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Abstract. We study the computation of the zero set of the Bargmann trans-

form of a signal contaminated with complex white noise, or, equivalently, the

computation of the zeros of its short-time Fourier transform with Gaussian win-

dow. We introduce the adaptive minimal grid neighbors algorithm (AMN), a

variant of a method that has recently appeared in the signal processing liter-

ature, and prove that with high probability it computes the desired zero set.

More precisely, given samples of the Bargmann transform of a signal on a finite

grid with spacing δ, AMN is shown to compute the desired zero set up to a fac-

tor of δ in the Wasserstein error metric, with failure probability O(δ4 log2(1/δ)).

We also provide numerical tests and comparison with other algorithms.

1. Introduction

1.1. The Bargmann transform and its zeros. The Bargmann transform of a

real variable function f ∈ L2(R) is the entire function

F (z) =
√

2
π
e−z2/2

∫
R
f(t)e−t2+2tz dt, z ∈ C.(1.1)

Originally introduced as a link between configuration and phase space in quantum

mechanics [7], the Bargmann transform was later recognized as a powerful tool in

signal analysis [11] because it encodes the correlations between the signal f and

the time-frequency shifts of the Gaussian function g(t) =
(
2
π

) 1
2 e−t2 :

e−ixye−
1
2
(x2+y2)F (x− iy) =

∫
R
f(t)g(t− x)e2ity dt, x, y ∈ R.(1.2)

In the jargon of time-frequency analysis, the right-hand side of (1.2) is known as

the short-time Fourier transform of f with Gaussian window, and measures the

contribution to f(t) of the frequency y near t = x.
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In practice, the values of the short-time Fourier transform of a signal f are only

available on (a finite subset of) a grid

{(δk, δj) : k, j ∈ Z}, δ > 0.(1.3)

The goal of Gabor analysis is to extract useful information about f from such

limited measurements. Equivalently, by (1.2), the task is to capture the analytic

function F given a limited number of its samples on a grid. This second point

of view led to the most conclusive results in Gabor theory, such as the complete

description of all grids (1.3) for which the Gabor transform fully retains the original

analog signal f [11, 21, 23, 24].

While Gabor signal analysis has traditionally focused on large values of the

short-time Fourier transform (1.2), recent work has brought to the foreground the

rich information stored in its zeros, especially when the signal is contaminated

with noise. Heuristically, the zeros of the Bargmann transform of noise exhibit a

rather rigid random pattern with predictable statistics, from which the presence

of a deterministic signal can be recognized as a salient local perturbation [16, 13,

14]. Remarkably, the Bargmann transform of white noise has been identified as

a certain Gaussian analytic random function [5, 6], and consequently the well-

researched statistics of their zero sets [19, 22] can be leveraged in practice [15,

Chapters 13 and 15], [5]. The particular structure observed in the zeros of the

Bargmann transform under even a moderate amount of white noise has also been

invoked as explanation for the sparsity resulting from certain non-linear procedures

to sharpen spectrograms [16], as the zeros of the Bargmann transform are repellers

of the reassignment vector field [15, Chapter 12]. The practical exploitation of such

insights requires an effective computational link between finitely given data on the

one hand and zeros of Bargmann transforms of an analog signal on the other.

1.2. Computation of zero sets. Suppose that the values of the Bargmann trans-

form F of a signal f are given on a grid

Λ = {δk + iδj : k, j ∈ Z}, δ > 0,(1.4)

and we wish to compute an approximation of {F = 0}, the zero set of F , within

the square

ΩL = {x+ iy : |x|, |y| ≤ L}.(1.5)

More realistically, we only have access to samples of F on those grid points near

the computation domain, e.g., on

ΛL = {δk + iδj : k, j ∈ Z, |δk|, |δj| ≤ L}.(1.6)

The inverse of the spacing of the grid, 1/δ, will be called the resolution of the

data.
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Figure 1. Calculation of zero sets by thresholding: Values below

the same threshold (marked by circles) fail to detect some zeros and

at the same time cannot clearly separate other zeros.

Thresholding. The most naive approach to compute {F = 0} is thresholding : one

selects all grid points λ such that |F (λ)| is below a certain threshold ε > 0:

e−
1
2
|λ|2 |F (λ)| < ε.(1.7)

The normalizing weight e−
1
2
|λ|2 is motivated by (1.2), as the short-time Fourier

transform of a typical signal can be expected to be bounded. One disadvantage of

this approach is that it requires an educated choice for the threshold ε. Moreover,

computations with various reasonable choices of thresholds, such as quantiles of

e−
1
2
|λ|2 |F (λ)| calculated over all grid points λ, either fail to compute many of the

zeros or capture too many points (see Figure 1).

Extrapolation. One may consider using the samples of F on the finite grid (1.6)

to reconstruct the signal f , resample F at arbitrarily high density, and thus cal-

culate more easily the zero set {F = 0}. However, computation of zeros through

extrapolation may be inaccurate: while the samples of F on the infinite grid (1.4)

determine F as soon as
√
π · δ < 1 [11, 21, 24], the truncation errors involved in

the approximation of F near ΩL from finite data (1.6) can only be neglected at

very high resolution 1/δ. Even if the values of F are successfully extrapolated

to a higher resolution grid, the remaining computation is still not trivial, as, for

example, simple thresholding may fail even at high resolution (see Figure 4 and

Section 5).
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Minimal Grid Neighbors. A greatly effective numerical recipe for the computation

of zeros of the Bargmann transform can be found in the code accompanying [13]

— although not explicitly described in the text. A grid point λ is selected as a

numerical approximation of a zero if e−
1
2
|λ|2|F (λ)| is minimal among grid neighbors,

i.e.,

e−
1
2
|λ|2|F (λ)| ≤ e−

1
2
|µ|2 |F (µ)|, |λ− µ|∞ = δ,(1.8)

where |z|∞ = max{|x|, |y|}. The subset of points that pass the test furnish the

computation of {F = 0}. This method, which we call minimal grid neighbors

(MGN), performs impressively as long as the grid resolution is moderately high.

Indeed, we understand that the method is behind the simulations in [15, Chap-

ter 15] which quite faithfully reproduce the statistics of the zeros of the Bargmann

transform of complex white noise (that are known analytically [5, 19]). The MGN

algorithm was also used to produce the plots in [5], as pointed out in [5, Sec-

tion 5.1.1.]; see also [6, Section 5], [20, Section IV], and [1]. Heuristically, the

test (1.8) succeeds in identifying zeros due to the analyticity of F , which implies

that |F (z)|e− 1
2
|z|2 does not have non-zero local minima. Remarkably, (1.8) is also

effective even if the comparison involves only neighboring grid points.

The MGN algorithm performs equally well when calculating the zeros of the

Bargmann transform of a signal

f = f1 + σ · N(1.9)

composed of a deterministic real-variable function f1 plus complex white noise

with variance σ2 > 0. The presence of a certain amount of randomness must be

behind the success of the algorithm, as, for σ = 0, the method cannot be expected

to succeed. Indeed, one can engineer a deterministic signal f where the detection

of zeros fails, as the value of its Bargmann transform F can be freely prescribed

on any given finite subset of the computation domain [24]. We are unaware of

performance guarantees for MGN.

1.3. Contribution. In this article we introduce a variant of MGN, called Adap-

tive Minimal Grid Neighbors (AMN). The algorithm is based on a comparison

similar to (1.8) but incorporates an adaptive decision margin, that depends on the

particular realization of F . While AMN has the same mild computational com-

plexity and similar practical effectiveness as MGN, we are able to estimate the

accuracy and confidence of the computation with AMN in terms of the grid reso-

lution. In this way, we show that AMN is probably approximately correct for the

signal model (1.9), in the sense that it computes the zero set with high probability

up to the resolution of the data.

On the one hand, we present what to the best of our knowledge are the first for-

mal guarantees for the approximate computation of zero sets of analytic functions
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from grid values. In fact, besides its main purpose of computation with specific

data, the AMN algorithm offers a computationally attractive and provably correct

method to simulate zero sets of the Gaussian entire function (2.10), by running

the procedure with simulated inputs. On the other hand, our analysis is a first

step towards understanding the performance of MGN.

