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Abstract. Following Wiener, we consider the zeroes of Gaussian analytic functions in a

strip in the complex plane, with translation-invariant distribution. We show that the vari-

ance of the number of zeroes in a long horizontal rectangle [−T, T ]× [a, b] is asymptotically

between cT and CT 2, with positive constants c and C. We also supply with conditions (in

terms of the spectral measure) under which the variance grows asymptotically linearly with

T , as a quadratic function of T , or has intermediate growth. The results are compared with

known results for real stationary Gaussian processes and other models.

1. Introduction

The distribution of zeroes of random functions for various ensembles has been a subject

of deep study, with motivations from analysis, mathematical physics, engineering, random

matrix theory and probability. One prominent example is zeroes of real stationary Gaussian

functions (SGFs), which were studied extensively in the mid-20th century (e.g. [5]) with the

development of the theory of random signals. In the last two decades, zeroes of complex

Gaussian Analytic Functions (GAFs) have drawn much attention, as they are one of the

few natural examples of point processes with local repulsion and suppressed fluctuations -

features used to model electrons (see [16]). As a first step towards analyzing these models,

elegant formulas were given for the expected number of zeroes in a region (See [19, 30] for

the real case, and [8] for the complex case). However, in order to understand the behavior

of a random system, one must estimate the fluctuations around the mean. This is generally

a hard task, which received much attention with only partial success. We will briefly survey

some of the literature in Section 1.1.

In this paper we consider the zeroes of complex Gaussian Analytic Functions, whose distri-

bution is invariant under real shifts (i.e., stationary GAFs). Being on the one hand complex

analytic, while on the other hand stationary in the real sense, these random functions have

common properties with both models mentioned above. Stationary GAFs were studied by

Paley and Wiener in the last chapter of their celebrated treatise [28, Ch. X], where they
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prove a “law of large numbers” for the zeroes in large rectangles under certain spectral condi-

tions. This result was extended in a preceding work [10], where unnecessary conditions were

removed, and a formula for the expected number of zeroes was developed.

At present we study the variance V (T ) of the number of zeroes of a stationary GAF in

[−T, T ] × [a, b], giving a detailed description of its possible asymptotic growth. We identify

which processes demonstrate quadratic growth of V (T ) (Theorem 1), and supply sufficient

and necessary conditions for V (T ) to be asymptotically linear (Theorem 2 and 3 respectively).

The case of linear variance is of particular interest, as this indicates that at large scale the

zero process is “nearly independent”. In Theorem 2 we also prove that V (T ) is always at

least linear in T , which indicates that the zeroes are never “super-concentrated” around their

mean. The last result is probably the most difficult and interesting part of our work.

Our methods require various tools from harmonic analysis, classical analysis and probabil-

ity. In order to acquire our results we derive an asymptotic formula for V (T ) (Proposition 2).

This formula consists of a series of non-negative terms involving the spectral measure, and

is therefore relatively easy to analyze. Ideas from this paper were already used for studying

the winding number of Gaussian functions from R to C, in a recent work with Buckley [2].

1.1. Related works. In this section we discuss related models of zeros of random functions,

with emphasis on the work done to determine fluctuations and large-scale behavior.

As mentioned above, the direct real analogue of our setting is the zero-set of real Gaussian

stationary processes. Though expectation of the number of zeroes was known, the variance

remained untackled for many years. Cramer and Leadbetter [5] obtained an asymptotic for-

mula for the variance in 1967, but the rate of growth could not be inferred from it. In 1976

Cuzick [6] was able to show that, under some technical assumptions, if the growth of the

variance is linear then the number of zeroes in [−T, T ] satisfies a Central Limit Theorem

(CLT). It was only fifteen years later that Slud [32] obtained accessible conditions (in terms

of the covariance kernel) for this assumption to hold. To do so Slud used primarily a so-

phisticated method for stochastic integration which he developed jointly with Chambers [4].

Unfortunately, this method involves many computations specifically tailored to tackle the

real case, which do not generalize to the complex setting easily. Consequently, while some

of our results for the complex case are very similar to those of Slud (see Remark 1.2 below),

the methods are different and, very likely, may be more widely applied.

Another model which remained popular since the 1960’s is zeroes of Gaussian trigonometric

polynomials of large degree N in the interval [0, 2π]. It was only in 2011 that Granville and

Wigman [14], using similar methods to those of Cuzick and Slud, were able to show that

the variance of this number is linear in N and a CLT holds. Their main observation was

that, under a proper scaling limit, this model becomes stationary. On the sphere, a basic

wave model is random spherical harmonics, also known as arithmetic random waves. In this

model a Gaussian measure is endowed on the space of eigenfunctions belonging to the N -th

eigenvalue of the Laplacian on the sphere (which equals N(N + 1)), and the resulting nodal
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line is studied. Wigman [36] showed that, while the expected length of a nodal line is of order

N , the variance is surprisingly of order logN due to unexpected cancellations.

One of the most well-studied models is random polynomials with i.i.d. coefficients, due

to its simplicity and strong relations with mathematical physics and random matrix the-

ory (see [12]). Kac [19] showed that for Gaussian coefficients the average number of real

roots is asymptotically logarithmic in the degree. This stimulated many works to estimate

the variance, which was finally retrieved by Maslova [23]. Several other notable advances

about the distribution of zeroes were made quite recently, e.g. concerning universality (see

Kabluchko-Zaporozhets [18], Nguyen-Nguyen-Vu [27], Söze [34, 35]), large deviations (see

Zeitouni-Zelditch [37], Ghosh-Zeitouni [13]) and critical points (see Hanin [15]).

A natural extension of random polynomials are Gaussian analytic functions (GAFs, men-

tioned above). This has been a flourishing topic in recent years, as is accounted by the recent

monograph [16] and the survey papers [24, 25]. For the planar GAF, a special GAF whose

zeroes are invariant under all planar isometries, fluctuations of zeroes were studied by Sodin-

Tsirelson [33] and Nazarov-Sodin [26]. They proved linear growth of the variance and a CLT

for the zeroes in large balls (as the radius approaches infinity). Interestingly, the variance

of smooth statistics of the zeroes decays as the radius grows, a difference which reflects high

oscillations of random zeroes near the boundary. The results of the current paper establish

this phenomena for a much larger family of GAFs, namely, that for “well-behaved” stationary

GAFs the fluctuations of the zeroes are caused only by fluctuations near the boundary (see

conditions in Theorem 2). However, as Theorems 1 and 3 show, for other stationary GAFS

the fluctuations may be much larger, reflecting a strong dependency between distant zeroes.

Lastly, we mention that mean and fluctuations of zeroes of Gaussian functions on more

general manifolds were studied in a series of papers by Bleher, Shiffman and Zelditch, see [3,

31] and references within.

1.2. Definitions. A Gaussian Analytic Function (GAF) in the strip D = D∆ = {z : |Imz| <
∆} is a random variable taking values in the space of analytic functions on D, so that for

every n ∈ N and every z1, . . . , zn ∈ D the vector (f(z1), . . . , f(zn)) has a mean zero complex

Gaussian distribution.

A GAF in D is called stationary, if it is distribution-invariant with respect to all horizontal

shifts, i.e., for any t ∈ R, any n ∈ N, and any z1, . . . , zn ∈ D, the random n -tuples

(
f(z1), . . . , f(zn)

)
and

(
f(z1 + t), . . . , f(zn + t)

)
have the same distribution.

For a stationary GAF in D∆, the covariance kernel

K(z, w) = E{f(z)f(w)}
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may be written as

K(z, w) = r(z − w), z, w ∈ D∆.
1

For t ∈ R, the function r(t) is positive-definite and continuous, and so it is the Fourier

transform of some positive measure ρ on the real line:

r(t) = F [ρ](t) =

∫
R
e−2πitλdρ(λ).

Moreover, since r(t) has an analytic continuation to the strip D2∆, ρ must have a finite

exponential moment:

(1) for each |∆1| < ∆,

∫ ∞
−∞

e2π·2∆1|λ|dρ(λ) <∞ .

The measure ρ is called the spectral measure of f . A stationary GAF is degenerate if its

spectral measure consists of exactly one atom.

For a holomorphic function f in a domain D, we denote by Zf the zero-set of f (counted

with multiplicities), and by nf the zero-counting measure, i.e.,

∀ϕ ∈ C0(D) :

∫
D
ϕ(z)dnf (z) =

∑
z∈Zf

ϕ(z),

where C0(D) is the set of compactly supported continuous functions on D. We use the

abbreviation nf (B) =

∫
B
dnf (z) for the number of zeroes in a Borel subset B ⊂ D.

1.3. Results. First, we present a previous result which will serve as our starting point. This

result can be viewed as a “law of large numbers” for the zeroes of stationary functions.

Theorem A. [10, Theorem 1] Let f be a stationary non-degenerate GAF in the strip D∆,

where 0 < ∆ ≤ ∞. Let νf,T be the non-negative locally-finite random measure on (−∆,∆)

defined by

νf,T (Y ) =
1

2T
nf ([−T, T )× Y ), Y ⊂ (−∆,∆) measurable.

Then:

(i) Almost surely, the measures νf,T converge weakly and on every interval to a measure νf

when T →∞.

(ii) The measure νf is not random (i.e. var νf = 0) if and only if the spectral measure ρf has

no atoms.

(iii) If the measure νf is not random, then νf (Y ) = Enf ([0, 1]× Y ) and it has density:

L(y) =
d

dy

(∫∞
−∞ λe

4πyλdρ(λ)∫∞
−∞ e

4πyλdρ(λ)

)
=

1

4π

d2

dy2
log (r(2iy)) .

1 To see this, first observe that for any x, y ∈ R the covariance E(f(x)f(y)) depends only on (x − y), so

that K(x, y) = r(x− y) for some real-analytic function r : R→ C. Now note that the functions K(z, w) and

r(z− w̄) are both analytic in z, anti-analytic in w, and coincide for z, w ∈ R, thus must be equal on the entire

strip D2∆.
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In the above and in what follows, the term “density” means the Radon-Nikodym derivative

w.r.t. the Lebesgue measure on R.

A natural question is, how big are the fluctuations of the number of zeroes in a long

rectangle? More rigorously, define

Ra,bT = [−T, T )× [a, b], V a,b
f (T ) = var

[
nf (Ra,bT )

]
,

where for a random variable X the variance is defined by

var (X) = E (X − EX)2 .

