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We show that for any centered stationary Gaussian process of absolutely integrable

covariance, whose spectral measure has compact support, or finite exponential

moments (and some additional regularity), the number of zeroes of the process in

[0, T] is within ηT of its mean value, up to an exponentially small in T probability.

1 Introduction

The study of zeroes of stationary Gaussian processes goes back at least to Kac [11]

and Rice [20]. Since then, much work on this topic appeared in the statistics, physics,

mathematics and engineering literature. One of the earliest and most fundamental

results in this area is the Kac–Rice formula, which calculates the mean number of zeroes

in any interval. A similar formula may be written for the variance of the number of

zeroes and for any higher factorial moment, but these are much harder to analyze. It was

only many years after Kac and Rice formula that fluctuations and central limit theorems

were better understood, with works by Cuzick [6], Slud [22], Azaïs-León [3], and others.
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9770 R. Basu et al.

Questions of large deviations, that is, estimation of the rare event of having many more

or much less zeroes than expected in a long interval, remained almost unexplored. One

particular such event is that of having no zeroes at all in a long interval, which is also

known by the name of “persistence”. Results (and speculations) about this event were

initiated by Slepian [21] and were better understood only recently [9].

In the meantime, complex zeroes of certain Gaussian analytic functions received

much attention. Most notably, zeroes of the Fock–Bargmann model were introduced

by Sodin–Tsirelson [23] and extensively studied by many authors since then. This

model has a remarkable property; its zeroes form a point process in the plane with

quadratic repulsion and invariance of distribution under all planar isometries. Sodin–

Tsirelson proved the asymptotic normality of these zeroes in [23] and, moreover, an

exponential concentration of the zeroes around the mean in [24] (see also [13, 18]

for more about concentration and [17] for finer results on asymptotic normality).

Exponential concentration was proved for other related models, such as nodal lines

of spherical harmonics in [16]. Inspired by these works, the question of concentration

for real zeroes got some attention (e.g. [26, Theorem 2c1] and personal communication

with M. Sodin) but, until now, was not settled even for a single particular example.

The aim of this paper is to prove exponential concentration for real zeroes of

certain Gaussian stationary functions on R, which have an analytic extension to a strip

in the complex plane and smooth spectral density. These conditions allow us to use

tools from complex analysis, thus generalizing the mechanics of the aforementioned

works on the Fock–Bargmann model.

We consider here centered Gaussian stationary processes {X(t) : t ∈ R} having

a.s. absolutely continuous sample path. That is, random absolutely continuous func-

tions f : R → R, whose finite marginal distributions are mean-zero multi-normal,

invariant to real shifts. Normalizing WLOG the process X to have variance one, its joint

law is determined by r(t − s) := Cov [X(t), X(s)]. Here r : R → R is a continuous, positive

semi-definite function (with r(0) = 1). By Bochner’s theorem, this yields the existence of

a probability measure ρ on R, called the spectral measure, such that

r(t) =
∫
R

e−iλt dρ(λ) . (1.1)

We further assume throughout that
∫

λ2dρ < ∞ or equivalently that r(t) has

finite 2nd derivative at t = 0 (in which case r(t) is twice continuously differentiable and

−r′′(0) = ∫
λ2dρ), and let NX(I) = |{t ∈ I : f (t) = 0}| count the number of zeroes, possibly

infinite, of such a process in the interval I ⊂ R. Since X is stationary, ENX([0, T]) = αT
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Exponential Concentration for Zeroes 9771

for α := ENX([0, 1]) and from the Kac–Rice formula, we have that in this case

α = 1

π

(∫
λ2dρ

) 1
2

< ∞ . (1.2)

Indeed, α/2 is the expected number of 0-upcrossings by X([0, 1]), all of which are

strict (see [14, Theorem 7.3.2]), and X−1{0}∩[0, 1] has expected size α since it a.s. consists

of only the (strict) 0-upcrossings and 0-downcrossings of X([0, 1]) (see [14, Theorem

7.2.5]). Our objective is to prove the following exponential concentration of NX([0, T]).

Theorem 1.1. Suppose the centered stationary Gaussian process {X(t) : t ∈ R} of a

compactly supported spectral measure has an integrable covariance (i.e.,
∫ |r(t)|dt < ∞).

Then, for some C < ∞ and c(·) > 0,

P
( |NX([0, T]) − αT| ≥ ηT

) ≤ Ce−c(η)T , ∀η > 0, T < ∞ . (1.3)

Further, if the spectral measure has only a finite exponential moment, namely,

for some κ > 0 ∫
R

e|λ|κ dρ(λ) < ∞ , (1.4)

then (1.3) holds whenever
∫ |r(t; κo)|dt < ∞ for some κo ∈ (0, κ/2) and

r(t; κo) :=
∫
R

cos(tλ) cosh(2κoλ)dρ(λ) . (1.5)

Remark 1.2. Theorem 1.1 applies for example to any spectral measure whose

compactly supported density is in W1,2(R), as well as covariances such as r(t) = e−t2/2

or r(t) = 1/(1+t2) (of spectral densities p(λ) = 1√
2π

e−λ2/2 and p(λ) = 1
2e−|λ|, respectively),

for which (1.4) holds and the LHS of (1.5) is integrable.

As shown next, the lower tail in (1.3) holds under much weaker regularity

assumptions.

Proposition 1.3. Suppose the centered stationary Gaussian process {X(t) : t ∈ R} has

an absolutely continuous sample path and bounded, continuous spectral density p(λ)

with
∫

λ2p(λ)dλ < ∞. Then, for some C < ∞ and c(·) > 0 we have

P
(

NX([0, T]) − αT ≤ −ηT
) ≤ Ce−c(η)T , ∀η > 0, T < ∞ . (1.6)
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Proposition 1.3 is a consequence of our next result, on exponential concentration

of the number of sign changes in [0, T], for any discrete-time centered stationary

Gaussian process {Yk : k ∈ Z} of continuous spectral density.

Theorem 1.4. Suppose {Yk : k ∈ Z} is a centered stationary Gaussian process

whose spectral measure ρY has a continuous density pY(λ) (supported within [−π , π ]).

Then, for

N�
Y(T) :=

T−1∑
k=0

1{YkYk+1<0} , (1.7)

some C < ∞ and c(·) > 0,

P
( |N�

Y(T) − EN�
Y(T)| ≥ ηT

) ≤ Ce−c(η)T , ∀η > 0, T ∈ N . (1.8)

Remark 1.5. In the setting of Theorem 1.4, one has that T−1∑T−1
k=0 h(Yk, Yk+1) satisfies

the Large Deviation Principle for any fixed h ∈ Cb(R2), with a convex, good rate function

(see [4, Theorem 4.25]). While this may be extended to N�
Y(T) by suitable approximations,

we do not follow this route since the rate function is in any case not easily identifiable

(see [4, Section 7(a)]). For any m-dependent process {Yk : k ∈ Z}, our proof of Theorem

1.4 provides the explicit c(η) = η2/(2m) and C = 2m
√

e (see (2.6), where it suffices to

consider η ∈ [0, 1]). However, in general we rely on an approximation by m-dependent

processes with unbounded m = m(η), thereby having η−2c(η) → 0.

Proposition 1.3 will follow from Theorem 1.4, using the key observation that

having few zeroes of a continuous time process implies few sign changes of its

restriction to a lattice. This approach does not work for the more challenging upper

tail in (1.3), since having many zeroes does not imply having many sign changes on a

lattice, and to establish the upper tail we require the following decay and regularity

assumptions about the spectral density of X.

Assumption A: The spectral measure is nonatomic and has finite exponential moment

as in (1.4). Further, the covariance functions

r	(x; y) :=
∫
R

e−iλxϕ	(λy)dρ(λ) , 	 = 1, 2 , ϕ(λ) := sinh(λ)/λ , (1.9)
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Exponential Concentration for Zeroes 9773

and their x-derivatives, satisfy for some κ ′ ∈ (0, κ/2) and finite x�,

ω�(k) :=
∑
j≥k

|r( jx�)| + sup
|y|<κ ′

⎧⎨⎩∑
j≥k

|r′
1( jx�; 2y)| +

∑
j≥k

|r′′
2( jx�; y)|

⎫⎬⎭ → 0 , when k → ∞ .