2. Main Result

2.1. The adaptive minimal neighbors algorithm. We now introduce a new

algorithm to compute zero sets of Bargmann transforms. Suppose again that

samples of a function F : C → C are given on those points of the grid (1.4) that

are near the computation domain (1.5), say, on

ΛL+2δ = {δk + iδj : k, j ∈ Z, |δk|, |δj| ≤ L+ 2δ}.(2.1)

For each grid point λ strictly inside the computation domain, λ ∈ ΛL = Λ∩ΩL, we

use the neighboring sample at λ+ δ to compute the following comparison margin:

ηλ = e−
1
2
|λ|2 max

{
|F (λ)| , 3

4

∣∣e−δλ̄F (λ+ δ)− F (λ)
∣∣}.(2.2)

The margin ηλ therefore depends on the particular realization of F . To motivate

the definition, note that, when λ = 0, the maximum in (2.2) is taken over |F (0)|
and the absolute value of an incremental approximation of F ′(0). The comparison

margin thus incorporates the size and oscillation of F at z = 0. In general, ηλ has

a similar interpretation with respect to the covariant derivative

∂̄∗F (z) = z̄ F (z)− ∂F (z),(2.3)

and, indeed, ηλ is defined so that

ηλ ≈ e−
1
2
|λ|2 max

{
|F (λ)|, 3

4

∣∣∂̄∗F (λ)
∣∣ δ}.(2.4)

The differential operator ∂̄∗F plays a distinguished role in the analysis of vanishing

orders of Bargmann transforms [10, 12] because it commutes with the translational

symmetries of the space that they generate (the Bargmann-Fock shifts defined in

Section 3.2).

The first step of the algorithm selects all grid points λ ∈ ΛL that pass the

following comparison test:

e−
1
2
|µ|2|F (µ)| ≥ e−

1
2
|λ|2|F (λ)|+ ηλ, whenever |λ− µ|∞ = 2δ, µ ∈ Λ.(2.5)

In contrast to (1.8), the comparison in (2.5) does not involve the immediate grid

neighbors of λ but rather those points lying on the square centered at λ with

half-side-length 2δ; see Figure 2. (In particular, the test only involves grid points

µ ∈ ΛL+2δ.) Intuitively, the larger distance between λ and µ permits neglecting

the error in the differential approximation (2.4).



6 L. A. ESCUDERO, N. FELDHEIM, G. KOLIANDER, AND J. L. ROMERO

(a) One of the immediate

neighbors is used to calculate a

comparison margin.

(b) The weighted values of F

are compared against points in

the larger box.

Figure 2. The selection step of AMN.

(a) A point passes the selection

test.

(b) The same zero causes a sec-

ond detection.

Figure 3. Sliding the test box.

The use of non-immediate neighbors in (2.5) introduces a certain redundancy

in the selection of numerical zeros, because the comparison boxes delimited by

{µ : |λ − µ|∞ = 2δ} overlap and, as a consequence, one zero of F can trigger

multiple positive tests; see Figure 3. The second step of the algorithm sieves the

selected points to enforce a minimal separation of 5δ between different points. The

algorithm is formally specified below.
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Algorithm AMN: Compute zero set of F inside ΩL = [−L,L]2

Input: A domain length L ≥ 1, a grid spacing parameter δ > 0 and samples of a

function F : C → C on the grid points ΛL+2δ = Λ ∩ [−(L+ 2δ), L+ 2δ]2.

Selection step: For each grid point λ ∈ ΛL = Λ ∩ ΩL inside the target domain

ΩL, we define the following comparison margin:

ηλ = e−
1
2
|λ|2 max

{
|F (λ)| , 3

4

∣∣e−δλ̄F (λ+ δ)− F (λ)
∣∣}.(2.6)

The grid point λ is then selected if the following test is satisfied:

e−
1
2
|µ|2|F (µ)| ≥ e−

1
2
|λ|2|F (λ)|+ ηλ, whenever |λ− µ|∞ = 2δ, µ ∈ Λ.(2.7)

(Note that the test (2.7) only involves grid points µ ∈ ΛL+2δ.)

Let Z1 be the set of all selected grid points.

Sieving step: Use an off-the-shelf clustering algorithm to select a subset Z ⊂ Z1

that is 5δ separated:

inf
{
|λ− µ|∞ : λ, µ ∈ Z, λ ̸= µ

}
≥ 5δ(2.8)

and maximal with respect to this property, i.e., no proper superset satisfies (2.8).

(One concrete implementation of the sieving step is described in Section 5.2.1.)

Output: The set Z.

2.2. Performance guarantees for AMN. To study the performance of the

AMN algorithm we introduce the following input model, which, as we will explain,

corresponds to the Bargmann transform of an arbitrary signal contaminated with

complex white noise of an arbitrary intensity.

Input model. We consider a random entire function on the complex plane

F = F 1 + σ · F 0,(2.9)

where F 1 : C → C is a deterministic entire function, F 0 is a (zero mean) Gaussian

analytic function with correlation kernel:

E
{
F 0(z) · F 0(w)

}
= ezw̄, z, w ∈ C,(2.10)

and σ > 0 is the noise level. We assume that the deterministic function F 1 satisfies

the quadratic exponential growth estimate

|F 1(z)| ≤ A · e
1
2
|z|2 , z ∈ C,(2.11)

for some constant A ≥ 0.
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As for F 0, the assumption means that for each z1, . . . , zn ∈ C, (F 0(z1), . . . ,

F 0(zn)) is a normally distributed (circularly symmetric) complex random vector,

with mean zero and covariance matrix
[
ezkzℓ

]
k,ℓ
. Alternatively, F 0 can be described

as

F 0(z) =
∑
n≥0

ξn√
n!
zn,(2.12)

where (ξn)n≥0 are independent standard complex random variables [19].

Discussion of the model. The random function F 0 is the Bargmann transform of

standard complex white noise N . As each realization of complex white noise is a

tempered distribution, the computation of its Bargmann transform (1.1) is also to

be understood in the sense of distributions, as in [8]. (See [6] and [17, Section 5.1]

for a detailed discussion on this, and alternative approaches.)

We can similarly interpret F 1 as the Bargmann transform of a distribution f 1

on the real line [8]. The assumption (2.11) means precisely that f 1 belongs to

the modulation space M∞(R) consisting of distributions with Bargmann trans-

form bounded with respect to the standard Gaussian weight — or, equivalently,

with bounded short-time Fourier transform [9]. The modulation space M∞(R)
includes all square-integrable functions f 1 ∈ L2(R) and also many of the standard

distributions used in signal processing.

In summary, the input model (2.9) corresponds exactly to the Bargmann trans-

form of a random signal

f = f 1 + σ · N ,(2.13)

where f 1 ∈ M∞(R) and σ · N is complex white noise with standard deviation σ.

Performance analysis. We now present the following performance guarantees, per-

taining to the computation domain (1.5) and the acquisition grid (2.1). To avoid

immaterial technicalities, we assume that the corners of the computation domain

lie on the acquisition grid.

Theorem 2.1. Fix a domain width L ≥ 1, a noise level σ > 0, and a grid spacing

δ > 0 such that L/δ ∈ N. Let a realization of a random function F as in (2.9)

with (2.10) and (2.11) be observed on ΛL+2δ, and let Z be the output of the AMN

algorithm.

There exists an absolute constant C such that, with probability at least

1− C L2 exp

(
A2

8σ2

)
max

{
1, log2(1/δ)

}
δ4,(2.14)

there is an injective map Φ: {F = 0} ∩ ΩL → Z with the following properties:
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• (Each zero is mapped into a near-by numerical zero)

|Φ(ζ)− ζ|∞ ≤ 2δ, ζ ∈ {F = 0} ∩ ΩL.(2.15)

• (Each numerical zero that is away from the boundary arises in this form)

For each λ ∈ Z ∩ ΩL−2δ there exists ζ ∈ {F = 0} ∩ ΩL such that λ = Φ(ζ).

A proof of Theorem 2.1 is presented in Section 4. We remark some aspects of

the result.

• The AMN algorithm does not require knowledge of the noise level σ and is

homogeneous in the sense that F and cF , with c ∈ C \ {0} produce the same

output.

• Within the estimated success probability, the computation is accurate up to a

factor of the grid spacing.

• The analysis concerns an arbitrary deterministic signal impacted by noise and

is uniform over the class (2.11). As usual in such smoothed analysis, the success

probability grows as the signal to noise ratio A/σ decreases, because randomness

helps preclude the very untypical features that could cause the algorithm to

fail [25].

• Up to a small boundary effect, the guarantees in Theorem 2.1 comprise an es-

timate on the Wasserstein distance between the atomic measures supported on

{F = 0} ∩ ΩL and on the computed set Z. More precisely, for a tolerance θ > 0

let us define the boundary-corrected Wasserstein pseudo-distance between two

sets U, V ⊆ C as

WL,θ(U, V ) = inf
Φ

max
z∈U

|Φ(z)− z|∞,

where the infimum is taken over all injective maps Φ: U → V such that V ∩
ΩL−θ ⊆ Φ(U). (The definition is not symmetric on U and V , but this is not

important for our purpose.) Then Theorem 2.1 reads

P
[
WL,2δ ({F = 0} ∩ ΩL,Z) > 2δ

]
≤ CL2 exp

(
A2

8σ2

)
max

{
1, log2(1/δ)

}
δ4.

