VARIANCE OF THE NUMBER OF ZEROES OF SHIFT-INVARIANT
GAUSSIAN ANALYTIC FUNCTIONS

NAOMI DVORA FELDHEIM

ABSTRACT. Following Wiener, we consider the zeroes of Gaussian analytic functions in a
strip in the complex plane, with translation-invariant distribution. We show that the vari-
ance of the number of zeroes in a long horizontal rectangle [—T,T] x [a, b] is asymptotically
between ¢TI’ and C'T?, with positive constants ¢ and C. We also supply with conditions (in
terms of the spectral measure) under which the variance grows asymptotically linearly with
T, as a quadratic function of 7', or has intermediate growth. The results are compared with

known results for real stationary Gaussian processes and other models.

1. INTRODUCTION

The distribution of zeroes of random functions for various ensembles has been a subject
of deep study, with motivations from analysis, mathematical physics, engineering, random
matrix theory and probability. One prominent example is zeroes of real stationary Gaussian
functions (SGFs), which were studied extensively in the mid-20th century (e.g. [5]) with the
development of the theory of random signals. In the last two decades, zeroes of complex
Gaussian Analytic Functions (GAFs) have drawn much attention, as they are one of the
few natural examples of point processes with local repulsion and suppressed fluctuations -
features used to model electrons (see [16]). As a first step towards analyzing these models,
elegant formulas were given for the expected number of zeroes in a region (See [19, 30] for
the real case, and [§] for the complex case). However, in order to understand the behavior
of a random system, one must estimate the fluctuations around the mean. This is generally
a hard task, which received much attention with only partial success. We will briefly survey
some of the literature in Section [[.1l

In this paper we consider the zeroes of complex Gaussian Analytic Functions, whose distri-
bution is invariant under real shifts (i.e., stationary GAFs). Being on the one hand complex
analytic, while on the other hand stationary in the real sense, these random functions have
common properties with both models mentioned above. Stationary GAFs were studied by
Paley and Wiener in the last chapter of their celebrated treatise [28, Ch. X], where they
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prove a “law of large numbers” for the zeroes in large rectangles under certain spectral condi-
tions. This result was extended in a preceding work [10], where unnecessary conditions were
removed, and a formula for the expected number of zeroes was developed.

At present we study the variance V' (7T') of the number of zeroes of a stationary GAF in
[-T,T] X [a,b], giving a detailed description of its possible asymptotic growth. We identify
which processes demonstrate quadratic growth of V(7T') (Theorem , and supply sufficient
and necessary conditions for V(T') to be asymptotically linear (Theorem [2{and respectively).
The case of linear variance is of particular interest, as this indicates that at large scale the
zero process is “nearly independent”. In Theorem [2| we also prove that V(T') is always at
least linear in T', which indicates that the zeroes are never “super-concentrated” around their
mean. The last result is probably the most difficult and interesting part of our work.

Our methods require various tools from harmonic analysis, classical analysis and probabil-
ity. In order to acquire our results we derive an asymptotic formula for V(T") (Proposition .
This formula consists of a series of non-negative terms involving the spectral measure, and
is therefore relatively easy to analyze. Ideas from this paper were already used for studying
the winding number of Gaussian functions from R to C, in a recent work with Buckley [2].

1.1. Related works. In this section we discuss related models of zeros of random functions,
with emphasis on the work done to determine fluctuations and large-scale behavior.

As mentioned above, the direct real analogue of our setting is the zero-set of real Gaussian
stationary processes. Though expectation of the number of zeroes was known, the variance
remained untackled for many years. Cramer and Leadbetter [5] obtained an asymptotic for-
mula for the variance in 1967, but the rate of growth could not be inferred from it. In 1976
Cuzick [6] was able to show that, under some technical assumptions, if the growth of the
variance is linear then the number of zeroes in [T, T]| satisfies a Central Limit Theorem
(CLT). It was only fifteen years later that Slud [32] obtained accessible conditions (in terms
of the covariance kernel) for this assumption to hold. To do so Slud used primarily a so-
phisticated method for stochastic integration which he developed jointly with Chambers [4].
Unfortunately, this method involves many computations specifically tailored to tackle the
real case, which do not generalize to the complex setting easily. Consequently, while some
of our results for the complex case are very similar to those of Slud (see Remark below),
the methods are different and, very likely, may be more widely applied.

Another model which remained popular since the 1960’s is zeroes of Gaussian trigonometric
polynomials of large degree N in the interval [0, 27]. It was only in 2011 that Granville and
Wigman [I4], using similar methods to those of Cuzick and Slud, were able to show that
the variance of this number is linear in NV and a CLT holds. Their main observation was
that, under a proper scaling limit, this model becomes stationary. On the sphere, a basic
wave model is random spherical harmonics, also known as arithmetic random waves. In this
model a Gaussian measure is endowed on the space of eigenfunctions belonging to the N-th
eigenvalue of the Laplacian on the sphere (which equals N(N + 1)), and the resulting nodal
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line is studied. Wigman [36] showed that, while the expected length of a nodal line is of order
N, the variance is surprisingly of order log N due to unexpected cancellations.

One of the most well-studied models is random polynomials with i.i.d. coefficients, due
to its simplicity and strong relations with mathematical physics and random matrix the-
ory (see [12]). Kac [19] showed that for Gaussian coefficients the average number of real
roots is asymptotically logarithmic in the degree. This stimulated many works to estimate
the variance, which was finally retrieved by Maslova [23]. Several other notable advances
about the distribution of zeroes were made quite recently, e.g. concerning universality (see
Kabluchko-Zaporozhets [I8], Nguyen-Nguyen-Vu [27], Soze [34], 35]), large deviations (see
Zeitouni-Zelditch [37], Ghosh-Zeitouni [13]) and critical points (see Hanin [I5]).

A natural extension of random polynomials are Gaussian analytic functions (GAFs, men-
tioned above). This has been a flourishing topic in recent years, as is accounted by the recent
monograph [16] and the survey papers [24, 25]. For the planar GAF, a special GAF whose
zeroes are invariant under all planar isometries, fluctuations of zeroes were studied by Sodin-
Tsirelson [33] and Nazarov-Sodin [26]. They proved linear growth of the variance and a CLT
for the zeroes in large balls (as the radius approaches infinity). Interestingly, the variance
of smooth statistics of the zeroes decays as the radius grows, a difference which reflects high
oscillations of random zeroes near the boundary. The results of the current paper establish
this phenomena for a much larger family of GAF's, namely, that for “well-behaved” stationary
GAFs the fluctuations of the zeroes are caused only by fluctuations near the boundary (see
conditions in Theorem . However, as Theorems |1| and [3| show, for other stationary GAFS
the fluctuations may be much larger, reflecting a strong dependency between distant zeroes.

Lastly, we mention that mean and fluctuations of zeroes of Gaussian functions on more
general manifolds were studied in a series of papers by Bleher, Shiffman and Zelditch, see [3,

31] and references within.

1.2. Definitions. A Gaussian Analytic Function (GAF) in the strip D = DA = {z: |Imz| <
A} is a random variable taking values in the space of analytic functions on D, so that for
every n € N and every z1,...,2, € D the vector (f(z1),..., f(zn)) has a mean zero complex
Gaussian distribution.

A GAF in D is called stationary, if it is distribution-invariant with respect to all horizontal
shifts, i.e., for any t € R, any n € N, and any z1,...,2, € D, the random n -tuples

(f(z1)s---, f(zn)) and (f(z1+1t),..., fzn+1)

have the same distribution.
For a stationary GAF in D, the covariance kernel

K(z,w) = E{f(2)f(w)}
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may be written as
K(z,w)=r(z—w), zwe€ DAD
For t € R, the function r(t) is positive-definite and continuous, and so it is the Fourier

transform of some positive measure p on the real line:

r(t) = Flpl(t) = /R e2 ().

Moreover, since r(t) has an analytic continuation to the strip Daa, p must have a finite
exponential moment:

(1) for each |A1] < A, / 2281 gp(\) < o0,

The measure p is called the spectral measure of f. A stationary GAF is degenerate if its
spectral measure consists of exactly one atom.

