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Abstract

Consider a real Gaussian stationary process fρ, indexed on either R or Z and admitting a

spectral measure ρ. We study θ`ρ = − lim
T→∞

1
T logP

(
inft∈[0,T ] fρ(t) > `

)
, the persistence exponent

of fρ. We show that, if ρ has a positive density at the origin, then the persistence exponent

exists; moreover, if ρ has an absolutely continuous component, then θ`ρ > 0 if and only if this

spectral density at the origin is finite. We further establish continuity of θ`ρ in `, in ρ (under a

suitable metric) and, if ρ is compactly supported, also in dense sampling. Analogous continuity

properties are shown for ψ`ρ = − lim
T→∞

1
T logP

(
inft∈[0,T ] |fρ(t)| ≤ `

)
, the ball exponent of fρ, and

it is shown to be positive if and only if ρ has an absolutely continuous component.

1 Introduction

Persistence, namely the event that a real stochastic process f stays above a level ` over a long time

interval [0, T ], is a well studied object since the 1950s, especially for centered Gaussian stationary

processes (GSP) in discrete or continuous time (c.f. [7, 13, 16, 43, 45, 47, 49, 55, 57, 58] and the

references therein). This has been studied in particular for the critical case ` = 0 (c.f. [27, 28, 34,

51]), with applications to statistical mechanics (c.f. [14, 25, 42, 48, 62]). The persistence exponent

of a GSP f over level ` is defined as the exponential rate of decay of the persistence probability,

namely,

θ`f = − lim
T→∞

1

T
logP

(
inf

t∈[0,T ]
f(t) > `

)
,

whenever the limit exists.

Slepian, in his celebrated 1962 paper [57], conjectured that a persistence exponent should exist

under mild conditions. The validity of this conjecture has often been taken for granted in the physics

literature [22, 24]. Prior to this work, the only cases in which an exponent was shown to exist were

non-negative correlated processes [20] (using a subadditivity argument), Markov processes (using

Perron-Frobenius), and m-dependent processes (using independence properties) [6].
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Every continuous GSP f : R→ R is characterized by a covariance kernel r(t) = cov (f(0), f(t)),

or, equivalently, by a spectral measure, that is, a finite, non-negative, symmetric measure ρ on R
such that:

r(t) = ρ̂(t) =

∫
R
e−itλ dρ(λ).

We denote by fρ, rρ, θ
`
ρ the process, covariance kernel and persistence exponents associated with ρ.

In recent years it became evident that it is possible to obtain a much more precise understanding

of persistence in terms of the spectral measure of f (c.f. [26, 27, 28]). Our main result is that

existence of a positive spectral density in the origin is sufficient for the existence of θ`ρ.

1.1 Main results

Throughout, we require ρ to belong to the following class of measures with finite log–(1 + β)

moment:

L =
{
ρ ∈ S | ∃β > 0 :

∫ ∞
0

max
(

log1+β λ, 1
)
dρ(λ) <∞

}
,

where S is the set of all spectral measures (symmetric, non-negative, finite measures on R). The

requirement ρ ∈ L is a rather mild condition which ensures continuity of the process (see [1, Sec. 1]).

While we state our results for GSPs on R, all theorems are valid for processes on Z as well, in which

case ρ is supported on [−π, π] and the condition ρ ∈ L is always satisfied (see Remark 7). Define

ρ′(0) := lim
ε→0

1
2ερ([−ε, ε])

whenever the limit exists, and

M =
{
ρ ∈ S | ρ′(0) ∈ (0,∞]

}
.

We use the notation ρac to denote the absolutely-continuous component of the measure ρ.

Theorem 1. Let ρ ∈ L ∩ M. Then, for all ` ∈ R a persistence exponent θ`ρ ∈ [0,∞) exists.

Moreover, under the further assumption ρac 6= 0, we have θ`ρ > 0 if and only if ρ′(0) <∞.

Remark 1. Tightness of the condition ρ ∈M is demonstrated by a counter-example, provided in

Section 5.4. There we show that for the spectral density (A + B cos( 1
λ))1I|λ|≤1 in a certain range

of 0 < B < A, the exponent θ0
ρ does not exist. In this example the density is bounded, compactly

supported, and continuous on [−1, 1] \ {0}. We note that it is possible to construct examples of

non-existence of θ`ρ for any level ` ≥ 0, and even for all levels at once.

Remark 2. For ρ ∈ L with ρac 6= 0 and ρ′(0) = 0, we have θ`ρ = ∞ for all ` ≥ 0. This is not

covered by Theorem 1, but follows from Lemma 2.24 below. The conditions for positivity of θ`ρ in

the case ρac = 0 presently remain unknown.

Remark 3. For ` ≤ 0 and ρ ∈ M, it follows from our results that θ`ρ is positive if and only if

ρac 6= 0 . For ` > 0 and ρ ∈M we conjecture that θ`ρ is always positive.

A ball event is the event that a real stochastic process f stays in [−`, `] over a long time interval

[0, T ]. This event is well-studied (c.f. [4, 33, 35, 39], for a complete bibliography, see [37]) with
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various applications (c.f. [36, 38]). Given a spectral measure ρ, denote the `-ball exponent of ρ by

ψ`ρ = − lim
T→∞

1

T
logP

(
sup
t∈[0,T ]

|fρ(t)| < `

)
.

This exponent is known to exist for all spectral measures in L using a subadditivity argument

together with Khatri-Sidak [56] inequality (see e.g. [35]). Our main result concerning ball events

is the following analogue of Theorem 1.

Theorem 2. Let ρ ∈ L. For all ` the ball exponent ψ`ρ is positive if and only if ρac 6= 0.

We further obtain three results concerning with the continuity and comparison of persistence

and ball exponents. The first is the fact that the persistence and ball exponents are monotone in

the spectral measure (in an appropriate sense), and are unaffected by the singular component.

Theorem 3. Let ` ∈ R and ρ, ν ∈ L. Then:

(I) ψ`ρ+ν ≥ ψ`ρ.

(II) θ`ρ+ν ≥ θ`ρ, provided that ρ ∈M and ν ′(0) = 0.

Further, equality holds in both (I) and (II) if ν is purely-singular.

Observe that Theorem 2 is an immediate corollary of Theorem 3.

Remark 4. We conjecture that equality in Theorem 3 holds if and only if ν is purely-singular.

The second result is continuity of exponents in the level ` and in the measure ρ, with respect

to a suitable metric topology. Stating the result requires the following definitions.

For two finite measures ρ1, ρ2, define the total variation distance

dTV (ρ1, ρ2) = sup{|ρ1(E)− ρ2(E)| : E ⊆ R}.

If ρ1, ρ2 also have a finite density at the origin, we define the metric

dTV0(ρ1, ρ2) = dTV (ρ1, ρ2) + |ρ′1(0)− ρ′2(0)|. (1.1)

Fix α, α′, A, β,B > 0 and consider the classes of measures

M(α,α′),A =
{
ρ ∈ S | α ≤ ρ(−x, x)

2x
≤ α′,∀x ∈ (0, A)

}
,

Lβ,B =
{
ρ ∈ S |

∫ ∞
0

max
(

log1+β λ, 1
)
dρ(λ) < B

}
.

(1.2)

Theorem 4.

(I) The ball exponent ψ`ρ is locally-Lipschitz continuous in ` ∈ (0,∞) and uniformly dTV-

continuous in ρ ∈ Lβ,B.

(II) The persistence exponent θ`ρ is locally-Lipschitz continuous in ` ∈ R and uniformly dTV0-

continuous in ρ ∈ Lβ,B ∩M(α,α′),A ∩M.
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Remark 5. The function ` 7→ ψ`ρ is convex (by log-concavity of centered Gaussian processes),

and hence continuous. In contrast, continuity of ` 7→ θ`ρ is not immediate nor is it true for all

spectral measures ρ. Consider, for example, µ = 1
2(δ1 + δ−1), which corresponds to the process

fµ(t) = ζ1 cos(t) + ζ2 sin(t) where ζ1, ζ2 ∼ N(0, 1) are independent. A direct analysis yields

θ`µ =

{
∞, ` ≥ 0,

0, ` < 0
.

Note that the only discontinuity in this example is at the level ` = 0. In fact, even when ρ′(0) = 0,

we can establish continuity of θ`ρ in ` (assuming it exists), for all ` < 0. When, in addition, ρac 6= 0

we have θ`ρ = ∞ for all ` ≥ 0 (by Remark 2). Therefore whenever ρac 6= 0, the map ` 7→ θ`ρ is

always continuous away from 0. We conjecture this to hold also for purely singular measures.

The third continuity result is concerned with discrete sampling. For a spectral measure ρ define

θ`ρ;∆ =− lim
T→∞

1

T
logP

(
inf

n∈Z, n∆∈[0,T ]
fρ(n∆) > `

)
,

ψ`ρ;∆ =− lim
T→∞

1

T
logP

(
sup

n∈Z, n∆∈[0,T ]
|fρ(n∆)| < `

)
,

whenever the limit exists. These are the persistence and ball exponents of the Gaussian stationary

sequence generated by sampling f in ∆-intervals. Our next result provides conditions for conver-

gence of θ`ρ;∆ to θ`ρ and of ψ`ρ;∆ to ψ`ρ, as the sampling interval ∆ approaches 0.

Theorem 5. Let ` ∈ R and ρ ∈ L. Then:

(I) lim
∆→0

ψ`ρ;∆ = ψ`ρ.

(II) lim
∆→0

θ`ρ;∆ = θ`ρ, provided that ρ ∈M has compact support.

Remark 6. The second part of Theorem 5 may be extended to non-compactly supported spectral

measures with sufficient rate of decay at infinity (for instance, ones which have density ρ′ satisfying

supλ∈R |λ|1+ηρ′(λ) < ∞ for some η > 0). However, it does not extend to all ρ ∈ L ∩ M. A

counter-example is provided in Section 7.3.

Remark 7. As we have mentioned earlier, Theorems 1, 2, 3 and 4 hold true also for Gaussian

processes in discrete time. The proofs remain valid without any change. For such processes the

condition ρ ∈ L holds trivially.

Remark 8. A natural generalization of the problem presented here is the so called two sided barrier

problem (considered by Shinozuka [53]), i.e. the probability that a GSP persists within a set [a, b]

where a 6= −b and −∞ < a < b < ∞. Somewhat surprisingly the methods used here do not seem

to generalize directly to this case as several monotonicity properties are lost. Thus the problem

remains open. It is possible to show that when a < 0 < b, an exponential-type behavior is always

demonstrated, while if 0 < a < b such exponential-type behavior holds only when the spectral

measure is well behaved about the origin. We conjecture that, in both cases, the existence of a

two-sided barrier exponent should hold whenever ρ ∈ L ∩M.
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1.2 Background

1.2.1 Gaussian stationary processes and persistence

Gaussian processes provide good approximations for natural phenomena in which a random function

is generated as a sum of nearly independent random contributions of similar scale (due to the

functional CLT). When the process has a time invariant distribution, stationarity occurs and the

approximating process becomes a GSP. This makes GSP an excellent model for noise, such as

static interference, liquid surface fluctuations, gas density fluctuations or the shot effect fluctuation

in thermionic emission. GSPs have therefore been extensively studied with motivation stemming

from mathematics, physics and engineering. For an introduction to Gaussian processes see e.g. [1,

38]. In 1944, Rice [49] studied the zeroes of GSPs, introduces the notion of persistence and presented

the asymptotics of the probability of persistence in short intervals [0, T ] as T tends to 0. In the

same paper the problem of estimating persistence probability decay as T tends to∞ was first posed.

Motivated by this problem, Slepian [57] introduced in 1962 his famous inequality, and estimated

the persistence probability of several examples. He conjectured that under mild decay conditions,

the persistence should decay exponentially. In his words:

“Intuition would indicate exponential falloff for a wide class of covariances.”

Slepian also called for a study of continuity properties of the persistence exponent (in terms of the

covariance kernel), and for numerical methods for estimating it.

Newell and Rosenblatt [45] were quick to extend Slepian’s work and apply his methods to obtain

rough bounds for the persistence probability for GSPs with polynomially decaying covariance.

These were far from being tight, but remained the state-of-the-art for at least fifty years.

In the 1990’s the interest of the physics community in persistence revived, as it turned out to

be of use for analyzing rare events in spin systems and heat flows (see e.g. [22, 42] and the extensive

survey [14]). Indeed, the authors of [22] were somewhat disappointed at the state of the problem:

“To our surprise, given the correlation function of the Gaussian process the determina-

tion of this asymptotic decay turns out to be a hard unsolved problem.”

In the late 2010’s, Dembo and the third author [19, 20], seeking to study both the solutions

of the heat equation initiated by white noise and the probability that a random polynomial has

no roots, revisited Slepian’s method. They observed that in the restricted case of GSPs with non-

negative covariance, it is possible to use probabilistic arguments and tools from linear algebra to

extend the method and obtain the exact rate of the decay of the persistence up to sub-exponential

factors. Developing on this, in [5, Lem. 3.2] Aurzada and Mukherjee showed that a GSP with non-

negative covariance has a positive persistence exponent if and only if its correlation is integrable.

In addition, they obtain continuity results in terms of the covariance kernel for this set of processes.

The first process with sign-changing covariance kernel for which exponential-type decay was

established is the sinc kernel process. This result, due to Antezana, Buckley, Marzo and Olsen [2],

was a tour de force of analytic methods and direct computations. A study of this result, has led the

first two authors to introduce spectral conditions which ensure exponential bounds on persistence,

requiring the spectral measure to have a polynomial decay and a bounded spectral density in a

small vicinity of the origin [26]. This was extended together with Nitzan [28] to conditions under
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which persistence decays sub- or super-exponentially, providing also new examples for extremely

fast decaying persistence probabilities. All of these conditions depend on the interplay between the

spectral behavior near the origin and the decay of the spectral measure near infinity. The special

case of a “spectral gap” (i.e., a spectral measure which vanishes on an interval near the origin) was

treated in more detail in [27].

Here, we go beyond establishing exponential-type behavior of persistence: we show the existence

of a persistence exponent and provide several new continuity results. We do so by combining and

expanding the spectral method of [28] and the covariance method of [20].

1.2.2 Related processes and events

Persistence is sometimes regarded more generally, as the event that a given stochastic process takes

values in a specific set over a long time interval. Such events have received significant attention for a

large class of examples, including random walks [11, 29] (see references there-in), Lévy processes [10,

23], Markov processes [17, 18], random polynomials [21, 41] and (spatial) processes driven by

either stochastic differential equations, or by partial differential equations with random initial

configuration [51, 52].

For point configurations in the plane, much attention is given to the persistence-type event

of having no points at all in a large region. This event, which reflects the rigidity of the model,

was studied for zeroes of random analytic functions [15, 46, 58], Coulomb gas [31] and random

matrices [9], among other examples. In some cases, even very advanced questions such as the

conditional behavior of the model could be handled [3, 30, 32].