• The presented analysis concerns a signal contaminated with complex white noise.

This is a mathematical simplification; we believe that with more technical argu-

ments a similar result can be derived for real white noise. The case of colored

noise seems more challenging and will be the object of future work.

2.3. Numerical experiments. In Section 5, we report on numerical experiments

that compare the AMN and MGN algorithms. We also include a modified ver-

sion of thresholding (ST), that uses a thereshold proportional to the grid spacing
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AMN and MGN ST

(a) f1(t) = exp(−t2), A = 1 (b) f1(t) = t exp(−t2), A = 100

Figure 4. A realization of e−
1
2
|z|2 |(F 0(z) + F 1(z))| with F 1 the

Bargmann transform of f1. The deterministic functions are scaled to

obtain the prescribed A. Zeros computed with AMN, MGN, and ST

are calculated from grid samples with δ = 2−9. Zeros from AMN and

MGN coincide (circle), while ST (cross) fails either by detecting false

zeros (left) or by not capturing all of them (right).

and incorporates a sieving step as in AMN (while standard thresholding without

sieving performs extremely poorly, as seen in Figure 1).

The performance of AMN, MGN, and ST is first tested indirectly, by using

these algorithms to simulate the zero sets of the random functions in the input

model (2.9). We then compare theoretically derived statistics of the zeros of (2.9)

to empirical statistics obtained from the output of AMN and MGN under various

simulated realizations of (2.9).

Second, we perform a consistency experiment that aims at estimating the prob-

ability of computing a low-distortion parametrization of the zero set of F , as in

Theorem 2.1. Specifically, we simulate a realization of the random input F sam-

pled at high-resolution and use the output of AMN or MGN as a proxy for the

ground truth {F = 0}. We then test the extent to which this set is captured

by the output of AMN, MGN, or ST from lower resolution subsets of the same

simulated data.

The performance of AMN and MGN is almost identical, although the minimal

resolution at which MGN starts to perform well is slightly lower than that for

AMN. (This is to be expected, as the constants 2 and 5 used in (2.7) and (2.8) are

not adequate for low resolutions.) Both AMN and MGN significantly outperform

ST. See also Figure 4 for an illustration.
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The favorable performance of AMN is interesting also when the input is just

noise, as it gives a fast and provably accurate method to simulate the zeros of the

Gaussian entire function (2.10). (The simulations that we present in Section 5

use certain heuristic shortcuts to accelerate the simulation of the input (2.10)

— see Section 5.1; although we formally do not analyze these, they are implic-

itly validated, as the simulated point process reproduces the expected theoretical

statistics.)

All numerical experiments can be reproduced with openly-accessible software

and our code is available at https://github.com/laescudero/discretezeros.

Our implementation of the Bargmann transform uses [4].

2.4. Organization. Section 3 introduces the notation and basic technical tools

about analytic functions, Bargmann-Fock shifts, and their applications to random

functions and their zeros. Theorem 2.1 is proved in Section 4, while numerical

experiments are presented in detail in Section 5.

3. Preliminaries

3.1. Notation. For a complex number z = x + iy, we use the notation |z|∞ =

max{|x|, |y|}, while |z| denotes the usual absolute value. The zero set of F is

denoted by {F = 0}. The differential of the (Lebesgue) area measure on the plane

will be denoted for short dm, while the measure of a set E is |E|. With a slight

abuse of notation, we also denote the cardinality of a finite set Z by |Z|. Squares
on the complex plane are denoted by Qr(z) = {w ∈ C : |z − w|∞ ≤ r}. For two

non-negative functions f, g, we write f ≲ g if there exists an absolute constant C

such that f(x) ≤ Cg(x), for all x. We write f ≍ g if f ≲ g and g ≲ f .

A Gaussian entire function (see [19, Ch. 2] and [22]) is a random function

F : C → C that is almost surely entire, and such that for every z1, . . . , zn ∈
C,
(
F (z1), . . . , F (zn)

)
is a circularly symmetric complex normal vector. We will

be only concerned with the random function F given in (2.9). We also use the

notation (1.4), (1.5), (1.6), possibly for distinct values of L.

3.2. Bargmann-Fock shifts and stationarity of amplitudes. The analysis

of the AMN algorithm is more transparent when formulated in terms of the

Bargmann-Fock shifts. For a function F : C → C we let

Fw(z) = e−
1
2
|w|2−zw F (z + w).(3.1)

The amplitude of an entire function F is defined as the weighted magnitude

G(z) = e−
1
2
|z|2|F (z)|,

https://github.com/laescudero/discretezeros
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and satisfies

Gw(z) := G(z + w) = e−
1
2
|z|2|Fw(z)|.(3.2)

The comparison margin of the AMN algorithm (2.6) can be expressed in terms of

Bargmann-Fock shifts as

ηλ = max
{
|Fλ(0)| , 34

∣∣Fλ(δ)− Fλ(0)
∣∣},(3.3)

and leads to the approximation (2.4) because

|F ′
λ(0)| = e−

1
2
|λ|2 ∣∣∂̄∗F (λ)

∣∣ .
(Here and throughout we write F ′

λ(0) for [Fλ]
′(0).) Similarly, in terms of ampli-

tudes, the test (2.7) reads

G(µ) = e−
1
2
|µ−λ|2|Fλ(µ− λ)| ≥ |Fλ(0)|+ ηλ = G(λ) + ηλ, µ ∈ Λ, |µ− λ|∞ = 2δ.

(3.4)

With respect to the input model (2.9) we note that, if F 0 is the (zero mean)

Gaussian entire function with correlation kernel (2.10), then the Bargmann-Fock

shifts F 0 7→ F 0
w preserve the stochastics of F 0, as they leave its covariance kernel

invariant. As a consequence, for any w ∈ C, F 0
w(0),

[
F 0
w

]′
(0) are independent

standard complex normal random variables (with zero mean and variance 1).

3.3. Minimum principle for weighted amplitudes. The following weighted

version of the minimum principle is at the core of the success of MGN and AMN.

Lemma 3.1. Let F : C → C be entire, r > 0, and assume that

|F (0)| ≤ |F (z)|e−
1
2
|z|2 , for all z ∈ C such that |z|∞ = r.(3.5)

Then there exists z ∈ C with |z|∞ ≤ r such that F (z) = 0.

Proof. Let D := {z ∈ C : |z|∞ < r} and suppose that F does not vanish on D̄.

Then the function

H(z) =
e

1
2
|z|2

|F (z)|

is well defined on D̄ and satisfies

logH(0) ≥ logH(z), z ∈ ∂D.(3.6)

By the analyticity of F , ∆ log |F | = 0 and thus

∆
[
logH(z)

]
= ∆

[
|z|2
2

− log |F (z)|
]
= 2.
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Hence, the maximum principle for subharmonic functions together with (3.6) im-

plies that logH(z) and therefore |F (z)|e− 1
2
|z|2 is constant on D. For z ∈ D, we

compute

0 = ∂z
[
|F (z)|2e−|z|2] = ∂z

[
F (z) e−|z|2]F (z)

=
[
F ′(z)− z̄F (z)

]
F (z) e−|z|2 .

As F is non-vanishing on D, it follows that F ′ − z̄F = 0 on D, and therefore

0 = ∂z̄[F
′ − z̄F ] = −F,

on D. This contradiction shows that F must vanish on D̄. □

3.4. Linearization. In what follows, we derive basic facts about the input model

(2.9), and always assume that (2.10) and (2.11) hold.

The following is a strengthened version of [19, Lemma 2.4.4].

Lemma 3.2. Let F be as in (2.9). Then there exists an absolute constant C > 0

such that for all L ≥ 1 and t ≥ A,

P

[
sup

w∈ΩL,|z|≤10

|z|−2
∣∣Fw(z)−

(
Fw(0) + F ′

w(0)z
)∣∣ > t

]
≤ CL2e−(t−A)2/(8σ2),

P

[
sup

w∈ΩL,|z|≤10

|z|−2
∣∣Fw(z)e

− 1
2
|z|2 −

(
Fw(0) + F ′

w(0)z
)∣∣ > t

]
≤ CL2e−(t−A)2/(8σ2).

