.

Z. Lin and Z. Bai. Probability Inequalities. 1st edition. Springer, Berlin, 2011.

J. E. Littlewood and A. C. Offord. “On the number of real roots of a random algebraic
equation (II)”. Mathematical Proceedings of the Cambridge Philosophical Society 35.2 (1939),
133-148.

S. N. Majumdar, A. J. Bray, and G. C. Ehrhardt. “Persistence of a continuous stochastic
process with discrete-time sampling”. Physical Review E 64.1 (2001), p. 015101.

G. Molchan. “Survival exponents for some Gaussian processes”. International Journal of
Stochastic Analysis 2012 (2012).

G. F. Newell. “Asymptotic extreme value distributions for one dimensional diffusion pro-
cesses”. Journal of Mathematics and Mechanics 11.1 (1962), pp. 481-496.

G. F. Newell and M. Rosenblatt. “Zero crossing probabilities for Gaussian stationary pro-
cesses”. The Annals of Mathematical Statistics 33.4 (1962), pp. 1306-1313.

A. Nishry. “The hole probability for Gaussian entire functions”. Israel Journal of Mathematics
186 (2011), pp. 197-220.

J. Pickands. “Asymptotic properties of the maximum in a stationary Gaussian process”.
Transactions of the American Mathematical Society 145 (1969), pp. 75-86.

M. Poplavskyi and G. Schehr. “Exact Persistence Exponent for the 2D-Diffusion Equation
and Related Kac Polynomials”. Physical review letters 121.15 (2018), p. 150601.

S. O. Rice. “Mathematical analysis of random noise”. Bell system technical journal 24.1
(1945), pp. 46-156.

T. Royen. “A simple proof of the Gaussian correlation conjecture extended to some mul-
tivariate gamma distributions”. Far Fast Journal of Theoretical Statistics 48 (Jan. 2014),
pp- 139-145.

H. Sakagawa. “Persistence probability for a class of Gaussian processes related to random
interface models”. Advances in Applied Probability 47.1 (2015), pp. 146-163.

G. Schehr and S. N. Majumdar. “Real roots of random polynomials and zero crossing prop-
erties of diffusion equation”. Journal of Statistical Physics 132.2 (2008), p. 235.

M. Shinozuka. “On the Two Sided Barrier Problem”. Journal of Applied Probability 2.1
(1965), pp. 79-87.

A. Shiryaev. “Probability”. Graduate Texts in Mathematics, RP Boas, Ed. New York: Springer-
Verlag 95 (1996).

48


https://airtable.com/shrMG0nNxl9SiGxII/tbl7Xj1mZW2VuYurm
https://airtable.com/shrMG0nNxl9SiGxII/tbl7Xj1mZW2VuYurm

[55]

[56]

[57]

M. G. Shur. “On the maximum of a Gaussian stationary process”. Theory of Probability &
Its Applications 10.2 (1965), pp. 354-357.

7. Sidak. “On multivariate normal probabilities of rectangles: their dependence on correla-
tions”. The Annals of Mathematical Statistics 39.5 (1968), pp. 1425-1434.

D. Slepian. “The one-sided barrier problem for Gaussian noise”. Bell System Technical Journal
41.2 (1962), pp. 463-501.

M. Sodin and B. Tsirelson. “Random complex zeroes, III. Decay of the hole probability”.
Israel Journal of Mathematics 147.1 (2005), pp. 371-379.

M. Talagrand. “New Gaussian estimates for enlarged balls”. Geometric and Funct. Anal. 3
(1993), pp. 502-526.

N. M. Temme. Special Functions: An introduction to the classical functions of mathematical
physics. 2n ed. New York: Wiley, 1996, pp. 228-231.

F. Tobar. “Band-limited Gaussian processes: The sinc kernel”. arXiv preprint (2019). arXiv:1909.07279.

A. Watson. “Persistence pays off in defining history of diffusion”. Science 274.5289 (1996),
pp- 919-920.

M. J. Weber. “The supremum of Gaussian processes with a constant variance”. Probability
Theory and Related Fields 81.4 (1989), pp. 585-591.

M. J. G. Weber. “On small deviations of stationary Gaussian processes and related analytic
inequalities”. Sankhya: The Indian Journal of Statistics. A 75.2 (2013), pp. 139-170.

49



	Introduction
	Main results
	Background
	Gaussian stationary processes and persistence
	Related processes and events

	Comparison lemmata for persistence probabilities
	Examples
	Outline of the paper

	Preliminaries
	Gaussian measures on Euclidean spaces
	Operations on GSPs
	Decompositions of GSPs
	Classical Gaussian tools
	Supremum
	Bounds on ball and persistence exponents

	Proofs of the comparison lemmata
	Proof of Lemma 1.1: continuity in levels
	Proof of Lemma 1.2: smoothing increases persistence
	Proof of Lemma 1.3: continuity in measure
	Proof of Part I

	An auxiliary result
	Proof of Part II

	Ball exponent of singular measures
	Proof of Theorem 2: characterization of vanishing ball exponent
	A spectral approximation method
	Proof of Proposition 4.1

	Existence and continuity of the persistence exponent
	Proof of Theorem 1: existence of the persistence exponent
	Proof of Theorem 4: Continuity
	Part I: continuity of the ball exponent
	Part II: continuity of the persistence exponent

	Proofs of the auxiliary propositions
	Proof of Proposition 5.1
	Proof of Proposition 5.2
	Proof of Proposition 5.3

	An example of non-existence

	Monotonicity of the ball and persistence exponents
	Proof of Theorem 3–(I)
	Proof of Theorem 3–(II)

	Exponents under sampling
	Proof of Theorem 5–(I): ball exponent under sampling
	Proof of Theorem 5–(II): persistence exponent under sampling
	An example of non-convergence under sampling


