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Abstract

The quantile admission process with veto power is a stochastic processes suggested by Alon,
Feldman, Mansour, Oren and Tennenholtz as a model for the evolution of an exclusive social group.

The model itself consists of a growing multiset of real numbers, representing the opinions of the
members of the club. On each round two new candidates, holding i.i.d. p-distributed opinions, apply
for admission to the club. The one whose opinion is minimal is then admitted if the percentage of
current members closer in their opinion to his is at least r. Otherwise neither of the candidates is
admitted.

We show that for any p and r, the empirical distribution of opinions in the club converges to a
limit distribution. We further analyse this limit, show that it may be non-deterministic and provide
conditions under which it is deterministic.

The results rely on a recent work of the authors relating tail probabilities of mean and maximum
of any pair of unbounded i.i.d. random variables, and on a coupling of the evolution of the empirical
r-quantile of the club with a random walk in a changing environment.

2010 Mathematics subject classification: 60K37, 60G50, 91D10

Keywords: social groups, admission process, evolving sets, random walk in changing environment

1 Introduction

Consider the following stochastic model for increasing sets S = {S; }ien,. Let p be an arbitrary prob-
ability distribution on R, let = € (0,1) be the quantile parameter of the model, and let (X, Y})ien,
be a collection of pairs of i.i.d. p-distributed random variables. For every ¢t € Ny denote the set
STi=1{s€8 : |s—min(X,,Y;)| < |s — max(Xy,Y;)|}. Initialise the model with Sy = () and for every
time step t € N set

s {St_l U {min(Xy, Yi)}, 8] > 7(Si|

Si_1, otherwise.

In addition, define v}, the empirical distribution of opinions at step ¢, by |871t| Y osc s, 0s where d is Dirac’s
delta measure at s.

This model, called the quantile admission process with veto power, was suggested by Alon, Feldman,
Mansour, Oren and Tennenholtz in [1] as a model for the evolution of certain exclusive social clubs,
that is, clubs whose present members take part in an admission procedure for screening and selecting
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new members. In our particular scenario, the distinction between candidates is represented by a one-
dimensional parameter in R (e.g. from political left to right). The selection itself involves two elements,
a voting system and the founder’s veto power. At every time step two random candidates from the
general population are considered for admission to the club. Each club member then votes for the
candidate whose opinion is closest to his (abstaining in case of a draw). Finally, if a candidate holding
the minimal opinion received at least r-fraction of the votes (including abstainers) then such a candidate
is admitted. Otherwise, both candidates are rejected.

Motivation for studying the model is further discussed in Section 1.3. We remark that the fine details
of this admission procedure (such as how to handle draws) appear to be immaterial for the results. The
only important consideration in selecting these is avoiding the possibility of a deadlock under which no
additional members will ever be admitted.

The authors of [1] studied this model with y which is uniform on [0,1] for arbitrary r # %. They
showed that under these assumptions, v converges to a deterministic distribution and obtained bounds
on its empirical r-quantile. In addition, they showed that this process demonstrates a counter-intuitive
behaviour when r is greater than 1/2, when the empirical distribution of the club weakly converges to
an atom at 1, the supremum of opinions in the population.

Here we show that v converges weakly for any distribution p, and analyse its form. In addition
we provide necessary and sufficient conditions under which this limit distribution is deterministic, and
provide several examples. In particular we recover the results of [1] and extend them to the case r = %,
for which the limit is non-deterministic. Part of our interest in the process stems from its relations with
random walks in changing environment and from the new probabilistic tool-set that was used handle
it. For a survey of this see Section 1.4.

1.1 Results

Throughout we denote by X and Y a pair of independent, p-distributed random variables. Denote by
Mmin and fimax the infimum and supremum of the support of u, respectively, and write for m < pimax:

m) = m) = —,u((m,oo))z —(1-=r
plim) = pup(m) = L s = (=) 1)

=PX>mY>m|X+Y >2m)—(1-r).
Our main result is the following.

Theorem 1. For any probability distribution p on Ry, the sequence v; converges weakly to a (possibly
random) distribution v, on Ry, almost surely.
Moreover, the limit distribution vs satisfies one of the following forms:
(1) Voo((5,00) =P(X >, Y >s| X+Y >2m) for m < umax which satisfies
plm) <0< lim p(g),
(1) Voo((8,00)) =P(X >, Y >s| X+Y >2m) for m < pimax which satisfies
p(m) <0= lim p(g),
(111) Voo = 0y

max ?