Proof. We consider the Taylor expansion of F :

F (z) = F (0) + F ′(0)z + E2(z)z
2,

where

sup
|z|≤10

|E2(z)| ≲
∫
|ζ|≤12

|F (ζ)| dm(ζ) ≍
∫
|ζ|≤12

|G(ζ)| dm(ζ).

We also note that for |z| ≤ 10,

|F (z)− F (z)e−
1
2
|z|2| = |F (z)|

∣∣1− e−
1
2
|z|2∣∣

≲ |z|2
∫
|ζ|≤12

|F (ζ)| dm(ζ) ≍ |z|2
∫
|ζ|≤12

|G(ζ)| dm(ζ).

Hence, for |z| ≤ 10,∣∣F (z)−
(
F (0) + F ′(0)z

)∣∣ ≲ |z|2
∫
|ζ|≤12

|G(ζ)| dm(ζ),

∣∣F (z)e−
1
2
|z|2 −

(
F (0) + F ′(0)z

)∣∣ ≲ |z|2
∫
|ζ|≤12

|G(ζ)| dm(ζ).
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We apply the previous bounds to Fw, note that, by (3.2), Gw(z) = G(z + w),

and obtain that for |z| ≤ 10,

Aw(z) := |z|−2
∣∣Fw(z)−

(
Fw(0) + F ′

w(0)z
)∣∣ ≲ ∫

|ζ−w|≤12

|G(ζ)| dm(ζ),

Bw(z) := |z|−2
∣∣Fw(z)e

− 1
2
|z|2 −

(
Fw(0) + F ′

w(0)z
)∣∣ ≲ ∫

|ζ−w|≤12

|G(ζ)| dm(ζ).

Hence

sup
|z|≤10,w∈ΩL

Aw(z) +Bw(z) ≲ sup
w∈ΩL

∫
|ζ−w|≤12

|G(ζ)| dm(ζ) ≲ sup
|ζ|≤L+12

|G(ζ)|.

Let G0 and G1 be the weighted magnitudes corresponding to F 0 and F 1, respec-

tively. Then by (2.11),

|G(ζ)| ≤ σ ·
∣∣G0(ζ)

∣∣+ |G1(ζ)| ≤ A+ σ · |G0(ζ)|, ζ ∈ C.

Hence,

P
[
sup
|ζ|≤L

|G(ζ)| > t
]
≤ P

[
sup
|ζ|≤L

∣∣G0(ζ)
∣∣ > t− A

σ

]
.

To conclude, we claim that the following excursion bound holds:

P
[
sup
|ζ|≤L

|G0(ζ)| > t
]
≤ CL2e−t2/8, t ≥ 0,

where C > 0 is an absolute constant. For L ≤ 1/4 this follows for example from

[19, Lemma 2.4.4]. In general, we cover the domain with ≲ L2 squares of the form

w + [−1/4, 1/4]2, apply the previously mentioned bound to G0
w(z) = G0(z + w),

and use a union bound. This completes the proof. □

3.5. Almost multiple zeros. It is easy to see that, almost surely, the random

function (2.9) has no multiple zeros. In the analysis of the AMN algorithm, we

will also need to control the occurrence of zeros that are multiple up to a certain

numerical precision, in the sense that F and its derivative are simultaneously

small. The following lemma is a first step in that direction, as it controls the

probability of finding a grid point that is an almost multiple zero.

Lemma 3.3. Let F be as in (2.9) and α, β > 0. Then the probability that for

some grid point λ ∈ ΛL the following occurs:

|Fλ(0)| ≤ α, and |F ′
λ(0)| ≤ β(3.7)

is at most CL2α2β2δ−2σ−4, where C is an absolute constant.
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Proof. For each grid point λ ∈ ΛL, Fλ(0) and F ′
λ(0) are independent complex

normal variables with possibly non-zero means µ1, µ2 and variance σ2. Therefore,

P
(
|Fλ(0)| ≤ α

)
=

1

πσ2

∫
|ζ|≤α

e−
1
σ2 |ζ−µ1|2 dm(ζ),(3.8)

P
(
|F ′

λ(0)| ≤ β
)
=

1

πσ2

∫
|ζ|≤β

e−
1
σ2 |ζ−µ2|2 dm(ζ).(3.9)

By Anderson’s lemma [2], the right-hand sides of (3.8) and (3.9) are maximal

when µ1 = 0 and µ2 = 0, respectively. Direct computation in those cases yields

P (|Fλ(0)| ≤ α) ≲ α2σ−2 and P (|F ′
λ(0)| ≤ β) ≲ β2σ−2. By independence, the

probability of (3.7) is ≲ α2β2σ−4. On the other hand, there are ≲ L2δ−2 grid

points under consideration, so the conclusion follows from the union bound. □

3.6. First intensity of zeros. The following proposition is not used in the proof

of Theorem 2.1, but rather as a benchmark in the numerical experiments (Sec-

tion 5).

Proposition 3.4. Let F be as in (2.9). Then for every Borel set B ⊂ C,

E[|{z ∈ B : F (z) = 0}|] =
∫
B

ρ1(ζ)dm(ζ)

where

(3.10) ρ1(ζ) =
1

π
e−

1
σ2 |F 1(ζ)|2e−|ζ|2

(
1 +

e−|ζ|2

σ2

∣∣∂ζF 1(ζ)− ζF 1(ζ)
∣∣2) .

Proof. The set of zeros and thus ρ1(ζ) does not change if we scale F by a fixed

constant. Hence, by considering the function 1
σ
F in place of F , we can assume

that σ = 1. The expected number of points {z ∈ B : F (z) = 0} of a Gaussian

random field F is given by Kac-Rice’s formula:

(3.11) E[|{z ∈ B : F (z) = 0}|] =
∫
B

E
[
|detDF (ζ)|

∣∣F (ζ) = 0
]
pF (ζ)(0) dm(ζ),

see, e.g., [3, Th. 6.2]. Since F is analytic, the determinant in question can easily

be seen to simplify to |detDF (ζ)| = |∂ζF (ζ)|2. The joint vector (F (z), ∂zF (z))

has mean (F 1(z), ∂zF
1(z)) and covariance

(3.12) Cov[(F (z), ∂zF (z))] =

(
e|z|

2

ze|z|
2

ze|z|
2

(1 + |z|2)e|z|2

)
.

Following a Gaussian regression approach, see, e.g., [3, Prop. 1.2], the conditional

expectation of |∂ζF (ζ)|2 given F (ζ) = 0 is the same as the expectation of |W |2

where W is a shifted circularly symmetric complex Gaussian random variable with

mean ∂ζF
1(ζ)− ζF 1(ζ) and variance e|ζ|

2

. Thus,

(3.13) E
[
|detDF (ζ)|

∣∣F (ζ) = 0
]
= e|ζ|

2

+
∣∣∂ζF 1(ζ)− ζF 1(ζ)

∣∣2 .



16 L. A. ESCUDERO, N. FELDHEIM, G. KOLIANDER, AND J. L. ROMERO

Inserting into (3.11) while noting that pF (ζ)(0) =
1
π
e−|ζ|2e−|F 1(ζ)|2e−|ζ|2

yields (3.10).

□

4. Proof of Theorem 2.1

We present the proof of Theorem 2.1 in several steps. Assume all the hypothesis,

and denote by Z1 the set produced by the AMN algorithm after the selection step.

Recall that L ≥ 1. By choosing a sufficiently large constant in (2.14), we can

assume that δ ≤ 1/5; otherwise, the success probability would be trivial. For the

same reason, we can assume that

δ4 exp

(
A2

8σ2

)
≤ 1.(4.1)

4.1. Excluding bad events. We let γ = 8σ and wish to apply Lemma 3.2 with

t = γ
√

log(1/δ). By (4.1),

δ4 exp

(
A2

16σ2

)
≤ δ4 exp

(
A2

8σ2

)
≤ 1.

Hence t ≥ A and we can apply Lemma 3.2 to conclude that

∣∣Fw(z)−
(
Fw(0) + F ′

w(0)z
)∣∣ ≤ γ ·

√
log(1/δ) · |z|2 ≤ 2γ ·

√
log(1/δ) · |z|2∞,

(4.2)

∣∣∣Fw(z)e
− 1

2
|z|2 −

(
Fw(0) + F ′

w(0)z
)∣∣∣ ≤ γ ·

√
log(1/δ) · |z|2 ≤ 2γ ·

√
log(1/δ) · |z|2∞,

(4.3)

for all w ∈ ΩL+1 and |z| ≤ 10, except for an event of probability at most

CL2 exp
[
− (t − A)2/(8σ2)

]
, where C is an absolute constant. Since (t − A)2 ≥

t2

2
− A2, we further have

CL2 exp

(
−(t− A)2

8σ2

)
≤ CL2 exp

(
A2

8σ2

)
δ

γ2

16σ2 = CL2 exp

(
A2

8σ2

)
δ4.