For a holomorphic function f in a domain D, we denote by Z; the zero-set of f (counted
with multiplicities), and by n; the zero-counting measure, i.e.,

oeanD): [ pladnga) = 3 o),
D
ZEZf
where Cy(D) is the set of compactly supported continuous functions on D. We use the

abbreviation ns(B) = [ dny(z) for the number of zeroes in a Borel subset B C D.
B

1.3. Results. First, we present a previous result which will serve as our starting point. This
result can be viewed as a “law of large numbers” for the zeroes of stationary functions.

Theorem A. [I0, Theorem 1] Let f be a stationary non-degenerate GAF in the strip Da,
where 0 < A < oco. Let vy be the non-negative locally-finite random measure on (—A, A)

defined by
1
vir(Y) = ﬁnf([—T, T)xY), Y C(—A,A) measurable.
Then:

(i) Almost surely, the measures vy converge weakly and on every interval to a measure vy
when T — o0.

(ii) The measure vy is not random (i.e. varvy = 0) if and only if the spectral measure ps has

no atoms.

(iii) If the measure vy is not random, then vi(Y) = Eny([0,1] x Y') and it has density:

At Adp(\ 2
L) = 4 (fféf 64@”&&))) — - g ().

L To see this, first observe that for any x,y € R the covariance E(f(z)f(y)) depends only on (z — y), so
that K(z,y) = r(z — y) for some real-analytic function r : R — C. Now note that the functions K (z,w) and
r(z —w) are both analytic in z, anti-analytic in w, and coincide for z,w € R, thus must be equal on the entire
strip Daa.
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In the above and in what follows, the term “density” means the Radon-Nikodym derivative
w.r.t. the Lebesgue measure on R.

A natural question is, how big are the fluctuations of the number of zeroes in a long
rectangle? More rigorously, define

Ry’ = [-T,7) x [a,8], V"(T) =var [ng(R}")],
where for a random variable X the variance is defined by
var (X) =E (X —EX)?.

We are interested in the asymptotic behavior of V]f ’b(T) as T approaches infinity. The
next theorems show that VJ? ’b(T ) is asymptotically bounded between ¢I' and C'T? for some
¢,C > 0, and give conditions under which each of the bounds is achieved. We begin by
stating the upper bound result, a relatively easy consequence of Theorem [A]

Theorem 1. Let f be a non-degenerate stationary GAF in a strip Da. Then for all —A <
a < b <A the limit

V(l,b(T)
Ly = Ly(a,b) := lim fT2

T—o0

€ [0,00)

exists. This limit is positive if and only if the spectral measure of f has a non-zero discrete
component.

The lower bound result, which is our main result, is stated in the following theorem.

Theorem 2. Let f be a non-degenerate stationary GAF in a strip Da. Then for all —A <

a < b< A the limit
V()
Ly =Li(a,b) := lim T

T—o0

€ (0, 00]

exists. Moreover, the limit Ly(a,b) is finite if p is absolutely continuous with density dp(\) =
p(A)dA, such that

(2) (1 + X2)e*™ 292 p(\) € LA(R), fory € {a,b}.
Several remarks are due before continuing.

Remark 1.1. Another form of condition is the following: For y € {2a, 2b},
/ 7 (z + iy) |2 dz, / 7" (x4 iy)|*dz < oo.
R R

This implies also that [ [r/(z+iy)|*dz < co. Moreover, since the set {c : €*™“*p(\) € L*(R)}
is convex, it implies the same condition for all y € [2a, 20].

Remark 1.2. It is interesting to note that condition is precisely the condition that Slud
gave in [32] for linear variance in the case of real (non-analytic) stationary Gaussian processes
(with @ = b = 0). Nonetheless, no direct implication between the results is known and the
methods to obtain them are quite remote.
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As for the first part of Theorem 2, we would expect an analogue to hold for real stationary
Gaussian functions; that is, that under mild conditions, the variance of the number of zeroes
in [—T,T] is always at least linear in T'. To the best of our knowledge, this is yet unknown.

Remark 1.3. In case condition holds, we shall give an expression for the limit L, as a
convergent series of the form:

Vi b o) 2

Y kZZI/R (p*k(A))

Here p** denotes the k-fold convolution of p, and wZ’b()\) is a positive function which can be

wP(\)dA.

computed explicitly in terms of a, b, k and r(2ia), r(2ib) (and no other reliance on p).

The next theorem deals with conditions under which L (a,b) is infinite, i.e. the variance
is super-linear.

Theorem 3. Let f be a non-degenerate stationary GAF in a strip Da.

(i) Suppose J C (—A,A) is a closed interval such that for every y € J, the function
A= (14 A2)e?™ 292 p(N\) does not belong to L*(R). Then for every a € J the set
{Be€J: Li(a,B) < oo} is finite.

(ii) The limit Li(a,b) is infinite for particular a,b if either p does not have density, or,
if it has density p and for any two points A1, Aa € R there exists intervals I, Is such
that I; contains \; (j =1,2) and

3) (1+2)e*™#2p(A) & LR\ (I U I2)),
or at least one of the values y = a or y =b.
f y y

Remark 1.4. There is a gap between the conditions given for linear variance (in Theorem
and those for super-linear variance (in Theorem . For instance, the theorems do not decide
about all the suitable pairs (a,b) in case the spectral measure has density ﬁﬂ[,m] (A). On

the other hand, we are ensured to have super-linear variance in case p has a singular part.
If p has density p € L'(R) which is bounded on any compact set, then (1 + A\?)p(\) € L?(R)
implies asymptotically linear variance, and (14 A)p(\) ¢ L?(R) implies asymptotically super-

linear variance.

Remark 1.5. Minor changes to the developments in this paper may be made in order to
prove analogous results regarding the increment of the argument of a stationary GAF f along
a horizontal line. Namely, let V**(T) denote the variance of the increment of the argument
of f along the line [0,7] x {a} (for some —A < a < A). Then:

Vae(T)
T2
if the spectral measure contains an atom.

e the limit L;(a) = limp_o0 Va’;(T) exists, belongs to (0, oo}, and is finite if p has density

p(A\) such that (1 + A2)e2™2% p(\) € L?(R). Moreover, Li(a) is infinite if for any

o the limit Ly(a) = limp_, o exists, belongs to [0, 00), and is positive if and only
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Ao € R there is an interval I containing Ao such that the measure (1 4+ \)e?™2 dp())
restricted to R\ I is not in L?(R).

In our recent work with Buckley [2] we extend these statements to hold for a differentiable
(not necessarily analytic) Gaussian process from R to C. Also notice that the first item is
essentially proved in this paper (Claim [3| below).

The rest of the paper is organized as follows: Theorem [I| concerning quadratic growth of
variance is proved in Section [2] and is mainly a consequence of Theorem [A] In Section [3| we
develop an asymptotic formula for Vfa’b(T) /T (Proposition 2 below), which will be used to
prove Theorems 2] and [3] in Sections [4] and [5] respectively. Appendices [A] B] and [C] include
proofs of some technical lemmas.

1.4. Acknowledgments. I thank Mikhail Sodin for his advice and encouragement, and
Boris Tsirelson for some useful suggestions. I am grateful to Jeremiah Buckley for contribut-
ing most of the arguments in Appendix [B] Alon Nishry and Igor Wigman have read the
original draft carefully and pointed out subtle errors, for which I am thankful. Lastly, I
thank the referee for an attentive reading and for simplifying several proofs.

2. THEOREM [I} QUADRATIC VARIANCE

Recall the notation Ry = R;’b = [-T,T) x [a,b]. From Theorem |A| we know that

R
lim nf( 7)

T—o0

=Z,

where Z is some random variable and the limit is in the almost sure sense. Moreover,
var Z > 0 if and only if the spectral measure of f contains an atom. The theorem now follows
lim M = lim var M =var | lim M = var Z.
T—o0 T2 T—o0 T T—o0 T

The exchange of limit and variance in the middle equality is justified by the following propo-
sition, which is proved in Appendix [A]

Proposition 1. Let f be a stationary GAF in Da, and —A < a < b < A. Denote Xp =
nf(R%’b)/T. Then there exist C,c > 0 (depending on p, a and b) so that:

sup P(X7 > s) < Ce™ .
T>1

3. AN AsYyMPTOTIC FORMULA FOR THE VARIANCE

This section is devoted to the derivation of a formula for the variance V]? (T) = varn (=T, T]x
[a,b]) where T is large. We prove the following:

Proposition 2. Let f be a stationary GAF in Da with spectral measure p. Suppose p has
no discrete component. Then for any —A < a <b< A, and any T € R, the series

abiry — L 1//.2 oy pab “k <k
(T = W;W X RTsmc 2rT(\ — 7)) by (A + 1)dp™* (N)dp™*(7)
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converges, and

lim
T—o0

<V'Z;T) - v“’b(T)) =0.