The study of ball probabilities is also old and active, often referred to as “small deviations”.

These were studied for various models and metrics, with considerable interest in Gaussian processes

and the L∞ metric. Here the challenge is not to show existence of an exponent, but rather to

compute or estimate it, especially when the width of the ball tends to zero. First results in the

context of GSPs were obtained by Newell [44]. A classical bound is due to Lifshitz and Tsirelson [39],

and improvements were made by Aurzada, Ibragimov, Lifshitz and van Zanten [4] as well as by

Weber [63, 64].

1.3 Comparison lemmata for persistence probabilities

In this section we present three results which act as basic tools in our treatment of persistence prob-

abilities, but are also of independent interest. These are three comparison properties of persistence

probabilities: under change of level, under change of measure and under smoothing.

Denote

P`ρ(T ) := P
(

inf
t∈[0,T ]

fρ(t) > `

)
, θ`ρ(T ) := − 1

T
logP`ρ(T ). (1.3)

and recall that θ`ρ = lim
T→∞

θ`ρ(T ) whenever the limit exists.

Throughout the remainder of the paper, we fix the level ` ∈ R and parameters α, β,B > 0, and

6



consider measures in the class

Mα,A :=
⋃
α′>0

M(α,α′),A =
{
ρ ∈ S | α ≤ ρ(−x, x)

2x
, ∀x ∈ (0, A)

}
,

and in Lβ,B, as introduced in (1.2). Constants may depend on (`, α, β,B) implicitly. Since in some

applications the parameter A > 0 will be varying with T , the dependence on it is made explicit.

Lemma 1.1 (continuity in levels). There exists C > 0 such that, for any µ ∈Mα,A ∩ Lβ,B, δ > 0

and T ≥ max{4, 1
A}, we have

0 ≤ θ`+δµ (T )− θ`−δµ (T ) ≤ Cδ.

Lemma 1.2 (smoothing lemma). Let h be a spectral density such that h(0) = 1, ĥ ≥ 0 and ĥ is

supported on [−a
2 ,

a
2 ]. Then for any spectral measures µ and ν:

P`µ+ν(T + a) ≤ P`µ+h2ν(T ).

Lemma 1.3 (continuity in measure). Let µ ∈ Mα,A ∩ Lβ,B and ν ∈ Lβ,B be such that ν(R) < ε

for some ε > 0.

(I) For all T > max{4, 1
A}, we have

θ`µ+ν(T ) ≤ θ`µ(T ) + Cε,

where Cε obeys limε→0Cε = 0.

(II) There exist c, ε0 and T0(ε) such that for all ε < ε0 and T > max{T0,
2
A}, if ν([−L

T ,
L
T ]) < εLT

θ`µ (T (1− η)) ≤ θ`µ+ν(T ) + Cε,

where L =
√

2
cε , η = (cε)1/4 and lim

ε→0
Cε = 0.

1.4 Examples

We conclude the introduction by discussing several noteworthy processes for which the existence

of persistence exponents is first established by Theorem 1.

1. Sinc kernel. Consider the process with kernel r(t) = sinc(t) = sin(πt)
πt . The corresponding

spectral measure has density 1I[−π,π]. It is clear that ρ ∈ M ∩ L, so by Theorem 1, for any

` ∈ R the exponent θ`ρ exists in (0,∞). This process received much attention [2] and has

various applications to statistics and signal processing [61].

2. Zero-order Bessel kernel. Let r(t) = J0(t) =
∑∞

m=0
(−t)m

2m(m!)2
. The corresponding spectral

measure ρ has a density 2√
1−λ2 1I[−1,1] (see [60]). As ρ ∈ M ∩ L, Theorem 1 yields that, for

any ` ∈ R, the exponent θ`ρ exists in (0,∞).
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3. Moving Average over i.i.d. For a sequence {Uk}k ∈ Z such that
∑

k∈Z U
2
k <∞, we define

the moving average process by

Xj =
∑
k∈Z

UkZj−k = (U ∗ Z)(j),

where {Zk}k∈Z are i.i.d. N(0, 1) random variables. The corresponding spectral measure ρ has

density |Û(λ)|2, where Û(λ) =
∑

k∈Z Uke
ikλ. Assume that Û is continuous in a neighborhood

of 0 (in the wide sense) and note that Û(0) =
∑

k∈Z Uk. Then ρ′(0) = limx→0
1
x

∫ x
0 |Û(λ)|2dλ

exists and equals |Û(0)|2. By Theorem 1 and Remarks 2 and 7, the persistence exponent θ`X
exists in [0,∞] for any ` ∈ R, and

θ`X =∞ ⇐⇒
∑
k∈Z

Uk = 0, while θ`X = 0 ⇐⇒ |
∑
k∈Z

Uk| =∞.

4. Moving Average over a GSP. More generally, let {Yt}t∈T be a GSP over T ∈ {Z,R} with

spectral measure ρ ∈M ∩L. Let U : T → R be such that Û(λ) =
∫
T U(t)eitλdt is continuous

(in the wide sense) in a neighborhood of 0, and further
∫
|Û(λ)|2dρ(λ) < ∞. Then the

moving-average process defined by X(t) = (U ∗Y )(t) is a GSP (see Obs. 2.7 below), for which

θ`X exists for all ` ∈ R. If Û(0) and ρ′(0) both lie in (0,∞), then θ`X ∈ (0,∞).

5. Absolutely summable correlations. Suppose that
∫
R |r(t)| dt < ∞ and

∫
R r(t)dt > 0.

Then ρ ∈M with ρ′(0) ∈ (0,∞), and Theorem 1 implies θ`ρ ∈ (0,∞) for every `. Prior to our

work, such results were only known under the additional assumption that r ≥ 0, see [5, 19].

Additional examples could be generated on noting that the class of measures L ∩M is closed

under addition, truncation, and convolution.

1.5 Outline of the paper

The paper is organized as follows. In Section 2 we present various tools needed in our proofs. In

Section 3 we prove the comparison results: Lemmata 1.1, 1.2 and 1.3. The rest of the paper is

dedicated to the proofs of Theorems 1–5. The order in which these were presented is not the order

of their establishment. In Section 4 we prove Theorem 2 concerning ball exponents and singular

measures. In Section 5 we prove the existence of a persistence exponent as stated in Theorem 1, and

the continuity of ball and persistence exponents as stated in Theorem 4; we also provide a class of

non-existence examples. In Section 6 we prove monotonicity and indifference of the exponents to the

singular part, namely, Theorem 3. Lastly, in Section 7 we prove Theorem 5 regarding convergence

of persistence exponents under sampling; an example of non-convergence is also provided.

2 Preliminaries

In this section we collect tools and observations that will serve us in the rest of the paper. Through-

out the paper, we denote by fρ the GSP corresponding to a spectral measure ρ. The notation ρL is

used for the restriction of a measure ρ onto the interval [−L,L]. We use both F[ρ] and ρ̂ to denote

the Fourier transform of a finite measure ρ.
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2.1 Gaussian measures on Euclidean spaces

In this section we recall several classical properties of Gaussian measures on Rd. We start with

standard estimates of the one-dimensional Gaussian distribution (see, e.g., [28, Lem. 3.13]).

Lemma 2.1. Let Z ∼ N(0, 1). For all x > 0 we have:

(a)
1√
2π

(
1

x
− 1

x3

)
e−x

2/2 ≤ P(Z > x) ≤ 1√
2π

1

x
e−x

2/2,

In particular, for x ≥ 2: e−x
2 ≤ P(Z > x) ≤ e−x2/2.

(b)

√
2

π
xe−x

2/2 ≤ P(|Z| ≤ x) ≤ x,

In particular, for 0 < x ≤ 1:
1

4
x ≤ P(|Z| ≤ x) ≤ x.

We continue with a few facts about Gaussian measures and intersections or homothety.

Observation 2.2. Let γd be a centered Gaussian measure in Rd, and let K ⊂ Rd be a convex

domain containing the origin. Then for any α ≥ 1, γd(αK) ≤ αdγd(K).

Proof. Let (Θ, r) denote the polar coordinates in Rd (where Θ = (θ1, . . . , θd−1)). We have for any

convex body K:

γd(K) =

∫
Θ

{∫ RK(Θ)

0
rd−1gΘ(r) dr

}
J(Θ)dΘ,

where gΘ(r) the density of γd on the ray defined by Θ, RK(Θ) is the radius of K in direction Θ,

and rd−1J(Θ) is the appropriate Jacobian. Using a simple change of variable we have:

γd(αK) =

∫
Θ

{∫ αRK(Θ)

0
rd−1gΘ(r) dr

}
J(Θ)dΘ

[r=αs]
= αd

∫
Θ

{∫ RK(Θ)

0
sd−1gΘ(αs)ds

}
J(Θ)dΘ

≤ αd
∫

Θ

{∫ RK(Θ)

0
sd−1gΘ(s)ds

}
J(Θ)dΘ = αdγd(K),

where the inequality is due to the fact that gΘ(s) is decreasing in s ∈ [0,∞).

We shall employ the Khatri-Sidak’s inequality (see [56] or [40, Ch. 2.4]). This classical result is

a particular case of the celebrated Gaussian correlation inequality for general convex sets, proved

by Royen [50] in 2014.

Proposition 2.3 (Khatri-Sidak’s inequality). If (Z1, . . . , Zd) is a centered Gaussian vector in Rd,
then for any {`j}dj=1 ⊂ (0,∞) one has P

(⋂d
j=1

{
|Zj | ≤ `j

})
≥
∏d
j=1 P

(
|Zj | ≤ `j

)
.

An immediate consequence is the following.
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Corollary 2.4. Let f be a Gaussian process which is almost surely continuous on an interval

[0, a+ b]. Then for every ` > 0,

P

(
sup

[0,a+b]
|f | < `

)
≥ P

(
sup
[0,a]
|f | < `

)
P

(
sup

[a,a+b]
|f | < `

)
.

In the case of stationarity, Corollary 2.4 together with Fekete’s subadditivity lemma yield the

existence of the ball exponent. As per (1.3), denote

ψ`ρ(T ) := − 1

T
logP

(
sup
t∈[0,T ]

|fρ(t)| < `

)
. (2.1)

Corollary 2.5. For any spectral measure ρ ∈ L and any ` > 0, the ball exponent ψ`ρ := limT→∞ ψ
`
ρ(T )

exists and lies in [0,∞).

Proposition 2.3 is also the main ingredient in the proof of the following result.

Proposition 2.6. Let γd be the standard Gaussian measure in Rd. Then there exists a constant

κ > 0 such that, for any n ≥ d and any collection of unit vectors u1, . . . , un ∈ Sd−1, we have

γd

 n⋂
j=1

{x ∈ Rd : |〈x, uj〉| ≤ 1}

 ≥ ( κ√
1 + 2 log n

d

)d
.

The analogue of Proposition 2.6 in which γ is replaced with the Lebesgue measure is a theorem

by Ball and Pajor [8]. The Gaussian case should follow from the Euclidean one (allowing for different

constants), however, we give here a direct Gaussian proof suggested to us by Ori Gurel-Gurevitch.

Proof. Denote Sj = {x ∈ Rd : |〈x, uj〉| ≤ 1}. Let α > 1 (to be chosen later). By Observation 2.2

and Proposition 2.3 we have:

γd

( n⋂
j=1

Sj

)
= γd

( 1

α

n⋂
j=1

(αSj)
)
≥ α−d γd

( n⋂
j=1

(αSj)
)
≥ α−dγd

(
αS1

)n
= α−dγ1([−α, α])n,

where γ1 is the standard Gaussian measure in R. Set α =
√

1 + 2 log
(
n
d

)
. The result will follow

once we show that γ1([−α, α])n/d ≥ κ for all n ≥ d and some constant κ > 0 which is independent

of n and d. If n
d < e2, we bound by

γ1([−α, α])n/d ≥ γ1([−1, 1])e
2
,

while if n
d ≥ e

2 we apply the first part of Lemma 2.1 to get

γ1([−α, α])n/d ≥ (1− 2 P (N(0, 1) ≥ α))n/d ≥
(

1− 2e−α
2/2
)n/d

≥
(

1− 2
d

n

)n/d
≥ e−2.

Taking κ = 0.05 < min
{
γ1([−1, 1])e

2
, e−2

}
, the result follows.
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2.2 Operations on GSPs

This section collects observations about the spectral measure of a GSP which was generated from

another GSP by a single operation, such as: convolution with a fixed kernel, scaling, lattice sampling

and discrete derivation. In what follows, ρ is a spectral measure and fρ is the corresponding GSP.

Observation 2.7. Assume that h ∈ L2
ρ(R). Then fρ ∗ ĥ is a GSP with covariance kernel

ρ̂ ∗ ĥ ∗ (ĥ(−·)) and spectral measure |h(λ)|2dρ(λ).

Proof. Denote H = ĥ. The random process W (x) = (fρ ∗H)(x) =
∫
fρ(t)H(x− t)dt is Gaussian,

with covariance kernel given by:

E[W (x)W (y)] = E
[∫

fρ(x− t)H(t) dt

∫
fρ(y − s)H(s) ds

]
=

∫∫
E[fρ(x− t)fρ(y − s)]H(t)H(s) dt ds

=

∫∫
ρ̂(x− y + s− t)H(t)H(s) dt ds

=

∫
(ρ̂ ∗H)(x− y + s)H(s) ds

= (ρ̂ ∗H ∗ (H(−·)) (x− y) = F
[
|h|2ρ

]
(x− y).

Observation 2.8. For any ε > 0, the sequence {fρ(jε)}j∈Z has the folded spectral measure ρ∗ε,

which is supported on [−π
ε ,

π
ε ] and given by:

ρ∗ε(I) = ρ

(⋃
n∈Z

(I + 2π
ε n)

)
.

Proof. ρ∗ε is the unique spectral measure supported on [−π
ε ,

π
ε ] such that F[ρ∗ε](jε) = F[ρ](jε) for

any j ∈ Z.

2.3 Decompositions of GSPs

The following claims provide two types of decompositions of a GSP into independent components.

The first is a series representation, which may be found in [28, Claim 3.8].

Lemma 2.9 (Hilbert decomposition). Let ρ ∈ L and let ϕn be an orthonormal basis in L2
ρ(T

∗)

which satisfies, for every n ∈ N, ϕn(−λ) = ϕn(λ). Denote Φn(t) =
∫
R e
−iλtϕn(λ)dρ(λ). Then

f(t) =
∑
n

ζnΦn(t), ζn ∼ N(0, 1) i.i.d.

is a continuous GSP over T with spectral measure ρ.

Lemma 2.9 has the following useful consequence.

Corollary 2.10 (one component). Let ρ ∈ L and let ϕ ∈ L2
ρ be a real symmetric function such

that ‖ϕ‖L2
ρ

= 1. Write Φ(t) =
∫
R e
−iλtϕ(λ)dρ(λ), then we have the decomposition

fρ(t)
d
= ζ · Φ(t)⊕ g,

11



where ζ ∼ N(0, 1) and g is a Gaussian process which is independent of ζ.