(1.10)

Equipped with Assumption A, we state our main (technical) result.

Theorem 1.6. Subject to Assumption A we have for some C < ∞ and c(·) > 0, the

exponential upper tail

P
(

NX([0, T]) − αT ≥ 3ηT
) ≤ Ce−c(η)T , ∀η > 0, T < ∞ . (1.11)

In particular, we recover Theorem 1.1 from Proposition 1.3 and Theorem 1.6,

thanks to the following explicit sufficient condition for Assumption A.

Proposition 1.7. Assumption A is satisfied; the spectral measure ρ(·) has a bounded,

continuous density, and a.s. the sample path t 
→ X(t) ∈ C∞(R), when either of the

following holds:

(a) The support of ρ(·) is compact and
∫ |r(t)|dt < ∞ for the covariance r(t) of

(1.1).

(b) Condition (1.4) holds and
∫ |r(t; κo)|dt < ∞ for the covariance r(t; κo) of (1.5).

It is reasonable when seeking the exponential concentration of NX([0, T]) to

require smoothness of the covariance r(·), such as having all spectral moments finite

(or the stronger condition (1.4)). Indeed, such exponential concentration implies the

finiteness of all moments mk := E[NX([0, T])k], with mk = O((T∨k)k), and such conditions

appear in previous studies concerning the finiteness of {mk}. For instance, Nualart and

Wschebor [19] show that mk < ∞ for all k when t 
→ r(t) is real analytic (hence all

spectral moments are finite), while when
∫

λ4dρ = ∞, Cuzick [7] can prove only the

finiteness of mk up to a certain order ko. Similarly, Longuet-Higgins [15] shows that for

r(t) real analytic, qk(τ ) := P(NX(0, τ) ≥ k) decays, for τ → 0, as c(k)τ
1
2 k2+O(k) (indicative of

the mutual repulsion of zeroes), while with a discontinuity of r(3) at the origin the decay

of qk(τ ) is merely c(k)τ2 for all k (so having a pair of nearby zeroes, the probability of k

extra zeroes within the same short interval is Ok(1)).

A natural path toward proving the upper tail in our concentration result is to

improve Cuzick’s results on moments mk [6] or Longuet-Higgins estimates on the tail of
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9774 R. Basu et al.

the number of zeroes qk [15], so as to get accurate asymptotics of those quantities in k.

Efforts in this direction were made by many authors (e.g., [3] and the references within).

However, in our context it requires a lower bound on the determinant of nearly singular

matrices (specifically, the covariance matrices for values of X(t) at a short range), at a

level of accuracy that seems out of reach. We bypass this difficulty by relating NX([0, T])

to the count of zeroes within a suitable cover of [0, T], for certain random analytic

function f : S → C on a thin strip. Thereby, complex analytic tools allow us to replace

exponential moments of zero counts by more regular integrals of log |f (z)|. After this

reduction, the core challenge of our strategy remains in the need to sharply estimate

fractional moments of products of many dependent Gaussian variables. This highly

nontrivial task (see [25], [27], and references within), requires our assumption (1.10),

in order to get suitable diagonally dominant covariance matrices.

The paper is organized as follows. In Section 2 we prove Proposition 1.3,

Theorem 1.4, and Proposition 1.7. The remainder of the paper is devoted to the proof of

Theorem 1.6. In Section 3 this theorem is reduced to the key Proposition 3.6, concerning

fractional moments of products of C-valued Gaussian random variables. Proposition 3.6

is proved in Section 5, building on the auxiliary results about weakly correlated

Gaussian variables that we establish in Section 4.

2 Proofs of Proposition 1.3, Theorem 1.4, and Proposition 1.7

2.1 Proof of Proposition 1.3

Assume WLOG that c(η) ≤ 1 and C ≥ e. It suffices to consider T ≥ 1. Fixing small δ > 0,

by the mean value theorem we have that NX([0, T]) ≥ N�
Y([T/δ] − 1) for the stationary

centered Gaussian sequence Yk := δ−1
∫ δ

0 X(δk + t) dt. It is further easy to check that

γk := EY0Yk = δ−2
∫ δ

0

∫ δ

0
r(δk + t − s)ds dt , (2.1)

corresponds to the spectral density

pY(λ) = 1

δ

∑
n∈Z

p
(

λ + 2πn

δ

)
sinc2

(
λ

2
+ πn

)
λ ∈ [−π , π ],

where sinc(λ) := sin λ
λ

. Note that for p(·) bounded and continuous, pY is also continuous

(by dominated convergence). Here r(0) = 1, r′(0) = 0 and −r′′(t), being the characteristic

function of the finite measure λ2p(λ)dλ, is continuous at t → 0. We thereby get from
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(2.1) that γ0 → 1 and 2δ−2(γ1 − γ0) → r′′(0) when δ ↓ 0. Setting γ1 = γ0 cos θ , note that

Yk = Y and Yk+1 = X sin θ + Y cos θ for the i.i.d. Gaussian (X, Y) = (R cos U, R sin U),

where U is a Uniform([0, 2π ]) variable. Thus, by elementary trigonometric identities,

P(YkYk+1 < 0) = P(cos θ − cos(2U + θ) < 0) = θ

π
= 1

π
arccos(γ1/γ0) ,

from which we deduce that

inf
T≥1

1

T
EN�

Y([T/δ] − 1) ≥ (δ−1 − 2)P(Y0Y1 < 0) → α .

As a result of the preceding, we get (1.6) by considering (1.8) for δ = δ(η) > 0

small enough.

2.2 Proof of Theorem 1.4

We shall use the following easy consequence of weak convergence.

Lemma 2.1. Let (Y0, Y1) be a zero mean jointly Gaussian, having E[Y2
0 ] > 0, E[Y2

1 ] > 0

and αξ := P( Y0Y1 < ξ). If the covariance matrices �(m) of the zero mean Gaussian

vectors (W(m)
0 , W(m)

1 ) converge to the covariance matrix � of (Y0, Y1), then

lim
ξ→0

lim
m→∞ α

(m)
ξ = α0 , α

(m)
ξ := P( W(m)

0 W(m)
1 < ξ ). (2.2)

Proof. Since Y0 and Y1 have positive variances, the CDF of Y0Y1 is continuous, so the

weak convergence of (W(m)
0 , W(m)

1 ) to (Y0, Y1) implies that for any ξ fixed, α
(m)
ξ → αξ as

m → ∞. Further, the monotone function ξ 
→ αξ is then continuous and (2.2) holds. �

We turn to the proof of Theorem 1.4. WLOG normalize to have EY2
0 = 1. Let

η > 0 be given. For any m ≥ 2 we approximate Y by an (m − 1)-dependent process

using the following construction (see, e.g., [5, Proof of Theorem A]). Let {ak : k ∈ Z}
denote the Fourier coefficients of the continuous function

√
pY(λ) on [−π , π ], and

define a(m)

k :=
(
1 − |k|

m−1

)
+ ak. Then Yk = W(m)

k + Z(m)

k , where {W(m)

k : k ∈ Z}
is an (m − 1)-dependent, centered, stationary Gaussian sequence with covariance

E[W(m)
0 W(m)

n ] = ∑
k a(m)

k a(m)

k+n and spectral measure p(m)
W (λ) = (

∫
Fm(λ − λ′)

√
pY(λ′)dλ′)2,

where Fm(λ) = ∑
|k|≤m

(
1 − |k|

m−1

)
eikλ is the Fejér Kernel. By Fejér’s theorem, the spectral

density p(m)
Z (λ) =

(√
pY(λ) −

√
p(m)

W (λ)

)2

of the centered, stationary Gaussian sequence
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{Z(m)

k : k ∈ Z} converges to zero as m → ∞, uniformly on [−π , π ]; namely, εm :=
supλ{p(m)

Z (λ)} → 0 as m → ∞.