Here p** is the k-fold convolution of p, sinc(z) = S22 and

2
R () = ()™ — (V™)
where fory € (—A,A),k € N we write

0 2™y 0 1 2
Y — —2my Y —
W) =g, <rk<2z'y>) 9y (r'f@iy))*rk(%gﬁ

We begin with some definitions and facts that will be needed along the proof.

3.1. Preliminaries.

3.1.1. Tools from Harmonic Analysis. In this section we discuss some operations on measures
and their relation to the Fourier transform.

Denote by M (R) the space of all finite measures on R, similarly M™(R) denotes all finite
non-negative measures on R. For two measure u,v € M(R) the convolution pu+v € M(R) is

a measure defined by:

Vo € Co(R) : (p+v)( // A+ 7)dp(N)dv (7).

When both measures have density, this definition agrees with the standard convolution of
functions. We write p** for the iterated convolution of y with itself k& times.

for a measure p € MT(R) having exponential moments up to 2A (i.e., obeying con-
dition )7 and a number y € (—2A,2A), we define the exponentially rescaled measure
py € M (R) by

Ve € ColR) : py(p) = n(E™p(N)) = /R A o(\)dpu(N)

Observation. For any p,v € M(R) and any |y| < 24,
(*V)y = by * Vy.

Proof. for any test function ¢ € Cy(R) we have:

/ (11y * 1) // (A +7) dity (N dy (7)
= [[ e e duyavtr) = [ ¢ diur),
O

Corollary. If p € MT(R) is such that (1)), then for any |y| < 2A and k € N we have

(py)** = (p**)y, so there will be no ambiguity in the notation pzk.
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Next, we define for p € M(R) the flipped measure flip{u} € M(R) b
flip{p}(I) = p(—I) for any interval I C R,
and the cross-correlation of measures u,v € M(R) by:
wxv = pxflip{v}.

An alternative definition, via actions on test-functions, would be:

Vo € Co(R) : (jrv)( // A — D)du(N)du(r).

Notice that the cross-correlation operator is bi-linear, but not commutative. In all following
expressions, convolution precedes cross-correlation.

We are now ready to prove a lemma relating these notions to the Fourier transform.
Lemma 3.1. Suppose p € MT(R) obeys (1), and r = F[p]. Then, for any |y| < 24, z € R
and k € N:

(e + i) P = Floik otk (@),

This measure acts on a test-function ¢ € Co(R) in the following way:

(o3 5 p3F) // )e2 Otk () dp*E (7).

Proof. Fix k € N. Since r(z) = F[p](z), by a standard property of Fourier transform one has
rk(2) = F[p**](2). Writing z = = + iy, this reads

rk(a; + Zy) — / efZWierQﬂyAdp*k()\)'
R

This implies:
o 'z +iy) = Flpy](x)
o 7Rz +iy) = Floj*](—x) = Flflip{p}*}](2),
which leads to
(2 + iy)[** = Floy" « flip{p;"}](x) = Flpy" % p3*)().
O

Also useful to us will be the following special case of Parseval’s identity for measures (see
Katznelson [20, VI.2.2]):

Lemma 3.2. For any finite measure v on R,

/ 5 <1 - ’2”;[) F)(z)dz = /R 2Tsinc? (27 TE)dy(€).

—2T

where sinc(§) = 5125 and F[v] is the Fourier transform of ~y.
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3.1.2. Properties of a “normalized” covariance function. Here we summarize some properties
|r(z+ia+ib)|?
r(2ia) r(2ib)
later in our proofs. In the following, when we do not specify the variables we mean the

of a normalized version of the covariance function, namely , which will be used

statements holds on all the domain of definition. We use the subscript notation for partial

derivatives (such as g, for %q).

Lemma 3.3. The function

o |r(z +ia + ib)]2
a(,a,b) = r(2ia) r(2ib)

is well-defined, infinitely differentiable on R x (—A, A)?, and satisfies the following properties:

1. q(z,y1,y2) €[0,1].
q(z,y1,y2) = 1 if and only if (x =0 and y1 = y2).

2. sup,cr q(z,y1,y2) <1 for any y1 # y2 in (—A, A).

3. For fized y1 and ya let gy, 4, (x) be one of the functions q, qa, @b, qap evaluated on the
line {(xz,y1,y2) : * € R}. Then gy, 4, € L°(R). If condition holds, then for any
Y1, Y2 € [a,b] we have also gy, 4, € LY(R)NCo(R) (i.e., is integrable and tends to zero
as r — +00).

4. q4(0,t,t) =0, for any t € (—A,A).

Proof. Since r(2iy) > 0 for all y € R, the function ¢ is indeed well-defined; differentiability
follows from that of r(z).
For item 1, notice that

—2mix 2
(f 627r(a—|—b))\6 2 ’\dp()\))
e27r~2a)\dp(/\) f e27r-2a>\dp()\)

q(x,a,b) = T

and so, by Cauchy-Schwarz, is in [0,1]. Equality ¢(z,a,b) = 1 holds only if the function

A= 627r-a)\6727ri93)\ : 27-bA

is a constant times the function A — e , p-a.e., but, if p is non-atomic,

this is impossible unless z = 0 and a = b.
Further, we notice that

|r(z + ia + ib)| = '/eQW(aJ“b))‘e_z’rix’\dp()\)’ < /62“(“+b)>‘dp(/\) = r(ia + ib),

so that q(z,a,b) < q(0,a,b) < 1 (the right-most inequality is by item 1). Taking the supre-
mum yields item 2.

For item 3, notice any one of the functions q, g4, ¢s, ¢up is the sum of terms of the form
(4) C(a,b) 79 (z + ia + ib) "™ (—z + ia + ib),

where 0 < j,m < 2 are integers. It is enough therefore to explain why 7U)(z + ia + ib) is
bounded and approaches zero as x — £oo, for any integer 0 < j < 2. Recall that

r9(@ +iy) = ¢; FIN ™ dp(N)] (),
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where ¢; is some constant. As a function of x, this is a Fourier transform of a non-atomic
measure, therefore has the desired properties.

If condition holds, then dp(\) = p(\)d), and the function A — M e2"W1+¥2)Ap()\) is in
L%*(R). Then, its Fourier transform ) (x + iy, + iy2) is also in L*(R), and each term of the
form is in L'(R), as anticipated.

For item 4, notice that for all x € R and all a,b € (—=A,A) we have the symmetry
q(x,a,b) = q(z,b,a), and therefore for all t € R: q,(z,t,t) = qp(z,t,t). On the other hand,
for all t € (—A, A) it holds that ¢(0,t,t) = 1, so taking derivative by ¢t we get ¢,(0,¢,¢) - 1 +
qp(0,t,t) - 1 = 0. This proves the result. O

We are now ready to begin the proof of Proposition

3.2. Integrals on significant edges. The boundary of the rectangle Ry = [-T,T] x [a, b]
is composed of four segments dRr = |J, ;<4 I; with induced orientation from the counter-
clockwise orientation of ORy, where I; ;_[—T, T] x {a} and I3 = [T,—T] x {b}. By the
argument principle,
ny(Rr) = Z %&Targf,
1<i<4

where Al arg f is the increment of the argument of f along the segment I; (a.s. f has no
zeroes on the boundary of the rectangle R E[)
Then, by the argument principle,

1
(5) V]?’b(T) =var [ny(Rr)] = oo Z cov (A;f arg f, A;TF arg f),
1<i,j<4
where
cov (X,Y) = E[XY] - EX - EY.

Our first claim is that asymptotically when 7' is large, the terms involving the (short)
vertical segments are negligible in this sum.