The second is the spectral decomposition which appeared in [26, Obs. 1].

Lemma 2.11 (spectral decomposition). If ρj is a spectral measure for j ∈ {0, 1, 2} and ρ0 = ρ1+ρ2,

then fρ0
d
= fρ1 ⊕ fρ2.

One application of the spectral decomposition is the following simple yet useful lemma. Recall

the notation (1.3) and (2.1),

Lemma 2.12. For any spectral measure ρ, ν and any ` ∈ R, δ > 0 and T > 0, we have the

following.

(a) ψ`ρ+ν(T ) ≤ ψ`−δρ (T ) + ψδν(T ).

(b) θ`ρ+ν(T ) ≤ θ`+δρ (T ) + ψδν(T ).

Proof. Part (a). Using Lemma 2.11, we have

P
(

inf
t∈[0,T ]

fρ+ν(t) > `

)
= P

(
inf

t∈[0,T ]
(fρ(t)⊕ fν(t)) > `

)
≥ P

(
inf

t∈[0,T ]
fρ(t) > `+ δ

)
P

(
sup
t∈[0,T ]

|fν(t)| < δ

)
,

which upon taking log and dividing by T yields the desired inequality.

Part (b). Again using Lemma 2.11, we have

P

(
sup
t∈[0,T ]

|fρ+ν(t)| < `

)
= P

(
sup
t∈[0,T ]

|fρ(t)⊕ fν(t)| < `

)
≥ P

(
sup
t∈[0,T ]

|fρ(t)| < `− δ

)
P

(
sup
t∈[0,T ]

|fν(t)| < δ

)
,

which upon taking log and dividing by T yields the desired inequality.

2.4 Classical Gaussian tools

In this section we recall classical tools from the theory of Gaussian processes. We start with the

celebrated Slepian’s lemma, see [1, Thm. 2.1.2] or [57].

Proposition 2.13 (Slepian). Let X and Y be centered Gaussian processes on I ⊂ R. Suppose that

E[XtXs] ≤ E[YtYs], E[X2
t ] = E[Y 2

t ], ∀t, s ∈ I.

Then for any ` ∈ R one has

P
(

sup
I
X > `

)
≤ P

(
sup
I
Y > `

)
.

The following famous concentration bound is due to Borell and Tsirelson-Ibragimov-Sudakov,

see [1, Thm. 2.1.1].
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Proposition 2.14 (Borell-TIS). Let X be a centered Gaussian process on I which is almost surely

bounded. Then for all u > 0 we have:

P
(

sup
I
X − E sup

I
X > u

)
≤ exp

(
−u

2

2σ

)
,

where σ = supt∈I varX(t).

The expected supremum of a Gaussian process is often bounded using Dudley’s metric-entropy

method [1, Thm. 1.3.3]. For a Gaussian process H on an interval I, we let

dH(a, b) :=
√

E(H(a)−H(b))2, a, b ∈ I (2.2)

be the canonical semi-metric induced by H, and denote diamH(I) = supa,b∈I dH(a, b). For any

x > 0, the covering number NH(x) is the minimal number of dH -balls of radius x which cover I.

Proposition 2.15 (Dudley’s bound). There exists a universal constant K > 0 such that for any

Gaussian process H on I we have

E sup
I
H ≤ K

∫ diamH(I)

0

√
logNH(x) dx.

Lastly we recall a comparison between ball probabilities due to Anderson [40, Ch. 2.3].

Proposition 2.16 (Anderson). Let X,Y be two independent, centered Gaussian processes on I.

Then for any ` > 0,

P
(

sup
I
|X ⊕ Y | ≤ `

)
≤ P

(
sup
I
|X| ≤ `

)
.

2.5 Supremum

In this section we apply tools from Section 2.4 in order to estimate events concerning the supremum

a GSP whose spectral measure is in the class Lβ,B.

Lemma 2.17. Suppose that β < e− 1 and B > 0. Then for every ρ ∈ Lβ,B we have

0 ≤ r(0)− r(t) ≤ 3B

log1+β(1/t)
.

Proof. Recall that t < 1 and observe that:

r(0)− r(t) =

∫
R

(
1− cos(λt)

)
dρ(λ) =

(∫
|λ|< 1√

t

+

∫
|λ|≥ 1√

t

)(
1− cos(λt)

)
dρ(λ)

≤
∫
|λ|< 1√

t

λ2t2dρ(λ)

2
+

2

log1+β(1/t)

∫
|λ|≥ 1√

t

log1+β λ dρ(λ)

≤ Bt+
2B

log1+β(1/t)
≤ 3B

log1+β(1/t)
.

In the last step we used that 1 + β < e.
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If ρ is compactly supported, then Lemma 2.17 may be replaced by the following observation.

Observation 2.18. Suppose that ρ is supported on [−D,D]. Then

0 ≤ r(0)− r(t) ≤ 1
2D

2r(0)t2.

Proof. r(0)− r(t) =
∫
R(1− cos(λt))dρ(λ) ≤

∫
|λ|≤D

λ2t2

2 dρ(λ) ≤ D2

2 r(0)t2.

Lemma 2.19. There exists C = C(β,B) such that for any ρ ∈ Lβ,B and any h ≤ 1,

E sup
[0,h]
|fρ| < C sup

t∈[0,h]
|r(0)− r(t)|

β
2(1+β) .

Proof. Let df be the canonical semi-metric induced by f (defined via (2.2)). Using stationarity

and Lemma 2.17 we have, for any s ∈ R and t > 0,

df (s, s+ t) =
√

2|r(0)− r(t)| ≤
√

6B

log(1+β)/2(1/t)
=: ψ(t).

This yields that for an interval I = [0, h] we have

Nf (x) ≤ max

(
1,

|I|
ψ−1(x)

)
= max

(
1, h exp

[(
6B

x2

) 1
1+β

])
,

and

diamf (I) = sup
x,y∈I

df (x, y) ≤ sup
t∈[0,h]

√
2(r(0)− r(t)).

By Dudley’s bound (Proposition 2.15) there exists a universal constant K > 0 such that

E sup
[0,h]
|fρ| < K

∫ diam(I)

0

√√√√((6B

x2

) 1
1+β

+ log h

)
+

dx ≤ K(6B)
1

2(1+β)

∫ diam(I)

0
x
− 1

1+β dx

≤ C(β,B) sup
t∈[0,h]

|r(0)− r(t)|
β

2(1+β) .

Lemma 2.20. There exist C1, C2 > 0 (depending only on β,B) such that for any ν ∈ Lβ,B and

any m > 0,

P

(
sup
[0,1]
|fν | > (C1m+ C2) ν(R)

β
2(1+β)

)
< 2e−m

2/2.

Proof. Denote I = [0, 1]. Note that√
sup
t∈I

var fν(t) =
√
r(0) =

√
ν(R) ≤ C1ν(R)

β
2(1+β) ,

and by Lemma 2.19 we have

E sup
I
|fν | < C2ν(R)

β
2(1+β) ,
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where C1 and C2 depend only on β,B. By Proposition 2.14 (Borell-TIS theorem), we have for any

m > 0:

P
(

sup
I
fν > (C1m+ C2)ν(R)

β
2(1+β)

)
≤ P

(
sup
I
fν > E sup

I
fν +m

√
sup
t∈I

var fν(t)

)
< e−m

2/2.

The statement then follows using symmetry of fν and −fν and a union bound.

Lemma 2.21. Let W be a centered Gaussian process on [0, T ], satisfying

sup
t∈[0,T ]

varW (t) ≤ ε

T
, (2.3)

sup
t∈[0,T ]

var (W (t+ h)−W (t)) ≤ c2h2, (2.4)

for some ε ∈ (0, 1) and c > 0 and all h > 0. Then for any δ > 0 there exists T0 = T0(δ, c) such that

if T > T0(δ, c) we have:

P

(
sup
[0,T ]
|W | > δ

)
≤ 2e−

δ2

8ε
T .

Proof. Let dW be the canonical semi-metric induced by W , as in (2.2). Using (2.4) we have

dW (t, t+ h) =
√

var (W (t+ h)−W (t)) ≤ ch,

for any t, h > 0. This yields that the covering number NW (x) of the interval [0, T ] in the dW -metric

obeys NW (x) ≤ cT
x . Moreover using (2.3) we have diamW ([0, T ]) = max

x,y∈[0,T ]
dW (x, y) ≤

√
2 ε
T ≤√

2
T . Consequently by Dudley’s bound (Proposition 2.15):

E sup
[0,T ]
|W | < K

∫ √
2
T

0

√
log

cT

x
dx ≤ K

√ 2

T
·
√

log(cT ) +

∫ √
2
T

0

√
log
(

1
x

)
dx

 .

Hence there exists T0 = T0(δ, c) such that if T > T0(δ, c) we obtain

E sup
[0,T ]
|W | ≤ δ

2
. (2.5)

Using Borell-TIS (Proposition 2.14) with (2.3) and (2.5) we obtain that, for T > T0,

P

(
sup
[0,T ]
|W | > δ

)
≤ 2P

(
sup
[0,T ]

W > δ

)
≤ 2P

(
sup
[0,T ]

W − E sup
[0,T ]

W >
δ

2

)
≤ 2e−

δ2

8ε
T .

2.6 Bounds on ball and persistence exponents

In this section we present apriori bounds on ball and persistence probabilities, which hold uniformly

for spectral measures in the class Lβ,B or Mα,A ∩Lβ,B and a given level `. The first such bound is

a slightly stronger version of [28, Lemma 3.12] or [59], as we assume a finite log-moment instead of

a finite polynomial moment.
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Lemma 2.22. There exists C = C(β,B, `) ∈ (0,∞) such that for all ρ ∈ Lβ,B and T ≥ 1:

P

(
sup
[0,T ]
|fρ| < `

)
≥ e−CT , or equivalently ψ`ρ(T ) ≤ C.

Proof. By Khatri-Sidak’s inequality (Cor. 2.4) we have, for any h > 0,

P

(
sup
[0,T ]
|fρ| < `

)
≥ P

(
sup
[0,h]
|fρ| < `

)T/h
. (2.6)

Combining Lemma 2.17 and Lemma 2.19 we have

E sup
[0,h]
|fρ| ≤ C log−β/2

(
1
h

)
.

Consequently there exists h, depending on `, β,B, such that E sup[0,h] |fρ| < `
2 . An application of

Markov’s inequality gives P
(

sup[0,T ] |fρ| > `
)
≤ 1

2 . For this h, inequality (2.6) gives

P

(
sup
[0,T ]
|fρ| < `

)
≥ 2−T/h.

The next result is a somewhat more general version of [26, Theorem 2].

Lemma 2.23. There exists C ∈ (0,∞) such that for all ρ ∈Mα,A ∩ Lβ,B and all T ≥ 1
A :

P`ρ(T ) ≥ e−CT , or equivalently, θ`ρ(T ) ≤ C.

Proof. Recall the notation ρL = ρ|[−L,L] for the restriction of a measure ρ to the interval [−L,L].

For a fixed (arbitrary) m > 0 we have

θ`ρ(T ) ≤ θ`+mρ1/T
(T ) + ψmρ−ρ1/T (T ) ≤ θ`+mρ1/T

(T ) + ψmρ (1),

where the first inequality holds by Lemma 2.12(b), and the second one follows from the inequali-

ties by Anderson (Proposition 2.16) and Khatri-Sidak (Proposition 2.3). The covariance function

corresponding to ρ1/T is

F[ρ1/T ](t) =

∫ 1/T

−1/T
cos(λt)dρ(λ) ≥ ρ([− 1

T ,
1
T ]) cos( 1

T t).

Notice that the RHS of the last inequality is the covariance function of the process

aT cos( 1
T t) + bT sin( 1

T t), where aT , bT ∼ N
(
0, ρ

(
[− 1

T ,
1
T ]
))

are i.i.d.
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By Slepian’s inequality (Proposition 2.13) we have

θ`+mρ1/T
(T ) ≤ − 1

T
logP

(
∀t ∈ [0, T ] : aT cos( 1

T t) + bT sin( 1
T t) > `+m

)
≤ − 1

T
logP(aT >

`+m
cos 1 )− 1

T
logP (bT > 0)

≤ − 1

T
logP

(√
ρ([− 1

T ,
1
T ])Z > `+m

cos 1

)
+

log 2

T
,

where Z ∼ N(0, 1). We have thus proved that for any ρ ∈ Lβ,B,

lim sup
T→∞

θ`ρ(T ) ≤ ψmρ (1)− lim sup
T→∞

1

T
logP

(√
ρ([− 1

T ,
1
T ])Z > `+m

cos 1

)
. (2.7)

By Lemma 2.22, it holds that ψmρ (1) ≤ C(β,B) < ∞. To see that the second term is bounded,

recall that ρ([− 1
T ,

1
T ]) ≥ 2α

T whenever T ≥ 1
A , and thus

lim sup
T→∞

θ`+mρ1/T
(T ) ≤ − 1

T
logP

(
Z >

`+m√
2α cos 1

√
T

)
≤ 1

2α

(
`+m

cos 1

)2

.

The last step uses Lemma 2.1 and assumes that m is such that `+m√
2α cos 1

> 2.

The reverse direction of Lemma 2.23 requires some extra assumptions.

Lemma 2.24. Let ρ ∈ Lβ,B and ` ∈ R. Suppose ρ is such that ρ((−x, x)) ≤ 2α′x for all x ∈ (0, A′).

Suppose further that dρ ≥ m1E(λ)dλ where dλ is the Lebesgue measure, m > 0 and E is a Lebesgue-

measurable set of positive measure. Then there exist C = C(α′, A′, β, B, `,m, |E|) > 0 such that for

all T > 1:

P`ρ(T ) ≤ e−CT , or equivalently, θ`ρ(T ) ≥ C.

If ` ≥ 0, then the constant C satisfies limα′→0C(α′) =∞.

Proof. This inequality was proved in [28, Prop. 3], which is a corollary of Theorem 5.1 there. The

assumption throughout that paper is that
∫
|λ|δdρ(λ) <∞ for some δ > 0 and that ` = 0; however,

the proof in our case (corresponding to γ = 1 and b = α′ there) applies as soon as ρ ∈ L and for

any level ` ∈ R. The dependence of C on the parameter α′ follows from [28, Remark 2].

Proposition 2.25. Let ρ ∈ L and ` ∈ R. If lim
ε→0

ρ(−ε,ε)
2ε =∞ then θ`ρ = 0.

Proof of Proposition 2.25. Fix a large parameter m > 0. Using Lemma 2.1 and the fact that

limT→∞ Tρ([− 1
T ,

1
T ]) =∞, we deduce that

lim sup
T→∞

1

T
logP

(√
ρ([− 1

T ,
1
T ])Z > `+m

cos 1

)
= 0.