By stationarity, EN�
Y(T) = α0T for α0 := P(Y0Y1 < 0). Our assumption that

the spectral measure ρY has a continuous density implies that |rY(1)| < 1; hence

the covariance matrix � of (Y0, Y1) is positive-definite. Further, by construction, the

covariance matrices �(m) of (W(m)
0 , W(m)

1 ) converge to � when m → ∞ and Lemma 2.1

applies. In particular, there exist ξ ∈ (0, 1] and m� < ∞ so α
(m)
3ξ ≤ α0 + η whenever

m ≥ m�. Further, since

|(w + z)(w̃ + z̃) − ww̃| ≤ |z||z̃| + |z̃||w| + |z||w̃| , (2.3)

we have that for ξ = δR ≥ δ2,

{YkYk+1 < 0} ⊆ {W(m)

k W(m)

k+1 < 3ξ} ∪ {|W(m)

k | ≥ R} ∪ {|W(m)

k+1| ≥ R} ∪ {|Z(m)

k | ≥ δ} ∪ {|Z(m)

k+1| ≥ δ} .

Considering this set containment for all 0 ≤ k ≤ T − 1 yields that

N�
Y(T) ≤ Nm,ξ (T) + NR

m(T) + ÑR
m(T) + NZ(m) (T) + ÑZ(m) (T) , (2.4)

where

Nm,ξ (T) :=
T−1∑
k=0

1{W(m)

k W(m)

k+1<3ξ}, NR
m(T) :=

T−1∑
k=0

1{|W(m)

k |≥R}, NZ(T) :=
T−1∑
k=0

1{|Zk|≥δ} (2.5)

and ÑR
m(T) and ÑZ(T) denote the corresponding counts for {W(m)

k+1} and {Zk+1}, respec-

tively. By a union bound, we thus get for the upper tail of N�
Y(T), with our choice of ξ

that for any m ≥ m� and R = ξ/δ ≥ 1,

P
(
N�

Y(T) − α0T ≥ 8ηT
) ≤ P

(
Nm,ξ (T) − α

(m)
3ξ T ≥ ηT

)
+ 2P

(
NR

m(T) ≥ 2ηT
)
+ 2P

(
NZ(m) (T) ≥ ηT

)
.

The zero mean, [−1, 1]-valued variables Ik := 1{W(m)

k W(m)

k+1<3ξ} − α
(m)
3ξ are

m-dependent. Hence, setting nT := �T/m� we get by stationarity, followed by

Hoeffding’s inequality for the i.i.d. variables {Ijm}j that for m ≥ m�

P

(
Nm,ξ (T) ≥ (α

(m)
3ξ + η)T

)
≤ m max

n∈{nT ,nT+1}P

⎛⎝n−1∑
j=0

Ijm ≥ ηn

⎞⎠ ≤ me−nTη2/2 . (2.6)
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Since E[(W(m)
0 )2] ≤ 1, fixing R < ∞ with P(|Y0| ≥ R) ≤ η, we have that

α̂
(m)
R := P(|W(m)

0 | ≥ R) ≤ η for all m ≥ 1. Hence, by stationarity and the m-dependence

of the [−1, 1]-valued zero mean Îk := 1{|W(m)

k |>R} − α̂
(m)
R , applying once more Hoeffding’s

inequality, we get that

P

(
NR

m(T) ≥ 2ηT
)

≤ P

(
T−1∑
k=0

Îk ≥ ηT

)
≤ m max

n∈{nT ,nT+1}P

⎛⎝n−1∑
j=0

Îjm ≥ ηn

⎞⎠ ≤ me−nTη2/2 . (2.7)

Finally, with E[(Z(m)
0 )2] ≤ 2πεm, from Markov’s inequality and [5, identity (7)] at

θm = ε
−1/2
m , we deduce that for all T large enough

P
(
NZ(m) (T) ≥ ηT

) ≤ e−θmδηTE

[
eθm

∑T−1
k=0 |Z(m)

k |] ≤ e−(θmδη−27)T . (2.8)

To complete the proof of the upper tail, combine (2.6)–(2.8) taking m ≥ m� so

large that θmδη ≥ 28.

Turning to prove the lower tail, set ξ ∈ (0, 1] and m� < ∞ so α
(m)
−3ξ ≥ α0 − η

whenever m ≥ m� and deduce by yet another application of (2.3), that for any

R = ξ/δ ≥ 1,

{YkYk+1 ≥ 0} ⊆ {W(m)

k W(m)

k+1 ≥ −3ξ}∪{|W(m)

k | ≥ R}∪{|W(m)

k+1| ≥ R}∪{|Z(m)

k | ≥ δ}∪{|Z(m)

k+1| ≥ δ} .

Thus, recalling from (1.7) and (2.5) that

N�
Y(T) = T −

T−1∑
k=0

1{YkYk+1≥0} , Nm,−ξ (T) = T −
T−1∑
k=0

1{W(m)

k W(m)

k+1≥−3ξ} ,

we find, similarly to (2.4), that

T − N�
Y(T) ≤ T − Nm,ξ (T) + NR

m(T) + ÑR
m(T) + NZ(m) (T) + ÑZ(m) (T) ,

which in turn implies by the union bound and our choice of ξ and m that for any η > 0,

P
(
α0T − N�

Y(T) ≥ 8ηT
)≤P

(
α

(m)
−3ξ T − Nm,−ξ (T) ≥ ηT

)
+2P

(
NR

m(T) ≥ 2ηT
)
+2P

(
NZ(m) (T) ≥ ηT

)
.

We have already established exponentially small in T ≥ T0(η) upper bounds on

the two left-most terms (in (2.7) and (2.8)), and re-running the derivation of (2.6) for
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Ik := α
(m)
−3ξ − 1{W(m)

k W(m)

k+1<−3ξ} yields such a bound on P(α
(m)
−3ξ T − Nm,−ξ (T) ≥ ηT). Lastly,

reducing to c(η) ≤ 1/T0(η) and taking C ≥ e, extends (1.8) to all T ≥ 0.

2.3 Proof of Proposition 1.7

(a) Recall that
∫ |r(t)|dt < ∞ for r(·) of (1.1) implies that ρ has a continuous,

bounded density p(λ). Assuming ρ (hence p(λ)) is supported on [−K, K], fix

a compactly supported even function ψ(·) such that ψ(λ) ≡ 1 on [−K, K] and∑2
	=0 ‖ψ(	)‖∞ ≤ 1. Setting h	,y(λ) := [λϕ(λy)]	ψ(λ) and r	;ψ(x; y) via (1.9) but

with ψ(·) replacing p(·), we find that

r′
1;ψ(x; y) =

∫
sin(λx)h1,y(λ)dλ = 1

x2

∫
sin(λx)h′′

1,y(λ)dλ (2.9)

(getting the RHS for x �= 0 upon twice integrating by parts). One easily verifies

that

cψ := 2 max
	=0,1,2

sup
	|y|<2κ ′

{‖h′′
	,y‖1 + ‖h	,y‖1} < ∞, (2.10)

hence |r′
1;ψ(x; 2y)| ≤ cψ/(1+x2) for any |y| < κ ′ and all x ∈ R. Since ψ(λ)p(λ) =

p(λ), it follows that for g(x) := cψ

∫
dt|r(t)|/[1+(x−t)2], any |y| < κ ′ and x ∈ R,

|r′
1(x; 2y)| =

∣∣∣∣∫ r′
1;ψ(x − t; 2y)r(t)dt

∣∣∣∣ ≤ g(x) . (2.11)

Likewise,

− r′′
2;ψ(x; y) =

∫
cos(λx)h2,y(λ)dλ = 1

x2

∫
cos(λx)h′′

2,y(λ)dλ , (2.12)

hence |r′′
2;ψ(x; y)| ≤ cψ/(1 + x2) for all |y| < κ ′, yielding similarly to (2.11) that

|r′′
2(x; y)| =

∣∣∣∣∫ r′′
2;ψ(x − t; y)r(t)dt

∣∣∣∣ ≤ g(x) . (2.13)

The same argument shows that

|r(x)| =
∣∣∣∣∫ r0;ψ(x − t)r(t)dt

∣∣∣∣ ≤ g(x) . (2.14)
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Taking x� = 1 we thus find, in view of (2.11) and (2.13), that ω�(k) ≤
3
∑

j≥k g(j) and (1.10) follows from the finiteness of

∞∑
j=1

g(j) = cψ

∫
dt|r(t)|

⎡⎣ ∞∑
j=1

1

1 + (j − t)2

⎤⎦ ≤ 2cψ

⎡⎣∑
j≥0

1

1 + j2

⎤⎦∫ |r(t)|dt .