Claim 1. As T — oo, one has:

V;’b(T) =z Z cov (A;‘F arg f, A;*F arg f) + O <1 + \/Var (AT arg f) + y/var (AT arg f)) .
ije{1,3}

2 To see this, first notice that the distribution of ng(I;) for j = 2,4 (the number of zeroes in a “short”
vertical segments) does not depend on T. If it were not a.s. zero, then Ens(lz) > 0. Now for any finite
set of points {t;}).; C [0,1], we have Eny([0,1] x [a,b]) > Z;.VZI Enyg({t;} % [a,b]) = NEnjs(l2), yielding
Eng([0,1] X [a,b]) = oo - which is false. For j = 1,3, recall that since there are no atoms in the spectral
measure, f is ergodic with respect to horizontal shifts (this is Fomin-Grenander-Maruyama Theorem, see
explanation and references within [I0]). This implies that each horizontal line (such as L, = R x {a}) either
a.s. contains a zero or a.s. contains no zeroes. If the former holds, then also Ens([0,1] x {a}) > 0, and the

measure vy from Theorem |Alhas an atom at a - contradiction to part (iii) of that Theorem.
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Proof. We demonstrate how to bound one of the terms in involving a “short” vertical
segment (corresponding, say, to i = 2). By stationarity, var (A2 arg f) = var (A arg f) =
Applying the Cauchy-Schwarz inequality, we have:

cov (Af arg f, AL arg f) < \/Var (AT arg f)\/var(AQT arg f)

var (AT arg f).

O

Let us now give an alternative formulation of Claim [I Using Cauchy-Riemann equations,

we have:

T T
Aipargf:/_T ((iargf(m—&—ia)) dx = —/_T;)alog\f(x+ia)]dx = —-XYT)

Ox
Denoting C**(T) = cov (X*(T), X*(T)) we may rewrite Claim [1| as

VIHT) = g (€)= 200) £ CP(1)) 4.0 (14 VTHT) +\fCPH(T) )

or alternatively:

Tro T o
Agargf:—/T (argf(a:—}-ib)) da::/Tablog\f(x+¢b)|dxsz(z’)

Claim la. As T — oo, we have:

VeNT) _ Co(T) - 204M(T) + CUNT) (1 +/Coa(T)

or 472 . 2T T

+ \/Cbﬂb(T)>

where

cvd (T {/ dt/ ds <1ogyf(t+m)y 1ogyf(s+zb)y)}
—E{/_Taaalog|f(t+m)|dt} {/_igblogﬁ(sn%b)ds}

3.3. Changing order of operations. Our goal now is to prove the following:

(6)

Claim 2.

0 e[ f

The meaning of this formula for C*%(T) is as follows: on the RHS, first take the mixed
partial derivative (as if a # b), then substitute b = a and integrate by t and s.

7 cov (log | f(t +ia)|, log|f(s+1ib)|)dt ds.

The proof is an application of the following two lemmas, which are proved in Appendix
In both, we assume f is a stationary GAF in Da, and a,b € (—A,A) (not necessarily
different).

Lemma 3.4. For any T > 0 the following integrals are finite:
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T\ f(t+ia)
an [ R

/
(A-TT) // Lt +ia) fl(s+ib)| oo oo
f(t+1ia) f(s+1ib)

dt < oo.

Lemma 3.5. For almost allt,s € [-T,T)?,

(BI) E [3 log | f(t—H'a)@ - 8E[log\ f(t+z'a)|]

da Oa
ok . . 9? : .
(B0 | 5o o 0+ il log (s + )| = 5758 gl + i)l og s + ).
Proof of Claim[2 Recall the definition of C**(T) in (), and notice that
d . f'(z+ ia)
®) plolfe i < [FE

Step 1: Exchange integrals and expectation: By and Lemma we may apply Fubini’s

(t +ia)| log|f (s +ib)[}

ab
ey = [ [ (5
da

Step 2: Exchange the order of expectation and derivative inside the integral by ¢ and s.
This is justified directly by Lemma We arrive at the desired form. (|

theorem to get:
0 . 0 .
—E—log|f(t+m)]E% log | f (s +ib)| |dt ds.

3.4. The error term. Next, we show that the error term in Claim |[la] approaches zero as T’

tends to infinity.

Claim 3. If p contains no atoms, then for any a € (—A, A):
a,a(T
lim oo (T)

= 0.
T—oo T2

Proof. Since p has no atoms, f is an ergodic process (this is the classical Fomin-Grenander-
Maruyama theorem, see [10, Theorem 4| and references therein). Thus, by the ergodic
theorem,
9) lim lX“(T) =EX“%1), almost surely and in L.

T—oo T
Recall X*(T') has finite second moment (this is precisely relation (A-II))). Therefore, the
convergence in @ is also in the L? sense (this is an easy adaptation of the proof for L'
convergence, see [7, Exercise 7.2.1]). We conclude that:

: 1 a _ a,a _
Th—Igo T2var(X (T))—Thm C (T)=0.

Claims [Ta] , 2| and [3] give together:



14 N. D. FELDHEIM

Corollary.

Ved(T)  Cv(T) —20%%(T) + C**(T)
2 4m2 . 2T

where C4*(T) is given by (7).

(10)

+o(1), T — oo,

3.5. A formula in terms of the covariance function. Our goal now is to replace ([7]) by

a simpler formula, using the covariance function. This is done in the next claim.

Claim 4.
(11) CoN(T) _ 1/2T _ =l & gqzab)t
2T 2 _oT 2T 80/ 6b kQ ’
k>1
where
(12) o, a,b) = |r(x + ia + ib)|?

r(2ia) r(2ib)

For the proof, we will need the following Lemma, which is a direct consequence of a lemma
by Nazarov and Sodin [26, Lemma 2.2] (see also [16, Lemma 3.5.2]).

Lemma 3.6. If £ and n are centered jointly complex Gaussian random variables, then:

o0 _ k
1o~ 1 ([ E@En)?
log €], 1 e N (e 1/l
cov (l0g |¢.loz ) 4Z;W(EQ%WP
Proof of Claim[j. Taking £ = f(t +ia) and n = f(s+ ib), we have due to stationarity:

Bl _ B(+iafGIm)P _e-stiar it _ oo
E|€2E[[2 ~ E|f(t+ia)PE|f(s +ib)2  r(2ia)r(2ib)  ° @ 9)-

Therefore, by Lemma equation becomes:

= 1
ced(T // { > sl s,a,b)k}dtds
Gaﬁbk:

12T || qxab
_2/2T<_2T> aaabz de.

k>1

In the last equality we used that fTT fTTQ(t — s)dtds = QIE;FT(QT — |z|)Q(x)dx for any
Q € LY([-2T,2T))), which can be proved by a simple change of variables.
All that remains in order to get (11} , is to prove that

a,b)” 9 q(x,a,b)"

q(z,
(13) Ve 70, 54 abz K2 9a 0b k2
k>1 k>1

Fix x # 0. For shortness, we do not write the variables (x, a, b), and use again the subscript

notation for partial derivatives. We compute:
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Sa,b o 82 k _ qab’ k == 1
N A - bt
“ k(k —1)¢"2quqp, +hq"* 1qup k> 1.
Therefore,
SCL,b T B 1 B
ka() < qk 2‘QaQb‘ + Eqk 1|qab|.

By part 1 of Lemma q(z,a,b) < 1 (notice this holds also if @ = b). We deduce that
Sa,b

= |%
this is enough to prove equality . Claim M| follows. g

< o0. i.e., the RHS of converges in absolute value. By standard arguments,

3.6. A formula in terms of the spectral measure. In this section, we finally prove
Proposition [2, by carefully moving to the spectral representation of the formula we had at
hand.

Proof of Proposition[3 Using Lemma and the definition of ¢ in (12)), we get

Flpzky * pik ] ()

b)F =
q(x,a,b) rF(2ia) 7% (2ib)
Define
5?2 0% [ Flpk, « pik,1(x)

b k a+b a+b

! = b — :
(14) S, (x) 90 b {Q(ﬂ:,a, ) } a 6(){ rk(2ia) r¥(2ib)
Observation.

S (@) = F [ e+ ek (@)

where 14(N),18(X\) are linear functions in A, given by

5O = 5, (ké)) + R = i) (‘ik :/(%) i “> |

Proof. Recall that

Floiy s ita)(o) = [[ O 00t (3)ap (o),

and notice we may differentiate by a and b under the integral, as the result would be contin-
uous and integrable w.r.t. p**. From here, the proof is a straightforward computation. [

Using this observation, we rewrite equation as follows:

ceb(r) _ [ || 1 0> [ Flpshy ok, ) (@)
(15) or /2T (1 - 2T> 2 2k20a Ob | r*(2ia)rk(2ib) dr.