We are interested in the asymptotic behavior of V a,b
f (T ) as T approaches infinity. The

next theorems show that V a,b
f (T ) is asymptotically bounded between cT and CT 2 for some

c, C > 0, and give conditions under which each of the bounds is achieved. We begin by

stating the upper bound result, a relatively easy consequence of Theorem A.

Theorem 1. Let f be a non-degenerate stationary GAF in a strip D∆. Then for all −∆ <

a < b < ∆ the limit

L2 = L2(a, b) := lim
T→∞

V a,b
f (T )

T 2
∈ [0,∞)

exists. This limit is positive if and only if the spectral measure of f has a non-zero discrete

component.

The lower bound result, which is our main result, is stated in the following theorem.

Theorem 2. Let f be a non-degenerate stationary GAF in a strip D∆. Then for all −∆ <

a < b < ∆ the limit

L1 = L1(a, b) := lim
T→∞

V a,b
f (T )

T
∈ (0,∞]

exists. Moreover, the limit L1(a, b) is finite if ρ is absolutely continuous with density dρ(λ) =

p(λ)dλ, such that

(1 + λ2)e2π·2yλp(λ) ∈ L2(R), for y ∈ {a, b}.(2)

Several remarks are due before continuing.

Remark 1.1. Another form of condition (2) is the following: For y ∈ {2a, 2b},∫
R
|r(x+ iy)|2dx,

∫
R
|r′′(x+ iy)|2dx <∞.

This implies also that
∫
R |r
′(x+iy)|2dx <∞. Moreover, since the set {c : e2π·cλp(λ) ∈ L2(R)}

is convex, it implies the same condition for all y ∈ [2a, 2b].

Remark 1.2. It is interesting to note that condition (2) is precisely the condition that Slud

gave in [32] for linear variance in the case of real (non-analytic) stationary Gaussian processes

(with a = b = 0). Nonetheless, no direct implication between the results is known and the

methods to obtain them are quite remote.



6 N. D. FELDHEIM

As for the first part of Theorem 2, we would expect an analogue to hold for real stationary

Gaussian functions; that is, that under mild conditions, the variance of the number of zeroes

in [−T, T ] is always at least linear in T . To the best of our knowledge, this is yet unknown.

Remark 1.3. In case condition (2) holds, we shall give an expression for the limit L1 as a

convergent series of the form:

lim
T→∞

V a,b
f (T )

2T
=
∑
k≥1

∫
R

(
p∗k(λ)

)2
wa,bk (λ)dλ.

Here p∗k denotes the k-fold convolution of p, and wa,bk (λ) is a positive function which can be

computed explicitly in terms of a, b, k and r(2ia), r(2ib) (and no other reliance on p).

The next theorem deals with conditions under which L1(a, b) is infinite, i.e. the variance

is super-linear.

Theorem 3. Let f be a non-degenerate stationary GAF in a strip D∆.

(i) Suppose J ⊂ (−∆,∆) is a closed interval such that for every y ∈ J , the function

λ 7→ (1 + λ2)e2π·2yλp(λ) does not belong to L2(R). Then for every α ∈ J the set

{β ∈ J : L1(α, β) <∞} is finite.

(ii) The limit L1(a, b) is infinite for particular a, b if either ρ does not have density, or,

if it has density p and for any two points λ1, λ2 ∈ R there exists intervals I1, I2 such

that Ij contains λj (j = 1, 2) and

(1 + λ)e2π·2yλp(λ) 6∈ L2(R \ (I1 ∪ I2)),(3)

for at least one of the values y = a or y = b.

Remark 1.4. There is a gap between the conditions given for linear variance (in Theorem 2)

and those for super-linear variance (in Theorem 3). For instance, the theorems do not decide

about all the suitable pairs (a, b) in case the spectral measure has density 1√
|λ|

1I[−1,1](λ). On

the other hand, we are ensured to have super-linear variance in case ρ has a singular part.

If ρ has density p ∈ L1(R) which is bounded on any compact set, then (1 + λ2)p(λ) ∈ L2(R)

implies asymptotically linear variance, and (1+λ)p(λ) 6∈ L2(R) implies asymptotically super-

linear variance.

Remark 1.5. Minor changes to the developments in this paper may be made in order to

prove analogous results regarding the increment of the argument of a stationary GAF f along

a horizontal line. Namely, let V a,a(T ) denote the variance of the increment of the argument

of f along the line [0, T ]× {a} (for some −∆ < a < ∆). Then:

• the limit L2(a) = limT→∞
V a,a(T )
T 2 exists, belongs to [0,∞), and is positive if and only

if the spectral measure contains an atom.

• the limit L1(a) = limT→∞
V a,a(T )

T exists, belongs to (0,∞], and is finite if ρ has density

p(λ) such that (1 + λ2)e2π·2aλp(λ) ∈ L2(R). Moreover, L1(a) is infinite if for any
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λ0 ∈ R there is an interval I containing λ0 such that the measure (1 + λ)e2π·2aλdρ(λ)

restricted to R \ I is not in L2(R).

In our recent work with Buckley [2] we extend these statements to hold for a differentiable

(not necessarily analytic) Gaussian process from R to C. Also notice that the first item is

essentially proved in this paper (Claim 3 below).

The rest of the paper is organized as follows: Theorem 1 concerning quadratic growth of

variance is proved in Section 2, and is mainly a consequence of Theorem A. In Section 3 we

develop an asymptotic formula for V a,b
f (T )/T (Proposition 2 below), which will be used to

prove Theorems 2 and 3 in Sections 4 and 5 respectively. Appendices A, B and C include

proofs of some technical lemmas.

1.4. Acknowledgments. I thank Mikhail Sodin for his advice and encouragement, and

Boris Tsirelson for some useful suggestions. I am grateful to Jeremiah Buckley for contribut-

ing most of the arguments in Appendix B. Alon Nishry and Igor Wigman have read the

original draft carefully and pointed out subtle errors, for which I am thankful. Lastly, I

thank the referee for an attentive reading and for simplifying several proofs.

2. Theorem 1: Quadratic Variance

Recall the notation RT = Ra,bT = [−T, T )× [a, b]. From Theorem A we know that

lim
T→∞

nf (RT )

T
= Z,

where Z is some random variable and the limit is in the almost sure sense. Moreover,

varZ > 0 if and only if the spectral measure of f contains an atom. The theorem now follows

lim
T→∞

var (nf (RT ))

T 2
= lim

T→∞
var

(
nf (RT )

T

)
= var

(
lim
T→∞

nf (RT )

T

)
= varZ.

The exchange of limit and variance in the middle equality is justified by the following propo-

sition, which is proved in Appendix A.

Proposition 1. Let f be a stationary GAF in D∆, and −∆ < a < b < ∆. Denote XT =

nf (Ra,bT )/T . Then there exist C, c > 0 (depending on ρ, a and b) so that:

sup
T≥1

P(XT > s) < Ce−cs.

3. An Asymptotic Formula for the Variance

This section is devoted to the derivation of a formula for the variance V a,b
f (T ) = varnf ([−T, T ]×

[a, b]) where T is large. We prove the following:

Proposition 2. Let f be a stationary GAF in D∆ with spectral measure ρ. Suppose ρ has

no discrete component. Then for any −∆ < a < b < ∆, and any T ∈ R, the series

va,b(T ) =
1

4π2

∑
k≥1

1

k2

∫
R

∫
R
T sinc2 (2πT (λ− τ))ha,bk (λ+ τ)dρ∗k(λ)dρ∗k(τ)



8 N. D. FELDHEIM

converges, and

lim
T→∞

(
V a,b(T )

2T
− va,b(T )

)
= 0.

Here ρ∗k is the k-fold convolution of ρ, sinc(x) = sinx
x , and

ha,bk (λ) =
(
lak(λ)e2πaλ − lbk(λ)e2πbλ

)2
,

where for y ∈ (−∆,∆), k ∈ N we write

lyk(λ) = e−2πλy ∂

∂y

(
e2πλy

rk(2iy)

)
=

∂

∂y

(
1

rk(2iy)

)
+

2π

rk(2iy)
λ.

We begin with some definitions and facts that will be needed along the proof.

3.1. Preliminaries.

3.1.1. Tools from Harmonic Analysis. In this section we discuss some operations on measures

and their relation to the Fourier transform.

Denote by M(R) the space of all finite measures on R, similarly M+(R) denotes all finite

non-negative measures on R. For two measure µ, ν ∈M(R) the convolution µ ∗ ν ∈M(R) is

a measure defined by:

∀ϕ ∈ C0(R) : (µ ∗ ν)(ϕ) =

∫∫
ϕ(λ+ τ)dµ(λ)dν(τ).

When both measures have density, this definition agrees with the standard convolution of

functions. We write µ∗k for the iterated convolution of µ with itself k times.

for a measure µ ∈ M+(R) having exponential moments up to 2∆ (i.e., obeying con-

dition (1)), and a number y ∈ (−2∆, 2∆), we define the exponentially rescaled measure

µy ∈M+(R) by

∀ϕ ∈ C0(R) : µy(ϕ) = µ(e2πyλϕ(λ)) =

∫
R
e2πyλϕ(λ)dµ(λ)

Observation. For any µ, ν ∈M(R) and any |y| < 2∆,

(µ ∗ ν)y = µy ∗ νy.

Proof. for any test function ϕ ∈ C0(R) we have:∫
ϕ d(µy ∗ νy) =

∫∫
ϕ(λ+ τ) dµy(λ)dνy(τ)

=

∫∫
ϕ(λ+ τ)e2πy(λ+τ) dµ(λ)dν(τ) =

∫
ϕ d(µ ∗ ν)y

�

Corollary. If ρ ∈ M+(R) is such that (1), then for any |y| < 2∆ and k ∈ N we have

(ρy)
∗k = (ρ∗k)y, so there will be no ambiguity in the notation ρ∗ky .
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Next, we define for µ ∈M(R) the flipped measure flip{µ} ∈ M(R) by:

flip{µ}(I) = µ(−I) for any interval I ⊂ R,

and the cross-correlation of measures µ, ν ∈M(R) by:

µ ? ν := µ ∗ flip{ν}.