In case that p is continuous, an explicit form of the possible limiting measures of the admission
process Uy is given by the following corollary.



Corollary 1.1. Assume that p is a continuous measure on Ry. Then, almost surely, either voo = §

Mmax

or dvss(z) o pu([x,00) N [2m — @, 00))dpu(x) where m satisfies pyr(m) = 0.

Observe that the empirical distribution of the club members’ opinions in the veto-power process
demonstrates a lighter tail near infinity, in comparison with the distribution of the general population
(even though, as will become evident in Section 1.2 below, the mean of the empirical distribution of the
club members’ opinions is often larger then the mean of ).

log Voo (8,00) —9

Corollary 1.2. If pmax = 00 and Voo = limy_,oc v then, almost surely, limgs_,oo Tog 1(5.50)

However, v, need not be deterministic.

Proposition 1.3. For any r € (0,1), there exists a measure p for which there are infinitely many
possible limiting distributions for lim_,. v, each occurring with positive probability.

We further provide a necessary and sufficient condition for having a deterministic v, for all € (0, 1).
This extends [1, Theorem 3.5] which provides a weaker sufficient condition.

Theorem 2. Let p be a given probability measure. Then v, is deterministic for all v € (0,1) if and
only if pu1(m) is strictly monotone on the support of .

Finally we provide the following criterion for verifying the monotonicity of p.

Proposition 1.4. Let g(z) = —log u((x,00)) for € [tmin, hmax|- If g is thrice differentiable with
" >0 and ¢"" <0 on (fmin, fimax), then p,1(m) is strictly monotone decreasing.

1.2 Examples

Using these results, it is possible to compute the limit v, for many example of 1 and r. We state here a
few examples of interest, omitting calculations which are straightforward. Throughout, we fix r € (0, 1).

Uniform distribution (extending [1, Section 4]). Let u be the uniform distribution on [0, 1]. The
function p(m) from (1) is computed to be

(1—m)?
m) = 1—2m?2 _(1_T)’
p( )—{%_(1_”7

Using Theorem 1 we deduce different behaviour in the following cases. The first two cases recover the

results of [1], whereas the case r = 3 is new.

—_ Nl

m
m
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IA A

= O
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°o > %: a.s., the limit is vy, = 1.

e r < 5: a.s., the limit v, is an absolutely continuous measure with density proportional to

N =

{m—(2m—1), 0<z<m,
AVso X

1—=x, m<lx <1,
N2
where m € [0, 3] is a solution to (ll_Tme =1 — 7, namely m = 1=¥L1=3r+2r W

Observe that as r — %, the density of the limiting measure v, approaches the centred triangle
function min(z,1 — x). This may be viewed as a perfect balance between the bias caused by the
veto power and the bias caused by the quorum-admission condition.



o r= %: the limit v, is an absolutely continuous measure with density proportional to

r—(2M —-1), 2M —-1<z <M,
dVeso X
11—z, M<x<I1,

where M is a random variable supported on [%, 1]. Moreover, by Lemma 2.12 below, P(M € I) > 0
for any I C [$,1]. In particular, the limit is not deterministic (as can be verified by Theorem 2).

Normal distribution. Let  ~ A(0,1). In this case ux pu ~ N(0,1), and we obtain from (1) by
direct computation that

u((m, o0))”

M([m7 oo)) —(1—-r)= ,u((m,oo)) —(1—=r).

Pur(m) =
Therefore, for any r € [0,1] the function m — p,,(m) is strictly monotone on R, and we obtain by
Theorem 2 that v, is unique. By Theorem 1, the limiting measure v, has density proportional to

dVso X 6_x2/2 IQO;L—:E €_t2/2dt7 x < m,
Oo e~ ?/2 [ e~ /244, T >m,

m =1-r.

. . . L fe's) —t2/2
where m is the unique solution to Ton f e
Exponential distribution. Let p ~ Exp(1). Then v will almost surely converge to the unique
measure Vo, with density
1 1, x <m,
m + % e 2e=m) x> om,

i

where m = ﬁ Observe that when r tends to 1, m tends to infinity, demonstrating a drift to the

right much like the uniform case.
Compressed exponential distributions. Consider the measure u([z,0)) = e **I(z > 0) for
€ [1,2]. By Proposition 1.4 and Theorem 2, for all r the limit v, is deterministic. By Corollary 1.1
it has density which is proportional to

_ _ [e3
a—1_ —z¢ € (2m—z) ; T=m
ax (& .