- k>1
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Futher, using Lemma (Parseval’s identity), we have for fixed k,
= 2]\ cab = |z o ok
[ () st@an= [ (1= 5 7 st e tiveits] @
(16) = /R /R 2Tsinc? (27T (A — 7)) 1HA)8 (7)™ T 4 p*k (X)dp** ().
Plugging into , we get:
vty 1 1
f :/ (1 “””') Z 5 (Sp () — 250" (@) + Sp° (w))dx + o(1)

o 4n? | oy oT 2k
(17 WZ%Z [ ( ~ ) (S2) — 25200 + 5L de +of1)
e Zk2//Tsmc 27T (A — )AL (A + 7)dp* (\)dp™ (1) + o(1),
k>1
where
(18) ne () = (O™~ ()™)

The exchange of sum and integral in the second equality of is justified by the monotone

convergence theorem, as each term in the series is non-negative. The last equality follows

from . Equation [17| establishes Proposition O

4. THEOREM 2t LINEAR AND INTERMEDIATE VARIANCE

We dedicate Section to prove some facts which will be needed along the proof. After-
wards, we prove the existence of the limit L; and its positivity in Section [£.2] In Section
we prove Lq is finite under condition .

4.1. Preparation.

4.1.1. Tools from Analysis. First we present two observations about convolutions and inte-
gration. We omit their proofs as they are straightforward.

Observation 4.1. If Q : R — [0,00) is integrable on R, then
T

lim < |x|> x)dx = / Q.

T—00 -T
Observation 4.2. For any 1,12 € Co(R) and p € MT(R)

Jordtsin) = [ @ stinua)
The following lemma shall play a key-role later on in our proof.

Lemma 4.1. Let y € MT(R) (u#0). Then the following limit exists (finite or infinite):

1
li —p(r—e, 7+ Flu
im qu( g, e)du(r /]
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Proof. Denote ¢, = 2—161(,575) for € > 0. Rewriting the integral and using Parseval’s identity,
we get:

1

I,(e) == %

/u<r—e,r+e>du<7>
R
- / (% 02) (7)du(7)
R
- /R (Flu] - Flpe) @) Flu) (—)da

= / sinc(2mex)| Flu|? (x)dx
R

Since |sinc(2mex)| < 1, we have the upper bound I,(¢) < [ |F[u][*(x)dz. Using the Obser-
vation and the fact that . * o, < 29, we get:

/R(u*sos) d(#*@e):/RU*(‘PE*‘PE)CZNSQ/RM*‘P% dp = 2I,(2¢)

On the other hand,
/R(M * @) d(px pe) = / | Flu* @e]|? = / | F[u]|? - sinc?(27mex) dx

2/ | Flu]|? - sinc?(2rex) da
K

for any compact set K C R. Since the limit li%1+ sinc(2mex) = 1 is uniform in x € K, the last
e—

as € — 04. Thus, by choosing K and then € > 0 properly,
2

expression approaches ;. [F[u][?

the lower bound may be made arbitrarily close to [ [F[u]|*. This concludes the proof. O

4.1.2. Lower bounds on h‘f’b. The main goal of this subsection is to give lower bounds on h‘f’b
(defined in (18)). We begin with a simple claim.

Claim 5. The function h'll’b has exactly two real zeroes.

Proof. By the form of h{’, h¥’(\) = 0 if and only if

RO gy (T — i (2ib)) A=(b)’

a L (7) — i (2ia) _
2rb-ax _ 1A _ i) ( ) _ o Av

% [log 7(2iy)]. Since y — logr(2iy) is

A—t(a)
A= (b)
decreasing function, with a pole at 1(b) and with the same positive limit at +oo. Thus, it
2m(b—a) 0

where C' > 0 is a positive constant and ¥(y) = %
a convex function, for a < b we have ¥ (a) < ¥ (b). Therefore, A — C

is a strictly

crosses exactly twice the increasing exponential function e

The next claim will enable us to bound h'll’b from below, on most of the real line. Denote
by z1,22 € R (21 < 22) the two real zeroes of h?’b whose existence is guaranteed by Claim
We also use the notation B(z,d) for the interval of radius § > 0 around x € R.
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Claim 6. For all 6 > 0, there exists cs > 0 such that for all A\ € R\ (B(z1,0) U B(22,9)):

h(f’b()\> > 05(1 + )\2) max(eQa'QTr)‘, e2b~27r)\).

h(ll,b()\) B l‘ll()\)*lll’()\)e%‘—(b_a))‘
(1+>\2)62a-27r)\ - \/1+)\2
limits as |\| — oo, there exist My, ¢, > 0 such that

v|)‘| > M, : h(ll’b()\) > Ca(l + )\2)62[1'2”)"

2
Proof. Since the function ) approaches strictly positive

Similarly, there exist some M, ¢, > 0 such that V|A\| > M, : h'f’b(A) > cp(1 + A2)e?02mA Take
M = max(M,, My). Since h(\) attains a positive minimum on [—M, M\ (B(z1,0) U B(z2,9)),
there exists some ¢ > 0 such that for all A in this set, h(\) > ¢(1 + A\?) max(e?¢2mA, ¢20:274),
Choosing ¢s = min(c, ¢4, ¢p) Will yield the result. O

The next claim is a slight modification of the previous one, in order to fit our specific need.
Denote Diag, = I{(\,7) : |\ — 7| <e}.

Claim 7. For every § > 0 there exist a set F' = F5 = R\ (I UIy) such that I; is an interval
containing z; and of length at most 6 (j =1,2), p(F') > 0, and there exists cs > 0 such that

for all small enough ¢,
h(A+7) > ¢s(1 + (A + 7)?) max (62“‘2”(’\”), eQb’2”(’\+T)) ,
for all A\, 7 € (F x F')N Diag,.
Proof. Choose F =R\ (B (%,80) UB (%,60)) , where o < § is small enough so that p(F) >
0. Then, for € <y and (A, 7) € (F' x F') N Diag,, we have
N+ 7 — 25| > 27 — 2| — [N — 7| > 259 — e > bo.

Choosing the constant ¢s > 0 which is the consequence of applying Claim [6] will end our
proof. O

4.1.3. Conwvergence properties of the functions Sj. Recall the definition of Sg’b in . We
stress, once again, that SZ’“(:L’) denotes the evaluation of the same mixed partial derivative
at the point (x,a,a). Our goal in this subsection is to prove the following Lemma.

Lemma 4.2. If condition is satisfied, then for every k € N the functions S;""(z), Sg’b(x)
and Sz’b(x) are in L' (R) with respect to the variable x. Moreover,
1
22/ Sk(x)dx converges,
k2 Jr
k>1

with any of the three possible superscripts on the letter S.

We will need some convergence properties of the function ¢ and its partial derivatives. The
first follows from part 3 of Lemma [3.3]

Observation 4.3. Let g be one of the functions q,qa,qp 0r qap. Then g(x,a,a), g(x,a,b)
and g(z,b,b) are all in (L' N L) (R) with respect to the variable x.
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The next two claims require some more effort.
Claim 8. The sum ), -4 fR q"quqp dx converges.

Proof. We will show, in fact, that the positive series Y, <1 [r ¢"|¢aqs| d converges.

First, in case we are evaluating at (z,a,b) (a < b), our series converges due to and the
bound in part 2 of Lemma Now assume we are evaluating at (x,t,t) (where ¢t € {a,b}).
As we deal with a positive series, it is enough to show that both

(I) Em21 f_ll 0" qaqp| dz < 00, and
(H) Zle f|z|21 qm|QaQb| dxr < oo.
Denote by C' = sup,cr |qaqs(x,t,t)| € (0,00). The sum in is bounded by

C / q"(x,t,t) doe =C a (x,t,t) doe < C// q(z,t,t) dr,
m>1 |z|>1 lz|>1+ — 4 R

where C’ € (0,00) is another constant. C, C' and [ q(x,t,t)dz are all finite by part 3 of
Lemma 3.3
We turn to show By parts 1 and 4 of Lemma the sum

da v
> " gag| do = ’1a|
—q
m>1
is well-defined for all z (including x = 0). By the monotone convergence theorem, item |(I)| is

then equivalent to

1
/ 9a| (x,t,t) de < oo,
—1 1-— q

which is indeed finite as an integral of a continuous function on [—1,1]. O
Claim 9. The sum }_, -, #H Jr @™ dx converges.