Plugging this into (2.7) we obtain

0 ≤ lim sup
T→∞

θ`ρ(T ) ≤ ψmρ (1).

The desired conclusion follows on letting m→∞.
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3 Proofs of the comparison lemmata

3.1 Proof of Lemma 1.1: continuity in levels

Fix T > 0, δ > 0. The inequality P`+δµ (T ) ≤ P`−δµ (T ), or equivalently θ`−δµ (T ) ≤ θ`+δµ (T ), follows

from inclusion of events. It remains to bound the difference θ`+δµ (T )− θ`−δµ (T ). Let

ϕT :=
1

σT
11[− 1

T
, 1
T

], where σ2
T :=

∫ 1/T

−1/T
dµ(λ),

so that ϕT ∈ L2
µ and ‖ϕT ‖L2

µ
= 1. Denote ψT (x) =

∫
R e
−iλxϕT (λ)dµ(λ) and invoke Corollary 2.10

to obtain the decomposition

fµ(t)
d
= ζψT (t)⊕RT (t),

where ζ ∼ N(0, 1) and RT is a centered Gaussian process on [0, T ]. Note that on the interval [0, T ]

the function ψT satisfies

ψT (x) =
1

σT

∫ 1
T

− 1
T

cos(xλ)dµ(λ) ≥ 1

σT
cos
(
x
T

)
σ2
T ≥

1

2
σT ≥

1

c
√
T
,

for T ≥ 1
A and c =

√
2
α .

Denote f̃(x) = (ζ − cδ
√
T )ψT (x)⊕RT (x) and observe that

f(x) = f̃(x) + cδ
√
TψT (x),

and f̃(x)
d
= ζ̃ψT (x)⊕RT (x) with ζ̃ ∼ N(−cδ

√
T , 1). Since 2δ · c

√
TψT (x) ≥ 2δ, we have

P`+δµ (T ) = P(f > `+ δ on [0, T ]) ≥ P(f̃ > `− δ on [0, T ]). (3.1)

By Lemma 2.23, there exists M ∈ (0,∞) such that P`µ(T ) ≥ 4e−MT/2. Taking M ≥ 1, invoke

Part (a) of Lemma 2.1 for T ≥ 4, to obtain 2e−MT/2 ≥ P(|ζ| ≥
√
MT ), getting

P`−δµ (T ) ≥ P`µ(T ) ≥ 2P(|ζ| ≥
√
MT ). (3.2)

Starting from (3.1) and using Radon-Nikodim derivative estimate we obtain

P`+δµ (T ) ≥ P
(
f̃ ≥ `− δ on [0, T ], |ζ| <

√
MT

)
≥ inf
|x|≤
√
MT

∣∣∣∣dζ
dζ̃

∣∣∣∣P(f ≥ `− δ on [0, T ], |ζ| <
√
MT

)
≥ inf
|x|≤
√
MT

ecδ
√
T ·x
(
P
(
f ≥ `− δ on [0, T ]

)
− P(|ζ| ≥

√
MT )

)
≥ 1

2e
−cδ
√
MTP

(
f ≥ `− δ on [0, T ]

)
= 1

2e
−cδ
√
MTP`−δµ (T ),
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where the last inequality is due to (3.2). Taking logarithm, this yields

logP`−δµ (T )− logP`+δµ (T ) ≤ CδT,

for some C > 0 and all T > max(4, 1
A), as required.

3.2 Proof of Lemma 1.2: smoothing increases persistence

Denoting H = ĥ, the assumptions of the lemma are H ≥ 0,
∫
RH = 1 and sprtH ⊆ [−a

2 ,
a
2 ].

By Observation 2.7, the measure h2ν is the spectral measure of the GSP fν ∗ H. Therefore our

objective is to show that

P
(
fµ ⊕ fν > ` on [0, T + a]

)
≤ P

(
fµ ⊕ (fν ∗H) > ` on [0, T ]

)
. (3.3)

Gaussian measures are well-known to be log-concave (see [12, Example 2.3]). In particular,∫
H(s) logP

(
X(t) + v(s, t) > `, ∀t ∈ [0, T ]

)
ds ≤ logP

(
X(t) +

∫
H(s)v(s, t)ds > `, ∀t ∈ [0, T ]

)
,

where v(s, t) : R × [0, T ] → R is continuous in t for every fixed s ∈ R. Thus, given a continuous

function v : R→ R, we may apply this with v(s, t) = v(t− s) to obtain

(?) :=

∫
H(s) logP

(
X(t) + v(t− s) > `, ∀t ∈ [0, T ]

)
≤ logP

(
X(t) + (H ∗ v)(t) > `, ∀t ∈ [0, T ]

)
.

When X is stationary, we have

(?) =

∫
R
H(s) logP

(
X(t+ s) + v(t) > `, ∀t ∈ [−s, T − s]

)
ds

≥
∫
R
H(s) logP

(
X(t+ s) + v(t) > `, ∀t ∈ [−a

2 , T + a
2 ]
)
ds

=

∫
R
H(s) logP

(
X(t) + v(t) > `, ∀t ∈ [−a

2 , T + a
2 ]
)
ds

= logP
(
X(t) + v(t) > `, ∀t ∈ [−a

2 , T + a
2 ]
)
,

where the last line uses h(0) =
∫
RH(s)ds = 1. Putting these together, we obtain

P
(
X(t) + v(t) > `, ∀t ∈ [−a

2 , T + a
2 ]
)
≤ P

(
X(t) + (H ∗ v)(t) > `, ∀t ∈ [0, T ]

)
.

Given a real valued stochastic process Y , independent of X, with almost-surely continuous path,

we may apply this to deduce to deduce that

P
(
X(t)⊕ Y (t) > `, ∀t ∈ [−a

2 , T + a
2 ]
)
≤ P

(
X(t)⊕ (H ∗ Y )(t) > `, ∀t ∈ [0, T ]

)
.

When Y is also stationary, we may replace the interval [−a
2 , T + a

2 ] in the last inequality with

[0, T + a]. Applying this to X = fµ and Y = fν we obtain (3.3) as required.
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3.3 Proof of Lemma 1.3: continuity in measure

3.3.1 Proof of Part I

Let δ > 0 (to be chosen later). By Lemma 2.12(b) we have:

θ`µ+ν(T )− θ`+δµ (T ) ≤ ψδν(T ). (3.4)

By Corollary 2.4, we have for T > 1

ψδν(T ) = − 1

T
logP

(
|fν | < δ on [0, T ]

)
≤ −2 logP

(
sup
[0,1]
|fν | < δ

)
. (3.5)

Next apply Lemma 2.20 with u =
√

2 log(1/ε), using the fact that ν(R) < ε, to get

− logP
(

sup
[0,1]
|fν | < (C1

√
2 log(1/ε) + C2)ε

β
2(1+β)

)
≤ − log(1− 2ε) ≤ 2ε,

where Ci = Ci(β,B) for i ∈ {1, 2}. Thus choosing δ(ε) = (C1

√
2 log(1/ε) + C2)ε

β
2(1+β) we have

limε→0 δ(ε) = 0 and

− logP
(

sup
[0,1]
|fν | < δ(ε)

)
≤ 4ε. (3.6)

Combining (3.4), (3.5) and (3.6) we obtain:

θ`µ+ν(T )− θ`+δ(ε)µ (T ) ≤ 4ε.

By Lemma 1.1,

θ`+δ(ε)µ (T )− θ`µ(T ) ≤ Cδ(ε),

where C > 0 and T > max(4, 1
A). The last two inequalities together yield the desired conclusion.

3.4 An auxiliary result

For proving Lemma 1.3(II) we shall need the following proposition.

Proposition 3.1. For any η ∈ (0, 1
2) there exists T0(η) with the following property. Let m ≥ 0,

T > max{T0,
1
A} and L ∈

(
max

(
4m
η3
, 1
η2

)
, T
)

. Let µ ∈ Mα,A ∩ Lβ,B and ν ∈ Lβ,B be such that

ν((−L
T ,

L
T )) ≤ mL

T . Then

θ`µ+h2ν (T (1− η)) ≤ θ`µ+ν (T ) + Cη,

where h(x) = hL/T (x) = max
(
0, 1− T

L |x|
)

and limη→0Cη = 0.

Proof. Fix η,m,L as in the proposition, and let T > 0. Denote H(x) = ĥ(x) = L
T sinc2

(
L
T x
)

(where

sinc(x) = sin(πx)
πx ). Denote

U(x) :=H(x)1I{|x|<ηT}, V (x) :=H(x)1I{|x|≥ηT},

u :=F−1[U ], v :=F−1[V ].
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By Observation 2.7,

fν ∗H
d
= fh2ν , fν ∗ U

d
= fu2ν , fν ∗ V

d
= fv2ν ,

and by spectral decomposition (Lemma 2.11),

fh2ν
d
= fu2ν ⊕ fv2ν . (3.7)

Equipped with Lemma 1.1, in order to establish the proposition it would suffice to show that

there exists some δ = δ(η), satisfying limη→0 δ(η) = 0, for which

θ`−δ
µ+h2ν

(T (1− η)) ≤ θ`µ+ν (T ) + Cη,

where limη→0Cη = 0. Denoting IT = [0, (1− η)T ], we have

P
(
fµ ⊕ fh2ν > `− δ on IT

)
= P

(
fµ ⊕ fu2ν ⊕ fv2ν > `− δ on IT

)
≥ P

(
fµ ⊕ fu2ν > `, sup |fv2ν | ≤ δ on IT

)
,

≥ P
(
fµ ⊕ fu2ν > ` on IT

)
− P

(
sup
IT

|fv2ν | > δ
)
. (3.8)

To establish the proposition it would therefore suffice to show

P
(
fµ ⊕ fu2ν > ` on IT

)
≥ P

(
fµ ⊕ fν > ` on [0, T ]

)
eC̃ηT , (3.9)

P
(

sup
IT

|fv2ν | > δ
)
≤ 1

2P
(
fµ ⊕ fu2ν > ` on IT

)
, (3.10)

where limη→0 C̃η = 0. To see (3.9) we first note that U is compactly supported on [−ηT, ηT ].

Hence, by Lemma 1.2, we have

P
(
fµ ⊕ fu2ν > ` on IT

)
≥ P

(
fµ ⊕ faν > ` on IT

)
, (3.11)

where a = a(L, η) =
∫
R U =

∫ Lη
−Lη sinc2(x)dx. Since L > 1

η2
we have

a(η) = 1− 2

∫ ∞
1/η

sinc2(x)dx ≥ 1− 2

π2
η,

so that

logP
(
fµ ⊕ faν > ` on [0, T ]

)
= logP

(
fa−1µ+ν >

`√
a

on [0, T ]
)

≥ logP
(
fµ+ν > √̀

a
on [0, T ]

)
− C(1)

η T by Lemma 1.3(I)

≥ logP
(
fµ+ν > ` on [0, T ]

)
− C(2)

η T, by Lemma 1.1

where limη→0C
(i)
η = 0 for i = 1, 2. This establishes (3.9).
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To see (3.10), it is our purpose to apply Lemma 2.21. Since h is supported on [−L
T ,

L
T ], we

deduce that the same is true for u and v, by (3.7). We compute

var ((fv2ν)(t)) =

∫ L/T

−L/T
v2dν

≤ (sup
R
|v|)2

∫ L/T

−L/T
dν ≤

(∫
|V |
)2

m
L

T

= m
L

T

(
2
L

T

∫ ∞
ηT

sinc2

(
L

T
x

)
dx

)2

= 4m
L

T

(∫ ∞
ηL

sinc2 (y) dy

)2

≤ 4m
L

T

(
1

ηL

)2

=
4m

η2L
· 1

T
≤ η

T
, (3.12)

where the last step uses L > 4m
η3

. Applying Observation 2.18, we have

var ((fv2ν)(t)− (fv2ν(0)) ≤
(
L

T

)2

· η
T
· t2 ≤ t2. (3.13)

Plugging (3.12) and (3.13) into Lemma 2.21 we obtain

P

(
sup
IT

|fv2ν | > δ

)
≤ 2e

− δ
2(1−η)

8η
T ≤ 2e

− δ2

16η
T
,

provided that L > 4m
η3

and T > T0(η). Next, we use the existence of an a priori bound,

P
(
fµ ⊕ (fν ∗HT ) > ` on IT

)
≥ e−MT ,

which is guaranteed to hold for all T ≥ 2
A and some M ∈ (0,∞), by Lemma 2.23. Setting

δ =
√

32ηM we have

P
(

sup
IT

|fν ∗ VT | > δ
)
≤ e−MT ≤ P

(
fµ ⊕ (fh2ν) > `− δ on IT

)
, (3.14)

which establishes (3.10) and thus the proposition.

For the next result, recall that µL = µ|[−L,L] is the restriction of the measure µ onto [−L,L].

Corollary 3.2 (truncation). For any η ∈ (0, 1
2) there exists T0(η) with the following property. For

any T > max{T0,
1
A}, L ∈

(
1
η2
, T
)

, µ ∈Mα,A ∩ Lβ,B and ν ∈ Lβ,B it holds that:

θ`µ+νL
T

(T (1− η)) ≤ θ`µ+ν(T ) + Cη,

where limη→0Cη = 0.

Proof. Note that (ν − ν|L/T ) vanishes on the interval (−L
T ,

L
T ). By Proposition 3.1 with m = 0, we

22



have

θ`µ+νL
T

(T (1− η)) = θ`µ+νL
T

+h2(ν−νL
T

) (T (1− η)) ≤ θ`µ+ν (T ) + Cη

for all L > η−2 and T > max{T0(η), 1
A}. The first equality in the last display uses the fact that

h2(ν − νL
T

) is the identically 0 measure.

3.5 Proof of Part II

By Lemma 2.23, there exists M ∈ (0,∞) such that

∀T > 1
A : P

(
inf
[0,T ]

fµ > `− 1

)
≥ e−MT . (3.15)

Choose η = (εM)1/4 and L =
√

2
εM , and note that L > 1

η2
. By Corollary 3.2, we have

θ`µ+νL
T

(T (1− η)) ≤ θ`µ+ν(T ) + C(1)
ε , (3.16)

for all T > max{T (1)
0 (ε), 1

A}, where lim
ε→0

C
(1)
ε = 0.