JpeY
e, T >m,

where m is the unique solution to

e2m </ ar® le—® —(2m—x) d$+6—(2m) ) _
0

1—r

For o = 2 this reduces to fozm 2we~2@=m)?* g 4 ¢=2m* = 1—:,, so that m is of the order 1—;

1.3 Background and motivation

The study of evolving social groups originates in sociology and economics, where analysis of such
processes is expected to improve our understanding of human social behaviour, allowing us to anticipate
the implications of various factors involved in the evolution of clubs, corporations, organizations and
societies. At the same time, the models suggested for the evolution of social groups turned out to be of
independent interest for the development of probability theory.



Sociological interest. Most of the research conducted on evolving social groups revolves around
decentralised social groups, in which local laws are used to govern the admission into the group. These
include social networks, business relations and the set of individuals holding a certain opinion. These
social groups are characterised by the fact that admission of a new member into the group could be
initiated by each of a certain class of members without any interaction with the rest of the members. The
evolution of such groups is somewhat reminiscent of condensation behaviours in statistical mechanics.
Indeed, such models were recently given the title “Statistical Physics of Social Dynamics” by Castellano,
Fortunato and Loreto [6]. In particular, a few models for opinion formation and formation of social
groups were suggested and analysed, see e.g. [11] and references within. Like our model, these models
represent opinions by numbers, or vectors in Euclidian space [6, Chapter III], and association is governed
by homophily (i.e., proximity of opinion, see [12]).

In [1], however, Alon et al. investigated models for the evolution of centralised social groups,
where admission is governed by a global procedure, such as a voting process or a screening committee.
Examples for such groups are ample and diverse, ranging from secret societies, to members of the
national academy of sciences and to the inner circle of a martial art association. They include communes
and condominiums, justices of the supreme court, associate professors of a math department and nations
in the united nations. The evolution of the composition of such groups could vary greatly depending on
the nature of the admission process. One purpose of the authors was to study the different behaviours
of models in which the admission is relative, i.e., based on the comparison of several candidates. This
they do both for growth models like the one discussed here and for models of population with fixed size.
In particular they explore the difference between a voting model, where the candidate who received
the highest number is admitted, and a consensus model, where all members must agree on the most
suitable candidate. As an intermediate model they suggested the r-quantile admission process, where
a candidate must obtain a quorum of a certain fraction of the votes in order to be admitted. Such
admission models are common for the selection of justices and governmental committees.

One property of the relative consensus model is its radicalisation behaviour. In a population holding
a uniform distribution of opinion in [—1, 1], for example, it almost surely converges to atomic measures
at +1. This behaviour is explained by the fact that the only case in which new members are admitted
is when both candidates are extremists in the same direction, in which case the milder among the
two is admitted. To better understand this radicalisation effect and its interaction with r in the r-
quantile admission process, the authors put it against a body holding a veto power who allows only
admittance of the member whose opinion is minimal. Procedures with similar effects are used in practice
by conservative and professional organisations such as the inner-circle of an organization for preserving
a traditional craft. In these cases the opinion parameter represents a certain professional standard and
the veto is usually exercised by supervising committee. In [1], it is shown that if the distribution of
opinions is uniform, whenever r > %, the radicalization effect of the quorum dominates the veto and the
process radicalises to an atom at 1, making the veto an ineffective method for preventing the group’s
opinions from radicalising upwards.

In this work we provide a rigourous analysis of the r-quantile admission process with veto power,
which results in a better understanding of the competition between the drift upwards caused by r, the
high percentage of support required for admission, and p, the natural distribution of the population.
We show that the opinion profile of the club always converges weakly and that while the drift induced by
the quorum pressure persists for any distribution, it is never sufficiently strong to make the empirical r-
quantile opinion of the group tend to infinity. In addition, our tools appear to be useful in the analysis of
other quantile driven processes and we hope that they will find applications for other rules of admission



and in opinion spaces of higher dimensions. In particular we believe them to be relevant for studying
the r-quantile admission process without veto power. See Problem 2 below.