Second, we select a large absolute constant κ > 1 to be specified later, and use

Lemma 3.3 with

α = κγ ·
√

log(1/δ) · δ2,

β = 2κγ ·
√

log(1/δ) · δ,

to conclude that, for each grid point λ ∈ ΛL+2δ,

either |Fλ(0)| > α, or |F ′
λ(0)| > β, (possibly both),(4.4)

except for an event with probability at most ≲ L2 log2(1/δ)δ4.
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Overall we have excluded events with total probability

≲ L2 exp

(
A2

8σ2

)
log2(1/δ)δ4.

In what follows, we show that under the complementary events the conclusions of

Theorem 2.1 hold.

4.2. The true zeros are adequately separated. We claim that, by taking κ

sufficiently large, the set {F = 0} ∩ ΩL+2δ satisfies:

inf
{
|ζ − ζ ′|∞ : ζ, ζ ′ ∈ {F = 0} ∩ ΩL+2δ, ζ ̸= ζ ′

}
> 7δ.(4.5)

Suppose that ζ, ζ ′ ∈ {F = 0} ∩ ΩL+2δ are such that 0 < |ζ − ζ ′|∞ ≤ 7δ. Since

L/δ ∈ N, we can select a lattice point λ ∈ ΛL+2δ such that 0 < |λ − ζ| ≤ δ. We

now use repeatedly (4.2) and (4.3).

First, we use (4.2) with w = ζ and z = ζ ′ − ζ, and note that Fζ(ζ
′ − ζ) = 0 and

Fζ(0) = 0 while |ζ − ζ ′| ≤
√
2|ζ − ζ ′|∞ ≤ 7

√
2δ ≤ 10 to obtain:∣∣F ′

ζ(0)
∣∣ |ζ ′ − ζ| ≤ γ ·

√
log(1/δ) · |ζ ′ − ζ|2.

Since ζ ̸= ζ ′, we conclude:∣∣F ′
ζ(0)

∣∣ ≤ γ ·
√

log(1/δ) · |ζ ′ − ζ|.(4.6)

Second, we similarly apply (4.3) with w = ζ and z = λ− ζ, to obtain∣∣∣Fζ(λ− ζ) · e−
1
2
|λ−ζ|2 − F ′

ζ(0) · (λ− ζ)
∣∣∣ ≤ γ ·

√
log(1/δ) · |λ− ζ|2.

Combining the last equation with (4.6) yields∣∣∣Fζ(λ− ζ) · e−
1
2
|λ−ζ|2

∣∣∣ ≤ γ ·
√
log(1/δ) ·

(
|λ− ζ|2 + |ζ ′ − ζ| · |λ− ζ|

)
.(4.7)

Third, we apply (4.2) with w = λ and z = ζ − λ to obtain

|Fλ(0) + F ′
λ(0) · (ζ − λ)| ≤ γ ·

√
log(1/δ) · |ζ − λ|2.(4.8)

Note that |Fλ(0)| = |Fζ(λ− ζ)| · e− 1
2
|λ−ζ|2 . Hence, combining (4.7) and (4.8) we

obtain:

|Fλ(0)| ≤ γ ·
√

log(1/δ) ·
(
|λ− ζ|2 + |ζ ′ − ζ| · |λ− ζ|

)
,

|F ′
λ(0)| · |λ− ζ| ≤ γ ·

√
log(1/δ) ·

(
2|λ− ζ|2 + |ζ ′ − ζ| · |λ− ζ|

)
.

Since 0 < |λ− ζ| ≤ δ and |ζ − ζ ′|∞ ≤ 7δ, we conclude that

|Fλ(0)| ≤ γ ·
√

log(1/δ) ·
(
|λ− ζ|2 + |ζ ′ − ζ| · |λ− ζ|

)
≤ 11 · γ · δ2 ·

√
log(1/δ),

|F ′
λ(0)| ≤ γ ·

√
log(1/δ) · (2|λ− ζ|+ |ζ ′ − ζ|) ≤ 12 · γ · δ ·

√
log(1/δ).

Assuming as we may that κ > 11, this contradicts (4.4). Thus, (4.5) must indeed

hold.



18 L. A. ESCUDERO, N. FELDHEIM, G. KOLIANDER, AND J. L. ROMERO

4.3. Linearization holds with estimated slopes. For each λ ∈ ΛL, we use the

notation

τλ =
Fλ(δ)− Fλ(0)

δ
,

and observe that, by (4.2),∣∣τλ − F ′
λ(0)

∣∣ ≤ γ ·
√

log(1/δ) · δ.(4.9)

Combining this with (4.3), we conclude that for |z|∞ ≤ 2δ and λ ∈ ΛL,∣∣Fλ(z)e
− 1

2
|z|2 −

(
Fλ(0) + τλz

)∣∣ ≤ ∣∣Fλ(z)e
− 1

2
|z|2 −

(
Fλ(0) + F ′

λ(0)z
)∣∣+ |z|

∣∣F ′
λ(0)− τλ

∣∣
≤ 2γ ·

√
log(1/δ) · |z|2∞ + |z| · γ ·

√
log(1/δ) · δ(4.10)

≤ (8 + 2
√
2) · γ · δ2 ·

√
log(1/δ).

≤ 11 · γ · δ2 ·
√

log(1/δ).(4.11)

4.4. After the selection step, each true zero is close to a computed zero.

We show that

({F = 0} ∩ ΩL) ⊆ Z1 +Qδ/2(0).(4.12)

Let ζ ∈ ΩL be a zero of F . Since L/δ ∈ N, we can find λ ∈ ΛL such that

|ζ − λ|∞ ≤ δ/2. We show that λ ∈ Z1.

Let us first prove that

|τλ| ≥ κγ
√

log(1/δ) · δ.(4.13)

Suppose to the contrary that |τλ| < κγ
√
log(1/δ) · δ. We will show that this

contradicts (4.4). Assuming as we may that κ ≥ 1, by (4.9),

|F ′
λ(0)| ≤

(
κγ + γ

)√
log(1/δ) · δ ≤ β,

while, by (4.2),

|Fλ(0)| = |Fλ(0)− Fλ(ζ − λ)|
≤
∣∣Fλ(ζ − λ)−

(
Fλ(0) + F ′

λ(0)(ζ − λ)
)∣∣+ ∣∣F ′

λ(0)(ζ − λ)
∣∣

≤ γ
√

log(1/δ)|ζ − λ|2 + |F ′
λ(0)||ζ − λ|

≤ γ
√

log(1/δ)

(√
2δ

2

)2

+ |F ′
λ(0)|

√
2δ

2

≤ γ

2

√
log(1/δ)δ2 +

√
2

2
(κγ + γ)

√
log(1/δ)δ2

=

(
1 +

√
2

2
+

√
2

2
κ

)
γ
√

log(1/δ)δ2

≤ α,

provided κ ≥ 1+
√
2

2−
√
2
. This indeed contradicts (4.4). We conclude that (4.13) holds.
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Second, we show that λ ∈ Z1 by showing that the test (2.7) is satisfied. By

(4.10), and since |ζ − λ|∞ ≤ δ/2, we have

|Fλ(0)| ≤
∣∣Fλ(ζ − λ)e−

1
2
|ζ−λ|2 − (Fλ(0) + τλ(ζ − λ))

∣∣+ |τλ||ζ − λ|

≤ 2γ
√

log(1/δ)δ2 +

√
2

2
|τλ|δ.(4.14)

Choosing κ ≥ 8
3−2

√
2
, (4.14) and (4.13) further imply

|Fλ(0)| ≤
(
3− 2

√
2

4
+

√
2

2

)
|τλ| δ =

3

4
|τλ| δ.(4.15)

Hence,

ηλ =
3

4
|τλ|δ.(4.16)

Let µ ∈ Λ be an arbitrary lattice point with |µ− λ|∞ = 2δ. By (4.11),

|Fλ(µ− λ)|e−
1
2
|µ−λ|2 = |Fλ(µ− λ)e−

1
2
|µ−λ|2 − Fλ(ζ − λ)e−

1
2
|ζ−λ|2|

=
∣∣Fλ(µ− λ)e−

1
2
|µ−λ|2 − (Fλ(0) + τλ(µ− λ))

− Fλ(ζ − λ)e−
1
2
|ζ−λ|2 + (Fλ(0) + τλ(ζ − λ)) + τλ(µ− ζ)

∣∣
≥ |τλ||µ− ζ| − (11 + 2)γ

√
log(1/δ)δ2

≥ |τλ||µ− ζ|∞ − 13γ
√

log(1/δ)δ2

≥ |τλ|(|µ− λ|∞ − |ζ − λ|∞)− 13γ
√
log(1/δ)δ2

≥ 3

2
|τλ|δ − 13γ

√
log(1/δ)δ2.