Proof. We use a fact which appears in standard proofs of the Central Limit Theorem (CLT).

For completeness, we include a proof in appendix [C]

Lemma 4.3. Let g € L*(R) be a probability density, i.e., g > 0 and [, g = 1. Suppose
further that

(@) Ja[AFg(N)dA < oo for k=1,2,3 and

()  Jg [Flgl(@)]” dx < co for some v > 1.
Then there exists C > 0 such that for all m > v,

m e
/R Flal(w)l™de < .

We would like to apply Lemma to
RAICTOEON)
r(ia + ib)
Notice that this is the density of a probability measure. This choice also obeys the extra

g%

integrability conditions in the lemma (Condition @ follows from the exponential moment
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assumption , and condition @ with v = 2 follows from the L? assumption ) We see
now that

r(ia + ib)?
e 1P < 1Pl @)

the last inequality following from the log-convexity of y — r(iy). Similarly we define g** and

q(z,a,b) =

have q(z,a,a) = |F[g*%](x)|>. Thus in all three cases of evaluation, using the lemma with

the appropriate function g yields:

d )Pmd
Zm+2/q v m>1m+2/’]: z)l v

m>1
<C < 00,
Z (m+2)v2m

as required. ]

Proof of Lemma[{.9 Taking derivative by the chain rule, we see that:

82 qab7 k - 1
(19) 5k = Ba ab {qk} - f—2 b1
a k(k — 1)¢" *quqp, +kq¢" " qup Kk > 1.

Now, the fact that S;%, SZ’b and SZ’b are in L'(R) with respect to z follows from Observa-
tion 31
We turn now to prove the “moreover” part of the claim. We use in order to rewrite

the desired series:

k:2/Sk
k>1

(20) /Qab dw+2/ "2 00y du + Y - / "2 (qGab — qaqp) da.

k>2 k>2

Once again, all functions are evaluated at (z,a,a), (z,a,b) or (z,b,b) and what follows holds
for each of the three options. By Observation

(21) /Mm<w,/MMW<w /mmm«w,
R R R

and in particular the left-most term in is finite. For the middle sum in ([20]), convergence
follows from Claim [§ and . Convergence of the right-most sum in follows from
Claim |§| and . This ends the proof of Lemma O

4.2. Existence and Positivity. In this section we prove that L, exists and belongs to

ver(r
(0, 00]. If p has at least one atom, Theorem |1|implies that limz_, fig() > 0, and therefore
Ve
Ly =limp_, o ff() = 0o0. We thus assume that p has no atoms.

Using the formula for the variance obtained in Proposition [2| and recalling the functions
hZ’b are non-negative, we see that the limit L; exists and is in [0, 00]. More effort is needed
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in order to establish that L; > 0. We begin with a simple bound arising from Proposition

ViNT) 1
B f _ <2 . a,b *k *k
hTIILIOIéf 5T = 13 hTIgloI;f Elk2//RTsmc @CaT(N—7))h, (A +7)dp™ (N)dp™ (T)
1 .92 a,b
> - _ ’
2 13 llTIgloI;f/ / T sinc*(2nT(A — 7)) h7” (A + 1) dp(X)dp(T)
(22) > Cy liminf / / S T) = A = 71 < hS PO+ 7) dp(N)d(r),
e—0+ R

where Cy > 0 is an absolute constant. the first inequality follows from considering only the
first term in the original non-negative series. The second inequality follows by noticing that
4T
Tsinc?(2rT A) > LT\ : A < 77}
Fix a parameter § > 0, and fix F' = F} to be the set provided by Claim Continuing ,
we have

a,b

lifniio{lzf f21€ ) > cs hmmf//FXF 5 Ipiag. (A, 7) €™ 2a47) g () dp(7)
o 1
— csliminf /F 52 (7= &7+ ) N F) dpaa(r)
1
(23) = ¢slim mf/ —u(r—e,7+¢e)du(r),
e—0 R 2¢e

where p is the restriction of pa, to F, i.e. pu(p) = pao(Ir - ) for any test-function ¢. Notice
that by the choice of F, u(R) = po(F) > 0. By Lemma the RHS of is strictly
positive, and we conclude that L > 0.

4.3. Linear Variance. Consider again the first line of . Recall that, as we saw in
Section each term of the series in the RHS of is non-negative. Therefore, by the

monotone convergence theorem:

Vf“’b(T)

. 1 L. T |z| aa a,b b,b
A o = s A / ( —2T> (57 (@) = 25.7(@) + 5,7 (@)) da,
k>1 -

provided that the limit of each term on the RHS exists. These limits can be computed using
Observation .1k

Vab(
. f aa a,b b,b
Jim = WQ E k;2/ x) =257 (x) + 5 (2)) da,

which is finite by Lemma
Lastly, we explain how to obtain the form of L; appearing in Remark By monotone

convergence theorem, we may take term-by-term limit as 7' — oo in Proposition [2| and get:

y b
. f a,b
Tll_r)réo 2 871'3 E k‘2/ hk (2X)dA € (0,00).
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5. THEOREM [3l SUPER-LINEAR VARIANCE

In this section we prove the two items of Theorem 3] in reverse order.

5.1. Item Super-linear variance for particular a,b. Assume condition holds for
the particular a and b at hand. Fix a parameter § > 0, and let F' = Fj be the set provided
by Claim The premise ensures that, if § is small enough, at least one of the measures
(1+ A)paalr; and (1+ N)pop| i, does not have L?-density. WLOG assume it is the former. At
first, assume also pa,|r is not in L?. Repeating the arguments of the Subsection we get

Vab
lim inf f / Fam

the lower bound

T—o0
where = pag|r and ¢s > 0. The LHS is therefore infinite, and so L1 =
We are left with the case that Apa,|r; does not have L2-density, but pag| F; does (denote it
by p2q). The argument is similar. Continuing from and employing Claim (7| we get

Vfa,b(T ,
lim inf > ¢ lim mf/ / (r—e,r+e) A) (A + 7)"p2a(A) paa(T)dAdT
T—o0 2T ’

> 54 / Mpaa(N)2dA,
K

where K C F' is compact. But, by our assumption, by choosing K properly the last bound
Va,b(T)

can be made arbitrarily large, so that limp_,o f27T = 00

5.2. Item Super-linear variance for almost all a,b. Let p be such that the condition
in item |(i) holds. If p has a singular component, then the condition in item holds for all
possible a,b and so Li(a,b) = co with no exceptions. Otherwise, p has density p(\). Define
the set

E ={(a,b): a,b€ J, a<b, the condition in item [(ii) fails for a, b}.

If E = (), once again Li(a,b) = oo for all a,b € J with no exceptions.

Assume then there is some (ag, bg) € F. This means there exists A1, Ay such that for any
pair of intervals I, Iy such that \; € I; (j = 1,2), both the functions (1+ \2)e?72%0p()\) and
(14 A2)e?™2boAp( ) are in L2(R \ (I; U I5)), but at least one of them (WLOG, the former)
is not in L?(R). Observe that the existence of such Aj, A2 depends solely on p(\), and may
therefore be regarded as independent of the point (ag, by) € E. Moreover, at least one among
A1 and Ay (say, A1) is such that for any neighborhood I containing it, p & L?(I).

Suppose now a,b € E are such that

(24) hP (A1) > 0

where hcf’b()\) = (Ig(N)emar — lll’()\)e%l’)‘)2 is the function appearing in the the first term of
our asymptotic formula, and in the lower bound in inequality . Recall h‘f’b is non-negative

and has only two zeroes by Claim
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We may choose § > 0 smaller than the minimal distance between Ay and a zero of h‘f’b, and
then construct F' = Fj as in Claim @ Certainly A\; € Fj, and so the measure p = pag|p; is
not in L2(R) (it is even not in L?(I) for any neighborhood I of \1). Just as in subsection

we shall get
VE(T)

i f > 2 _
timin L > ¢ /R F ] 2(e)da = oo

We end by showing that for a given point A\; € R and a given a € J, the set of b € J which
do not obey is finite. Indeed, this is the set

{(beJ: hP\) =0 ={be J: ¢la) = ()}

where

o 827r/\1y
— 27ry)\1 Yy _

Suppose the desired set is not finite. Since ¢ is real-analytic, it must be constant on J. But

then r(2iy) = ej;ildy

condition for all relevant a, b. This contradiction ends the proof.

for some ¢,d € R, and the corresponding spectral density would satisfy

APPENDIX A. UNIFORM EXPONENTIAL DECAY OF TAILS

In this appendix we prove Proposition I} We follow closely [10, Proposition 5.1] and [16,
Ch. 7] which prove similar concentration bounds, known as “Offord-type estimates”. We
rely on the following lemma, which follows either from [10, Lemma 6.1] or [16, Lemma 7.1.2].