Mathematical interest. The process we analyse is an example of a random walk in changing
environment (RWCE), that is, a stochastic process for which in every step the environment which
determines the transition probabilities between possible states changes (in our case, the set of possible
values of the r-quantile is effected by the history and the opinions of the current members of the group).
RWCEs were recently studied by Amir, Benjamini, Gurel-Gurevich and Kozma [2], by Avin, Koucky
and Lotker [3], by Dembo, Huang and Sidoravicuis [7,8], and by Redig and Véllering [13] to name but
a few. It includes examples which were investigated for their own sake, such as reinforced random walk,
bridge-burning random walk, loop-erased random walk, and self-avoiding walk with bond repulsion (see
references within [2]). Typically, one is interested in properties such as convergence and recurrence vs.
transience of the process albeit the changing environment. As pointed out by several examples in [2],
these questions are not at all trivial.

While this paper carries out careful analysis of a certain family of RWCE (characterised by r and
the distribution of opinions in the population p), we believe that it may possibly be generalised to a
larger family of RWCE that goes beyond quantile driven processes. One neat variant which could be
addressed using our methods is a process in which at the ticks of a Poisson clock a point is added to
the real line according to some absolutely continuous distribution supported on R. A walker makes a
simple random walk on these points at the ticks of an independent Poisson clock, moving from each
point to one of its immediate neighbours. The probability that the random walk at point x moves to
its right neighbour depends on a continuous f(z) : R — [0, 1]. Our methods could be used to show that
such a walk always converges either a point x satisfying f(z) = %, to oo if limy oo fo > % or to —oo if
limg s oo f2 < 5-

In addition, this work provides an application to a general inequality relating the average of two
ii.d. random variables to their minimum [9], demonstrating how it could be applied to control the
recurrence of certain random processes.

1.4 Outline and highlights

In this section we survey the tools and methods used to obtain our results, providing a rough outline
of key steps in our proof. To make this outline more accessible we restrict ourselves here to the case of
continuous p, avoiding the difficulties that arise from handling measures with an atomic component.
The first step in proving the convergence of v} is its reduction in Section 2 to the convergence of two
probabilities: P(X +Y > 2m) and P(X > m) for X, Y ii.d. p-distributed. To analyse the behaviour of
these probabilities we make a time change to the process, examining it at times in which a new member
is admitted, thus defining the empirical g-quantile process my. We then provide four key lemmata (see
Section 2), showing that my is bounded and classifying regions which it can visit only finitely many
times. These lemmata are derived by studying the evolution of my via a coupling with yi, a certain
random walk in changing environment, presented in Section 3. To define y; we regard the members
of § as the points {1,2,...,k} translated by some common integer shift Ajx. Under this map, we let
yr = Tk + Ay be the location of the empirical r-quantile after kK members have been admitted. The
translation Ay is chosen so that E(yx+1 —yx) = p(my) and the steps of y; are regular. Using continuity
properties of p together with classical properties of drifting random walks, we show in Section 4 that
if p(xz) # 0 then there exists an interval I containing = which my can visit only finitely many times.
Moreover, we show that if p(x) > 0 then mj has positive probability to eventually stay above x, while



if p(z) < 0 then my has positive probability to eventually stay below x. To conclude our proof we
require two more ingredients. The first is an argument, which essentially shows that an unbiased simple
random walk on such an evolving lattice visits every point only finitely many times. This is used to
show convergence of P(X + Y > 2my) and P(X > my) if my ends up in a region I with p(7) > 0 and
p(z) = 0 for all x € I. Finally to show that my is bounded we use the following general comparison
inequality established in [9, Theorem 1].

Theorem A. Let X,Y be independent random variables on Ry, which are not compactly supported.
Then: Plmin(X. ¥
lim inf (min(X, V) > m)

B em)

The quotient here and in (1) are the same, and both represent the probability that the opinion of
the next admitted member is above or equal to the empirical r-quantile m. Using this we show that
there are sufficiently many points with p(x) < 0 on R so that eventually mj will stay bounded below
one of them. Finally we use compactness arguments together with all of these observations to show
convergence of my to a non-empty interval J satisfying p(J) = 0 and p(x) =0 for all x € J.

Finally, in Section 5 we utilise elementary tools to analyse the example mentioned in Proposition 1.3
and prove our criterion for uniqueness given in Proposition 1.4.