Together with (4.14), this implies

|Fλ(µ− λ)|e−
1
2
|µ−λ|2 ≥ |Fλ(0)|+

3−
√
2

2
|τλ|δ − 15γ

√
log(1/δ)δ2.

Finally, we use (4.13) to analyze the obtained comparison margin against (4.16):

3−
√
2

2
|τλ|δ − 15γ

√
log(1/δ)δ2

≥ 3

4
|τλ|δ +

3− 2
√
2

4

(
κγ
√
log(1/δ)δ2

)
− 15γ

√
log(1/δ)δ2

=
3

4
|τλ|δ +

(
3− 2

√
2

4
κ− 15

)
γ
√

log(1/δ)δ2

≥ ηλ,

where we fixed the value of κ so that 3−2
√
2

4
κ − 15 ≥ 0. Therefore, the point λ

passes the selection test (2.7) (as formulated in (3.4)), i.e., λ ∈ Z1, as claimed.
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4.5. After the selection step, each computed zero is close to a true zero.

We show that

Z1 ⊆ {F = 0}+Q2δ(0).(4.17)

Let λ ∈ Z1 be a computed zero, and let us find a zero z of F with |λ− z|∞ ≤ 2δ.

In terms of the Fock shift Fλ, the success of the test (2.7) reads,

|Fλ(µ)|e−
1
2
|µ|2 ≥ |Fλ(0)|+ ηλ, for all µ ∈ Λ such that |µ|∞ = 2δ;(4.18)

see (3.4). For an arbitrary z ∈ C with |z|∞ = 2δ, we can find a lattice point µ ∈ Λ

with |µ|∞ = 2δ such that |z − µ| = |z − µ|∞ ≤ δ/2. Hence, by (4.11),

|Fλ(z)e
− 1

2
|z|2 − Fλ(µ)e

− 1
2
|µ|2 | ≤

∣∣Fλ(z)e
− 1

2
|z|2 −

(
Fλ(0) + τλz

)∣∣
+
∣∣Fλ(µ)e

− 1
2
|µ|2 −

(
Fλ(0) + τλµ

)∣∣
+ |τλ| |z − µ|

≤ 1
2
|τλ|δ + 22γ ·

√
log(1/δ)δ2.

By (4.4) and (4.9), either |τλ|δ ≥ κγ
√

log(1/δ) ·δ2 or |Fλ(0)| ≥ κγ
√
log(1/δ) ·δ2 ≥

|τλ|δ. Choosing κ ≥ 88 ensures in the first case that

|Fλ(z)e
− 1

2
|z|2 − Fλ(µ)e

− 1
2
|µ|2| ≤ 3

4
|τλ|δ ≤ ηλ

and in the second case

|Fλ(z)e
− 1

2
|z|2 − Fλ(µ)e

− 1
2
|µ|2 | ≤ 3

4
|Fλ(0)| ≤ ηλ.

Combining this with (4.18), we conclude that

|Fλ(z)|e−
1
2
|z|2 ≥ |Fλ(0)|, for all z ∈ C such that |z|∞ = 2δ.(4.19)

By Lemma 3.1, there exists wλ ∈ C with |wλ| ≤ 2δ such that Fλ(wλ) = 0. This

means that zλ := wλ + λ is a zero of F that satisfies |zλ − λ|∞ ≤ 2δ, as desired.

4.6. Definition of the map Φ. We now look into the sieving step of the AMN

algorithm and analyze the final output set Z.

Given ζ ∈ {F = 0}∩ΩL we claim that there exists λ ∈ Z such that |ζ−λ|∞ ≤ 2δ.

Suppose to the contrary that

|ζ − λ|∞ > 2δ, λ ∈ Z.(4.20)

By (4.12), there exists µ ∈ Z1 such that |ζ − µ|∞ ≤ δ/2. By (4.20), Z ⊊ Z ∪ {µ}.
We claim that Z ∪ {µ} is 5δ-separated. For this, it suffices to check that

|µ− λ|∞ > 4δ, λ ∈ Z.
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If λ ∈ Z, by (4.17), there exist ζ ′ ∈ {F = 0} such that |ζ ′ − λ|∞ ≤ 2δ. If ζ ′ = ζ,

then |ζ−λ|∞ ≤ 2δ, contradicting (4.20). Thus ζ ̸= ζ ′, while, ζ ′ ∈ Z+Q2δ ⊂ ΩL+2δ.

Hence, we use (4.5) to conclude that

|µ− λ|∞ ≥ |ζ − ζ ′|∞ − |µ− ζ|∞ − |λ− ζ ′|∞ ≥ 7δ − δ/2− 2δ > 4δ.

Thus, the set is 5δ-separated:

inf
{
|λ− λ′|∞ : λ, λ′ ∈ Z ∪ {µ}, λ ̸= λ′

}
≥ 5δ,

contradicting the maximality of Z. It follows that a point λ ∈ Z such that |ζ −
λ|∞ ≤ 2δ must exist. We choose any such point, and define Φ(ζ) = λ.

4.7. Verification of the properties of Φ. By construction, the map Φ satisfies

(2.15). We now show the remaining properties. To show that Φ is injective, assume

that Φ(ζ) = Φ(ζ ′). Then, by (2.15),

|ζ − ζ ′|∞ ≤ |Φ(ζ)− ζ|∞ + |Φ(ζ ′)− ζ ′|∞ ≤ 4δ.

Hence, by (4.5), we must have ζ = ζ ′.

Finally, assume that λ ∈ Z ∩ ΩL−2δ and use (4.17) to select a zero ζ ∈ {F = 0}
such that |ζ − λ|∞ ≤ 2δ. Then ζ ∈ ΩL, and, by (2.15),

|Φ(ζ)− λ|∞ ≤ |Φ(ζ)− ζ|∞ + |ζ − λ|∞ ≤ 4δ.(4.21)

As λ,Φ(ζ) ∈ Z and Z is 5δ-separated (see (2.8)) we conclude that λ = Φ(ζ), as

claimed.

This concludes the proof of Theorem 2.1. □

5. Numerical Experiments

In this section we perform a series of tests of the AMN algorithm and compare its

performance with MGN and thresholding supplemented with a sieving step (ST).

5.1. Simulation. We first discuss how to simulate samples from the input model

(2.9). To make simulations tractable, we introduce a fast method to draw samples

of the Gaussian entire function F 0 given by (2.10) on the finite grid (1.6). The

method is based on the relation between the Bargmann transform and the short-

time Fourier transform (1.2) and amounts to discretizing the underlying signal f .

We fix L > 0, T > 0, and δ > 0. For convenience, we further let σ = 1 and

assume that Tδ−1 is an integer. Recall that we also assumed that Lδ−1 is an

integer.

To model a discretization of N , we take i.i.d. noise samples in the interval

[−T−L, T+L] ⊆ R spaced by a distance δ. More specifically, we consider a random

vector w = (w−(T+L)δ−1 , . . . , w(T+L)δ−1), where the elements ws ∼ NC(0, δ
√

π
2
) are
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independent, i.e., E[wsws] = δ
√

π
2
, and E[wsws′ ] = 0. Here, ws can be interpreted

as an integration of N over the interval [δs, δ(s+ 1)].

Let φ = g|[−T,T ] be the restriction of g(t) = ( 2
π
)
1
2 e−t2 to the compact support

[−T, T ] and define

Ĥ(k + ij) :=
Tδ−1+k∑

s=−Tδ−1+k

(
ws + δf 1(δs)

)
φ(δ(s− k))e−2isjδ2 ,(5.1)

for k, j ∈ {−Lδ−1, . . . , Lδ−1}. The mean of Ĥ is given by

E[Ĥ(k + ij)] = δ

Tδ−1+k∑
s=−Tδ−1+k

f 1(δs)φ (δ(s− k))e−2isjδ2 , k, j ∈ {−Lδ−1, . . . , Lδ−1},

and approximates the integral∫ ∞

−∞
f 1(t)g(t− x)e−2iytdt = e−ixye−

1
2
(x2+y2)F 1(z),

with x = δk and y = δj. Furthermore, the covariance of Ĥ is

Cov
(
Ĥ(k + ij), Ĥ(k′ + ij′)

)
= δ

√
π

2

Tδ−1+k′∑
s=−Tδ−1+k′

φ (δ(s− k′))φ (δ(s− k))e−2is(j−j′)δ2 .