(b) If ρ(·) of unbounded support satisfies (1.4), then the covariance r(·) of (1.1) is

real analytic and a.s. the sample path t 
→ X(t) is in C∞(R). Suppose also that

for some κo ∈ (0, κ/2) the covariance r(·; κo) of (1.5) is integrable. The latter

implies that the measure cosh(2κoλ)dρ(λ) has a continuous, bounded density

pκo
(λ); hence ρ(·) has the continuous, bounded density p(λ) = ψ(λ)pκo

(λ) for

the even, (0, 1]-valued, integrable function ψ(λ) := 1/ cosh(2κoλ). It is easy

to verify that (2.10) remains valid for such choice of ψ(λ), provided κ ′ < κo.

Further, in this case |h	,y(λ)| → 0 and |h′
	,y(λ)| → 0 as |λ| → ∞, whenever

	|y| < 2κ ′, justifying the integration by parts that lead to the right-most

equality in both (2.9) and (2.12). The convolution identities (2.11), (2.13), and

(2.14) apply upon replacing r(t) by r(t; κo), as do the corresponding bounds,

albeit with g(x) := cψ

∫
dt|r(t; κo)|/[1+ (x − t)2], so the integrability of |r(·; κo)|

indeed suffices for (1.10).

3 Analytic Extension, Jensen’s Formula and Decorrelation

3.1 An analytic extension and its properties

Under (1.4) the covariance kernel r : R → R of the process X(t) analytically extends to

the strip Sκ = {z ∈ C : |Im(z)| < κ}, by plugging t = z in (1.1). Utilizing this fact, we next

construct a complex analytic, mean zero, Gaussian function f : S = Sκ/2 → C that is at

the center of our proof of Theorem 1.6.

Proposition 3.1. For a real, stationary mean-zero, Gaussian process X that satisfies

(1.4) there exist a complex analytic, zero mean, Gaussian f : S := Sκ/2 → C such that

(a) The function f (·) is conjugation equivariant, namely f (z̄) = f (z).

(b) The covariances of f (·) are given by the formulas

K(z, w) := E[f (z)f (w)] = r(z − w̄); E[f (z)f (w)] = r(z − w) ∀z, w ∈ S . (3.1)

(c) The law of z 
→ f (z) is stationary under real translations and {f (t + i0)}t∈R
d=

{X(t)}t∈R.
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Proof. As ρ is an even real-valued measure, there exists an orthonormal basis (ONB)

for L2
ρ(R) composed of Hermitian functions {ϕn} (i.e., with ϕn(−λ) = ϕn(λ)). For such a

basis and ez(λ) := eiλz̄, z ∈ Sκ/2 let

ψn(z) := 〈ϕn, ez〉L2
ρ(R) =

∫
R

ϕn(λ)ez(λ)dρ(λ) =
∫
R

e−iλzϕn(λ)dρ(λ) , (3.2)

and for i.i.d. coefficients ζn ∼ N
R
(0, 1) consider the random series

f (z) :=
∑

n

ζnψn(z) .

Having (1.4) hold for κ, standard arguments (see [12, Chapter 3, Theorem 2] or

[10, Lemma 2.2.3]) yield that the series defining f (·) converges almost surely to a zero

mean, complex analytic Gaussian function on S = Sκ/2, having there the covariance

K(z, w) = E[f (z)f (w)] =
∑

n

ψn(z)ψn(w) .

Since {ϕn} are Hermitian and ρ is even and real-valued, it follows that ψn(z) =
ψn(z̄) and we get part (a) upon taking the conjugate in the defining series for f (z).

Further, since {ϕn} is an ONB in L2
ρ(R)

K(z, w) =
∑

n

〈ϕn, ez〉L2
ρ(R)〈ew, ϕn〉L2

ρ(R) = 〈ew, ez〉L2
ρ(R) = r(z − w̄) ,

as stated in (3.1) (and the RHS of (3.1) then follows from part (a)). The formulas in (3.1)

are invariant to real shifts (z, w) 
→ (z+ t, w + t), t ∈ R; hence, the Gaussian function f (·)
is stationary with respect to such real shifts. To complete the proof of part (c), note that

by part (a) the function f (z) is real-valued when z ∈ R and the covariance kernel of (3.1)

coincides for z, w ∈ R with the original covariance r : R → R of the given real Gaussian

process X. �

Remark 3.2. Recall that Ref (z) = [f (z) + f (z)]/2, Imf (z) = [f (z) − f (z)]/(2i) with (3.1)

determining the covariance between the real and imaginary parts of f (z) and f (w), z, w ∈
S. By Proposition 3.1(c), when Im(z) = Im(w) the latter depend only on w − z so WLOG

we may set Re(z) = 0. Specifically, for |y| < κ/2 and x ∈ R we have

E[Re(f (iy))Re(f (x + iy))] = 1

2
[Re(r(x + 2iy)) + r(x)] =

∫
R

cos(λx) cosh2(λy)dρ(λ) (3.3)
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E[Im(f (iy))Im(f (x + iy))] = 1

2
[Re(r(x + 2iy)) − r(x)] = y2

∫
R

cos(λx)λ2ϕ2(λy)dρ(λ) , (3.4)

E[Re(f (iy))Im(f (x + iy))] = 1

2
Im(r(x + 2iy)) = −y

∫
R

sin(λx)λϕ(2λy)dρ(λ) , (3.5)

where ϕ(λ) := sinh(λ)/λ and the RHS of (3.3)–(3.5) follows from (1.1) and the even

symmetry of the spectral measure ρ(·).

We next utilize (3.3)–(3.5) to deduce from Assumption A the absolute summabil-

ity of the corresponding correlations, uniformly in Sκ ′ .

Lemma 3.3. For f (·) of Proposition 3.1, consider the vector r̂(z) ∈ [−1, 1]4 of

correlations between [Re(f (z)), Im(f (z))] and [Re(f (iy)), Im(f (iy))] when y = Im(z). Then,

for x� and 0 < κ ′ < κ/2 of Assumption A,

ω(k) := sup
|y|<κ ′

⎧⎨⎩∑|j|≥k

‖̂r(jx� + iy)‖1

⎫⎬⎭ → 0 for k → ∞ (3.6)

and in particular

sup
|y|<κ ′

⎧⎨⎩∑
j∈Z

|r(jx� + 2iy)|
⎫⎬⎭ < ∞ . (3.7)

Proof. In view of (3.3) and (3.4), for any |y| < κ/2 and x ∈ R,

vI(y) := y−2Var (Im(f (x + iy)) =
∫
R

λ2ϕ2(λy)dρ(λ) , (3.8)

vR(y) := Var (Re(f (x + iy)) =
∫
R

cosh2(λy)dρ(λ) , (3.9)

are uniform in y, bounded away from zero and thanks to (1.4),

Var (Im(f (x + iy)) ≤ Var (Re(f (x + iy)) ≤ r(2iy) (3.10)

is uniformly bounded over |y| ≤ κ ′ < κ/2. From Proposition 3.1(b) at z = x + iy, w = iy,

the definition of r̂(x + iy) and (3.10), we deduce that

|r(x + 2iy)| = |E[f (iy)f (x + iy)]| ≤ r(2iy) ‖̂r(x + iy)‖1 .
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Thus, if (3.6) holds, then necessarily ω(0) is finite and (3.7) must hold as well.