Lemma A.1. If n ~ N¢(0,02), and E is an event in the probability space with P(E) = p,
then:

p
|E(xrlog|n|)| <p 5 210gp+10g0] .

Proof of Proposition [l Take ¢(z) = ¢r(2) to be a real C? function, whose support is

[-3 =TT+ 3] x [@,V] with —A < d’ <a <b<V <A, and which takes the value 1 on
Rr = [-T,T] x [a,b). We may build such ¢r(z) that will obey also the bound ||A¢[/;1 <
co(T + b — a), where ¢g > 0 is a constant (depending on |A — b| and |a + Al). Fix s > 0.
We are interested in dominating the probability of the event Ay = {ns(Ry) > sT'}. Write
p=pr =P(Ar).

We have .
nplBr) < oo [ Bor(:)log | (2)ldm(2).

and therefore,
ST+ < Bluany(Rr) < E (xargr [ 26(e)log ()l )
— 5 [ A0E Gy log ()] dm)

1
< o 80l swp E(xa, log |f(2))
m z€RX[a’ V]
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The exchange of expectation and integral is justified by Fubini’s theorem, as follows:
| Blao) togl 1)l [am(z) = [ |80 El1og]£(:)]| < supEl1og ()] - |40l < oc.

Applying lemma with n = f(z), we get:

sup  E(xa, log|f(2)]) <p(c1 —2logp).
z€RX[a’,b']

for some constant ¢; > 0 (depending on sup,c(y ) E|f (iy)|?). We conclude that:
ST -p < 52(T+b—a)pler - 2logp),
™
which leads to the exponential bound we strived for:

Je, C > Osuch that pr = P(ng(Ry) >T's) < Ce”, VT' > 1.

APPENDIX B. JUSTIFICATION FOR CHANGING OPERATIONS

In this section we prove Lemmas [3.4] and [3.5]

B.1. Proof of Lemma We begin by showing|(A-I)| Let 1 < p < 2 be arbitrary, and let
q > 2 be such that % + % = 1. Holder’s inequality implies:

T
[ E
-T

where finiteness follows from f’(ia) and f(ia) being complex Gaussian random variables, thus

1t +ia)

T / . 1/ - N |—p1l/
et < [ Bl i B+ )

-T

< E[|f(ia)| ][ f (ia)| 7]/ - T < oo,

having finite moments of any order.

We now turn to prove We use the notation f < ¢ to stand for the inequality
f < C-g, where C > 0 is a constant (which may vary from line to line). Similarly, f = g
stands for f = C - g with some C > 0.

As before, let 1 < p < 2 and take ¢ > 2 to obey % + % = 1. By Hoélder inequality we have

[.]2
FACH

ST

f’t+za f'(s+1ib)
f(t+1ia) f(s+1b)

ldtds

q] 1/q

—p] /P
] dt ds.

—p] VP
"(t +ia) f'(s +ib) ] dt ds

E‘f(t +ia) f(s + ib)

‘f(t +ia)f(s +ib)
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The last inequality is an application of Cauchy-Schwarz inequality and stationarity, as follows:
73
E |
1 1
< (VEIFE+ ia) P EIf(s + b)) = (B[ (i) PIE] £ () ]) % < oo,

where again finiteness follows from f’(ia) and f’(ib) being Gaussian.
Let

"(t +ia) f'(s +ib)

A= {(t,s) €[-T,T1*: |r(t—s+ia+ib)|* <

[SVEI

r(2ia)r(2ib).} .

We split the last integral in into two parts: on A and on A¢ = [T, T]?\ A. For the
integral on A we use the following lemma:

Lemma B.1. Suppose &1, & are independent N¢(0,1) random variables, and let Zy = a&;
and Zy = & + v&2 where a, 8,y € C\ {0}. Let 1 < p < 2. Then

2
E[ 227 ] <lar| 7T (1-2)

We include the proof in Section We apply Lemma with Z; = f(t + ia) and
Zy = f(s+ ib), which yields the choice of parameters «, /3,7 so that

(26) a=+/r(2ia), af=r(t—s+ia+ib), |B*+|y]*=r(2ib).

In particular,

lay| = \/r 2ia)r(2ib) — |r(t — s + ia + ib)|2.
Using this in Lemma we have:
—p\ /P
dt ds

//A <E‘f(t+ia)f(s+ib)

S [[ (i)~ = s+ it ) 7 ar as,

which is bounded by the definition of A. In order to bound the integration on A¢, we use

another lemma (which is also proved in Section [B.3]).

Lemma B.2. Suppose &1, & are independent N¢(0,1) random variables, and let Zy = a&;
and Zy = P& + & where o, 5,y € C\ {0}. Suppose M > 0 is such that |%\ < M, and let
1 <p < 2. Then there exists a constant ¢ > 0, depending only on M and p, such that

2—2p
v

1 c
B [\2122\”] = Bl | B

We apply this lemma again to Z; = f(t+ia) and Zy = f(s+1ib), so the choice of parameters
in remains valid. Thus,
r(2ia)r(2:b)
B r(t—s+ia+ib)2
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is uniformly bounded for (¢, s) € A°. Applying Lemma we get that for some ¢ > 0,

I (el ") e

- // c (r(2ia)r(2ib) — |r(t — s + ia + ib)[2) P\ 7 e
~ e \|r(t — s+ia+ib)P |r(t — s+ ia + ib)[2—2P

(27) < //C (r(2ia)r(2ib) — |r(t — s +ia + Z'b)|2)_pf'%1 dt ds

~

< /~ (r(2ia)r(2ib) — |r(z + ia + ib)‘Q)_ijl dz.
Ac

where A€ is the one-dimensional set
~ 2
A¢={z € [-T,T): |r(z +ia+ib)|* > gr(Qia)r(%b)}.

The last inequality in is obtained by a simple change of variables. One step before that
in we bounded |r(t — s +ia+4b)|~! from above by a constant, using the definition of A°.
Before continuing, we notice that

2
|r(x +ia + ib)|* =

/ e—27ria:>\e27r~(a+b))\dp()\)
R

< </R€27r.(a+b))\dp(>\)>2 (= r(z’a+ib)2)
</Rezw.za/\dp()\)_/Re27r-2a/\dp(/\)

(28) = r(2ia)r(2ib),

and the inequality is sharp when a # b (see also part 2 of Lemma below). Therefore, if
a # b, the last integral in is finite.

In case a = b, there may be only a finite number of isolated points zg for which |r(xzo +
2ia)|? = r(2ia)?. Taylor expansion near any of those points gives |r(z + 2ia)? = r(2ia)? —
C(z —0)% +0((z — 0)?) as = tends to ¢ (here C > 0 since |r(z + 2ia)|> < r(2ia)? by taking
a=>bin ) So, in this case the finiteness of the integral is equivalent to that of

/ (z — mo) 2P~ D/ gy
|z—z0|<d

(with some § > 0), which is indeed finite for 1 < p < 2.

B.2. Proof of Lemma We will justify in detail the second item, as the proof of the
first is similar and simpler.

Fix (t,s) € [-T,T]%2. We may assume that |r(t — s + ia + ib)|? < r(2ia)r(2ib) as the set
of (t,s) € [~T,T)? where this inequality does not hold is of measure zero (see discussion
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following (28))). Consider the random variables

log | f(t +ia+ thy)| —log|f(t +ia)| log|f(s+ b+ ihs)| —log|f(s + ib)|
hl h2 .