An alternative definition, via actions on test-functions, would be:

∀ϕ ∈ C0(R) : (µ ? ν)(ϕ) =

∫∫
ϕ(λ− τ)dµ(λ)dν(τ).

Notice that the cross-correlation operator is bi-linear, but not commutative. In all following

expressions, convolution precedes cross-correlation.

We are now ready to prove a lemma relating these notions to the Fourier transform.

Lemma 3.1. Suppose ρ ∈ M+(R) obeys (1), and r = F [ρ]. Then, for any |y| < 2∆, x ∈ R
and k ∈ N:

|r(x+ iy)|2k = F [ρ∗ky ? ρ∗ky ](x).

This measure acts on a test-function ϕ ∈ C0(R) in the following way:

(ρ∗ky ? ρ∗ky )(ϕ) =

∫∫
ϕ(λ− τ)e2πy(λ+τ)dρ∗k(λ)dρ∗k(τ).

Proof. Fix k ∈ N. Since r(z) = F [ρ](z), by a standard property of Fourier transform one has

rk(z) = F [ρ∗k](z). Writing z = x+ iy, this reads

rk(x+ iy) =

∫
R
e−2πixλe2πyλdρ∗k(λ).

This implies:

• rk(x+ iy) = F [ρ∗ky ](x)

• rk(x+ iy) = F [ρ∗ky ](−x) = F [flip{ρ∗ky }](x),

which leads to

|r(x+ iy)|2k = F [ρ∗ky ∗ flip{ρ∗ky }](x) = F [ρ∗ky ? ρ∗ky ](x).

�

Also useful to us will be the following special case of Parseval’s identity for measures (see

Katznelson [20, VI.2.2]):

Lemma 3.2. For any finite measure γ on R,∫ 2T

−2T

(
1− |x|

2T

)
F [γ](x)dx =

∫
R

2T sinc2(2πTξ)dγ(ξ).

where sinc(ξ) = sin ξ
ξ and F [γ] is the Fourier transform of γ.
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3.1.2. Properties of a “normalized” covariance function. Here we summarize some properties

of a normalized version of the covariance function, namely |r(x+ia+ib)|2
r(2ia) r(2ib) , which will be used

later in our proofs. In the following, when we do not specify the variables we mean the

statements holds on all the domain of definition. We use the subscript notation for partial

derivatives (such as qa for ∂
∂aq).

Lemma 3.3. The function

q(x, a, b) :=
|r(x+ ia+ ib)|2

r(2ia) r(2ib)
,

is well-defined, infinitely differentiable on R×(−∆,∆)2, and satisfies the following properties:

1. q(x, y1, y2) ∈ [0, 1].

q(x, y1, y2) = 1 if and only if (x = 0 and y1 = y2).

2. supx∈R q(x, y1, y2) < 1 for any y1 6= y2 in (−∆,∆).

3. For fixed y1 and y2 let gy1,y2(x) be one of the functions q, qa, qb, qab evaluated on the

line {(x, y1, y2) : x ∈ R}. Then gy1,y2 ∈ L∞(R). If condition (2) holds, then for any

y1, y2 ∈ [a, b] we have also gy1,y2 ∈ L1(R)∩C0(R) (i.e., is integrable and tends to zero

as x→ ±∞).

4. qa(0, t, t) = 0, for any t ∈ (−∆,∆).

Proof. Since r(2iy) > 0 for all y ∈ R, the function q is indeed well-defined; differentiability

follows from that of r(z).

For item 1, notice that

q(x, a, b) =

(∫
e2π(a+b)λe−2πixλdρ(λ)

)2∫
e2π·2aλdρ(λ)

∫
e2π·2aλdρ(λ)

and so, by Cauchy-Schwarz, is in [0, 1]. Equality q(x, a, b) = 1 holds only if the function

λ 7→ e2π·aλe−2πixλ is a constant times the function λ 7→ e2π·bλ, ρ-a.e., but, if ρ is non-atomic,

this is impossible unless x = 0 and a = b.

Further, we notice that

|r(x+ ia+ ib)| =
∣∣∣∣∫ e2π(a+b)λe−2πixλdρ(λ)

∣∣∣∣ ≤ ∫ e2π(a+b)λdρ(λ) = r(ia+ ib),

so that q(x, a, b) ≤ q(0, a, b) < 1 (the right-most inequality is by item 1). Taking the supre-

mum yields item 2.

For item 3, notice any one of the functions q, qa, qb, qab is the sum of terms of the form

(4) C(a, b) r(j)(x+ ia+ ib) r(m)(−x+ ia+ ib),

where 0 ≤ j,m ≤ 2 are integers. It is enough therefore to explain why r(j)(x + ia + ib) is

bounded and approaches zero as x→ ±∞, for any integer 0 ≤ j ≤ 2. Recall that

r(j)(x+ iy) = cjF [λje2πyλ dρ(λ)](x),
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where cj is some constant. As a function of x, this is a Fourier transform of a non-atomic

measure, therefore has the desired properties.

If condition (2) holds, then dρ(λ) = p(λ)dλ, and the function λ 7→ λje2π(y1+y2)λp(λ) is in

L2(R). Then, its Fourier transform r(j)(x+ iy1 + iy2) is also in L2(R), and each term of the

form (4) is in L1(R), as anticipated.

For item 4, notice that for all x ∈ R and all a, b ∈ (−∆,∆) we have the symmetry

q(x, a, b) = q(x, b, a), and therefore for all t ∈ R: qa(x, t, t) = qb(x, t, t). On the other hand,

for all t ∈ (−∆,∆) it holds that q(0, t, t) = 1, so taking derivative by t we get qa(0, t, t) · 1 +

qb(0, t, t) · 1 = 0. This proves the result. �

We are now ready to begin the proof of Proposition 2.

3.2. Integrals on significant edges. The boundary of the rectangle RT = [−T, T ]× [a, b]

is composed of four segments ∂RT =
⋃

1≤i≤4 Ij with induced orientation from the counter-

clockwise orientation of ∂RT , where I1 = [−T, T ] × {a} and I3 = [T,−T ] × {b}. By the

argument principle,

nf (RT ) =
∑

1≤i≤4

1

2π
4T
i arg f,

where 4T
i arg f is the increment of the argument of f along the segment Ii (a.s. f has no

zeroes on the boundary of the rectangle RT
2).

Then, by the argument principle,

(5) V a,b
f (T ) = var [nf (RT )] =

1

4π2

∑
1≤i,j≤4

cov
(
4T
i arg f, 4T

j arg f
)
,

where

cov (X,Y ) = E[XY ]− EX · EY.

Our first claim is that asymptotically when T is large, the terms involving the (short)

vertical segments are negligible in this sum.

Claim 1. As T →∞, one has:

V a,b
f (T ) =

1

4π2

∑
i,j∈{1,3}

cov
(
4T
i arg f, 4T

j arg f
)

+O

(
1 +

√
var (4T

1 arg f) +
√

var (4T
3 arg f)

)
.

2 To see this, first notice that the distribution of nf (Ij) for j = 2, 4 (the number of zeroes in a “short”

vertical segments) does not depend on T . If it were not a.s. zero, then Enf (I2) > 0. Now for any finite

set of points {tj}Nj=1 ⊂ [0, 1], we have Enf ([0, 1] × [a, b]) ≥
∑N
j=1 Enf ({tj} × [a, b]) = NEnf (I2), yielding

Enf ([0, 1] × [a, b]) = ∞ - which is false. For j = 1, 3, recall that since there are no atoms in the spectral

measure, f is ergodic with respect to horizontal shifts (this is Fomin-Grenander-Maruyama Theorem, see

explanation and references within [10]). This implies that each horizontal line (such as La = R× {a}) either

a.s. contains a zero or a.s. contains no zeroes. If the former holds, then also Enf ([0, 1] × {a}) > 0, and the

measure νf from Theorem A has an atom at a - contradiction to part (iii) of that Theorem.
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Proof. We demonstrate how to bound one of the terms in (5) involving a “short” vertical

segment (corresponding, say, to i = 2). By stationarity, var (4T
2 arg f) = var (40

2 arg f) =: c2.

Applying the Cauchy-Schwarz inequality, we have:

cov
(
4T

1 arg f, 4T
2 arg f

)
≤
√

var (4T
1 arg f)

√
var (4T

2 arg f)

= c ·
√

var (4T
1 arg f).

�

Let us now give an alternative formulation of Claim 1. Using Cauchy-Riemann equations,

we have:

4T
1 arg f =

∫ T

−T

(
∂

∂x
arg f(x+ ia)

)
dx = −

∫ T

−T

∂

∂a
log |f(x+ ia)| dx =: −Xa(T )

4T
3 arg f = −

∫ T

−T

(
∂

∂x
arg f(x+ ib)

)
dx =

∫ T

−T

∂

∂b
log |f(x+ ib)| dx = Xb(T )

Denoting Ca,b(T ) = cov (Xa(T ), Xb(T )) we may rewrite Claim 1 as

V a,b
f (T ) =

1

4π2

(
Ca,a(T )− 2Ca,b(T ) + Cb,b(T )

)
+O

(
1 +

√
Ca,a(T ) +

√
Cb,b(T )

)
,

or alternatively:

Claim 1a. As T →∞, we have:

V a,b(T )

2T
=
Ca,a(T )− 2Ca,b(T ) + Cb,b(T )

4π2 · 2T
+O

(
1 +

√
Ca,a(T ) +

√
Cb,b(T )

T

)
.

where

Ca,b(T ) =E
{∫ T

−T
dt

∫ T

−T
ds

(
∂

∂a
log |f(t+ ia)| ∂

∂b
log |f(s+ ib)|

)}
− E

{∫ T

−T

∂

∂a
log |f(t+ ia)| dt

}
E
{∫ T

−T

∂

∂b
log |f(s+ ib)| ds

}(6)

3.3. Changing order of operations. Our goal now is to prove the following:

Claim 2.

(7) Ca,b(T ) =

∫ T

−T

∫ T

−T

∂2

∂a ∂b
cov (log |f(t+ ia)|, log |f(s+ ib)|) dt ds.

The meaning of this formula for Ca,a(T ) is as follows: on the RHS, first take the mixed

partial derivative (as if a 6= b), then substitute b = a and integrate by t and s.

The proof is an application of the following two lemmas, which are proved in Appendix B.