Turning to show (3.6), let r̂RR(z), r̂RI(z), r̂IR(z), and r̂II(z) denote the coordinates of r̂(z)

(e.g., r̂IR(x + iy) stands for the correlation between Im(f (x + iy)) and Re(f (iy)), so√
vR(y)y2vI(y) r̂IR(x + iy) is precisely the LHS of (3.5)). Then, from the LHS of (3.3) and

(3.4), we see that

(r(2iy) + r(0)) r̂RR(x + iy) = Re(r(x + 2iy)) + r(x) ,

(r(2iy) − r(0)) r̂II(x + iy) = Re(r(x + 2iy)) − r(x) ,

which since r(0) = 1 yields for βy := 2r(0)/(r(2iy) + r(0)) ∈ (0, 1), the identity

r̂RR(x + iy) = (1 − βy) r̂II(x + iy) + βyr(x) . (3.11)

Similarly, from the left-hand side of (3.5) we have that

r̂RI(x + iy) = −̂rIR(x + iy) , (3.12)

whereas from the right-hand side of (3.4) and (3.5) we get in terms of the x-derivatives

of r	(·) of (1.9), that

vI(y) r̂II(x + iy) = −r′′
2(x; y) , (3.13)

√
vR(y)vI(y) r̂IR(x + iy) = r′

1(x; 2y) sgn(y) . (3.14)

Recalling that infy{vI(y) ∧ vR(y)} ≥ c−1 we deduce from (3.11)–(3.14) that

‖̂r(jx� + iy)‖1 ≤ |r(jx�)| + 2c|r′′
2(jx�; y)| + 2c|r′

1(jx�; 2y)| ,

hence ω(k) ≤ 8(c ∨ 1)ω�(k) and (3.6) follows from our assumption (1.10). �

3.2 Relating real and complex zeroes

Thanks to the 2nd part of Proposition 3.1(c), for any D ⊆ S containing [0, T] we have

NX([0, T]) ≤ Nf (D) = |{z ∈ D : f (z) = 0}| . (3.15)
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For κ ′ of Assumption A and δ ∈ (0, κ ′/2), let Bj(r) denote the ball of radius r centered

at xj := (2j − 1)δ. We shall use the bound (3.15) with the disjoint union of n := �T/(2δ)�
balls

D = Dn,δ :=
n⋃

j=1

Bj(δ) ,

further estimating the value of Nf (Bj(δ)) by Jensen’s enumeration formula for the zeroes

of a complex analytic function (see [1, Section 5.3.1]). Specifically, for β ∈ [0, log 2] define

the integral

�j(β) :=
∫ 1/2

−1/2
log |f (xj + δeβei2πθ )|dθ . (3.16)

With such choices δeβ < κ ′ < κ/2, so Bj(δeβ) ⊂ S and Jensen’s formula tells us

that for each j ∫ δeβ

δ

Nf (Bj(r))
dr

r
= �j(β) − �j(0). (3.17)

Since r 
→ Nf (Bj(r)) is nondecreasing, from (3.17) we deduce that

Nf (Bj(δ)) ≤ 1

β

[
�j(β) − �j(0)

]
≤ Nf (Bj(δeβ)). (3.18)

Sum (3.18) over j to get

Nf (Dn,δ) ≤ 1

β

n∑
j=1

�̂j(β) − 1

β

n∑
j=1

�̂j(0) +
n∑

j=1

E[Nf (Bj(δeβ))] , (3.19)

where �̂j(·) := �j(·) − E�j(·). The next lemma shows that for small positive δ and β the

right-most (nonrandom) term in (3.19) is at most (α + η)T.

Lemma 3.4. Suppose that (1.4) holds and the spectral measure ρ(·) is nonatomic. There

exist δ�(η) and β�(η) positive, such that for any δ ≤ δ�(η), β ≤ β�(η) and all T ≥ 1,

1

T

n∑
j=1

E[Nf (Bj(δeβ))] ≤ α + η . (3.20)

Proof. Since the Gaussian function f (z) has nonatomic spectral measure,

E[Nf ([0, 1] × [−r, r])] = α + μf ([−r, r]) , ∀r ≥ 0 ,
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where μf (·) is some absolutely continuous, non-negative measure on R (this can be

deduced from [8, Theorem 1] by noticing that the form of the limit of 1
T Nf ([0, T] × [−r, r])

as T → ∞, given in part (iii) of that theorem, must equal the expectation E[Nf ([0, 1] ×
[−r, r])] when it is deterministic). Further, z 
→ f (z) is stationary under real translations;

hence for any xj ∈ R and r ∈ [δeβ , 1
2 ] ∩ Q

E[Nf (Bj(δeβ))] ≤ E[Nf ([−r, r]2)] = 2r(α + μf ([−r, r])) .

With n ≤ T
2δ

+ 1, the LHS of (3.20) is thus for T ≥ 1 and δ < 1
4 , at most

h(δ, β) := (1 + 2δ)eβ
(
α + μf ([−δeβ , δeβ ])

)
and we are done, since h(·, ·) is continuous with h(0, 0) = α. �

3.3 Reducing Theorem 1.6 to the decorrelation of moments

Fixing η > 0, in view of (3.15) and (3.19) it suffices for (1.11) to show that for β = β�

and δ� as in Lemma 3.4, there exist δ ∈ (0, δ�] and c = c(η, β, δ) > 0 so that for all n large

enough

P

⎛⎝ n∑
j=1

�̂j(β) ≥ ηβδn

⎞⎠+ P

⎛⎝ n∑
j=1

�̂j(0) ≤ −ηβδn

⎞⎠ ≤ e−cn . (3.21)

To this end, let x� be as in Assumption A and consider δ ∈ (0, δ�] such

that x�/(2δ) := 	� ∈ N. Then, to utilize the decay of correlations in Lemma 3.3,

fixing 	 = k	� for some k ∈ N, let m = �n/	� ≥ 2 and consider the disjoint sets

Sτ := {	−τ , 2	−τ , . . . , m	−τ }, for τ = 0, . . . , 	−1, whose union {1, . . . , m	} covers {1, . . . , n}.
By stationarity of f (·) under real translations, the law of

∑
j∈Sτ

�̂j(·) is independent of

τ . Setting ξ := ηβ/10 (so 5ξm ≤ ηβ(m − 1) ≤ ηβn/	), by a union bound on the 	 choices

of τ , it suffices for (3.21) to show that some c = c(ξ , δ, 	) > 0 and all m large enough

P

⎛⎝∑
j∈S0

�̂j(β) ≥ 5ξδm

⎞⎠+ P

⎛⎝∑
j∈S0

�̂j(0) ≤ −5ξδm

⎞⎠ ≤ 2e−2c	m . (3.22)

A standard application of the exponential Markov inequality reduces this task

for c = εξδ/(2	), into showing that for some ε = ε(ξ , δ, 	) > 0 and all large enough m,

E

⎡⎣exp(ε

m∑
j=1

�̂j	(β))

⎤⎦ ≤ e4εξδm & E

⎡⎣exp(−ε

m∑
j=1

�̂j	(0))

⎤⎦ ≤ e4εξδm . (3.23)
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Upon setting zβ(θ) := δeβeiπθ − δ, we get from (3.16) that

m∑
j=1

�̂j	(β) = 1

2

∫ 1

−1
Sm(zβ(θ))dθ

where, 2δ	 = kx� thanks to our choice of 	, so

Sm(z) :=
m∑

j=1

{
log |f (jkx� + z)| − E[log |f (z)|]} . (3.24)

Thus, applying Jensen’s inequality for the convex functions exp(±ε ·) and the

uniform law of θ further reduces the task of proving (3.23) into showing that

sup
|θ |≤1

E

[
eεSm(zβ(θ))

]
≤ e4εξδm & sup

|θ |≤1
E

[
e−εSm(z0(θ))

]
≤ e4εξδm . (3.25)

In view of the stationarity of f (·) under real translations, the law of Sm(z) of

(3.24) depends only on Im(z); hence in (3.25) we can WLOG re-set zβ(θ) = iy for y =
sin(πθ)δeβ . Doing so, we consider for |y| ≤ 2δ, the mean zero, Gaussian variables

Gj(y) := f (jx� + iy) , (3.26)

and first relate E[log |G0(y)|], which is part of Sm(iy) to E[|G0(y)|±ε].