For small δ and sufficiently large T , this is an approximation of the integral

√
π

2

∫ ∞

−∞
g
(
t− δk′)g(t− δk

)
e−2it(j−j′)δ dt = e−

u2+v2+x2+y2

2 ei(uv−xy)e(x−iy)(u+iv),

(5.2)

with x = δk, y = δj, u = δk′, and v = δj′. Therefore, if we take T large

enough so that we can ignore the numerical error introduced by the truncation of

the normalized Gaussian window g, we obtain in (5.1) a random Gaussian vector

whose covariance structure approximates (2.10) on a grid ΛL, provided that δ is

small.

By conjugating z and multiplying by the deterministic factor e−ixy, we thus

obtain an approximate sampling of (2.9) with weight e−
1
2
|z|2 :

(5.3) e−
1
2
|z|2F (z) ≈ e−ixy Ĥ(z̄)

for z = δk+ iδj. We carry out all computations with the weighted function (5.3),

as the unweighted version can lead to floating point arithmetic problems. Note

that, for a grid point λ, the comparison margin (2.6) can be expressed in terms of

e−
1
2
| · |2F ( · ) as

ηλ = max
{
e−

1
2
|λ|2 |F (λ)| , 3

4

∣∣e 1
2
δ(2i Im(λ)+δ)e−

1
2
|λ+δ|2F (λ+ δ)− e−

1
2
|λ|2F (λ)

∣∣}.
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5.2. Specifications for the experiments.

5.2.1. Implementation of the sieving step in AMN. In order to fully specify the

AMN algorithm we need to fix an implementation of the sieving step, which

provides a subset Z ⊆ Z1 satisfying (2.8), and such that no proper superset

Z1 ⊇ Z̃ ⊋ Z satisfies (2.8). We choose an implementation that uses knowledge

of the input F to decide which points are to be discarded. We assume that Z1 is

non-empty, otherwise Z is trivial.

Algorithm S1: Obtain a maximal subset that is 5δ separated.

Input: Values of a function F on a grid ΛL. A discrete non-empty set Z1 ⊆ ΛL.

Step 1: Copy the set Z1 to Zaux
1 .

Step 2: Consider the (pre)ordered set (Zaux
1 ,≼), where

λ ≼ µ ⇐⇒ e−
1
2
|λ|2 |F (λ)| ≤ e−

1
2
|µ|2 |F (µ)| , λ, µ ∈ ΛL.(5.4)

Step 3: Choose a minimal point λ ∈ (Zaux
1 ,≼).

Step 4: Add λ to Z.

Step 5: Remove all µ ∈ Zaux
1 such that

(5.5) 0 ≤ |λ− µ|∞ ≤ 4δ.

Step 6: If the set Zaux
1 is not empty, repeat Steps 3–6. If the set Zaux

1 is empty,

then the algorithm ends.

Output: The set Z.

The resulting set Z ⊆ Z1 always satisfies (2.8). Moreover, any superset Z̃ ⊋ Z

included in Z1 must contain some of the discarded points µ ∈ Z1, which by

construction satisfy (5.5) for some λ ∈ Z, and therefore Z̃ is not 5δ separated.

Thus, Z is indeed maximal with respect to (2.8).

The choice of λ ∈ Zaux
1 in Step 3 of S1 is not essential. Our particular choice is

motivated by finding the zeros of F ; however, we did not observe any significant

performance difference when using other algorithms than S1 as the sieving step of

AMN.

5.2.2. Specification of the compared algorithms. Given the values of a function

F : C → C on the grid ΛL, we consider the following three algorithms to compute

an approximation of {F = 0} ∩ ΛL−1.
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• AMN: the AMN algorithm run with domain length L− 1 and with sieving

step S1 implemented as described in Section 5.2.1,

• MGN: outputs the set of all grid points λ ∈ ΛL−1 such that

(5.6) e−
1
2
|λ|2|F (λ)| ≤ e−

1
2
|µ|2 |F (µ)|, |λ− µ|∞ = δ.

• ST: outputs the set of grid points λ ∈ ΛL−1 obtained as the result of

applying the sieving algorithm S1 to{
λ ∈ ΛL−1 : e

− 1
2
|λ|2 |F (λ)| ≤ 2δ

}
.

Note that each of the algorithms relies only on the samples of F on ΛL+2δ−1. The

use of a common input grid ΛL simplifies the notation when considering various

grid spacing parameters δ.

5.2.3. Varying the grid resolution. In the numerical experiments, we start with a

small minimal spacing value δ = δHi, that provides a high resolution approximation

in (5.1), and simulate F as in Section 5.1. We then incrementally double δ to

produce coarser grid resolutions and subsample F accordingly. More precisely,

each element of the grid ΛL can be written as

λk,l = (−L+ kδ) + i(−L+ lδ),
0 ≤ k ≤ M ,

0 ≤ l ≤ N,
(5.7)

for adequate M , N > 0. If F is given on ΛL, we subsample it by setting

S(F )(λk,l) := F
(
λ2k+i2l

)
,(5.8)

for values (k, l) such that the indices 2k + i2l are valid.

5.3. Faithfulness of simulation of zero sets. As a first test, we simulate ran-

dom inputs from the model (2.9), as specified in Section 5.1, apply the above-

described three different algorithms, and test whether this process faithfully sim-

ulates the zero sets of the random function (2.9). To this end, we estimate first or

second order statistics on the computed zero sets by averaging over several realiza-

tions of (2.9), and compare them to the corresponding expected values concerning

the zero sets of (2.9).

5.3.1. No deterministic signal. We first consider the case F 1 ≡ 0 and σ = 1 in

(2.9). Let F̂ δHi
1 , . . . , F̂ δHi

R be R independent realizations of samples of (2.9) on a grid

ΛL with resolution δ = δHi, simulated as in Section 5.1. These are then subsampled

with (5.8) yielding F δk
r = S(k)(F δHi

r ) and used as input for AMN, MGN, and ST, as

specified in Section 5.2.2. The corresponding output sets are denoted Ẑδ
r where we

omit the dependence on the method to simplify the notation. These sets should

approximately correspond to {Fr = 0} ∩ ΛL−1, for R independent realizations of

(2.9). We now put that statement to test.
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Table 1. Empirical means ± standard deviations of the estimation

errors ρ̂(Θ, r, δ) − 1/π for Θ = ΩL−1, L = 7, and 1000 independent

realizations. Benchmark values for a faithful computation are 0 for

the mean and 0.01165 for the standard deviation.

δ AMN MGN ST

2−4 −0.00120± 0.01171 −0.00048± 0.01150 +0.01868± 0.02858

2−5 −0.00062± 0.01164 −0.00057± 0.01162 +0.02189± 0.04047

2−6 −0.00065± 0.01156 −0.00064± 0.01155 +0.02280± 0.05391

2−7 −0.00068± 0.01153 −0.00068± 0.01153 +0.02354± 0.06774

2−8 −0.00062± 0.01155 −0.00062± 0.01155 +0.02424± 0.07429

2−9 −0.00067± 0.01158 −0.00067± 0.01158 +0.02390± 0.07237

The expected number of zeros of the random function F on a Borel set Θ ⊆ C
is

E[|{F = 0} ∩Θ|] =
∫
Θ

1

π
dm(ζ) =

|Θ|
π

,(5.9)

see, e.g., [19, Section 2.4]. We define the following empirical estimator for the first

intensity ρ1 = 1/π:

ρ̂(Θ, r, δ) =
|Ẑδ

r ∩Θ|
|Θ|

.(5.10)

If the computed set Ẑδ
r is replaced by {F = 0} in (5.10), the estimator would be

unbiased. The mean of the estimation error ρ̂(Θ, r, δ) − 1/π thus measures the

quality of the algorithm used to compute Ẑδ
r , as it should be close to zero when

the algorithm is faithful. In Table 1, we present the empirical means and the

empirical standard deviations of the estimation error over R = 1000 independent

realizations F δ
r for L = 7, Θ = ΩL−1, T = 6, and various grid sizes δ.