In both, we assume f is a stationary GAF in D∆, and a, b ∈ (−∆,∆) (not necessarily

different).

Lemma 3.4. For any T > 0 the following integrals are finite:
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(A-I)

∫ T

−T
E
∣∣∣∣f ′(t+ ia)

f(t+ ia)

∣∣∣∣ dt <∞.
(A-II)

∫ T

−T

∫ T

−T
E
∣∣∣∣f ′(t+ ia)

f(t+ ia)

f ′(s+ ib)

f(s+ ib)

∣∣∣∣ dt ds <∞.
Lemma 3.5. For almost all t, s ∈ [−T, T ]2,

(B-I) E
[
∂

∂a
log |f(t+ ia)|

]
=

∂

∂a
E
[

log |f(t+ ia)|
]

(B-II) E
[

∂2

∂a ∂b
log |f(t+ ia)| log |f(s+ ib)|

]
=

∂2

∂a ∂b
E
[

log |f(t+ ia)| log |f(s+ ib)|
]
.

Proof of Claim 2. Recall the definition of Ca,b(T ) in (6), and notice that

(8)

∣∣∣∣ ∂∂a log |f(x+ ia)|
∣∣∣∣ ≤ ∣∣∣∣f ′(x+ ia)

f(x+ ia)

∣∣∣∣ .
Step 1: Exchange integrals and expectation: By (8) and Lemma 3.4, we may apply Fubini’s

theorem to get:

Ca,b(T ) =

∫ T

−T

∫ T

−T

[
E

∂2

∂a ∂b
{log |f(t+ ia)| log |f(s+ ib)|}

− E
∂

∂a
log |f(t+ ia)|E ∂

∂b
log |f(s+ ib)|

]
dt ds.

Step 2: Exchange the order of expectation and derivative inside the integral by t and s.

This is justified directly by Lemma 3.5. We arrive at the desired form. �

3.4. The error term. Next, we show that the error term in Claim 1a approaches zero as T

tends to infinity.

Claim 3. If ρ contains no atoms, then for any a ∈ (−∆,∆):

lim
T→∞

Ca,a(T )

T 2
= 0.

Proof. Since ρ has no atoms, f is an ergodic process (this is the classical Fomin-Grenander-

Maruyama theorem, see [10, Theorem 4] and references therein). Thus, by the ergodic

theorem,

(9) lim
T→∞

1

T
Xa(T ) = EXa(1), almost surely and in L1.

Recall Xa(T ) has finite second moment (this is precisely relation (A-II)). Therefore, the

convergence in (9) is also in the L2 sense (this is an easy adaptation of the proof for L1

convergence, see [7, Exercise 7.2.1]). We conclude that:

lim
T→∞

1

T 2
var (Xa(T )) = lim

T→∞

1

T 2
Ca,a(T ) = 0.

�

Claims 1a , 2 and 3 give together:
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Corollary.

(10)
V a,b(T )

2T
=
Ca,a(T )− 2Ca,b(T ) + Cb,b(T )

4π2 · 2T
+ o(1), T →∞,

where Ca,b(T ) is given by (7).

3.5. A formula in terms of the covariance function. Our goal now is to replace (7) by

a simpler formula, using the covariance function. This is done in the next claim.

Claim 4.

Ca,b(T )

2T
=

1

2

∫ 2T

−2T

(
1− |x|

2T

)∑
k≥1

∂2

∂a ∂b

q(x, a, b)k

k2
dx,(11)

where

(12) q(x, a, b) :=
|r(x+ ia+ ib)|2

r(2ia) r(2ib)
.

For the proof, we will need the following Lemma, which is a direct consequence of a lemma

by Nazarov and Sodin [26, Lemma 2.2] (see also [16, Lemma 3.5.2]).

Lemma 3.6. If ξ and η are centered jointly complex Gaussian random variables, then:

cov (log |ξ|, log |η|) =
1

4

∞∑
k=1

1

k2

(
|E(ξη)|2

E|ξ|2E|η|2

)k
.

Proof of Claim 4. Taking ξ = f(t+ ia) and η = f(s+ ib), we have due to stationarity:

|E(ξη)|2

E|ξ|2E|η|2
=
|E(f(t+ ia)f(s+ ib))|2

E|f(t+ ia)|2 E|f(s+ ib)|2
=
|r(t− s+ ia+ ib)|2

r(2ia) r(2ib)
= q(t− s, a, b).

Therefore, by Lemma 3.6 equation (7) becomes:

Ca,b(T ) =
1

4

∫ T

−T

∫ T

−T

{
∂2

∂a ∂b

∞∑
k=1

1

k2
q(t− s, a, b)k

}
dt ds

=
1

2

∫ 2T

−2T

(
1− |x|

2T

) ∂2

∂a ∂b

∑
k≥1

q(x, a, b)k

k2

 dx.

In the last equality we used that
∫ T
−T
∫ T
−T Q(t − s)dt ds = 2

∫ 2T
−2T (2T − |x|)Q(x)dx for any

Q ∈ L1([−2T, 2T ])), which can be proved by a simple change of variables.

All that remains in order to get (11), is to prove that

(13) ∀x 6= 0,
∂2

∂a ∂b

∑
k≥1

q(x, a, b)k

k2
=
∑
k≥1

∂2

∂a ∂b

q(x, a, b)k

k2

Fix x 6= 0. For shortness, we do not write the variables (x, a, b), and use again the subscript

notation for partial derivatives. We compute:
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Sa,bk (x) :=
∂2

∂a ∂b

{
qk
}

=

qab, k = 1

k(k − 1)qk−2qaqb,+kq
k−1qab k > 1.

Therefore, ∣∣∣∣∣Sa,bk (x)

k2

∣∣∣∣∣ ≤ qk−2|qaqb|+
1

k
qk−1|qab|.

By part 1 of Lemma 3.3, q(x, a, b) < 1 (notice this holds also if a = b). We deduce that∑∣∣∣∣Sa,bkk2

∣∣∣∣ < ∞. i.e., the RHS of (13) converges in absolute value. By standard arguments,

this is enough to prove equality (13). Claim 4 follows. �

3.6. A formula in terms of the spectral measure. In this section, we finally prove

Proposition 2, by carefully moving to the spectral representation of the formula we had at

hand.

Proof of Proposition 2. Using Lemma 3.1 and the definition of q in (12), we get

q(x, a, b)k =
F [ρ∗ka+b ? ρ

∗k
a+b](x)

rk(2ia) rk(2ib)

Define

(14) Sa,bk (x) :=
∂2

∂a ∂b

{
q(x, a, b)k

}
=

∂2

∂a ∂b

{
F [ρ∗ka+b ? ρ

∗k
a+b](x)

rk(2ia) rk(2ib)

}
.

Observation.

Sa,bk (x) = F
[
lak(λ)ρ∗ka+b ? l

b
k(λ)ρ∗ka+b

]
(x).

where lak(λ), lbk(λ) are linear functions in λ, given by

lak(λ) =
∂

∂a

(
1

rk(2ia)

)
+

2π

rk(2ia)
λ =

2

rk(2ia)

(
−ik r

′(2ia)

r(2ia)
+ πλ

)
.

Proof. Recall that

F [ρ∗ka+b ? ρ
∗k
a+b](x) =

∫∫
e−ix(λ−τ)e2π(a+b)(λ+τ)dρ∗k(λ)dρ∗k(τ),

and notice we may differentiate by a and b under the integral, as the result would be contin-

uous and integrable w.r.t. ρ∗k. From here, the proof is a straightforward computation. �

Using this observation, we rewrite equation (11) as follows:

(15)
Ca,b(T )

2T
=

∫ 2T

−2T

(
1− |x|

2T

)∑
k≥1

1

2k2

∂2

∂a ∂b

{
F [ρ∗ka+b ? ρ

∗k
a+b](x)

rk(2ia)rk(2ib)

}
dx.
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Futher, using Lemma 3.2 (Parseval’s identity), we have for fixed k,∫ 2T

−2T

(
1− |x|

2T

)
Sa,bk (x) dx =

∫ 2T

−2T

(
1− |x|

2T

)
F
[
lak(λ)ρ∗ka+b ? l

b
k(λ)ρ∗ka+b

]
(x)

=

∫
R

∫
R

2T sinc2(2πT (λ− τ)) lak(λ)lbk(τ)e2π(a+b)(λ+τ)dρ∗k(λ)dρ∗k(τ).(16)

Plugging (15) into (10), we get:

V a,b
f (T )

2T
=

1

4π2

∫ 2T

−2T

(
1− |x|

2T

)∑
k≥1

1

2k2
(Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x))dx+ o(1)

=
1

4π2

∑
k≥1

1

2k2

∫ 2T

−2T

(
1− |x|

2T

)
(Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x))dx+ o(1)(17)

=
1

8π2

∑
k≥1

1

k2

∫
R

∫
R
T sinc2(2πT (λ− τ))ha,bk (λ+ τ)dρ∗k(λ)dρ∗k(τ) + o(1),

where

(18) ha,bk (λ) =
(
lak(λ)e2πaλ − lbk(λ)e2πbλ

)2
.

The exchange of sum and integral in the second equality of (17) is justified by the monotone

convergence theorem, as each term in the series is non-negative. The last equality follows

from (16). Equation 17 establishes Proposition 2. �

4. Theorem 2: Linear and Intermediate Variance

We dedicate Section 4.1 to prove some facts which will be needed along the proof. After-

wards, we prove the existence of the limit L1 and its positivity in Section 4.2. In Section 4.3

we prove L1 is finite under condition (2).

4.1. Preparation.

4.1.1. Tools from Analysis. First we present two observations about convolutions and inte-

gration. We omit their proofs as they are straightforward.

Observation 4.1. If Q : R→ [0,∞) is integrable on R, then

lim
T→∞

∫ T

−T

(
1− |x|

T

)
Q(x)dx =

∫
R
Q.

Observation 4.2. For any ψ1, ψ2 ∈ C0(R) and µ ∈M+(R),∫
ψ1 d(µ ∗ ψ2) =

∫
(ψ1 ∗ flip{ψ2}) dµ.

The following lemma shall play a key-role later on in our proof.