1.5 Open Problems

We conclude the introduction with two open problems.

Problem 1. Does the r-quantile admission process with veto power converge for any distribution p over
R (including d = 1), where the founder may hold any opinion in R*? What about other metric spaces?

Problem 2. Does the r-quantile admission process without veto power converge for all p,r? Does the
drift to the extreme phenomenon persist in this model?

It is also of interest to fully classify the distribution of v, in cases for which it is not deterministic,
as this would would complete the analysis of the r-quantile admission process with veto power on R.

2 From convergence of measures to convergence of quantiles

In this section we reduce Theorems 1 and 2 to statements concerning with the evolution of the empirical
r quantile of the quantile admission process with veto power. All theorems are reduced to a couple of
propositions concerning this process, which we further reduce to several technical statements. Tools for
proving these statements are provided in Section 3 and their proofs are given in Section 4.

2.1 Notation

The following notation is used throughout. For A, B C R, denote A+ B={a+b: a€ Abe B}. We
write a > B if a > b for every b € B and A > B if a > B for every a € A. We follow the convention
that the infimum of an empty set is infinity. We employ the abbreviations i.o. for infinitely often, a.e.
for almost everywhere and a.s. for almost surely.

Throughout, we fix the probability measure u and the quantile r, and let X and Y be two independent
w distributed random variables. We define the events



>m} m+—{X+Y }

D,
F, pux pl([2m, 00)) =P (Dmy) = px p((2m, 00)).

X+Y
-

(D

We consider our process mostly in times when a member is admitted to the club. To this end, we
define a random sequence {z }ren, of the opinions of club members by order of admission. We further
denote the multiset Sy = {zo,...,x_1} and define the lower r-quantile of the set Sy by

mk:min{x€R+ s {i<k o xjgx}\zrk}:sup{x€R+ i<k J;j<37}]<7'/<;}. (2)

Observe that the distribution of xj, is that of min(X,Y’) conditioned on D,,, = {% > my}.

We denote Fy, for the sigma algebra generated by xg, ...,z and write vy, for the empirical distribu-
tion of opinions in Sk = {zo, ...,z }, given by m ZSGSk+1 ds. By the definition of v4, the measures
vy and v] converge together and to the same limit. For this reason, the reader need not be alarmed by
the visual similarity between Sy and S; (used in the introduction) as the latter will play no role in the
remainder of the paper.

To simplify the treatment of p we introduce

P () = pi (m) o= Tim_py(a). 3)
Notice that if pmax < 0o then

iy _illmoo)”

prom) = L meay ) @

We observe the following basic properties of p and p+.

Observation 2.1. p is lower-semi-continuous and p™ is left-continuous.
p(x) < pT(x) for all z. Moreover p(z) < p*(x) if and only if n({z}) > 0.
p(x) < limy_,y p(t) for all x. Moreover p(x) < limy_,4 p(t) if and only if p* p({2x}) > 0.

Observation 2.2. If u({z}) > 0, then p(x) < limy_.4 p(y).
Observation 2.3. p and p* are monotone increasing on any interval I satisfying u(I) = 0.

Observation 2.4. lim, ,_ p(q) = lim,,_ pT(q) = r.

2.2 Reduction of Theorems 1 and 2

We being by reducing Theorem 1 to the following proposition, whose proof we postpone to Section 2.4.

Proposition 2.5. Almost surely there exists a finite m € [0, umax] such that the sequence F,, converges
to a limit Fy, for £ € {m,m+}. Moreover,

if £ =m < fimax, then p(m) <0< pt(m),
if £ =m+ < lmax, then p(m) < 0= lim p(q),
q—m—+
while if 1 = fimaey then o (fimax) > 0.



Proof of Theorem 1. For s € [0,00) denote By = {(x,y) : min(z,y) > s} and D, as above. Observe
that for any s, m’ > 0 we have,

X+Y P((X,Y) € Dy, N By
Ds.k ::P(xk>s):IF’<min(X,Y)>s + zmk>: ( ) i )

P((X,Y) € Dp,) 5)

By Proposition 2.5 we obtain that limk_mOIP’(Dmk) = limy_,o0 Fin,, almost surely exists and is of
the form Fy for £ € {m, m+}. Since {D;}scr are ordered by inclusion, we have (D, ) % I(Dy).
—00

Hence for any measurable set B C Ri we have

(D, N B) = I(Dyy,, ) 1(B) ﬁ I(Dy)I(B) = I(Dy N B). (6)

In particular the numerator of (5) converges as k tends to infinity, almost surely. To show convergence
of right-hand-side of (5), let us consider separately the case F,;, = 0 and the case F,,, > 0.