Lemma 3.5. Given ζ > 0, for any ε ≤ ε0(ζ ) positive and all |y| ≤ κ ′,

E[|G0(y)|ε] ≤ (1 + εζ ) exp
(
εE
[
log |G0(y)|]) , (3.27)

E[|G0(y)|−ε] ≤ (1 + εζ ) exp
(−εE

[
log |G0(y)|]) . (3.28)

Proof. Consider the non-negative function gε(x) := |ε|−1(eεx − εx − 1). Setting L(y) :=
log |G0(y)| −E[log |G0(y)|], note that EL(y) = 0 and hence elementary algebra transforms

(3.27) and -(3.28) to the inequalities E[g±ε(L(y))] ≤ ζ . We thus establish the lemma upon

showing that

lim
ε↓0

sup
|y|≤κ ′

{
E[g±ε(L(y))]

} = 0 . (3.29)

To this end, since |g±ε(x)| ≤ η−1eη|x| := g̃η(x) whenever |ε| ≤ η and g±ε(·) → 0

uniformly on compact subsets of R, the uniform in y convergence (3.29), is a consequence
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of having for some η > 0,

sup
|y|≤κ ′

{
E[̃gη(L(y))1{|L(y)|≥b}]

}
→ 0 for b → ∞ . (3.30)

Further, g̃η(·) diverges at infinity, so by Markov’s inequality (3.30) follows from

having sup|y|≤κ ′
{
E[̃g2

η(L(y))]
}

finite, for which it suffices to verify that for some η > 0,

sup|y|≤κ ′ {E[|G0(y)|±2η]} is finite. For the latter, recall from (3.1) that E[|G0(y)|2] = r(2iy),

which for |y| ≤ κ ′ is uniformly bounded above (as κ ′ < κ/2). On the other

hand, E[|G0(y)|−1/2] ≤ Cr(0)−1/4 for some universal C < ∞, since |G0(y)|−1/2 ≤ |X|−1/2

for the zero mean R-valued Gaussian X = Re(G0(y)) of Var (X) = vR(y) ≥ r(0)

(see (3.9)). �

The next proposition, which is our main technical statement, bounds small

positive and negative fractional moments of the product of our Gaussian variables from

(3.26), after a suitable dilution.

Proposition 3.6. For any ζ > 0 there is ε�(ζ ) > 0 such that for ε ≤ ε�, k ≥ k�(ζ , ε) ∈ N,

any m ≥ 1 and all |y| < κ ′,

Mm(ε) := E

⎡⎣ m∏
j=1

|Gjk(y)|ε
⎤⎦ ≤ e2εζmE[|G0(y)|2ε]m/2 , (3.31)

Mm(−ε) := E

⎡⎣ m∏
j=1

|Gjk(y)|−ε

⎤⎦ ≤ e2εζmE[|G0(y)|−2ε]m/2 . (3.32)

We comment that the reverse inequality is conjectured to hold without the

exponential correction, see [27] for partial results. Estimates in case of integer moments

may be found in [25].

We proceed to obtain (3.25) from Proposition 3.6. In view of (3.24) and (3.26), the

LHS of (3.25) amounts (after setting zβ = iy), to

E

⎡⎣ m∏
j=1

|Gjk(y)|ε
⎤⎦ ≤ e4|ε|ξδm exp

(
εmE log |G0(y)|) , ∀|y| ≤ 2δ . (3.33)

Proceeding to show (3.33), we set ζ := ξδ > 0 and a positive ε ≤ ε�(ζ )∧ ε0(ζ )/2, so

Lemma 3.5 applies at 2ε, then fix k ≥ k�(ζ , ε) large enough as needed for Proposition 3.6.

Combining now the bound (3.31) with (3.27) at 2ε and the elementary inequality
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(1 + 2εζ ) ≤ e2εζ yields the bound (3.33). Similarly, the RHS of (3.25) amounts to the

inequality (3.33) at −ε < 0, so having the control of (3.28) on the −ε-moment of G0(y) in

terms of E log |G0(y)|, we deduce that the RHS of (3.25) follows from the bound (3.32).

In conclusion, we have by now reduced the proof of Theorem 1.6 to the

de-correlated moment computations of Proposition 3.6, to which we devote Sections 4

and 5.

4 Diagonally Dominant Gaussian Laws

We establish here a few preparatory results about weakly correlated, centered, C-valued

Gaussian vectors. Our results are phrased in terms of

f (jx� + iy) := Gj(y) := √
vR(y)Xj(y) + i|y|√vI(y)Yj(y) , (4.1)

for vI(y) and vR(y) of (3.8) and(3.9), standard, R-valued Gaussian Xj(y), Yj(y) that are

independent of each other (see (3.5)), and all absolute constants are independent of y ∈
(−κ ′, κ ′). Such results apply whenever E[|Gj|2] are uniformly bounded above and below,

provided the covariance matrix of the Gaussian {Gj} is diagonally dominant, in the sense

that the correlations between {Xj, Yj} and {Xj+k, Yj+k} are absolutely summable (in k),

with a uniform (in j), tail decay, as in (3.6).

Our first result (needed for proving (3.31)), is a uniform a priori control on the

2nd moment of the product of such Gaussian variables (assuming only that they have

summable covariances, as in (3.7)).

Lemma 4.1. There exists a finite C� ≥ 1 such that for all |y| < κ ′ and any finite J ⊂ N,

E

⎡⎣∏
j∈J

|Gj(y)|2
⎤⎦ ≤ C2|J|

� . (4.2)

Proof. For centered Gaussian (Z1, . . . , Zn) ∈ Cn, with r0(	, 	′) = E[Z	Z	′ ] and r1(	, 	′) =
E[Z	Z	′ ] one has that

Mn := E[
n∏

	=1

|Z	|2 ] ≤
n∏

	=1

R	 , (4.3)

R	 := 2
n∑

	′=1

|r1(	, 	′)| ∨ |r0(	, 	′)| . (4.4)
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Indeed, setting r3 = r0 and r2 = r1 we have by Wick’s formula (see [10, Lemma

2.1.7]), that

Mn =
∑
P

n∏
j=1

rsj
(aj, bj) , (4.5)

where we sum over pair partitions P = {(aj, bj), j = 1, . . . , n} of S ′ := {1, 1, 2, 2, . . . , n, n}
(with the convention that aj appears before bj in the list S ′), and each sj ∈ {0, 1, 2, 3} is set

according to whether aj or bj are taken from an odd or an even location in S ′. We bound

Mn above by moving in the RHS of (4.5) to maxs |rs(aj, bj)|, so hereafter all terms there are

non-negative and the choice of sj made irrelevant. Next, let S := {1, 2, . . . , n}, observing

that each pair partition P of S ′ induces a function g : S → S (mapping elements in odd

locations in S ′ to their pairs from S according to P), where each g : S → S corresponds

to at most 2n such pair partitions. Consequently,

Mn ≤
∑

g:S→S
2n

n∏
	=1

|r0(	, g(	))| ∨ |r1(	, g(	))| =
n∏

	=1

R	 .