Lemma 4.1. Let µ ∈M+(R) (µ 6≡ 0). Then the following limit exists (finite or infinite):

lim
ε→0+

∫
R

1

2ε
µ (τ − ε, τ + ε) dµ(τ) =

∫
R
|F [µ]|2(x)dx.
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Proof. Denote ϕε = 1
2ε1I(−ε,ε) for ε > 0. Rewriting the integral and using Parseval’s identity,

we get:

Iµ(ε) :=
1

2ε

∫
R
µ (τ − ε, τ + ε) dµ(τ)

=

∫
R

(µ ∗ ϕε)(τ)dµ(τ)

=

∫
R

(F [µ] · F [ϕε])(x)F [µ](−x)dx

=

∫
R

sinc(2πεx)|F [µ]|2(x)dx

Since |sinc(2πεx)| ≤ 1, we have the upper bound Iµ(ε) ≤
∫
R |F [µ]|2(x)dx. Using the Obser-

vation 4.2 and the fact that ϕε ∗ ϕε ≤ 2ϕ2ε we get:∫
R

(µ ∗ ϕε) d(µ ∗ ϕε) =

∫
R
µ ∗ (ϕε ∗ ϕε)dµ ≤ 2

∫
R
µ ∗ ϕ2ε dµ = 2Iµ(2ε)

On the other hand,∫
R

(µ ∗ ϕε) d(µ ∗ ϕε) =

∫
|F [µ ∗ ϕε]|2 =

∫
|F [µ]|2 · sinc2(2πεx) dx

≥
∫
K
|F [µ]|2 · sinc2(2πεx) dx

for any compact set K ⊂ R. Since the limit lim
ε→0+

sinc(2πεx) = 1 is uniform in x ∈ K, the last

expression approaches
∫
K |F [µ]|2 as ε→ 0+. Thus, by choosing K and then ε > 0 properly,

the lower bound may be made arbitrarily close to
∫
R |F [µ]|2. This concludes the proof. �

4.1.2. Lower bounds on ha,b1 . The main goal of this subsection is to give lower bounds on ha,b1

(defined in (18)). We begin with a simple claim.

Claim 5. The function ha,b1 has exactly two real zeroes.

Proof. By the form of ha,b1 , ha,b1 (λ) = 0 if and only if

e2π(b−a)λ =
la1(λ)

lb1(λ)
=

1
r(2ia)

(
πλ− i r′r (2ia)

)
1

r(2ib)

(
πλ− i r′r (2ib)

) = C · λ− ψ(a)

λ− ψ(b)
,

where C > 0 is a positive constant and ψ(y) = 1
2π

d
dy [log r(2iy)]. Since y 7→ log r(2iy) is

a convex function, for a < b we have ψ(a) < ψ(b). Therefore, λ 7→ C λ−ψ(a)
λ−ψ(b) is a strictly

decreasing function, with a pole at ψ(b) and with the same positive limit at ±∞. Thus, it

crosses exactly twice the increasing exponential function e2π(b−a)λ. �

The next claim will enable us to bound ha,b1 from below, on most of the real line. Denote

by z1, z2 ∈ R (z1 < z2) the two real zeroes of ha,b1 whose existence is guaranteed by Claim 5.

We also use the notation B(x, δ) for the interval of radius δ > 0 around x ∈ R.
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Claim 6. For all δ > 0, there exists cδ > 0 such that for all λ ∈ R \ (B(z1, δ) ∪B(z2, δ)):

ha,b1 (λ) > cδ(1 + λ2) max(e2a·2πλ, e2b·2πλ).

Proof. Since the function
ha,b1 (λ)

(1+λ2)e2a·2πλ
=
(
la1(λ)−lb1(λ)e2π(b−a)λ

√
1+λ2

)2

approaches strictly positive

limits as |λ| → ∞, there exist Ma, ca > 0 such that

∀|λ| ≥Ma : ha,b1 (λ) ≥ ca(1 + λ2)e2a·2πλ.

Similarly, there exist some Mb, cb > 0 such that ∀|λ| ≥Mb : ha,b1 (λ) ≥ cb(1 + λ2)e2b·2πλ. Take

M = max(Ma,Mb). Since h(λ) attains a positive minimum on [−M,M ]\(B(z1, δ) ∪B(z2, δ)),

there exists some c > 0 such that for all λ in this set, h(λ) ≥ c(1 + λ2) max(e2a·2πλ, e2b·2πλ).

Choosing cδ = min(c, ca, cb) will yield the result. �

The next claim is a slight modification of the previous one, in order to fit our specific need.

Denote Diagε = 1I{(λ, τ) : |λ− τ | < ε}.

Claim 7. For every δ > 0 there exist a set F = Fδ = R \ (I1 ∪ I2) such that Ij is an interval

containing zj and of length at most δ (j = 1, 2), ρ(F ) > 0, and there exists cδ > 0 such that

for all small enough ε,

h(λ+ τ) ≥ cδ(1 + (λ+ τ)2) max
(
e2a·2π(λ+τ), e2b·2π(λ+τ)

)
,

for all λ, τ ∈ (F × F ) ∩Diagε.

Proof. Choose F = R\
(
B
(
z1
2 , δ0

)
∪B

(
z2
2 , δ0

))
, where δ0 ≤ δ is small enough so that ρ(F ) >

0. Then, for ε ≤ δ0 and (λ, τ) ∈ (F × F ) ∩Diagε, we have

|λ+ τ − zj | ≥ |2τ − zj | − |λ− τ | ≥ 2δ0 − ε ≥ δ0.

Choosing the constant cδ > 0 which is the consequence of applying Claim 6 will end our

proof. �

4.1.3. Convergence properties of the functions Sk. Recall the definition of Sa,bk in (14). We

stress, once again, that Sa,ak (x) denotes the evaluation of the same mixed partial derivative

at the point (x, a, a). Our goal in this subsection is to prove the following Lemma.

Lemma 4.2. If condition (2) is satisfied, then for every k ∈ N the functions Sa,ak (x), Sa,bk (x)

and Sb,bk (x) are in L1(R) with respect to the variable x. Moreover,∑
k≥1

1

k2

∫
R
Sk(x)dx converges,

with any of the three possible superscripts on the letter S.

We will need some convergence properties of the function q and its partial derivatives. The

first follows from part 3 of Lemma 3.3.

Observation 4.3. Let g be one of the functions q, qa, qb or qab. Then g(x, a, a), g(x, a, b)

and g(x, b, b) are all in
(
L1 ∩ L∞

)
(R) with respect to the variable x.
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The next two claims require some more effort.

Claim 8. The sum
∑

m≥1

∫
R q

mqaqb dx converges.

Proof. We will show, in fact, that the positive series
∑

m≥1

∫
R q

m|qaqb| dx converges.

First, in case we are evaluating at (x, a, b) (a < b), our series converges due to (21) and the

bound in part 2 of Lemma 3.3. Now assume we are evaluating at (x, t, t) (where t ∈ {a, b}).
As we deal with a positive series, it is enough to show that both

(I)
∑

m≥1

∫ 1
−1 q

m|qaqb| dx <∞, and

(II)
∑

m≥1

∫
|x|≥1 q

m|qaqb| dx <∞.

Denote by C = supx∈R |qaqb(x, t, t)| ∈ (0,∞). The sum in (II) is bounded by

C
∑
m≥1

∫
|x|≥1

qm(x, t, t) dx = C

∫
|x|≥1

q

1− q
(x, t, t) dx ≤ C ′

∫
R
q(x, t, t) dx,

where C ′ ∈ (0,∞) is another constant. C, C ′ and
∫
R q(x, t, t)dx are all finite by part 3 of

Lemma 3.3.

We turn to show (I). By parts 1 and 4 of Lemma 3.3, the sum∑
m≥1

qm|qaqb| dx =
|qaqb|
1− q

is well-defined for all x (including x = 0). By the monotone convergence theorem, item (I) is

then equivalent to ∫ 1

−1

|qaqb|
1− q

(x, t, t) dx <∞,

which is indeed finite as an integral of a continuous function on [−1, 1]. �

Claim 9. The sum
∑

m≥1
1

m+2

∫
R q

m dx converges.

Proof. We use a fact which appears in standard proofs of the Central Limit Theorem (CLT).

For completeness, we include a proof in appendix C.

Lemma 4.3. Let g ∈ L1(R) be a probability density, i.e., g ≥ 0 and
∫
R g = 1. Suppose

further that

(a)
∫
R |λ|

kg(λ)dλ <∞ for k = 1, 2, 3 and

(b)
∫
R |F [g](x)|ν dx <∞ for some ν ≥ 1.

Then there exists C > 0 such that for all m ≥ ν,∫
R
|F [g](x)|mdx < C√

m
.

We would like to apply Lemma 4.3 to

ga,b(λ) =
e2π(a+b)λp(λ)

r(ia+ ib)
.

Notice that this is the density of a probability measure. This choice also obeys the extra

integrability conditions in the lemma (Condition (a) follows from the exponential moment



20 N. D. FELDHEIM

assumption (1), and condition (b) with ν = 2 follows from the L2 assumption (2)). We see

now that

q(x, a, b) =
r(ia+ ib)2

r(2ia)r(2ib)
· |F [ga,b](x)|2 ≤ |F [ga,b](x)|2,

the last inequality following from the log-convexity of y 7→ r(iy). Similarly we define ga,a and

have q(x, a, a) = |F [ga,a](x)|2. Thus in all three cases of evaluation, using the lemma with

the appropriate function g yields:∑
m≥1

1

m+ 2

∫
R
qm dx ≤

∑
m≥1

1

m+ 2

∫
R
|F [g](x)|2mdx

< C
∑
m≥1

1

(m+ 2)
√

2m
<∞,

as required. �

Proof of Lemma 4.2. Taking derivative by the chain rule, we see that:

(19) Sk =
∂2

∂a ∂b

{
qk
}

=

qab, k = 1

k(k − 1)qk−2qaqb,+kq
k−1qab k > 1.

Now, the fact that Sa,ak , Sa,bk and Sb,bk are in L1(R) with respect to x follows from Observa-

tion 4.3.