These are well-defined for 0 < hy < 41 and 0 < he < do, where 81,92 are properly chosen

U(hy, hy) =

numbers (we use here that almost surely, there are no zeroes on the vertical lines {t} x[a, a+01]
and {s} x [b,b+ d2], as was explained in Section [3.2). Notice that almost surely,

2

| | hi,h
h11—r>1(1)+h2£%+U( 1ha) = da 8b[

Our goal m can be understood as convergence in L!(P) of the above limit. This will
follow if the family {U(h1, h2)}n, b, is uniformly integrable, i.e., if for every ¢ > 0 there exists
k > 0 such that for all relevant hq, ho it holds that

E (|U(h1, ko) | X0 (hy o) zk}) < E-

Uniform integrability, in turn, would follow from the following statement: E|

log | f(t +ia)|log|f(s +ib)| ].

(29) dp > 1: sup E|U(h1,he)P < 0.
hi,ho

Applying the Newton-Leibniz formula, the bound and Jensen’s inequality we get:

U, )| = \

ho B
/ log | f(t +ia +1y1)|710g|f(s 1 ib + i) |y dys
hiha Jo Jo Oy1

o
([

Taking 1 < p’ < % and ¢’ such that 1% + % = 1, we apply Holder’s inqeuality to bound the

dy1 dya
h1 ho

1
Py dy "
hi ho

(s +ib+iy1)

J;/(t +ia + iy1)

7

—(s+ib+iy1)

J}/(t +ia +iyp)

last expression by

ha i  dy, d
</ / E|f (t +ia +iy1) f'(s+ib+ iys)|P ¢ y2>
h1

1

ha
1
h2 hl /d d E
% / / E|f(t + ia +iy1) f(s +ib+ iya)| P 2L ZY2
° 0 hl h2

Using Cauchy-Schwarz, the first integral is bounded by

1

2 7
< max B|f'(t +ia+iyy) |7 max Elf(s+zb+zy2)\2pq> o
ui€l0a] 12€[0,65]

3Indeed, suppose holds. Denoting by ¢ the number such that % + % = 1, we apply Holder’s inequality
to get:

E (U (h1, ha)[T{]U (h1, ha)| > k}) < (E[U (ha, ho)[P)VP P (U (B, ha)| > k)Y S k,pl/qy

so the definition of uniform integrability is satisfied.
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which is finite and independent of hy and ho. Applying Lemma with the same choice of
parameters as before, we may bound the second integral (up to a constant factor depending
on p and p') by:

l
2 dyy dya
h1 hg

hi phe
(/ {r(2ia + 2iy1)r(2ib + 2iys) — |r(t — s+ ia + ib + iys + iy2)[*} 2
o Jo
_1
max {r(2ia + 2iy1)r(2ib + 2iy2) — |r(t — s+ ia +ib + iys + iy2)[*} 2,

™ y1€[0,61],y2€[0,82]

which is again finite and independent of hy and hy. Our proof is complete.

B.3. Proofs of auxiliary Lemmas. This part is dedicated to prove Lemmas [B.I] and [B:2]
that were used earlier in this section.

Proof of Lemma[B.1 Using the notations in the statement of the Lemma, we have:

E [|Z125|77] = % / - la&1(861 + 7&)| Pe O  dim (g dm (&)

Now, by the Hardy-Littlewood re-arrangement inequality, we have:

1 2 1 2
~ 186+ gl i) < i~ [ el e e am(e)

=h7r(1-%).
So,
E[|Z122]77] < |an| P T (1 -5 / &1 Pe 6 dm(&y)
2
=|ay|™P T (1 — 5) :

O

Proof of Lemma[B.3. In this proof, the constant hidden by the “<” and “<” notation de-
pends only on M and p. We begin by writing-out the desired expectation explicitly.

E[ 212" ] =|aB| P E [ &7+ 7§1§2|_p}

B
= |aB|™"- 12// 2% + lzw‘fpe_‘zw_'w'? dm(z) dm(w)

(30) —lagl a2 ([ Jul e Pdm(w) ) e an(e)
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We bound the inner integral as follows:

[+ e
N

Y

P
fyw‘ e*‘w‘Qdm(w)

B

_1|B
5/ 2| P dm(w) + |2 e 357
jwl<3| 22|

~ 1z (1- 6_31‘52‘2) + ’ﬁ
Y

where

2
+
: ~/|w|>2’5z‘
(%)
Y

1, 0<s<1,

2
S—pe—4s

2

,Z‘z—pe—i\ng - 'ﬂ
5

I(s)= / lw| P dm(w) <
|w|>2s , s> 1.

The last bound is achieved by changing to polar coordinates, as follows:

X —ptl 2 o1 [T 2 1 L g
I(s) = rPT e dr S s7P e dr <sPT —e .
2s 2s 2s

Returning to the double integral in , we have:
’y _
E [\s%+ F8&| ”}

< o —i\i’zIQ) ‘5 ’ (‘5> Jaf?
N/@{|z| (1 e + S I ’YZ e *"dm(z)

This is the sum of three integrals, which we bound separately. For the first, we have:

8 2
/\2\2” <1 _ >e|z|2dm(z)
C

2

g

2 2
_1|8
i il +[2]7P
v

5/ s \z|2_2pdm(z)+/ ]z\_2p6_|z|2dm(z)
i<|3 ] 17 >3]
Z‘ﬁ2 74—2p+0(1):‘7 2—2p

vl 1B B

Denote A =1+ H%f Before estimating the second integral, we compute

/|z|2_2pe_AZ|2dm(z)
C

~ / P22 AT L g [r=|z| ]
0
1 ® ss\1-p

= — — e °ds s = Ar’
i), (3) s = Ar’

= A—(2-p)

Thus, the second integral is

BI [\ ez (#3120 )1 o 181, 18
o o O < 2 (4

2—2p

2) —(2-p) '

2l
g
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For the third integral we first compute

/ ]z\_Qpe_A‘Zde(z)
l21>13

~ / P2 e A%y [r=|z|]
15
1 [ /ss\—P

_ 2 —S —A 2
54 A (A) e %ds [s ]

oo
< Apl/ sPe Sds ~ APTL.
1/4

Finally, the third integral is

o oo

< 'ﬁ p{ 2| Pe R dim(2) + ’B
Y l2<13] Y

I8P | 'ﬁ”‘l_‘v
N'v 3 +<1+47> ~s

The proof is complete.
APPENDIX C. MOMENTS OF THE CHARACTERISTIC FUNCTION

P/ \z|72p67(1+4‘glz)‘dzdm(z)
ESH

p 2-2p

Here we prove Lemma which estimates moments of the characteristic function (or
Fourier transform) of a probability distribution. We adapt the proof of the Central Limit
Theorem appearing in [11, Ch. XV.5].

Proof of Lemma[{.3 Write G(x) = Flg](z). We may assume that [ Ag(A) = 0 (otherwise
we shall consider, instead of g, the function g,(\) = g(X + p) where p := [ Ag(A\)dA. There
is no penalty since | Flg,|(z)| = |F[g](z)| for all z € R). By assumption [(a)}, G(z) is thrice
differentiable, and by the above assumptions G(0) = 1 and G’(0) = 0.

To prove the lemma, it is enough to show that

lim \/ﬁ/ |G(x)|™dz exists and is finite.
R

m—r0o0

Notice that /m [, |G(z)|™dx = [; |G (x/y/m) |"dz, and so it is enough to show that

()

for some value of @ > 0, which in fact is a := G”(0).
We shall achieve by splitting the integral into three parts, and showing each could be
made less than a given € > 0 if m > v is chosen large enough.

_Lz2
— e 2

(31) lim

m—r 00 R

dxr =0,

‘ m
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Fix R > 0 (to be determined later). By Taylor expansion,
2

(32) G(x) = G(0) + 2G'(0) + x;G”(O) +o(z?) =1+ % +o(z?), =0

and so |G(z/\/m)[™ — e **/2 as m — oo, uniformly in # € [~R, R]. Thus the integral
in computed on [—R, R| converges to zero as m — oo.
From the expansion (32) we get

z2

30 >0V|z| <8: |Gx)| <e T

Consider the integration in for R < |z| < 6/m. For such z we have |G(x/\/m)|" <
o 2 2

e~ 4 , and so the integrand is less than 2¢ T, Choosing R so that 4f§° e T < e will
satisfy our needs.

Lastly, consider the integration on d\/m < |z| < oo. By properties of Fourier transform,
1 1= Sup|y>s |G(z)| € (0,1). Thus

/ ' ’G (x)‘ — 6_2‘ de <™V \/m/ |G” —i—/ e 2 dr<e,
2] >8 /i Vm R e 25/

for m large enough. Here we have used condition @
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