Denoting m = ν([−L
T ,

L
T ]) we observe that F[µ+ νL

T
] ≤ F[µ+mδ0], so that Slepian’s inequality

(Proposition 2.13) yields

θ`µ+mδ0 (T (1− η)) ≤ θ`µ+νL
T

(T (1− η)) . (3.17)

Proceeding to estimate the LHS of (3.17), with Z ∼ N(0, 1) we have

P
(

inf
[0,T (1−η)]

fµ+mδ0 > `

)
= P

(
inf

[0,T (1−η)]
fµ ⊕

√
mZ > `

)
≤ P

(
Z >

(
T

m

)1/4
)

+ P
(

inf
[0,T (1−η)]

fµ > `− (mT )1/4

)

≤ P

(
Z >

√
T√
εL

)
+ P

(
inf

[0,T (1−η)]
fµ > `−

√
εL

)
,

(3.18)

where the last inequality uses the given assumption that m ≤ εLT . Since εL < 1 for all ε < ε0,

we have, by (3.15), that the second term in the RHS of (3.18) is bounded below by e−MT for

T ≥ 2 max{4, 1
A}. By Lemma 2.1, the first term in the RHS of (3.18) is bounded above by e

− T

2
√
εL ,

for all T > 4
√
εL. Thus for ε < ε0 and T > 2 max{4, 1

A} the second term is larger than the first,

and we get

P
(

inf
[0,T (1−η)]

fµ+mδ0 > `

)
≤ 2P

(
inf

[0,T (1−η)]
fµ > `− (εL)1/4

)
.

By taking log and dividing by T we obtain, for T ≥ max{T0(ε), 2
A}, that

θ`µ+mδ0 (T (1− η)) ≥ θ`−
√
εL

µ (T (1− η)) + log 2
T . (3.19)
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Finally, using Lemma 1.1, we have

θ`µ (T (1− η)) ≤ θ`−
√
εL

µ (T (1− η)) + C(3)
ε (3.20)

for some C
(3)
ε such that limε→0C

(3)
ε = 0. Combining (3.16), (3.17), (3.19) and (3.20) we get

θ`µ (T (1− η)) ≤ θ`µ+ν (T ) + Cε

for T > max{T0(ε), 2
A}, which is the desired conclusion.

4 Ball exponent of singular measures

In this section we establish Theorem 2. We rely on the following proposition.

Proposition 4.1. Let ρ be a purely-singular measure supported on [−π, π]. Then any δ > 0 satisfies

ψδρ;1 = lim
T→∞

1

T
logP

(
sup

j∈[0,T ]∩Z
|fρ(j)| < δ

)
= 0.

Using this, we prove Theorem 2 in Section 4.1. We discuss a useful approximation method of

a GSP with compactly supported spectral measure in Section 4.2. This method is used to prove

Proposition 4.1 in Section 4.3.

4.1 Proof of Theorem 2: characterization of vanishing ball exponent

Let ρ ∈ L and ` > 0. Assume first that ρ is purely singular. For any given ε > 0, we define:

fρ;ε(t) = fρ
(
ε
⌊
t
ε

⌋)
.

Note that fρ;ε is a centered Gaussian process, though it is not stationary. By Khatri-Sidak’s

inequality (Proposition 2.3):

ψ`ρ(T ) ≤ ψ`/2ρ;ε (T )− logP

(
sup
[0,1]
|fρ − fρ;ε| < `

2

)

By letting T →∞ and using Proposition 4.1 we get

0 ≤ ψ`ρ ≤ ψ`/2ρ;ε − logP

(
sup
[0,1]
|fρ − fρ;ε| < `

2

)
= − logP

(
sup
[0,1]
|fρ − fρ;ε| < `

2

)
.

The desired conclusion follows by letting ε→ 0, and noting that sup |fρ−fρ;ε| converges to 0 almost

surely (by continuity of sample paths).

Assume now that ρ is not purely singular, that is, ρac 6= 0. By [28, Claim 3.4], there exist

Λ = {λn} of positive density a, and a constant b > 0, such that f(λn)
d
= bZn ⊕ gn, where Zn

are i.i.d. standard normal random variables and gn is a Gaussian process on Z. By Anderson’s

24



inequality (Proposition 2.16), this implies

P

(
sup
[0,T ]
|fρ| < `

)
≤ P

(
max

λ∈Λ∩[0,T ]
|fρ(λ)| < `

)

≤ P

(
max

n∈N∩[0,
a
2T ]
|bZn| ≤ `

)
= P

(
|Z| ≤ `

b

)ba2T c
≤ e−CT ,

where C > 0 depends on ` and the spectral measure ρ. Thus ψ`ρ ≥ C > 0, as required.

4.2 A spectral approximation method

The following lemma presents an approximation method for GSPs with compactly supported spec-

tral measure.

Lemma 4.2. Let ρ be a spectral measure supported on [−D,D]. For n ∈ N we denote the intervals

In1 = [0, Dn ], In−1 = [−D
n , 0) and In±j = ±((j − 1)Dn , j

D
n ] for j ∈ {2, . . . , n}, as well as

Cj(t) =
1

ρ(Ij)

∫
Ij

cos(λt)dρ(λ), Sj(t) =
1

ρ(Ij)

∫
Ij

sin(λt)dρ(λ). (4.1)

Then,

fρ(t)
d
=

n∑
j=1

√
ρ(Ij ∪ I−j)

(
ζjCj(t)⊕ ηjSj(t)

)
⊕Rn(t), (4.2)

where {ζj}nj=1 ∪ {ηj}nj=1 are i.i.d. N(0, 1)-distributed random variables, and Rn(t) is a Gaussian

process independent of them for which

sup
t∈[0,T ]

var (Rn(t)) ≤ 1

2

(
DT

n

)2

ρ([−D,D]) (4.3)

and for any h ∈ R,

var (Rn(t)−Rn(t+ h)) ≤ D2ρ([−D,D])h2. (4.4)

Proof. Notice that

Cj(t) = F
[

1
2ρ(Ij)

(
1IIj + 1II−j

)
dρ
]

(t), Sj(t) = F
[

1
2ρ(Ij)

(
1IIj − 1II−j

)
dρ
]

(t),

and ∥∥∥∥ 1

2ρ(Ij)
(1IIj ± 1II−j )

∥∥∥∥
L2
ρ

=
1

2ρ(Ij)

√∫
(1I2

Ij
+ 1I2

−Ij )dρ =
1√

2ρ(Ij)
.

Since {1IIj ± 1I−Ij}nj=0 is an orthogonal system in L2
ρ, by the Hilbert decomposition (Lemma 2.9)
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we have the representation (4.2). Let t ∈ [0, T ]. By (4.2),

var
(
Rn(t)) = ρ([−D,D])− var

 n∑
j=0

√
ρ(Ij ∪ I−j)

(
ζjCj(t)⊕ ηjSj(t)

)
=

n∑
j=1

ρ(Ij ∪ I−j)
(

1− (C2
j (t) + S2

j (t))
)
. (4.5)

Using (4.1) we compute, for each j ∈ [n], that

C2
j (t) + S2

j (t) =
1

ρ(Ij)2

(∫
Ij

cos(λt)dρ(λ)

)2

+

(∫
Ij

sin(λt)dρ(λ)

)2


=
1

ρ(Ij)2

∫
Ij

∫
Ij

(
cos(λ1t) cos(λ2t) + sin(λ1t) sin(λ2t)

)
dρ(λ1)dρ(λ2)

=
1

ρ(Ij)2

∫
Ij

∫
Ij

cos((λ1 − λ2)t)dρ(λ1)dρ(λ2)

≥ 1

ρ(Ij)2

∫
Ij

∫
Ij

(
1− 1

2 |(λ1 − λ2)t|2
)
dρ(λ1)dρ(λ2) ≥ 1− D2T 2

2n2
,

where in the last step we used that |(λ1−λ2)t| ≤ D
n T for any λ1, λ2 ∈ Inj and t ∈ [0, T ]. From (4.5)

we now obtain:

var
(
Rn)(t) ≤ 1

2

(
DT

n

)2 n∑
j=1

ρ(Ij ∪ I−j) =
1

2

(
DT

n

)2

ρ([−D,D]), ∀t ∈ [0, T ],

thus verifying (4.3). Moreover, we have by Anderson’s lemma and Observation 2.18:

var (Rn(t)−Rn(t+ h)) ≤ var (fρ(t)− fρ(t+ h)) ≤ D2ρ([−D,D])h2,

which establishes (4.4).

4.3 Proof of Proposition 4.1

Assume without loss of generality that ρ([−π, π]) = 1. Let n ∈ N and D = π, and for |j| ∈ [n] :=

{1, 2, . . . , n} define Cj and Sj as in (4.1). Then by Jensen’s inequality we have

sup
t∈R

{
|Cj(t)|2 + |Sj(t)|2

}
≤ 1. (4.6)

By Lemma 4.2, the decomposition (4.2) holds, with bounds as in (4.3) and (4.4).

Fix ε > 0 and partition the indices in [n] into

An,ε =
∣∣∣{j ∈ [n] : ρ(Ij ∪ I−j) ≥

πε

n

}∣∣∣ , Bn,ε = [n] \An,ε, (4.7)
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defining accordingly the functions

An,ε(t) =
∑
j∈An,ε

√
ρ(Ij ∪ I−j)

(
ζjCj(t)⊕ ηjSj(t)

)
,

Bn,ε(t) =
∑
j∈Bn,ε

√
ρ(Ij ∪ I−j)

(
ζjCj(t)⊕ ηjSj(t)

)
,

so that (4.2) becomes

fρ
d
= An,ε ⊕Bn,ε ⊕Rn. (4.8)

Observe that

P
(
|fρ| < δ on [0, T ] ∩ Z

)
≥ P

(
sup

[0,T ]∩Z

∣∣An,ε∣∣ < δ
3

)
P
(

sup
[0,T ]∩Z

∣∣Bn,ε∣∣ < δ
3

)
P
(

sup
[0,T ]∩Z

∣∣Rn∣∣ < δ
3

)
Given T ∈ N, we carry out this decomposition with n = mT (the parameter m ∈ N will be

chosen later). Proposition 4.1 reduces to the following claims.

Claim 4.3. For any fixed m ∈ N and ε > 0,

lim
T→∞

1

T
logP

(
sup
[0,T ]

∣∣AmT,ε∣∣ < δ
3

)
= 0.

Claim 4.4. For any m ∈ N,

lim
ε→0

lim
T→∞

1

T
logP

(
sup
[0,T ]

∣∣BmT,ε∣∣ < δ
3

)
= 0.

Claim 4.5.

lim
m→∞

lim
T→∞

1

T
logP

(
sup
[0,T ]

∣∣RmT ∣∣ < δ
3

)
= 0.

We turn to verify the claims.

Proof of Claim 4.3. Fix m ∈ N and ε > 0. We begin by showing that

lim
T→∞

|AmT,ε|
T

= 0. (4.9)

To this end we use the following classical fact (see [54, Chapter VII.6, Thm 2]): given a filtration

FT ↗ F, a measure ρ is purely singular with respect to another measure µ if and only if

lim
T→∞

dρ|FT
dµ|FT

µ-a.s.
= 0.

Since almost sure convergence implies convergence in probability, this implies that if ρ is singular

w.r.t. µ then for any ε > 0 we have

lim
T→∞

µ

(
dρ|FT
dµ|FT

> ε

)
= 0. (4.10)
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We apply this, taking ρ to be the given spectral measure, µ – the Lebesgue measure on [−π, π] and

FT = σ({ImTj }1≤|j|≤mT ). Observing that

dρ|FT
dµ|FT

=
∑

1≤|j|≤mT

ρ(ImTj )

µ(ImTj )
1IIj =

∑
1≤|j|≤mT

ρ(ImTj )

π/(mT )
1IIj ,

we obtain from (4.10):

µ

∑
j

ρ(ImTj )

π/(mT )
1IIj > ε

 =
π
∣∣{j ∈ {±1, . . . ,±mT} : ρ(Ij) ≥ π

mT ε
}∣∣

mT

T→∞−→ 0. (4.11)

Combining this with (4.7), and recalling that ρ(Ij) ≥ ρ(I−j) for j ≥ 1 (equality holds for j 6= 1) we

obtain that

lim
T→∞

|AmT,ε|
T

= lim
T→∞

∣∣{j ∈ [n] : ρ(Ij) ≥ π
mT ε

}∣∣
T

= 0,

thus (4.9) is established.

Denoting d = 2|AmT,ε|, we recall that AmT,ε(t) = 〈u(t), ζ〉 is an inner product in Rd between

u(t) =
(√

ρ(Ij ∪ I−j)Cj(t),
√
ρ(Ij ∪ I−j)Sj(t)

)
j∈AmT,ε

and a standard d-dimensional multi-normal random vector ζ ∼ γd . Note that, by (4.6),

‖u(t)‖2 =
∑

j∈AmT,ε

ρ(Ij ∪ I−j)(C2
j (t) + S2

j (t)) ≤
∑

0≤j<mT
ρ(Ij ∪ I−j) = ρ([−π, π]) = 1.

Hence,

P

(
T⋂
k=1

{
|AmT,ε(k)| < δ

3

})
= γd

(
T⋂
k=1

{
ζ ∈ Rd : |〈ζ, u(k)〉| ≤ δ

3

})

≥ γd

(
T⋂
k=1

{
ζ ∈ Rd :

∣∣∣〈ζ, u(k)
‖u(k)‖

〉∣∣∣ ≤ δ
3

})
‖u(k)‖ ≤ 1

≥
(
δ
3

)d
γd

(
T⋂
k=1

{
ζ ∈ Rd :

∣∣∣〈ζ, u(k)
‖u(k)‖

〉∣∣∣ ≤ 1
})

by Obs. 2.2

≥

 δκ

3
√

1 + 2 log T
d

d

, by Prop. 2.6

where κ is a universal constant. Thus we obtain

lim
T→∞

1

T
logP

({
T⋂
k=1

∣∣AmT,ε(k)
∣∣ < δ

3

})
≥ lim

T→∞

2|AmT,ε|
T

log

 cδ√
log
(

T
2|AmT,ε|

)
 = 0,
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where c > 0 is a universal constant, and the last equality follows from (4.9). The Claim follows.

Proof of Claim 4.4. Fix m ∈ N. Using (4.6) and (4.7), we have for any 0 ≤ t ≤ T and ε > 0,

varBmT,ε(t) =
∑

j∈BmT,ε

ρ(Ij ∪ I−j)
(
C2
j (t) + S2

j (t)
)

≤ |BmT,ε| · 2 max
j∈BmT,ε

ρ(Ij) sup
t∈[0,T ]

(
C2
j (t) + S2

j (t)
)

≤ mT · 2πε

mT
· 1 = 2πε.

Using Khatri-Sidak’s inequality (Proposition 2.3) and Lemma 2.1, we have:

− 1

T
logP

(
sup

t∈(0,T ]∩N

∣∣BmT,ε(t)∣∣ < δ
3

)
≤ − 1

T

T∑
t=1

logP
(∣∣BmT,ε(t)∣∣ < δ

3

)
≤ − logP

(√
2πε|N(0, 1)| < δ

3

)
≤ − log

(
1− 2e−

δ2

36πε

)
ε→0−→ 0.

Proof of Claim 4.5. By (4.3),

var
(
RmT )(t) ≤ π2

2m2
, ∀t ∈ [0, T ].