We turn now to prove the “moreover” part of the claim. We use (19) in order to rewrite

the desired series:∑
k≥1

1

k2

∫
R
Sk(x)dx

=

∫
R
qab dx+

∑
k≥2

∫
R
qk−2qaqb dx+

∑
k≥2

1

k

∫
R
qk−2 (qqab − qaqb) dx.(20)

Once again, all functions are evaluated at (x, a, a), (x, a, b) or (x, b, b) and what follows holds

for each of the three options. By Observation 4.3,

(21)

∫
R
|q| dx <∞,

∫
R
|qab| dx <∞,

∫
R
|qaqb| dx <∞,

and in particular the left-most term in (20) is finite. For the middle sum in (20), convergence

follows from Claim 8 and (21). Convergence of the right-most sum in (20) follows from

Claim 9 and (21). This ends the proof of Lemma 4.2. �

4.2. Existence and Positivity. In this section we prove that L1 exists and belongs to

(0,∞]. If ρ has at least one atom, Theorem 1 implies that limT→∞
V a,bf (T )

T 2 > 0, and therefore

L1 = limT→∞
V a,bf (T )

T =∞. We thus assume that ρ has no atoms.

Using the formula for the variance obtained in Proposition 2, and recalling the functions

ha,bk are non-negative, we see that the limit L1 exists and is in [0,∞]. More effort is needed
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in order to establish that L1 > 0. We begin with a simple bound arising from Proposition 2:

lim inf
T→∞

V a,b
f (T )

2T
=

1

4π2
lim inf
T→∞

∑
k≥1

1

k2

∫
R

∫
R
T sinc2(2πT (λ− τ))ha,bk (λ+ τ)dρ∗k(λ)dρ∗k(τ)

≥ 1

4π2
lim inf
T→∞

∫
R

∫
R
T sinc2(2πT (λ− τ)) ha,b1 (λ+ τ) dρ(λ)dρ(τ)

≥ C0 lim inf
ε→0+

∫
R

∫
R

1

2ε
1I{(λ, τ) : |λ− τ | < ε}ha,b1 (λ+ τ) dρ(λ)dρ(τ),(22)

where C0 > 0 is an absolute constant. the first inequality follows from considering only the

first term in the original non-negative series. The second inequality follows by noticing that

T sinc2(2πT λ) ≥ 4T
π2 1I{λ : |λ| < 1

4T }.
Fix a parameter δ > 0, and fix F = Fδ to be the set provided by Claim 7. Continuing (22),

we have

lim inf
T→∞

V a,b
f (T )

2T
≥ cδ lim inf

ε→0

∫∫
F×F

1

2ε
1IDiagε(λ, τ) e2π·2a(λ+τ)dρ(λ)dρ(τ)

= cδ lim inf
ε→0

∫
F

1

2ε
ρ2a ((τ − ε, τ + ε) ∩ F ) dρ2a(τ)

= cδ lim inf
ε→0

∫
R

1

2ε
µ (τ − ε, τ + ε) dµ(τ),(23)

where µ is the restriction of ρ2a to F , i.e. µ(ϕ) = ρ2a(1IF · ϕ) for any test-function ϕ. Notice

that by the choice of F , µ(R) = ρ2a(F ) > 0. By Lemma 4.1, the RHS of (23) is strictly

positive, and we conclude that L1 > 0.

4.3. Linear Variance. Consider again the first line of (17). Recall that, as we saw in

Section 3.6, each term of the series in the RHS of (17) is non-negative. Therefore, by the

monotone convergence theorem:

lim
T→∞

V a,b
f (T )

2T
=

1

8π2

∑
k≥1

1

k2
lim
T→∞

∫ 2T

−2T

(
1− |x|

2T

)
(Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x)) dx,

provided that the limit of each term on the RHS exists. These limits can be computed using

Observation 4.1:

lim
T→∞

V a,b
f (T )

2T
=

1

8π2

∑
k≥1

1

k2

∫
R

(Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x)) dx,

which is finite by Lemma 4.2.

Lastly, we explain how to obtain the form of L1 appearing in Remark 1.3. By monotone

convergence theorem, we may take term-by-term limit as T →∞ in Proposition 2, and get:

lim
T→∞

V a,b
f (T )

2T
=

1

8π3

∑
k≥1

1

k2

∫
R

(
p∗k(λ)

)2
ha,bk (2λ)dλ ∈ (0,∞).
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5. Theorem 3: Super-linear variance

In this section we prove the two items of Theorem 3, in reverse order.

5.1. Item (ii): Super-linear variance for particular a, b. Assume condition (3) holds for

the particular a and b at hand. Fix a parameter δ > 0, and let F = Fδ be the set provided

by Claim 7. The premise ensures that, if δ is small enough, at least one of the measures

(1 +λ)ρ2a|Fδ and (1 +λ)ρ2b|Fδ does not have L2-density. WLOG assume it is the former. At

first, assume also ρ2a|F is not in L2. Repeating the arguments of the Subsection 4.2 we get

the lower bound

lim inf
T→∞

V a,b
f (T )

2T
≥ cδ

∫
R
|F [µ]|2(x)dx,

where µ = ρ2a|F and cδ > 0. The LHS is therefore infinite, and so L1 =∞.

We are left with the case that λρ2a|Fδ does not have L2-density, but ρ2a|Fδ does (denote it

by p2a). The argument is similar. Continuing from (22) and employing Claim 7, we get

lim inf
T→∞

V a,b
f (T )

2T
≥ cδ lim inf

ε→0

∫
F

∫
F

1

2ε
1I(τ−ε,τ+ε)(λ)(λ+ τ)2p2a(λ) p2a(τ)dλdτ

≥ cδ · 4
∫
K
λ2p2a(λ)2dλ,

where K ⊂ F is compact. But, by our assumption, by choosing K properly the last bound

can be made arbitrarily large, so that limT→∞
V a,bf (T )

2T =∞.

5.2. Item (i): Super-linear variance for almost all a, b. Let ρ be such that the condition

in item (i) holds. If ρ has a singular component, then the condition in item (ii) holds for all

possible a, b and so L1(a, b) =∞ with no exceptions. Otherwise, ρ has density p(λ). Define

the set

E = {(a, b) : a, b ∈ J, a < b, the condition in item (ii) fails for a, b}.

If E = ∅, once again L1(a, b) =∞ for all a, b ∈ J with no exceptions.

Assume then there is some (a0, b0) ∈ E. This means there exists λ1, λ2 such that for any

pair of intervals I1, I2 such that λj ∈ Ij (j = 1, 2), both the functions (1+λ2)e2π·2a0λp(λ) and

(1 + λ2)e2π·2b0λp(λ) are in L2(R \ (I1 ∪ I2)), but at least one of them (WLOG, the former)

is not in L2(R). Observe that the existence of such λ1, λ2 depends solely on p(λ), and may

therefore be regarded as independent of the point (a0, b0) ∈ E. Moreover, at least one among

λ1 and λ2 (say, λ1) is such that for any neighborhood I containing it, p 6∈ L2(I).

Suppose now a, b ∈ E are such that

(24) ha,b1 (λ1) > 0,

where ha,b1 (λ) =
(
la1(λ)e2πaλ − lb1(λ)e2πbλ

)2
is the function appearing in the the first term of

our asymptotic formula, and in the lower bound in inequality (22). Recall ha,b1 is non-negative

and has only two zeroes by Claim 5.
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We may choose δ > 0 smaller than the minimal distance between λ1 and a zero of ha,b1 , and

then construct F = Fδ as in Claim 7. Certainly λ1 ∈ Fδ, and so the measure µ = ρ2a|Fδ is

not in L2(R) (it is even not in L2(I) for any neighborhood I of λ1). Just as in subsection 4.2

we shall get

lim inf
T→∞

V a,b
f (T )

2T
≥ cδ

∫
R
|F [µ]|2(x)dx =∞.

We end by showing that for a given point λ1 ∈ R and a given a ∈ J , the set of b ∈ J which

do not obey (24) is finite. Indeed, this is the set

{b ∈ J : ha,b(λ1) = 0} = {b ∈ J : ϕ(a) = ϕ(b)}

where

ϕ(y) = e2πyλ1 ly1(λ1) =
∂

∂y

(
e2πλ1y

r(2iy)

)
.

Suppose the desired set is not finite. Since ϕ is real-analytic, it must be constant on J . But

then r(2iy) = e2πλ1y

cy+d for some c, d ∈ R, and the corresponding spectral density would satisfy

condition (2) for all relevant a, b. This contradiction ends the proof.

Appendix A. Uniform exponential decay of tails

In this appendix we prove Proposition 1. We follow closely [10, Proposition 5.1] and [16,

Ch. 7] which prove similar concentration bounds, known as “Offord-type estimates”. We

rely on the following lemma, which follows either from [10, Lemma 6.1] or [16, Lemma 7.1.2].

Lemma A.1. If η ∼ NC(0, σ2), and E is an event in the probability space with P(E) = p,

then:

|E(χE log |η|)| ≤ p
[p

2
− 2 log p+ log σ

]
.

Proof of Proposition 1. Take φ(z) = φT (z) to be a real C2 function, whose support is

[−1
2 − T, T + 1

2 ] × [a′, b′] with −∆ < a′ < a < b < b′ < ∆, and which takes the value 1 on

RT = [−T, T ] × [a, b). We may build such φT (z) that will obey also the bound ‖∆φ‖L1 <

c0(T + b − a), where c0 > 0 is a constant (depending on |∆ − b| and |a + ∆|). Fix s > 0.

We are interested in dominating the probability of the event AT = {nf (RT ) > sT}. Write

p = pT = P(AT ).

We have

nf (RT ) <
1

2π

∫
∆φT (z) log |f(z)|dm(z) ,

and therefore,

sT · p ≤ E(χAT nf (RT )) ≤ E
(
χAT

1

2π

∫
∆φ(z) log |f(z)|dm(z)

)
=

1

2π

∫
∆φ E (χAT log |f(z)|) dm(z)

≤ 1

2π
‖∆φ‖L1 sup

z∈R×[a′,b′]
E (χAT log |f(z)|)
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The exchange of expectation and integral is justified by Fubini’s theorem, as follows:∫
D
E
∣∣∆φ(z) · log |f(z)|

∣∣dm(z) =

∫
D
|∆φ(z)|E

∣∣ log |f(z)|
∣∣ < supE

∣∣ log |f(z)|
∣∣ · ‖∆φ‖L1 <∞.