Now apply (4.3) for the centered Gaussian {Gj(y), j ∈ J} and bound R	 of (4.4) by

summing over all 	′ ∈ Z. Setting Cy := ∑
j∈Z |r(jx� + 2iy)|, we thus get form Proposition

3.1(b) that for any J and |y| < κ ′,

sup
	

{R	} ≤ 2(Cy + C0) ≤ 4 sup
|y|<κ ′

{Cy} := C2
�

that is finite by Lemma 3.3 (see (3.7)). �

Let Jk denote the collection of all finite sets {j1, j2, . . . , jn} ⊂ N, where ji ≥ ji−1 +k

for j0 := 0 and any i ∈ [1, n]. Note that for the sequence ω(k) → 0 of (3.6), and J ∈ Jk,

the centered R-valued Gaussian vector Z = (X0(y), Y0(y), {Xj(y), Yj(y)}j∈J) has covariance

matrix � := I − S such that for all |y| < κ ′,

‖S‖∞→∞ := sup
x �=0

{‖Sx‖∞
‖x‖∞

}
= max

j

⎧⎨⎩∑
j′

|Sjj′ |
⎫⎬⎭ ≤ ω(k) . (4.6)

We next detail three elementary properties of Gaussian vectors having such a

diagonally dominant covariance matrix.
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Lemma 4.2. Suppose Z = (Z1, Z2) is centered, n-dimensional R-valued Gaussian vector

and Cov (Z) := I − S with ‖S‖∞→∞ ≤ ω < 1. Then, setting ω̂i := ωi/(1 − ω), i = 0, 1, 2, we

have that

(a) All entries of the PSD matrix Cov (Z1) − Cov (Z1|Z2) are within [−ω̂2, ω̂2].

(b) The inequality ‖E[Z1 |Z2]‖∞ ≤ ω̂1‖Z2‖∞ holds.

(c) The density fZ(·) of Z with respect to i.i.d. standard normal variables is such

that

fZ(z) ≤ (ω̂0)n/2 exp(ω̂1‖z‖2
2/2) . (4.7)

Proof.

(a) Our assumption that ‖S‖ ≤ ω < 1 implies that �−1 = ∑
n≥0 Sn satisfies

‖I − �−1‖∞→∞ ≤
∞∑

n=1

ωn = ω̂1 , ‖�−1‖∞→∞ ≤
∞∑

n=0

ωn = ω̂0 . (4.8)

With �11 := Cov (Z1), �22 := Cov (Z2), �12 = (�21)� = Cov (Z1, Z2), and

�1|2 := Cov (Z1|Z2), recall that (see [10, Exercise 2.1.3]),

�11 − �1|2 = �12�−1
22 �21 . (4.9)

The L1 norm of each column of �21 is by assumption at most ω. Further, the RHS

of (4.8) applies to �−1
22 , which by (4.9) implies that all entries of �11 − �1|2 are indeed

within [−ω̂2, ω̂2].

(b) Since μ := E[Z1 |Z2] = �12�−1
22 Z2 and the RHS of (4.8) applies for �22, we

deduce as in part (a) that necessarily ‖μ‖∞ ≤ ω ω̂0‖Z2‖∞.

(c) The matrix norm of (4.6) dominates the spectral norm. In particular, from the

LHS of (4.8) we deduce that

〈z, (I − �−1)z〉 ≤ ω̂1‖z‖2
2 .

Further, the RHS of (4.8) implies that all eigenvalues of �−1 are within [0, ω̂0], hence the

density

fZ(Z) = |�−1|1/2 exp
(

1

2
〈z, (I − �−1)z〉

)
,

satisfies the bound (4.7), as claimed. �
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Relying on diagonal dominance to lower bound the conditional variances, as in

Lemma 4.2(a), we get the following negative moment bound (which will later be useful

when proving (3.32)).

Lemma 4.3. For some finite ko, Co ≥ 1 and εo > 0, all ε ≤ εo, |y| < κ ′ and any J ∈ Jko

E

[
|G0(y)|−4ε | {Gj(y) : j ∈ J}

]
≤ Co . (4.10)

Proof. Since |z| ≥ |Re(z)| it suffices to show that (4.10) holds when Re(G0(y)) replaces

|G0(y)|. Further, we only need to do so for say εo = 1/8, as it thereafter extends by

Jensen’s inequality (and the convexity of g(x) = xp on R+ when p = εo/ε ≥ 1), to all

ε ≤ εo. To this end, recall that the conditional law of Re(G0(y)), given the finite C-valued

Gaussian collection {Gj(y), j ∈ J}, is Gaussian of some nonrandom (conditional) variance

v = vR(y; J) and random mean μ̂
√

v (see [10, Exercise 2.1.3]). With φ(·) denoting the

standard normal density, we thus have by scaling, that the conditional expectation of

|Re(G0(y))|−1/2 is at most

v−1/4 sup
μ̂∈R

{∫
R

(|x − μ̂| ∧ 1)−1/2φ(x)dx
}

:= v−1/4C1 ,

for some finite constant C1 ≤ 1+φ(0)
∫ 1
−1 |x|−1/2dx. With vR(y) uniformly bounded below

and ω(ko) ≤ 1/3 for some ko finite (see (3.6)), it follows that

u(ko) := (1 − ω(ko)) inf
|y|<κ ′{vR(y)} > 0

and we get (4.10) with Co = u(ko)−1/4C1, upon showing that

inf
J∈Jko ,|y|<κ ′{vR(y; J)} ≥ u(ko) . (4.11)

To this end, as E[X0(y)2] = 1 and ω(ko) ≤ 1/2, from Lemma 4.2(a) we then have

that

vR(y; J)

vR(y)
= E[X0(y)2 | {Xj(y), Yj(y) : j ∈ J}] ≥ E[X0(y)2] − ω(ko)2

1 − ω(ko)
≥ 1 − ω(ko) ,

and (4.11) follows. �
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Next, for fixed k ≥ ko, y, m, and any threshold � > 0, we define the collection

B� := {1 ≤ j ≤ m : |Xjk(y)| ∨ |Yjk(y)| > �} , (4.12)

of “bad” indices, and use diagonal dominance (specifically, Lemma 4.2(c)), to show that

for large � it is exponentially highly unlikely to have many bad indices.

Lemma 4.4. There exists c(�) → ∞ as � → ∞ such that for any k ≥ ko, all |y| < κ ′

and nonrandom B ⊂ {1, . . . , m},

P(B ⊆ B�) ≤ e−4c(�)|B| . (4.13)

Proof. Since the event {B ⊆ B�} is the union of

{|Xjk(y)| > �, ∀j ∈ J} ∩ {|Yjk(y)| > �, ∀j ∈ B \ J} ,

over the 2|B| possible J ⊆ B, by Cauchy–Schwartz it suffices for (4.13) to show that for

some b(�) := 8c(�) + log 4 → ∞ as � → ∞, both

pJ(�) := P(|Xjk(y)| > �, ∀j ∈ J) ≤ e−b(�)|J| , (4.14)

qJ(�) := P( |Yjk(y)| > �, ∀j ∈ J) ≤ e−b(�)|J| . (4.15)

To this end, recall that 1 − ω(k) ≥ 2/3 ≥ 2ω(k), whenever k ≥ ko. Hence, from

Lemma 4.2(c) we have the bound

pJ(�)1/|J| ≤ (1 − ω(k))−1/2E

[
e

ω(k)X2
0

2(1−ω(k)) 1{|X0|>�}

]
≤ 2

√
3/2√
2π

∫ ∞

�

e−x2/4dx := e−b(�)

for which (4.14) holds. Exactly the same argument applies for qJ(�), yielding the bound

(4.13). �

We conclude the section by showing that, thanks to Lemma 4.2(b), for large k =
k(�, ε) and any J ∈ Jk, the conditional expectation of |G0(y)|±ε given a realization of