Now using Khatri-Sidak’s inequality (Proposition 2.3) and a tail estimate (Lemma 2.1), we have:

− 1

T
logP

(
sup

t∈(0,T ]∩N

∣∣RmT (t)
∣∣ < δ

3

)
≤ − 1

T

T∑
t=1

logP
(∣∣RmT (t)

∣∣ < δ
3

)
≤ − logP( π√

2m
|N(0, 1)| < δ

3)

≤ − log

(
1− 2e−

δ2

9π2
m2
)
m→∞−→ 0.

5 Existence and continuity of the persistence exponent

In this section we prove Theorems 1 and 4. Our method is to approximate the spectral measure by

smooth spectral measures, for which it is easier to prove the existence of the exponent, and then

use the comparison lemmata (proved in Section 3) in order to retrieve existence for the original

measure. To make this idea concrete, we formulate three auxiliary results. The first provides

existence of the persistence exponent for smooth compactly supported spectral densities.

Proposition 5.1. Let ρ be an absolutely continuous spectral measure with compactly supported

density which is twice differentiable on R. Then θ`ρ := limT→∞ θ
`
ρ(T ) exists in (0,∞].

The second result states that persistence exponents are close if the spectral measures are equal

near the origin and close in total variation.
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Proposition 5.2. There exist c and ε0 > 0 such that for all ε < ε0 there exist T0(ε) with the

following property: denoting L =
√

2
cε and η = (cε)1/4, if T > max{T0,

2
A} and µ, ν ∈Mα,A ∩Lβ,B

are such that dTV (µ, ν) < ε and µ|[−L
T
,L
T

] = ν|[−L
T
,L
T

], then

θ`ν (T (1− η)) ≤ θ`µ(T ) + Cε

where lim
ε→0

Cε = 0.

By the last result, persistence exponents are close also when the spectral measures are equal

away from the origin and close near the origin.

Proposition 5.3. Fix L, ε,m > 0. There exists T0 = T0(L, ε,m) such that, for all T > T0,

the following holds: Suppose that µ, ν ∈ Mα,1/T ∩ Lβ,B are such that µ|R\[−L
T
,L
T

] = ν|R\[−L
T
,L
T

] and

∀λ ∈ (0, L/T ) : |µ(−λ, λ)−ν(−λ, λ)| ≤ 2ελ, while also ν
((
−L
T ,

L
T

))
≤ mL

T and µ
((
−L
T ,

L
T

))
≤ mL

T .

Then

|θ`µ(T )− θ`ν(T )| < Cε,

where Cε = Cε(L,m) and lim
ε→0

Cε = 0.

We proceed as follows. First we prove Theorems 1 and 4 in Sections 5.1 and 5.2, respectively.

Then we present the proofs of the auxiliary results (Propositions 5.1, 5.2 and 5.3) in Section 5.3. To

show the tightness of our conditions, we provide in Section 5.4 a counter-example to the existence

of a persistence exponent.

5.1 Proof of Theorem 1: existence of the persistence exponent

Let ρ ∈M ∩ L. If ρ′(0) =∞, then it follows from Proposition 2.25 that θ`ρ = 0 for all ` ∈ R. Thus

we assume ρ′(0) < ∞. Consequently, ρ ∈ M(α,α′),A ∩ Lβ,B for some α, α′, A, β,B > 0 which are

fixed throughout the proof.

Let c, ε0 > 0 be the constants whose existence is guaranteed by Proposition 5.2. Given ε < ε0,

denote

L(ε) =

√
2

cε
, η(ε) = (cε)1/4.

For a given T > 0, we approximate the spectral measure in several steps by smoother and smoother

measures, without altering the persistence exponent θ`ρ(T ) significantly. We treat separately the

measure near the origin, i.e., in the interval [−L
T ,

L
T ], and the measure away from the origin, on the

remainder of R.

Step 1: discarding the singular part away from the origin. We write ρ = ρac + ρsing

where ρac is absolutely continuous and ρsing is purely singular. For a given T > 0, define

µT := ρ−
(
ρsing

∣∣
R\[−L

T
,L
T

]

)
= ρ
∣∣
[−L

T
,L
T

]
+ ρac

∣∣
R\[−L

T
,L
T

]
.

Let us show that upper and lower limits of θ`ρ(T ) and θ`µT (T ) are close. Noting that L > 1
η2

, we

may apply Corollary 3.2 to obatin the existence of T1(ε,A) such that for all T > T1 we have

θ`µT ((1− η)T ) ≤ θ`ρ (T ) + C(1)
ε , (5.1)
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where limε→0C
(1)
ε = 0. On the other hand, for T > T2(A) we have

θ`ρ(T ) ≤ θ`−ερ (T ) + C(2)
ε by Lemma 1.1

≤ θ`µT (T ) + ψερsing|R\[−L
T
, L
T

]
(T ) + C(2)

ε by Lemma 2.12(b)

≤ θ`µT (T ) + ψερsing(T ) + C(2)
ε , by Proposition 2.16

where limε→0C
(2)
ε = 0. By Theorem 2 we have lim

T→∞
ψερsing(T ) = 0, so that

lim sup
T→∞

θ`ρ(T ) ≤ lim sup
T→∞

θ`µT (T ) + C(2)
ε .

Together with (5.1) we conclude that

lim inf
T→∞

θ`µT (T )− C(1)
ε ≤ lim inf

T→∞
θ`ρ(T ) ≤ lim sup

T→∞
θ`ρ(T ) ≤ lim sup

T→∞
θ`µT (T ) + C(2)

ε . (5.2)

Step 2: smooth approximation away from the origin. We shall employ the following

approximation claim, which could be proved by standard analysis arguments.

Claim 5.4. Let ρ ∈ M ∩M(α,α′),A ∩ Lβ,B, and let g ∈ L1(R) be the density of ρac. Let ε > 0 be

given. Then there exists an absolutely continuous measure ν ∈ M ∩M(α,α′),ε ∩ Lβ,B with smooth

and compactly supported density h ∈ C∞0 (R) satisfying∫
R
|h− g| < ε, and ∀λ ∈ (−ε, ε) : h(λ) = ρ′(0).

Let ν be the measure obtained by applying Claim 5.4 with our given ρ and ε. For any given

T > 0, define the measure σT which approximates the measure ρ away from the origin by the

smooth measure ν:

σT := ρ|[−L
T
,L
T

] + ν|R\[−L
T
,L
T

].

Note that dTV(σT , µT ) = 1
2

∫
R\[−L

T
,L
T

] |h−g| <
ε
2 . By Proposition 5.2, if ε < ε0 and T > T3(ε), then

θ`σT (T (1− η)) ≤ θ`µT (T ) + C(3)
ε , θ`µT (T ) ≤ θ`σT

(
T

1−η

)
+ C(3)

ε ,

where limε→0C
(3)
ε = 0. We conclude that

lim inf
T→∞

θ`σT ((1− η)T )− C(3)
ε ≤ lim inf

T→∞
θ`µT (T ) ≤ lim sup

T→∞
θ`µT (T ) ≤ lim sup

T→∞
θ`σT

(
T

1−η

)
+ C(3)

ε . (5.3)

Step 3: smooth approximation near the origin. Next we verify the conditions of Propo-

sition 5.3, which will allow us to compare θ`σT (T ) and θ`ν(T ). First we note that σT |R\[−L
T
,L
T

] =

ν|R\[−L
T
,L
T

]. Recalling that on the interval [−L
T ,

L
T ] we have σT = ρ and dν = ρ′(0)dλ, we obtain
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that σT , ν ∈M(α,α′),L
T
∩ Lβ,B Moreover, for any λ ∈

(
0, LT

)
we have

sup
λ∈(0,L

T )

|σT (−λ, λ)− ν(−λ, λ)|
2λ

= sup
λ∈(0,L

T )

∣∣∣∣ρ(−λ, λ)

2λ
− ρ′(0)

∣∣∣∣ ≤ sup
λ∈(0,ε)

∣∣∣∣ρ(−λ, λ)

2λ
− ρ′(0)

∣∣∣∣ =: δ(ε),

where limε→0 δ(ε) = 0. We may thus apply Proposition 5.3 to get that, for T > T4(ε, α′, A),∣∣∣θ`σT ((1− η)T )− θ`ν ((1− η)T )
∣∣∣ ≤ C(4)

ε ,
∣∣∣θ`σT ( T

1−η

)
− θ`ν

(
T

1−η

)∣∣∣ ≤ C(4)
ε , (5.4)

where limε→0C
(4)
ε = 0 (here C

(4)
ε depends on ρ).

Step 4: smooth measures have an exponent. Since ν has a smooth and compactly

supported density, by Proposition 5.1, limT→∞ θ
`
ν(T ) = θ`ν exists. Thus, for T > T0(ε, α′, A), we

have

lim sup
T→∞

θ`ρ(T )− lim inf
T→∞

θ`ρ(T ) ≤ lim sup
T→∞

θ`µT (T )− lim inf
T→∞

θ`µT (T ) + C(1)
ε + C(2)

ε by (5.2)

≤ lim sup
T→∞

θ`σT

(
T

1−η

)
− lim inf

T→∞
θ`σT ((1− η)T ) +

3∑
j=1

C(j)
ε by (5.3)

≤ lim sup
T→∞

θ`ν

(
T

1−η

)
− lim inf

T→∞
θ`ν ((1− η)T ) +

4∑
j=1

C(j)
ε by (5.4)

=
4∑
j=1

C(j)
ε . by Prop. 5.1

We conclude that lim sup
T→∞

θ`ρ(T ) = lim inf
T→∞

θ`ρ(T ), as required.

As a by-product of our proof, we have shown the following.

Proposition 5.5. Let ρ ∈M ∩ L and ε > 0, and let ν be the corresponding smooth measure from

Claim 5.4. Then ∣∣∣θ`ρ − θ`ν∣∣∣ ≤ Cε,
where limε→0Cε = 0 and Cε depends on ρ.

5.2 Proof of Theorem 4: Continuity

5.2.1 Part I: continuity of the ball exponent

Continuity in `: The function ` 7→ ψ`ρ on (0,∞) is finite-valued (by Lemma 2.22) and convex

(by log-concavity of Gaussian measures). Hence ` 7→ ψ`ρ is continuous and differentiable almost

everywhere. Furthetmore,

0 ≥ ∂

∂`
ψ`ρ ≥ ψ`+1

ρ − ψ`ρ ≥ −ψ`ρ ≥ −C,

where C = C(β,B) is the constant from Lemma 2.22. This shows that ` 7→ ψ`ρ is locally Lipshitz

and uniformly continuous in the class ρ ∈ Lβ,B.

Continuity in TV: We start with a general claim.
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Claim 5.6. Suppose µ and ν are two spectral measures. Then there exists a spectral measure γ

such that γ ≥ max{µ, ν} and max {dTV(γ, µ), dTV(γ, ν)} ≤ 2dTV(µ, ν). Moreover, if µ = ν on an

interval I, then γ = ν on I.

Proof. Setting σ = µ − ν, we note that σ is a finite signed measure. Let σ = σ+ − σ− be the

Hahn-Jordan decomposition. Define γ := ν + σ+. Clearly, if µ = ν on an interval I then γ = ν

on I. Next observe that γ ≥ ν and γ = ν + σ+ ≥ ν + σ = µ. Moreover, by the Hahn-Jordan

theorem,

dTV(γ, ν) = dTV(σ+, 0) ≤ dTV(µ, ν),

dTV(γ, µ) ≤ dTV(γ, ν) + dTV(ν, µ) ≤ 2dTV(µ, ν).

Let µ, ν ∈ L such that dTV(µ, ν) < ε. Let γ be the spectral measure constructed in Claim 5.6.

Since γ ≥ max{µ, ν} we have for arbitrary δ ∈ (0, `) that

ψ`µ ≤ ψ`γ ≤ ψ`−δν + ψδγ−ν ,

where the first inequality is due to Anderson (Proposition 2.16), and the second is Lemma 2.12(a).

Applying Khatri-Sidak (Proposition 2.3) and Lemma 2.20, there is a choice of δ = δ(ε) with

limε→0 δ(ε) = 0 and

ψ
δ(ε)
γ−ν ≤ ψ

δ(ε)
γ−ν(1) ≤ ε.

By the uniform continuity of ` 7→ ψ`ρ in the class Lβ,B (proven above), it holds that

ψ`−δ(ε)ν ≤ ψ`ν + Cε,

where lim
ε→0

Cε = 0. We deduce that ψ`µ ≤ ψ`ν + C̃ε, where limε→0 C̃ε = 0. Since the roles of (µ, ν)

are symmetric, we conclude our proof.

5.2.2 Part II: continuity of the persistence exponent

Continuity in `: is an immediate consequence of Lemma 1.1.

Continuity in TV0: Recall the definitions in (1.2), and let µ, ν ∈ M ∩M(α,α′),A ∩ Lβ,B be such

that dTV0(µ, ν) < ε. Let c, ε0 be the constants whose existence is guaranteed by Proposition 5.2.

Let ε < ε0 and set L =
√

2
cε , η = (cε)1/4. For a given T > 0 define

σ = µ|[−L
T
,L
T

] + ν|[−L
T
,L
T

]c ,

and note that σ ∈Mα,L
T
∩Lβ,B. Using Proposition 5.2 with µ and σ we conclude that, for T > T1(ε),

we have

θ`µ (T (1− η)) ≤ θ`σ(T ) + C(1)
ε ,

where lim
ε→0

C
(1)
ε = 0. Since µ ∈ M(α,α′),A, we have µ((−L

T ,
L
T )) < 2α′ LT for all T > L

A , which also

implies σ((−L
T ,

L
T )) < 2α′ LT . A similar statement holds for ν ∈M(α,α′),A. Applying Proposition 5.3
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with σ and ν we get that, for T > T3(ε, α′),

θ`σ(T ) ≤ θ`ν(T ) + C(2)
ε

where C
(2)
ε = C

(2)
ε (α′) satisfies lim

ε→0
C

(2)
ε = 0. Combining the last two displayed formulas, we get:

θ`µ (T (1− η)) ≤ θ`ν(T ) + C(1)
ε + C(2)

ε .

By Theorem 1 we may take the limit as T →∞ to obtain

θ`µ ≤ θ`ν + C(1)
ε + C(2)

ε .

Since the roles of (µ, ν) are symmetric, the uniform continuity of ρ 7→ θ`ρ in M ∩M(α,α′),A ∩ Lβ,B

follows.

5.3 Proofs of the auxiliary propositions

5.3.1 Proof of Proposition 5.1

We begin by stating a comparison lemma for persistence probabilities of “approximately stationary”

Gaussian processes, which implies Proposition 5.1 and is useful in the proof of Theorem 5.

Lemma 5.7. Let η > 1 and c > 0. Suppose that {X(t)}t≥0 is a centered Gaussian process with

EX(t)2 = 1, such that

EX(s)X(s+ t) ≤ c|t|−η, for all s, t ≥ 0.