Applying lemma A.1 with η = f(z), we get:

sup
z∈R×[a′,b′]

E(χAT log |f(z)|) < p(c1 − 2 log p).

for some constant c1 > 0 (depending on supy∈[a′,b′] E|f(iy)|2). We conclude that:

sT · p ≤ c0

2π
(T + b− a)p(c1 − 2 log p),

which leads to the exponential bound we strived for:

∃c, C > 0 such that pT = P(nf (RT ) > T s) ≤ Ce−cs, ∀T ≥ 1 .

�

Appendix B. Justification for changing operations

In this section we prove Lemmas 3.4 and 3.5.

B.1. Proof of Lemma 3.4. We begin by showing (A-I). Let 1 < p < 2 be arbitrary, and let

q > 2 be such that 1
p + 1

q = 1. Hölder’s inequality implies:∫ T

−T
E
∣∣∣∣f ′(t+ ia)

f(t+ ia)

∣∣∣∣ ≤ ∫ T

−T
E[|f ′(t+ ia)|q]1/qE[|f(t+ ia)|−p]1/pdt

≤ E[|f ′(ia)|q]1/qE[|f(ia)|−p]1/p · T <∞,

where finiteness follows from f ′(ia) and f(ia) being complex Gaussian random variables, thus

having finite moments of any order.

We now turn to prove (A-II). We use the notation f . g to stand for the inequality

f ≤ C · g, where C > 0 is a constant (which may vary from line to line). Similarly, f h g

stands for f = C · g with some C > 0.

As before, let 1 < p < 2 and take q > 2 to obey 1
p + 1

q = 1 . By Hölder inequality we have∫ T

−T

∫ T

−T
E
∣∣∣∣f ′(t+ ia) f ′(s+ ib)

f(t+ ia) f(s+ ib)

∣∣∣∣dtds
≤
∫ T

−T

∫ T

−T

[
E
∣∣∣∣f ′(t+ ia)f ′(s+ ib)

∣∣∣∣q]1/q
[
E
∣∣∣∣f(t+ ia)f(s+ ib)

∣∣∣∣−p
]1/p

dt ds

.
∫ T

−T

∫ T

−T
E

[∣∣∣∣f(t+ ia)f(s+ ib)

∣∣∣∣−p
]1/p

dt ds.(25)
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The last inequality is an application of Cauchy-Schwarz inequality and stationarity, as follows:[
E
∣∣∣∣f ′(t+ ia)f ′(s+ ib)

∣∣∣∣q] 1
q

≤
(√

E|f ′(t+ ia)|2q E|f ′(s+ ib)|2q
) 1
q

=
(
E[|f ′(ia)|2q]E[|f ′(ib)|2q]

) 1
2q <∞,

where again finiteness follows from f ′(ia) and f ′(ib) being Gaussian.

Let

A =

{
(t, s) ∈ [−T, T ]2 : |r(t− s+ ia+ ib)|2 ≤ 2

3
r(2ia)r(2ib).

}
.

We split the last integral in (25) into two parts: on A and on Ac = [−T, T ]2 \ A. For the

integral on A we use the following lemma:

Lemma B.1. Suppose ξ1, ξ2 are independent NC(0, 1) random variables, and let Z1 = αξ1

and Z2 = βξ1 + γξ2 where α, β, γ ∈ C \ {0}. Let 1 < p < 2. Then

E
[
|Z1Z2|−p

]
≤ |αγ|−p Γ

(
1− p

2

)2

We include the proof in Section B.3. We apply Lemma B.1 with Z1 = f(t + ia) and

Z2 = f(s+ ib), which yields the choice of parameters α, β, γ so that

α =
√
r(2ia), αβ = r(t− s+ ia+ ib), |β|2 + |γ|2 = r(2ib).(26)

In particular,

|αγ| =
√
r(2ia)r(2ib)− |r(t− s+ ia+ ib)|2.

Using this in Lemma B.1, we have:∫∫
A

(
E
∣∣∣∣f(t+ ia)f(s+ ib)

∣∣∣∣−p
)1/p

dt ds

.
∫∫

A

(
r(2ia)r(2ib)− |r(t− s+ ia+ ib)|2

)−p/2
dt ds,

which is bounded by the definition of A. In order to bound the integration on Ac, we use

another lemma (which is also proved in Section B.3).

Lemma B.2. Suppose ξ1, ξ2 are independent NC(0, 1) random variables, and let Z1 = αξ1

and Z2 = βξ1 + γξ2 where α, β, γ ∈ C \ {0}. Suppose M > 0 is such that | γβ | < M , and let

1 < p < 2. Then there exists a constant c > 0, depending only on M and p, such that

E
[

1

|Z1Z2|p

]
≤ c

|αβ|p

∣∣∣∣γβ
∣∣∣∣2−2p

.

We apply this lemma again to Z1 = f(t+ia) and Z2 = f(s+ib), so the choice of parameters

in (26) remains valid. Thus, ∣∣∣∣γβ
∣∣∣∣2 =

r(2ia)r(2ib)

|r(t− s+ ia+ ib)|2
− 1
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is uniformly bounded for (t, s) ∈ Ac. Applying Lemma B.2 we get that for some c > 0,

∫∫
Ac

(
E
∣∣∣∣f(t+ ia)f(s+ ib)

∣∣∣∣−p
)1/p

dt ds

.
∫∫

Ac

(
c

|r(t− s+ ia+ ib)|p
(r(2ia)r(2ib)− |r(t− s+ ia+ ib)|2)1−p

|r(t− s+ ia+ ib)|2−2p

) 1
p

dt ds

.
∫∫

Ac

(
r(2ia)r(2ib)− |r(t− s+ ia+ ib)|2

)− p−1
p dt ds(27)

.
∫
Ãc

(
r(2ia)r(2ib)− |r(x+ ia+ ib)|2

)− p−1
p dx,

where Ãc is the one-dimensional set

Ãc = {x ∈ [−T, T ] : |r(x+ ia+ ib)|2 > 2

3
r(2ia)r(2ib)}.

The last inequality in (27) is obtained by a simple change of variables. One step before that

in (27) we bounded |r(t− s+ ia+ ib)|−1 from above by a constant, using the definition of Ac.

Before continuing, we notice that

|r(x+ ia+ ib)|2 =

∣∣∣∣∫
R
e−2πixλe2π·(a+b)λdρ(λ)

∣∣∣∣2
≤
(∫

R
e2π·(a+b)λdρ(λ)

)2

(= r(ia+ ib)2)

≤
∫
R
e2π·2aλdρ(λ) ·

∫
R
e2π·2aλdρ(λ)

= r(2ia)r(2ib),(28)

and the inequality is sharp when a 6= b (see also part 2 of Lemma 3.3 below). Therefore, if

a 6= b, the last integral in (27) is finite.

In case a = b, there may be only a finite number of isolated points x0 for which |r(x0 +

2ia)|2 = r(2ia)2. Taylor expansion near any of those points gives |r(x + 2ia)|2 = r(2ia)2 −
C(x−x0)2 + o((x−x0)2) as x tends to x0 (here C ≥ 0 since |r(x+ 2ia)|2 ≤ r(2ia)2 by taking

a = b in (28)). So, in this case the finiteness of the integral (27) is equivalent to that of∫
|x−x0|<δ

(x− x0)−2(p−1)/pdx

(with some δ > 0), which is indeed finite for 1 < p < 2.

B.2. Proof of Lemma 3.5. We will justify in detail the second item, as the proof of the

first is similar and simpler.

Fix (t, s) ∈ [−T, T ]2. We may assume that |r(t − s + ia + ib)|2 < r(2ia)r(2ib) as the set

of (t, s) ∈ [−T, T ]2 where this inequality does not hold is of measure zero (see discussion
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following (28)). Consider the random variables

U(h1, h2) =
log |f(t+ ia+ ih1)| − log |f(t+ ia)|

h1
· log |f(s+ ib+ ih2)| − log |f(s+ ib)|

h2
.

These are well-defined for 0 < h1 < δ1 and 0 < h2 < δ2, where δ1, δ2 are properly chosen

numbers (we use here that almost surely, there are no zeroes on the vertical lines {t}×[a, a+δ1]

and {s} × [b, b+ δ2], as was explained in Section 3.2). Notice that almost surely,

lim
h1→0+

lim
h2→0+

U(h1, h2) =
∂2

∂a ∂b
[ log |f(t+ ia)| log |f(s+ ib)| ].

Our goal (B-II) can be understood as convergence in L1(P) of the above limit. This will

follow if the family {U(h1, h2)}h1,h2 is uniformly integrable, i.e., if for every ε > 0 there exists

k > 0 such that for all relevant h1, h2 it holds that

E
(
|U(h1, h2)|1I{|U(h1,h2)|≥k}

)
< ε.

Uniform integrability, in turn, would follow from the following statement: 3

(29) ∃p > 1 : sup
h1,h2

E|U(h1, h2)|p <∞.

Applying the Newton-Leibniz formula, the bound (8) and Jensen’s inequality we get:

|U(h1, h2)| =
∣∣∣∣ 1

h1h2

∫ h2

0

∫ h1

0

∂

∂y1
log |f(t+ ia+ iy1)| ∂

∂y2
log |f(s+ ib+ iy2)|dy1 dy2

∣∣∣∣
≤
∫ h2

0

∫ h1

0

∣∣∣∣f ′f (t+ ia+ iy1)

∣∣∣∣ ∣∣∣∣f ′f (s+ ib+ iy1)

∣∣∣∣ dy1

h1

dy2

h2

≤
(∫ h2

0

∫ h1

0

∣∣∣∣f ′f (t+ ia+ iy1)

∣∣∣∣p ∣∣∣∣f ′f (s+ ib+ iy1)

∣∣∣∣p dy1

h1

dy2

h2

)1/p

.

Taking 1 < p′ < 2
p and q′ such that 1

p′ + 1
q′ = 1, we apply Hölder’s inqeuality to bound the

last expression by(∫ h2

0

∫ h1

0
E|f ′(t+ ia+ iy1) f ′(s+ ib+ iy2)|pq′ dy1

h1

dy2

h2

) 1
pq′

×
(∫ h2

0

∫ h1

0
E|f(t+ ia+ iy1) f(s+ ib+ iy2)|−pp′ dy1

h1

dy2

h2

) 1
pp′

Using Cauchy-Schwarz, the first integral is bounded by(
max

y1∈[0,δ1]
E|f ′(t+ ia+ iy1)|2pq′ max

y2∈[0,δ2]
E|f ′(s+ ib+ iy2)|2pq′

) 1
2pq′

,

3Indeed, suppose (29) holds. Denoting by q the number such that 1
p

+ 1
q

= 1, we apply Hölder’s inequality

to get:

E
(
|U(h1, h2)|1I{|U(h1, h2)| ≥ k}

)
≤ (E|U(h1, h2)|p)1/p P (|U(h1, h2)| ≥ k)1/q .