{Xj(y), Yj(y) : j ∈ J}, all of whom are in a specified range [−�, �], is within error (1+o(ε))

of the unconditional expectation.
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Lemma 4.5. Let HJ(y) := maxj∈J{|Xj(y)|, |Yj(y)|}. There exist k�(�, ζ , ε) : R3+ → [ko, ∞)

and ε� > 0, such that for any �, ζ > 0, ε ≤ ε�, J ∈ Jk�
and |y| < κ ′

E

[
|G0(y)|ε | {Gj(y)}j∈J

]
1{HJ (y)≤�} ≤ eεζE[|G0(y)|ε] , (4.16)

E

[
|G0(y)|−ε | {Gj(y)}j∈J

]
1{HJ (y)≤�} ≤ eεζE[|G0(y)|−ε] . (4.17)

Proof. We use the representation (4.1), dividing (4.16) and (4.17) by vR(y)±ε. Then, with

u := y2vI(y)/vR(y) ∈ [0, 1] and gu,±ε(x) := (x2
1 + ux2

2)±ε/2, the stated inequalities amount

to

1{HJ (y)≤�}
∫
R2

gu,±ε(x)fJ(x)dγ (x) ≤ eεζ

∫
R2

gu,±ε(x)dγ (x) , (4.18)

where fJ(·) is the Radon–Nikodym density of the conditional law of (X0(y), Y0(y)) with

respect to the standard two-dimensional Gaussian law γ . Recall Lemma 4.2(a) that for

any J ∈ Jk, k ≥ ko, the two-dimensional covariance matrix �1|2 := I2 −S of (X0(y), Y0(y)),

given {Gj(y), j ∈ J}, satisfies ‖S‖∞→∞ ≤ ω(k)2/(1 − ω(k)) ≤ ω(k). Further, by Lemma

4.2(b), the conditional mean μ of (X0(y), Y0(y)) must satisfy ‖μ‖∞ ≤ 2ω(k)HJ(y). Here

ω = ω(k) ≤ 1/3, so similarly to the derivation of (4.7), we have for the (random) two-

dimensional Radon–Nikodym density fJ(·) that

fJ(x) = |�1|2|−1/2 exp
{

1

2

(
〈x, x〉 − 〈x − μ, �−1

1|2(x − μ)〉
)}

≤ f̂ω(k),HJ (y)(x) , (4.19)

where for any fixed � < ∞,

f̂ω,�(x) := (1 − ω)−1 exp
{
ω(x2

1 + x2
2 + 3�|x1| + 3�|x2|)

}
↘ 1 , when ω ↘ 0 .

Note that gu,ε ≤ g1,ε and gu,−ε ≤ g0,−ε. Further, both g1,ε · (1 + f̂ω,�) and g0,−ε ·
(1 + f̂ω,�) are in L1

γ (R2) as soon as ε ≤ ε� < 1 and ω < 1/2. Consequently, per ε ≤ ε�

and � < ∞, the functions x 
→ gu,±ε(x)|̂fω,�(x) − 1| are uniformly in u (and ω ≤ 1/3),

integrable with respect to γ , and converge pointwise to zero as ω ↘ 0. Thus,

lim
ω↘0

sup
u∈[0,1]

∣∣∣∣∫
R2

gu,±ε(x)̂fω,�(x)dγ (x) −
∫
R2

gu,±ε(x)dγ (x)

∣∣∣∣ = 0 ,

which together with (4.19) and (3.6) imply the existence of finite k�(�, ζ , ε) ≥ ko such

that (4.18) holds whenever J ∈ Jk�
and |y| < κ ′. �
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5 Moment Computations: Proof of Proposition 3.6

5.1 Proof of (3.31)

Since c(�) of Lemma 4.4 is unbounded, for any ζ > 0 and ε ≤ ε� < 1 (where ε� is from

Lemma 4.5), we can take � = �(ζ , ε) so large that

C�e
−c(�) ≤ εζeεζE

[
|G0(y)|2ε

]1/2
, (5.1)

where C� is the finite constant from Lemma 4.1. Given such �, let hε,�(G) :=
|G|ε1{|X|∨|Y|≤�} (for G(y), X(y), and Y(y) related as in (4.1)). Then, fix k ≥ k� (also from

Lemma 4.5), and partition the expression Mm(ε) of (3.31) according to B� of (4.12), to get

that

Mm(ε) =
∑

B

E

⎡⎣∏
j∈B

|Gjk(y)|ε 1{B⊆B�}
∏
j∈Bc

hε,�(Gjk(y))

⎤⎦ , (5.2)

where the sum is over all B ⊆ {1, . . . , m}. For (1 − ε)/2 ≥ 1/4, using Hölder’s inequality

we bound the generic summand on the RHS of (5.2) by

E

⎡⎣∏
j∈B

|Gjk(y)|2
⎤⎦ε/2

P(B ⊆ B�)1/4 E

⎡⎣∏
j∈Bc

h2ε,�(Gjk(y))

⎤⎦1/2

. (5.3)

Enumerating Bc = {j1, j2, . . .} with 1 ≤ j1 < j2 < · · · ≤ m and utilizing the

stationarity of {Gj(y)}j, we appeal sequentially for s = 1, . . ., to (4.16) with k−1J =
Bc \ {j1, . . . , js} shifted backward by js, to deduce that (since k ≥ k�),

E

⎡⎣∏
j∈Bc

h2ε,�(Gjk(y))

⎤⎦ ≤
(
e2εζE

[
|G0(y)|2ε

])|Bc|
. (5.4)

Further bounding the left term of (5.3) via Lemma 4.1 and the middle one via

Lemma 4.4, we complete the proof by deducing from (5.2) and (5.4) that

Mm(ε) ≤
∑

B

C|B|ε
� e−c(�)|B| (e2εζE

[
|G0(y)|2ε

])|Bc|/2

=
{

Cε
�e−c(�) + eεζE

[
|G0(y)|2ε

]1/2
}m

≤ e2εζmE

[
|G0(y)|2ε

]m/2
(5.5)

(with the last inequality holding thanks to having chosen � that satisfies (5.1)).
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5.2 Proof of (3.32)

Here Lemma 4.3 replaces Lemma 4.1, so upon further reducing ε to satisfy ε ≤ εo we set

� = �(ζ , ε) so large that

Coe−c(�) ≤ εζeεζE

[
|G0(y)|−2ε

]1/2
, (5.6)

where Co and εo are the finite constants from Lemma 4.3. Proceeding as in the proof of

(3.31), for k ≥ k� ≥ ko we partition the expression Mm(−ε) of (3.32) according to B� to

get the identity (5.2) at −ε. Then, analogously to (5.3), we apply Hölder’s inequality to

bound the generic summand on the RHS of that identity (now at −ε), by

E

⎡⎣∏
j∈B

|Gjk(y)|−4ε

⎤⎦1/4

P(B ⊆ B�)1/4 E

⎡⎣∏
j∈Bc

h−2ε,�(Gjk(y))

⎤⎦1/2

. (5.7)

The only difference WRT (5.3) is the 1st exponent −4ε instead of −2 (as

E[|G0(y)|−2] = ∞). The middle and last terms of (5.7) are handled precisely as in the

proof of (3.31), upon appealing to Lemma 4.4 and (4.17), respectively. With � satisfying

(5.6), the proof of (3.32) is thus complete upon establishing that

E

⎡⎣∏
j∈B

|Gjk(y)|−4ε

⎤⎦ ≤ C|B|
o . (5.8)

Similarly to the derivation of (5.4), upon enumerating B = {j1 < j2 < . . .} we get

the bound (5.8) by repeated conditioning and using (4.10) for s = 1, 2, . . . with k−1J =
B \ {j1, . . . , js} shifted backward by js.

Open problem: Does the exponential upper tail of (1.11) hold in case of covariance

r(t) = sinc(t) (with spectral density p(λ) = 1
21[−1,1](λ))? Note that this covariance

satisfies Assumption A (for x� = 2π ), apart from the lack of summability of the r′
1(·; 2y)

term in (1.10). Motivation for this example comes, for instance, from scaling limits

of random trigonometric polynomials, and some partial results on concentration were

proved in this context, see for example,[2, Lemma 16].
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