Fix µ ∈Mα,A ∩ Lβ,B and set

ξM,` := sup
u∈[`−1,`+1]

sup
s≥0

∣∣∣∣∣P
(
inft∈[s,s+M ]X(t) > u

)
P
(
inft∈[0,M ] fµ(t) > u

) − 1

∣∣∣∣∣ .
Then there exist C = C(η), such that, for all T ≥M ,

θ`µ(M)− θ̃`(T ) ≤ CM
1−η
2+η +

ξM,`

M
,

where θ̃`(T ) := − 1
T logP(inft∈[0,T ]X(t) > `).

Lemma 5.7 implies Proposition 5.1. Given ρ as Proposition 5.1, there exists c = c(ρ) such that

ρ̂(t) ≤ c

|t|2
, ∀t ∈ R.

Then, setting X(·) = fρ(·), we satisfy the conditions of Lemma 5.7 with ξM,` = 0 and η = 2. The

lemma thus yields the existence of C <∞ such that, for all T ≥M we have

θ`ρ(M) ≤ θ`ρ(T ) + CM−1/4.
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Upon taking lim supM→∞ lim infT→∞ we arrive at

lim sup
M→∞

θ`ρ(M) ≤ lim inf
T→∞

θ`ρ(T ),

and the existence of limT→∞ θ
`
ρ(T ) follows. The limit must be positive by Lemma 2.24.

Proof of Lemma 5.7. We extend the methods of Dembo-Mukherjee appearing in [19, Theorem 1.6]

(see also [20, Lemma 3.1]) to the case where correlations are not necessarily non-negative.

Let δ = C ′M
1−η
2+η where C ′ = C ′(η) > 0 will be chosen later. Let T ≥M be given.

For i ≥ 1, set si := (1 + δ)Mi, Ii := [si−M, si] and N := b T
M(1+δ)c. Note that {Ii} are disjoint

and ∪Ni=1Ii ⊂ [0, T ]. Consequently,

P
(

inf
[0,T ]

X(t) > `

)
≤ P

(
inf

t∈∪Ni=1Ii
X(t) > `

)
.

Define an N ×N matrix BN by setting BN (i, i) := 1 and, for i 6= j,

BN (i, j) :=
c

γ
sup

s∈Ii,t∈Ij
|s− t|−η ≤ c|i− j|−η

γMηδη
,

where γ := γM,δ = 4c(δM)−η
∑∞

i=1 i
−η, so that

max
1≤i≤N

∑
j 6=i

BN (i, j) ≤ 2c

γδηMη

∞∑
i=1

i−η ≤ 1

2
.

Thus, by the Gershgorin circle theorem, all the eigenvalues of BN lie within the interval
[

1
2 ,

3
2

]
, and

hence BN is positive definite. Setting r(s, t) := EX(s)X(t), we claim that for any s ∈ Ii, t ∈ Ij we

have

r(s, t) ≤ (1− γ)r(s, t)1Ii=j + γBN (i, j). (5.5)

To see this, observe that (5.5) is equivalent to

r(s, t) ≤

{
(1− γ)r(s, t) + γ, i = j,

c sups∈Ii,t∈Ij |s− t|
−η, i 6= j,

both of which are immediate from our assumptions. The RHS of (5.5) is the correlation function

of the centered non-stationary Gaussian process on ∪Ni=1Ii defined by t 7→
√

1− γX(i)(t) +
√
γZi

for t ∈ Ii, where

� Z := (Z1, · · · , ZN ) is a centered Gaussian vector with covariance BN ,

�

{
X(i)

}
are i.i.d. copies of X(·), independent of Z.
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Using Slepian’s inequality (Proposition 2.13) together with (5.5) yields

P

(
inf

t∈∪Ni=1Ii
X(t) > `

)
≤ P

(
inf
t∈Ii

√
1− γX(i)(t) +

√
γZi > `, 1 ≤ i ≤ N

)

= E

[
N∏
i=1

P
(

inf
t∈Ii

X(t) > `−
√
γ

√
1− γ

Zi

∣∣∣ Z)]

≤ E
N∏
i=1

[
P
(

inf
t∈Ii

X(t) > `− 2ε

)
+ 1I

{
Zi > εγ−1/2

}]

≤ E
N∏
i=1

[
P
(

inf
t∈[0,M ]

fµ(t) > `− 2ε

)
(1 + ξM,`) + 1I

{
Zi > εγ−1/2

}]
, (5.6)

for any ε ∈ (0, 1
2), where the one before last line uses the fact that

√
1− γ ≥ 1

2 for δM large enough

(depending on η). Next we note that for any collection of distinct indices i1, · · · , im ∈ [N ], the

covariance matrix Σ of (Zi1 , . . . , Zim) has eignevalues within [1
2 ,

3
2 ]. Consequently,

P
(
Zi` > εγ−1/2, 1 ≤ ` ≤ m

)
= det(Σ)−1/2(2π)m/2

∫
(εγ−1/2,∞)m

e−
1
2zΣ−1zdz

≤ 2m/2

(2π)m/2

∫
(εγ−1/2,∞)m

e−
1
3‖z‖

2
2dz

= 3m/2P
(
Z >

√
2
3εγ
−1/2

)m
,

where Z ∼ N(0, 1). Along with (5.6), this gives

P
(

inf
t∈[0,T ]

X(t) > `

)
≤

N∑
m=0

(
N

m

)[
P
(

inf
t∈[0,M ]

fµ(t) > `− 2ε

)
(1 + ξM,`)

]N−m
3m/2P

(
Z >

√
2
3εγ
−1/2

)m
=

[
P
(

inf
t∈[0,M ]

fµ(t) > `− 2ε

)
(1 + ξM,`) +

√
3P
(
Z >

√
2
3εγ
−1/2

)]N
(5.7)

Standard bounds on Gaussian tails (Lemma 2.1), and the fact that γ = c(η)−1(δM)−η, give

P
(
Z >

√
2
3εγ
−1/2

)
≤ exp

(
− ε

2

3γ

)
= exp

(
−c(η)ε2δηMη

)
for some c(η) > 0. By Lemma 2.23 there exists K ∈ (0,∞) such that, for all M > 1,

P
(

inf
t∈[0,M ]

fµ(t) > `− 2ε

)
≥ P

(
inf

t∈[0,M ]
fµ(t) > `− 1

)
≥ e−KM . (5.8)

Thus, there exist C ′ = C ′(η) such that for the choice ε = δ = C ′M
1−η
2+η and all M > 0 we have

√
3P
(
Z ≥

√
2
3εγ
−1/2

)
≤ P

(
inf

t∈[0,M ]
fµ(t) > `− 2ε

)
.
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Plugging this into (5.7) yields

P
(

inf
[0,T ]

X(t) > `

)
≤
[
2 (1 + ξM,`)P

(
inf

t∈[0,M ]
fµ(t) > `− 2ε

)]N
.

Taking log on both sides and dividing by T gives

1

T
logP

(
inf
[0,T ]

X(t) > `

)
≤ N

T

(
log 2 + log (1 + ξM,`) + logP`−2ε

µ (M)
)

≤ log 2

M
+
ξM,`

M
+

1

M
logP`−2ε

µ (M) +

∣∣∣∣(NT − 1

M

)
logP`−2ε

µ (M)

∣∣∣∣
≤

log 2 +K + ξM,`

M
+

1

M
logP`−2ε

µ (M),

where in the last step we used (5.8) and the fact that MN ≤ T ≤M(N +1). Applying Lemma 1.1,

and noting that ε = δ ≥ 1
M , we obtain

θ`µ(M)− θ̃`(T ) ≤ C ′′δ +
ξM,`

M
.

The proof is concluded on recalling the definition of δ.

5.3.2 Proof of Proposition 5.2

Let ε > 0. Let c > 0 be the constant whose existence is given by Part II of Lemma 1.3, and define

L =
√

2
cε , η = (cε)1/4. For a given T > 0, let µ, ν ∈ Mα,A ∩ Lβ,B be such that dTV (µ, ν) < ε and

µ|[−L
T
,L
T

] = ν|[−L
T
,L
T

]. By Claim 5.6, there exists a measure γ such that

� γ ≥ max {µ, ν},

� max {dTV(γ, µ), dTV(γ, ν)} < 2ε, and

� γ = µ = ν on [−L
T ,

L
T ].

Using Part I of Lemma 1.3, if T > max{4, A−1} then

θ`γ(T ) ≤ θ`µ(T ) + C(1)
ε , (5.9)

where lim
ε→0

C
(1)
ε = 0. By Part II of Lemma 1.3, there exist ε0 and T0 = T0(ε) such that, if ε < ε0

and T > max{T0,
2
A}, we have

θ`ν (T (1− η)) ≤ θ`γ(T ) + C(2)
ε , (5.10)

where lim
ε→0

C
(2)
ε = 0. Combining (5.9) and (5.10) yields

θ`ν (T (1− η)) ≤ θ`µ(T ) + C(1)
ε + C(2)

ε ,

provided that T > max{T0,
2
A} and ε < ε0, as desired.
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5.3.3 Proof of Proposition 5.3

Proof. Let ρ = µ|R\[−L
T
,L
T

] = ν|R\[−L
T
,L
T

] and fix τ = τ(L, ε,m) > 0 to be chosen later. Write

n = dLτ e and let {Ij}j∈±[n] be the decomposition of [−L
T ,

L
T ] used in Lemma 4.2. For χ ∈ {µ, ν},

we write χj := χ(Ij ∪ I−j) and

Uχn (t) =

n∑
j=1

√
χj
(
ζχj C

χ
j (t)⊕ ηχj S

χ
j (t)

)
.

Using Lemma 4.2, we obtain the decomposition

fχ(t) = Uχn (t)⊕Rχn(t)⊕ fρ(t),

where Rχn is a Gaussian process, which satisfies for all T > T0(L),

var
(
Rχn(t)

)
≤ 1

2τ
2χ
(
[−L

T ,
L
T ]
)
≤ 1

2τ
2mL

T ,

var
(
Rχn(t)−Rχn(t+ h)

)
≤ (LT )2χ

(
[−L

T ,
L
T ]
)
h2 ≤ m(LT )3h2.

(5.11)

Next, we couple fµ and fν by taking ζµj = ζνj and ηµj = ηνj with (Uµn (t), Rµn(t)) and (Uνn(t), Rνn(t))

independent. Observe that by containment of events, we have for all δ > 0,

P`µ(T ) ≤ P`−3δ
ν (T ) + P

(
sup
[0,T ]
|Uµn − Uνn | > δ

)
+ P

(
sup
[0,T ]
|Rµn| > δ

)
+ P

(
sup
[0,T ]
|Rνn| > δ

)
.

In the remainder of the proof, we show that for a particular choice of δ = δ(ε, L,m) tending to

0 as ε→ 0, we have

P`µ(T )

2
> P

(
sup
[0,T ]
|Uµn − Uνn | > δ

)
+ P

(
sup
[0,T ]
|Rµn| > δ

)
+ P

(
sup
[0,T ]
|Rνn| > δ

)
. (5.12)

Indeed, this will imply that θ`µ(T ) ≤ θ`−3δ
ν (T ) + log 2

T , from which, using continuity of θ`µ(T ) as a

function of ` (Lemma 1.1), we will obtain θ`µ(T ) ≤ θ`ν(T ) +Cε. As µ and ν are interchangeable, the

proposition will readily follow.

We first bound P
(

sup[0,T ] |R
χ
n| > δ

)
for χ ∈ {µ, ν}. By (5.11) we may apply Lemma 2.21 to

obtain that, for T > T0(L, ε,m),

P

(
sup
[0,T ]
|Rχn| > δ

)
≤ 2e−

δ2

4τ2mL
T . (5.13)

Next we bound P
(

sup[0,T ] |U
µ
n − Uνn | > δ

)
. Once again we wish to apply Lemma 2.21; let us

verify its conditions. We first compute

var (Uµn (t)− Uνn(t)) =
n∑
j=1

(√
µjCµj (t)−

√
νjCνj (t)

)2
+

n∑
j=1

(√
µjSµj (t)−

√
νjSνj (t)

)2
. (5.14)
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We bound the first term by

n∑
j=1

(√
µjCµj (t)−

√
νjCνj (t)

)2
≤ 2

n∑
j=1

µj
(
Cµj (t)− Cνj (t)

)2
+ 2

n∑
j=1

(√
µj −

√
νj
)2
Cνj (t)2. (5.15)

We note that

|Cµj (t)− cos(j τT t)| =
∫
Ij

(
cos(λt)− cos(j τT t)

) dµ(λ)

µ(Ij)
≤ τ,

so that
n∑
j=1

µj
(
Cµj (t)− Cνj (t)

)2
≤ 4τ2

n∑
j=1

µj ≤ 4τ2m
L

T
. (5.16)

Next we notice that, if max{µj , νj} ≤ τεn
T , then(√
µj −

√
νj
)2
≤ τεn

T
;

while if max{µj , νj} > τεn
T then

(√
µj −

√
νj
)2

=

(
µj − νj

)2(√
µj +

√
νj
)2 ≤

T

τεn

(
µj − νj

)2
.

Using the assumption that |µ(−λ, λ)− ν(−λ, λ)| ≤ 2ελ for all λ ∈ (0, α), we have

∣∣µj − νj∣∣ ≤ ∣∣∣µ(− jτ
T ,

jτ
T

)
− ν

(
− jτ
T ,

jτ
T

)∣∣∣+
∣∣∣µ(− (j−1)τ

T , (j−1)τ
T

)
− ν

(
− (j−1)τ

T , (j−1)τ
T

)∣∣∣ ≤ 4
jτε

T
.

Recalling that Cj(t) ≤ 1, we obtain

n∑
j=1

(√
µj −

√
νj
)2
Cνj (t)2 ≤ n

(
τεn

T
+

T

τεn
·
(

4
nτε

T

)2
)

= 17n · τεn
T
≤ 27 · εL

2

τT
,

where the last step uses n = dLτ e ≤ 2Lτ . Putting this together with (5.16) into (5.15), we get

n∑
j=1

(√
µjCµj (t)−

√
νjCνj (t)

)2
≤ 28L

T

(
τ2m+ ε

L

τ

)
.

Applying the same chain of arguments yields
∑n

j=1

(√
µjSµj (t)−

√
νjSνj (t)

)2
≤ 28 L

T

(
τ2m+ εLτ

)
.

Plugging these bounds into (5.14), we conclude that,

var (Uµn (t)− Uνn(t)) ≤ 28L

T

(
τ2m+ ε

L

τ

)
.

Next, writing ∆Uχn (t) = Uχn (t+ h)− Uχn (t), we compute var
(
∆Uµn (t)−∆Uνn(t)

)
.
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var
(
∆Uµn (t)−∆Uνn(t)

)
≤ 2var (∆Uµn (t)) + 2var (∆Uνn(t))

≤ 2var (fµ1(t+ h)− fµ1(t)) + 2var (fν1(t+ h)− fν1(t))

≤ (µ([−1, 1]) + ν([−1, 1]))h2

where the last inequality uses Obs. 2.18. (Note that we assume T > L, so that [−L
T ,

L
T ] ⊆ [−1, 1].)