1

kp/q
,

so the definition of uniform integrability is satisfied.



28 N. D. FELDHEIM

which is finite and independent of h1 and h2. Applying Lemma B.1 with the same choice of

parameters as before, we may bound the second integral (up to a constant factor depending

on p and p′) by:

(∫ h1

0

∫ h2

0

{
r(2ia+ 2iy1)r(2ib+ 2iy2)− |r(t− s+ ia+ ib+ iy2 + iy2)|2

}− pp′
2
dy1

h1

dy2

h2

) 1
pp′

. max
y1∈[0,δ1],y2∈[0,δ2]

{
r(2ia+ 2iy1)r(2ib+ 2iy2)− |r(t− s+ ia+ ib+ iy2 + iy2)|2

}− 1
2 ,

which is again finite and independent of h1 and h2. Our proof is complete.

B.3. Proofs of auxiliary Lemmas. This part is dedicated to prove Lemmas B.1 and B.2

that were used earlier in this section.

Proof of Lemma B.1. Using the notations in the statement of the Lemma, we have:

E
[
|Z1Z2|−p

]
=

1

π2

∫∫
C2

|αξ1(βξ1 + γξ2)|−pe−|ξ1|2−|ξ2|2dm(ξ1)dm(ξ2)

Now, by the Hardy-Littlewood re-arrangement inequality, we have:

1

π

∫
C
|βξ1 + γξ2|−pe−|ξ2|

2
dm(ξ2) ≤ |γ|−p · 1

π

∫
C
|ξ2|−pe−|ξ2|

2
dm(ξ2)

= |γ|−p Γ
(

1− p

2

)
.

So,

E
[
|Z1Z2|−p

]
≤ |αγ|−p Γ

(
1− p

2

)
· 1

π

∫
C
|ξ1|−pe−|ξ1|

2
dm(ξ1)

= |αγ|−p Γ
(

1− p

2

)2
.

�

Proof of Lemma B.2. In this proof, the constant hidden by the “.” and “h” notation de-

pends only on M and p. We begin by writing-out the desired expectation explicitly.

E
[
|Z1Z2|−p

]
= |αβ|−p E

[ ∣∣ξ2
1 +

γ

β
ξ1ξ2

∣∣−p ]
= |αβ|−p · 1

π2

∫∫
C2

∣∣z2 +
γ

β
zw
∣∣−pe−|z|2−|w|2 dm(z) dm(w)

= |αβ|−pπ−2

∫
C
|z|−p

(∫
C

∣∣z +
γ

β
w
∣∣−pe−|w|2dm(w)

)
e−|z|

2
dm(z).(30)
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We bound the inner integral as follows:∫
C

∣∣z +
γ

β
w
∣∣−pe−|w|2dm(w)

.
∫
|w|≤ 1

2

∣∣β
γ
z
∣∣ |z|−pe−|w|2dm(w) + |z|−pe−

1
4

∣∣β
γ
z
∣∣2 ∣∣∣∣βγ z

∣∣∣∣2 +

∫
|w|>2

∣∣β
γ
z
∣∣
∣∣∣∣γβw

∣∣∣∣−pe−|w|2dm(w)

h |z|−p
(

1− e−
1
4

∣∣β
γ
z
∣∣2)

+

∣∣∣∣βγ
∣∣∣∣2|z|2−pe− 1

4

∣∣β
γ
z
∣∣2

+

∣∣∣∣βγ
∣∣∣∣pI (∣∣∣∣βγ z

∣∣∣∣) ,
where

I (s) =

∫
|w|>2s

|w|−pe−|w|2dm(w) .

1, 0 < s ≤ 1,

s−pe−4s2 , s > 1.

The last bound is achieved by changing to polar coordinates, as follows:

I(s) h
∫ ∞

2s
r−p+1e−r

2
dr . s−p+1

∫ ∞
2s

e−r
2
dr ≤ s−p+1 1

2s
e−4s2 .

Returning to the double integral in (30), we have:

E
[∣∣ξ2

1 +
γ

β
ξ1ξ2

∣∣−p]
.
∫
C

{
|z|−2p

(
1− e−

1
4

∣∣β
γ
z
∣∣2)

+

∣∣∣∣βγ
∣∣∣∣2|z|2−2pe

− 1
4

∣∣β
γ
z
∣∣2

+ |z|−p
∣∣∣∣βγ
∣∣∣∣p I (∣∣∣∣βγ z

∣∣∣∣)
}
e−|z|

2
dm(z)

This is the sum of three integrals, which we bound separately. For the first, we have:∫
C
|z|−2p

(
1− e−

1
4

∣∣β
γ
z
∣∣2)

e−|z|
2
dm(z)

.
∫
|z|≤
∣∣ γ
β

∣∣
∣∣∣∣βγ
∣∣∣∣2 |z|2−2pdm(z) +

∫
|z|>
∣∣ γ
β

∣∣ |z|−2pe−|z|
2
dm(z)

h
∣∣∣∣βγ
∣∣∣∣2 ∣∣∣∣γβ

∣∣∣∣4−2p

+O(1) h
∣∣∣∣γβ
∣∣∣∣2−2p

Denote A = 1 + 1
4

∣∣β
γ

∣∣2. Before estimating the second integral, we compute∫
C
|z|2−2pe−A|z|

2
dm(z)

h
∫ ∞

0
r2−2pe−Ar

2
rdr [r = |z| ]

=
1

2A

∫ ∞
0

( s
A

)1−p
e−sds [s = Ar2]

h A−(2−p).

Thus, the second integral is∣∣∣∣βγ
∣∣∣∣2 ∫

C
|z|2−2pe

−
(

1+ 1
4

∣∣β
γ

∣∣2)|z|2
dm(z) h

∣∣∣∣βγ
∣∣∣∣2
(

1 +
1

4

∣∣∣∣βγ
∣∣∣∣2
)−(2−p)

h
∣∣∣∣γβ
∣∣∣∣2−2p

.
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For the third integral we first compute∫
|z|>| γ

β
|
|z|−2pe−A|z|

2
dm(z)

h
∫ ∞
| γ
β
|
r−2pe−Ar

2
rdr [r = |z| ]

=
1

2A

∫ ∞
A| γ

β
|

( s
A

)−p
e−sds [s = Ar2]

. Ap−1

∫ ∞
1/4

s−pe−sds h Ap−1.

Finally, the third integral is∣∣∣∣βγ
∣∣∣∣p ∫

C
|z|−p I

(∣∣∣∣βγ z
∣∣∣∣) e−|z|2dm(z)

h
∣∣∣∣βγ
∣∣∣∣p
{∫
|z|<| γ

β
|
|z|−pe−|z|2dm(z) +

∣∣∣∣βγ
∣∣∣∣−p ∫

|z|>| γ
β
|
|z|−2pe

−(1+4
∣∣β
γ

∣∣2)|z|2
dm(z)

}

h
∣∣∣∣βγ
∣∣∣∣p ∣∣∣∣γβ

∣∣∣∣2−p +

(
1 + 4

∣∣∣∣βγ
∣∣∣∣2
)p−1

h
∣∣∣∣γβ
∣∣∣∣2−2p

.

The proof is complete.

�

Appendix C. Moments of the characteristic function

Here we prove Lemma 4.3, which estimates moments of the characteristic function (or

Fourier transform) of a probability distribution. We adapt the proof of the Central Limit

Theorem appearing in [11, Ch. XV.5].

Proof of Lemma 4.3. Write G(x) = F [g](x). We may assume that
∫
R λg(λ) = 0 (otherwise

we shall consider, instead of g, the function gµ(λ) = g(λ+ µ) where µ :=
∫
R λg(λ)dλ. There

is no penalty since |F [gµ](x)| = |F [g](x)| for all x ∈ R). By assumption (a), G(x) is thrice

differentiable, and by the above assumptions G(0) = 1 and G′(0) = 0.

To prove the lemma, it is enough to show that

lim
m→∞

√
m

∫
R
|G(x)|mdx exists and is finite.

Notice that
√
m
∫
R |G(x)|mdx =

∫
R |G (x/

√
m) |mdx, and so it is enough to show that

(31) lim
m→∞

∫
R

∣∣∣∣ ∣∣∣∣G( x√
m

)∣∣∣∣m − e−αx2

2

∣∣∣∣ dx = 0,

for some value of α > 0, which in fact is α := G′′(0).

We shall achieve (31) by splitting the integral into three parts, and showing each could be

made less than a given ε > 0 if m ≥ ν is chosen large enough.
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Fix R > 0 (to be determined later). By Taylor expansion,

(32) G(x) = G(0) + xG′(0) +
x2

2
G′′(0) + o(x2) = 1 +

αx2

2
+ o(x2), x→ 0

and so |G(x/
√
m)|m → e−αx

2/2 as m → ∞, uniformly in x ∈ [−R,R]. Thus the integral

in (31) computed on [−R,R] converges to zero as m→∞.

From the expansion (32) we get

∃δ > 0 ∀|x| < δ : |G(x)| ≤ e−
αx2

4 .

Consider the integration in (31) for R ≤ |x| ≤ δ
√
m. For such x we have |G(x/

√
m)|m ≤

e−
αx2

4 , and so the integrand is less than 2e−
αx2

4 . Choosing R so that 4
∫∞
R e−

αx2

4 < ε will

satisfy our needs.

Lastly, consider the integration on δ
√
m ≤ |x| < ∞. By properties of Fourier transform,

η := sup|x|≥δ |G(x)| ∈ (0, 1). Thus

∫
|x|≥δ

√
m

∣∣∣∣ ∣∣∣∣G( x√
m

)∣∣∣∣m − e−αx2

2

∣∣∣∣ dx ≤ ηm−ν √m ∫
R
|G|ν +

∫
|x|≥δ

√
m
e−

αx2

2 dx < ε,

for m large enough. Here we have used condition (b).

�
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