To derive a benchmark for the empirical standard deviation of ρ̂(Θ, r, δ)− 1/π,

we express the variance of |{F = 0} ∩ Θ|/|Θ| in terms of the second intensity

function ρ2(ζ, ζ
′) of {F = 0} as follows:

E
[(

|{F = 0} ∩Θ| − |Θ|
π

)2]
(5.11)

= E
[
|{F = 0} ∩Θ| · (|{F = 0} ∩Θ| − 1)

]
− |Θ|2

π2
+

|Θ|
π

=

∫
Θ

∫
Θ

ρ2(ζ, ζ
′) dm(ζ) dm(ζ ′)− |Θ|2

π2
+

|Θ|
π

.
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Table 2. Functions f 1 and their Bargmann transforms F 1 = B(f).

f 1 F 1

f 1(t) = e−t2 F 1(ζ) = 1

f 1(t) = e−t22t F 1(ζ) = ζ

A formula for ρ2(ζ, ζ
′) is provided in [18] and numerical integration over Θ = ΩL−1

results in
√

Var[|{F = 0} ∩Θ|/|Θ|] ≈ 0.01165. We see in Table 1 that the methods

AMN and MGN almost perfectly match the expected mean and standard deviation

while ST does not.

5.3.2. Deterministic signal plus noise. We now consider the input model (2.9)

with F 1 ̸= 0 and σ = 1. We choose F 1 from Table 2 and rescale it so that

A = supζ∈C e
− 1

2
|ζ|2|F 1(ζ)| holds for the signal intensities A = 1 and 100.

We only test first order statistics of the computed zero sets. The benchmark is

provided by Proposition 3.4: the expected number of zeros of F in Θ is

(5.12) E[|{F = 0} ∩Θ|] =
∫
Θ

ρ1(ζ) dm(ζ),

where ρ1 is given by (3.10) (with σ = 1). For each of the tested algorithms, we

define an estimator for the error resulting from replacing {F = 0} in (5.12) by the

computed set Ẑδ
r (for 1 ≤ r ≤ R):

(5.13) β̂(Θ, r, δ) =
|Ẑδ

r ∩Θ| −
∫
Θ
ρ1(ζ) dm(ζ)

|Θ|
.

As before, we simulate R = 100 realizations of F = F 0 + F 1 on a grid with

a certain spacing δ. The empirical average of β̂(Θ, r, δ) over all realizations is

denoted β̂R(Θ, δ). As ρ1 is not constant when F 1 ̸= 0, this time we calculate

β̂R(Θ, δ) on Θ = ΩL1 for several values of L1.

The results for δ = 2−9 are depicted in Figure 5. We see that the performance

of AMN and MGN is indistinguishable, while ST may perform poorly even at such

high resolution. Lower grid resolutions yield similar results.

5.4. Failure probabilities and consistency as resolution decreases. Having

tested the statistical properties of the computed zero sets under the input model

(2.9) we now look into the accuracy of the computation for an individual realization

F . We aim to test the existence of a map as in Theorem 2.1, that assigns true zeros

to computed ones with small distortion and almost bijectively. As a proxy for the

(unavailable) ground truth {F = 0} we will use the output of AMN from data at

very high resolution (computations with MGN yield indistinguishable results). We
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Figure 5. Empirical mean of β̂(Θ, r, δ) for different choices of f 1

and A, increasing domain Θ = ΩL1 for L1 < L, and the three meth-

ods. Note the different scale in the bottom right plot illustrating a

systematic error in the ST method.

thus conduct a consistency experiment, where the zero set of the same realization

of F is computed from samples on grids of different resolution, and the existence

of a map as in Theorem 2.1 between both outputs is put to test.

Suppose that samples of a function F are simulated on a high-resolution grid

ΛL with spacing δ = δHi and restricted to the low-resolution grid ΛL with spacing

δ = δLo by subsampling. We compute Z̃δHi ⊆ ΩL−1 from the high-resolution data

using AMN, and ẐδLo ⊆ ΩL−1 from the low-resolution data, using one of the

algorithms described in Section 5.2.2.

Second we construct a set U ⊆ Z̃δHi and a map ϕ : U → ẐδLo
r with the following

greedy procedure:
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Construction of U and ϕ

Input: Two subsets of ΩL−1: Z̃
δHi and ẐδLo .

Step 1: Choose a total order on Z̃δHi . Let U and U ′ be empty sets. If Z̃δHi is

empty, output U = ∅ and ϕ = ∅. Otherwise proceed to Step 2.

Step 2: Let λ be the first element of Z̃δHi \ (U ∪ U ′).

Step 3: Let

Φ(λ) =
{
µ ∈ ẐδLo \ ϕ(U) : |λ− µ|∞ ≤ 2δLo

}
.

If Φ(λ) is non-empty, add λ to U , and choose ϕ(λ) ∈ Φ(λ) such that∣∣λ− ϕ(λ)
∣∣
∞ = min

µ∈Φ(λ)

∣∣λ− µ
∣∣
∞.

If Φ(λ) is empty, add λ to U ′.

Step 4: If Z̃δHi \ (U ∪ U ′) is non-empty, repeat Steps 2–4.

Output: The set U and the map ϕ.

The resulting function ϕ is injective and satisfies

|ϕ(λ)− λ|∞ ≤ 2δLo.

We say that the computation of ẐδLo
r was certified to be accurate if

Z̃δHi
r ⊆ U and ẐδLo

r ∩ Ω(L−1)−2δLo
⊆ ϕ(U).(5.14)

In this case, the map ϕ satisfies properties analogous to the ones in Theorem 2.1.

Conceivably, other such maps may exist even if the one constructed in the greedy

fashion fails to satisfy (5.14). We define the following computation certificate:

M(Z̃δHi , ẐδLo) =

{
0 if (5.14) holds

1 otherwise.

The experiment to estimate failure probabilities as a function of the grid reso-

lutions is fully specified as follows. We consider the input model (2.9) with σ = 1.

We choose F 1 from Table 2 and rescale it so that A = supζ∈C e
− 1

2
|ζ|2|F 1(ζ)| holds

for the signal intensities A = 1 and 100. We fix L > 0 and δHi > 0 and let

F̂ δHi
1 , . . . , F̂ δHi

R be R independent realizations of samples of (2.9) on a grid ΛL with

resolution δ = δHi, simulated as in Section 5.1. These are then subsampled j times

with (5.8) yielding F δk
r = S(k)(F δHi

r ), 1 ≤ k ≤ j.

We use AMN with input F δHi
r to obtain a set Z̃δHi

r . Further, for each 1 ≤ k ≤ j,

we use each of the algorithms M = AMN, MGN, or ST with input F δk
r to obtain
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sets Ẑδk

r,M . Finally, we compute all the certificates M(Z̃δHi
r , Ẑδk

r,M) and average them

over all realizations to obtain the following estimated upper bound for the failure

probability of the method M with grid spacing δ = δk:

(5.15) p(δk,M) :=
1

R

R∑
r=1

M(Z̃δHi
r , Ẑδk

r,M).

We present in Table 3 values obtained for p(δk,M) for a resolution starting as

high as δHi = 2−9, with a truncation of the window g at T = 6, in the target

domain ΩL−1 for L = 7, and R = 1000 realizations of a zero-mean F . We also

present the results for F 1 as in Table 2, rescaled to achieve a signal intensity

A = 1 or A = 100. We see that both AMN and MGN deliver very low failure

probabilities (with MGN slightly outperforming AMN at lower resolutions). In

contrast, ST delivers large failure probabilities even at high resolution.

Table 3. Estimation of the failure probability p(δk,M) in the sense

of Theorem 2.1, in the domain ΩL−1 with parameters δHi = 2−9,

T = 6, and L = 7. Averages are computed over R = 1000 and

R = 100 realizations for the pure noise and signal f 1 plus noise

cases, respectively.

f 1 = 0 f 1 = exp(−t2) f 1 = t exp(−t2)

A = 1 A = 100 A = 1 A = 100

δ AMN MGN ST AMN MGN ST AMN MGN ST AMN MGN ST AMN MGN ST

2−4 0.082 0.001 0.665 0.07 0.00 0.67 0.13 0.00 0.87 0.07 0.00 0.64 0.18 0.00 1.00

2−5 0.007 0.000 0.536 0.00 0.00 0.50 0.00 0.00 0.75 0.00 0.00 0.52 0.01 0.00 1.00

2−6 0.001 0.000 0.419 0.00 0.00 0.41 0.00 0.00 0.70 0.00 0.00 0.42 0.00 0.00 1.00

2−7 0.000 0.000 0.389 0.00 0.00 0.32 0.00 0.00 0.72 0.00 0.00 0.34 0.00 0.00 1.00

2−8 0.000 0.000 0.369 0.00 0.00 0.29 0.00 0.00 0.65 0.00 0.00 0.33 0.00 0.00 1.00

2−9 0.000 0.000 0.359 0.00 0.00 0.31 0.00 0.00 0.71 0.00 0.00 0.32 0.00 0.00 1.00
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