Since µ, ν ∈ Lβ,B, the quantities µ([−1, 1]) and ν([−1, 1]) have an upper bound depending only on

β and B. We have thus shown the existance of c = c(β,B) for which

var
(
∆Uµn (t)−∆Uνn(t)

)
≤ c2h2.

Applying Lemma 2.21, we have, for T > T0(L, ε,m),

P(sup
[0,T ]
|Uµn − Uνn | > δ) ≤ 2 exp

(
− δ2

211L(τ2m+ εL/τ)
T

)
. (5.17)

We now select τ =
(
εL
m

)1/3
and obtain

P(sup
[0,T ]
|Uµn − Uνn | > δ) ≤ 2 exp

(
− δ2

212(mL7ε2)1/3
T

)
. (5.18)

Applying Lemma 2.23, there exists M ∈ (0,∞) such that P`µ(T ) > e−MT for all T > 1. Using

(5.13) and (5.18), we reduce (5.12) into showing that

e−MT ≥ 2e
− δ2

212(L7ε2m)1/3
T

+ 4e
− δ2

4(L7ε2m)1/3
T
.

Setting δ2 = 213M(L7ε2m)1/3, this indeed holds for all large enough T .

5.4 An example of non-existence

In this section we prove Remark 1. More precisely, we show that, for some values of 0 < a < b <∞,

the absolutely continuous measure ρ = ρa,b whose density is

wa,b(λ) =

(
b+ a

2
+
b− a

2
cos
(

1
λ

))
1I|λ|≤1

does not admit existence of the 0-level persistence exponent θ0
ρ.

Clearly a ≤ wa,b(λ) ≤ b for all |λ| ≤ 1. We observe that

lim inf
λ→0

ρa,b([0, λ])

λ
= a, lim sup

λ→0

ρa,b([0, λ])

λ
= b. (5.19)

Next, we make use of results from [28], simplifying many constants due to our specific form of

spectral density. For instance, due to the fact that dρ(λ) ≥ a1I[−1,1](λ)dλ, we may take |E| = 2 and

ν = a in the notations of that paper. Applying [28, Thm. 5.1 and Rmk. 2] with the appropriate
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parameters, namely

γ = 1 (implying k = 0, s = 1, r = 1
2 , θ = 1), |E| = 2, ν = a, q = 1,

we have, for all fixed ` > 0 and all T > T0(`), that

ρ
([

0, 1
T

])
≤ a+ ε

T
⇒ P0

ρ(T ) ≤ 2P
(√

a+ εZ > `
√
T
)

+ 2P
(
c1

√
1− ε

a+ε |Z| < `
)c2T

, (5.20)

where c1 and c2 are universal constants and Z ∼ N(0, 1) is a standard normal random variable.

Next by [28, Theorem 4.1] we have, for all ` > `0(b) and all T > 0, that

ρ
([

0, 1
T

])
≥ b− ε

T
⇒ P0

ρ(T ) ≥ P
(√

b− εZ > `
√
T
)
· P
(
β(b) |Z| < `

)T
, (5.21)

where `0(b) and β(b) are constants which depends only on b.

We proceed by applying the above with ε = a
2 . For a given b > 0, fix `1 > `0(b). By Lemma 2.1,

there exists θ1 > 0 such that

P
(√

b/2Z > `1
√
T
)
· P
(
β(b) |Z| < `1

)T
≥ e−θ1T ,

for all large enough T . Now fix θ2 > θ1, and choose `2 > 0 such that

2P
(
c1

√
2
3 |Z| < `2

)c2T
≤ 1

2e
−θ2T .

Again by Lemma 2.1 we may choose a ∈ (0, b3) so small that

2P
(√

3a
2 Z > `2

√
T

)
≤ 1

2e
−θ2T .

Combining these choices with (5.20) and (5.21), we obtain that

ρ
([

0, 1
T

])
≥ b

2T
⇒ P0

ρ(T ) ≥ e−θ1T ,

ρ
([

0, 1
T

])
≤ 3a

2T
⇒ P0

ρ(T ) ≤ e−θ2T ,

for all large enough T . Recalling (5.19) and the definition of θ0
ρ(T ) in (1.3), we conclude that

lim inf
T→∞

θ0
ρ(T ) ≤ θ1 < θ2 ≤ lim sup

T→∞
θ0
ρ(T ),

which implies that the persistence exponent θ0
ρ does not exist.
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6 Monotonicity of the ball and persistence exponents

6.1 Proof of Theorem 3–(I)

Let β,B > 0 be such that ρ, ν ∈ Lβ,B. We may assume that ` > 0, since otherwise ψ`ρ+ν = ψ`ρ =∞.

By Lemma 2.11 we have fρ+ν
d
= fρ⊕fν . An application of Anderson’s inequality (Proposition 2.16)

gives

ψ`ρ ≤ ψ`ρ+ν .

Next assume that ν is purely-singular. Using Lemma 2.12(a) we get ψ`ρ+ν ≤ ψ`−δρ + ψδν . Using

Theorem 2, we obtain that ψδν = 0. By Theorem 4–(I) we have ψ`−δρ ≤ ψ`ρ +Cδ, where lim
δ→0

Cδ = 0.

We conclude that

ψ`ρ ≤ ψ`ρ+ν ≤ ψ`ρ + Cδ,

where upon taking δ → 0 yields ψ`ρ+ν = ψ`ρ.

6.2 Proof of Theorem 3–(II)

Let α,A, β,B > 0 be such that ρ ∈M∩Mα,A ∩Lβ,B and ν ∈ Lβ,B. Assume that ν ′(0) = 0. Fixing

η, ε > 0 and using Corollary 3.2 with L = εT , there exists T0(η) such that for all T > max
{
T0,

1
A

}
we have

θ`ρ+νε(T (1− η)) ≤ θ`ρ+ν(T ) + Cη,

where limη→0Cη = 0. Letting T →∞ and using Theorem 1 we get

θ`ρ+νε ≤ θ
`
ρ+ν + Cη.

Letting η → 0 we then get

θ`ρ+νε ≤ θ
`
ρ+ν . (6.1)

Finally note that

dTV0(ρ+ νε, ρ) = ν ′(0) + ν([−ε, ε])→ 0, as ε→ 0,

as ν ′(0) = 0. Thus, invoking Theorem 4 we get lim
ε→0

θ`ρ+νε = θ`ρ. Along with (6.1), we obtain

θ`ρ ≤ θ`ρ+ν ,

thus verifying the inequality of Part (II).

Assume now that ν is purely singular. Lemma 2.12(b) yields that, for any δ > 0,

θ`ρ+ν ≤ θ`+δρ + ψδν . (6.2)

Since ν is purely singular, Theorem 2 yields that ψδν = 0; while from Lemma 1.1 we deduce that

lim
δ→0

θ`+δρ = θ`ρ. Using these two facts in (6.2) yields θ`ρ+ν ≤ θ`ρ, which completes the proof.

42



7 Exponents under sampling

In this section we prove Theorem 5 concerning the convergence of the ball and persistence exponents

of fine mesh sampling of a continuous-time process, to its continuous-time exponent. This is done

in Sections 7.1 and 7.2. Then, in Section 7.3 we establish the tightness of our criterion by providing

an instructive example of non-convergence.

7.1 Proof of Theorem 5–(I): ball exponent under sampling

Let ρ ∈ L and ` > 0. Fix ∆ > 0. Complementing the definition in (2.1), we set

ψ`ρ;∆(T ) := − 1

T
logP

(
sup

n∈Z, n∆∈[0,T ]
|fρ(n∆)| < `

)
.

Define the centered Gaussian (non-stationary) process X∆(t) := fρ

(
∆d t∆e

)
, and note that

ψ`ρ;∆(T ) = − 1

T
logP

(
sup
[0,T ]
|X∆| < `

)
≤ − 1

T
logP

(
sup
[0,T ]
|fρ| < `

)
= ψ`ρ(T ).

By Corollary 2.5 (valid also for discrete processes by Remark 7), we may take limits as T →∞ to

obtain ψ`ρ;∆ ≤ ψ`ρ. It remains to show that

ψ`ρ ≤ lim inf
∆→0

ψ`ρ;∆. (7.1)

To this end, fix δ > 0 and apply Khatri-Sidak Inequality (Proposition 2.3) to get

P

(
sup
[0,T ]
|fρ| < `+ δ

)
≥ P

(
sup
[0,T ]
|X∆| < `, sup

[0,T ]
|X∆ − fρ| < δ

)

≥ P

(
sup
[0,T ]
|X∆| < `

)
P

(
sup
[0,1]
|X∆ − fρ| < δ

)dT e
.

Upon taking log, dividing by T and letting T →∞ we have

ψ`+δρ ≤ ψ`ρ;∆ + logP
(

sup
[0,1]
|X∆ − fρ| < δ

)
.

The sample path continuity of fρ(.) yields that sup[0,1] |X∆ − fρ|
a.s.→ 0 as ∆→ 0, and so

ψ`+δρ ≤ lim inf
∆→0

ψ`ρ;∆.

Finally, letting δ → 0 and using Lemma 1.1 gives (7.1), as required.
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7.2 Proof of Theorem 5–(II): persistence exponent under sampling

For ` ∈ R, ∆ > 0 and a spectral measure ρ, we complement the definitions in (1.3) by setting

P`ρ;∆(T ) := P
(

inf
n∈Z, n∆∈[0,T ]

fρ(n∆) > `

)
, θ`ρ;∆(T ) := − 1

T
logP`ρ;∆(T ). (7.2)

Theorem 5–(II) is a consequence of the following.

Proposition 7.1. Suppose ρ ∈M has density ρ′ ∈ C2(R) which is compactly supported. Then

lim sup
T→∞
∆→0

∣∣∣θ`ρ;∆(T )− θ`ρ(T )
∣∣∣ = 0. (7.3)

Proposition 7.1 yields Theorem 5–(II). Let ρ ∈ L ∩ M be compactly supported, and let ε > 0.

Write ν for the smooth measure with dTV(ρ, ν) < ε from Claim 5.4. By the triangle inequality we

have ∣∣∣θ`ρ − θ`ρ;∆

∣∣∣ ≤ ∣∣∣θ`ρ − θ`ν∣∣∣+
∣∣∣θ`ν − θ`ν;∆

∣∣∣+
∣∣∣θ`ν;∆ − θ`ρ;∆

∣∣∣ (7.4)

By Proposition 5.5 we have ∣∣∣θ`ρ − θ`ν∣∣∣ < Cε, (7.5)

where limε→0Cε = 0 and Cε depends on ρ.

By Observation 2.8, for any ∆ > 0, the spectral measure of the discrete-time process {f(j∆)}j∈Z
is ρ∗∆(I) = ρ

(⋃
n∈Z

{
I + 2π n

∆

})
(supported in [− π

∆ ,
π
∆ ], the dual space of ∆Z). Since ρ and ν are

compactly supported, ρ∗∆ = ρ and ν∗∆ = ν for all small enough ∆. Applying Proposition 5.5 to the

sequence {fρ(j∆)}j∈Z (possible by Remark 7), we conclude that, for small enough ∆,∣∣∣θ`ρ;∆ − θ`ν;∆

∣∣∣ < Cε. (7.6)

By Proposition 7.1 we have

lim
∆→0

∣∣∣θ`ν − θ`ν;∆

∣∣∣ = 0. (7.7)

Taking lim sup as ∆ tends to 0 on (7.4), and plugging in (7.5), (7.6) and (7.7), yields

lim sup
∆→0

∣∣∣θ`ρ − θ`ρ;∆

∣∣∣ < 2Cε.

As limε→0Cε = 0, the proposition follows.

Proof of Proposition 7.1. The proof is an application of Lemma 5.7. Fixing ∆ > 0 define a (non-

stationary) Gaussian process X∆(·) by setting

X∆(t) =fρ(∆b t∆c).

Then fixing M > 0 we have

P
(

inf
t∈[s,s+M ]

X∆(t) > u

)
=P

 min
b s∆c≤i≤

⌊
s+M

∆

⌋ fρ(i∆) > u

 = P

 min
0≤i≤

⌊
s+M

∆

⌋
−b s∆c

fρ(i∆) > u

 ,
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which converges to P
(
inft∈[0,M ] fρ(t) > u

)
uniformly in s ≥ 0 and in u ∈ [`− 1, `+ 1] as ∆→ 0, by

stationarity and continuity of sample paths. Therefore

ξ∆
M,` := sup

u∈[`−1,`+1]
sup
s≥0

∣∣∣∣∣P
(
inft∈[s,s+M ]X∆(t) > u

)
P
(
inft∈[0,M ] fρ(t) > u

) − 1

∣∣∣∣∣
satisfies lim

∆→0
ξ∆
M,` = 0. Moreover, for some c = c(ρ) > 0 we have |r(t)| = |ρ̂(t)| ≤ c

|t|2 , since ρ is

compactly supported with C2-density. This implies

|EX∆(s)X∆(s+ t)| = ρ̂
(
∆b s∆c −∆b s+t∆ c

)
≤ c

∣∣∆b s∆c −∆b s+t∆ c
∣∣−2 ≤ c′

|t|2
.

The convergence in (7.3) then follows from Lemma 5.7.

7.3 An example of non-convergence under sampling

In this section we give an example of an absolutely continuous spectral measure ρ, such that the

limit of the sampled process’ exponents θ0
ρ; 1
k

for k ∈ N tends to 0 as k →∞, while θ0
ρ exists, and is

strictly positive.

Let ρ be the the absolutely continuous measure with density

ρ′(λ) =
(1− e|λ|dist(λ, 2πZ))+

|λ|
1I|λ|>π + 1I|λ|<π.

It is clear that ρ′ is non-negative and symmetric. To see that ρ′ ∈ L1(R), note that for any

n ∈ N we have:
∫ 2πn+π

2πn−π ρ
′(λ)dλ ≤ 2

2πn−πe
−2πn. It is also clear that ρ ∈ L∩M (in fact, ρ has a finite

exponential moment). Thus Theorem 1 implies the existence of θ0
ρ ∈ (0,∞). Now let us consider

the sampled process. By Observation 2.8, for any k ∈ N, the discrete-time process j 7→ f
(
j
k

)
has

the spectral measure ρ∗k(I) = ρ
(⋃

n∈Z {I + 2πnk}
)
. The local density of this measure at 0 is

lim inf
ε→0

ρ∗k((−ε, ε))
2ε

≥
∑
n∈Z

lim inf
ε→0

ρ((2πnk − ε, 2πnk + ε))

2ε
=
∑
n∈Z

1

2πnk
=∞.

Applying Proposition 2.25 to ρ∗k, we obtain that θ0
ρ; 1
k

= θ0
ρ∗k

= 0. As we have seen that θ0
ρ > 0,

we conclude that lim
k→∞

θ0
ρ; 1
k

6= θ0
ρ.
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