In the case F,, = 0, we have my, =5 inf{s : P((X +Y)/2 > s) = 0} = fimax. By Proposition 2.5,

my, is almost surely bounded and hence pmax < co. By definition, the distribution of zj is supported

on [2my — fmax, Pmax), SO that vy converges weakly to § By the moreover part of Proposition 2.5,

Mmax *

this can only occur if condition (iii) in Theorem 1 is satisfied.
In the case F,;, > 0 we have, almost surely, for all s > 0,

I _ P((X,Y) e Dy By)
ol T TP((X,Y) € D)

We conclude that zj converges weakly, so that, by the law of large numbers v, converges weakly to a
limiting distribution vee. If £ = m < pmax, then, by the moreover part of Proposition 2.5 the condition
p(m) < 0 < pt(m) is satisfied, so that, considering the limit distribution implied by (5) and (6), we
obtain that item (i) of Theorem 1 holds. Similarly, if £ = m+ < pmax, then by the moreover part of
Proposition 2.5 the conditions p(m) < 0 < limg ;- p(g) and limg 4 p(q) = 0 are satisfied, so that,
using (5) and (6), item (ii) of Theorem 1 holds. Finally, if m = ppax then, by similar arguments, item
(iii) of Theorem 1 holds. O

Next we obtain the sufficiency of the criterion in Theorem 2 as a corollary of Theorem 1.

Proof of the sufficiency criterion in Theorem 2. Writing S_ and Sy for the support of the negative and
positive parts of p respectively, we obtain from the strict monotonicity of p that either S, = (), or there
exists a unique m’ such that sup S; = inf S_ =m/'.

If S; is empty, then both conditions for items (i) and (ii) in Theorem 1 cannot hold for any m,

and hence item (iii) of the theorem must hold, so that v} converges to & as required. Otherwise,

fmax )
sup S; = inf S_ = m/, so that, by Theorem 1, v} converges to Vs such that v ((s,0)) is proportional
toeither P(X > 5, Y >s, X+Y >2m)or P(X >s,Y >s, X +Y > 2m). Since, by definition, p(m)
is a translation of the quotient of two monotone decreasing functions, where the numerator is right
continuous and the denominator is left continuous, it can be monotone decreasing itself only if the
denominator is continuous, that is, P(X +Y > 2m) = P(X +Y > 2m) for every m. Hence also
PX>s5Y>s, X4+Y>2m) =P(X >sY >s X+Y >2m) so that v is uniquely determined

and explicit, as required. ]

In order to establish the necessity of the criterion in Theorem 2 we use the following proposition,
whose proof we postpone to Section 2.5.



Proposition 2.6. For any x € Ry, if p(z) < 0 then P(my < x a.e.) > 0, while if p(x) > 0 then
P(my > x a.e.) > 0. Moreover, if a < b are such that p(]a,b]) > 0 and p(x) =0 for all x € [a,b], then
P(my, € [a,b] a.e.) > 0.

Proof of the necessity of the criterion in Theorem 2. We begin by showing the first part of the theorem.
Recall that p,1(0) =1 and liminf,, . p.1(¢) = 0 by Theorem A. Thus, under the assumption that
pu,1(¢) is not monotone, there exist zg < z1 and r € [0, 1] such that p, 1(zo) <1 —r < py1(x1). Since
Pur(q) = pu,1(q) — (1 —r) this means that p,,(zo) < 0 < pu,(x1). By Proposition 2.6, there is a positive
probability that mj < xq for almost every k, in which case, by Theorem 1, 14 converges to a measure
Voo Of the form given in (i) or (ii) for some m < zp. On the other hand, by Proposition 2.6 there is a
positive probability that my > x; for almost every k, in which case, by Theorem 1, 14 converges to a
measure Vs, as in (i) or (ii) with m > x; or as in (iii). As a measure cannot satisfy both requirements,
we conclude that v is non-deterministic.

Next, we show the moreover part. Suppose that p vanishes on [a,b] where a < b and p([a,b]) > 0.
By Observation 2.1, the interval [a,b] contains no atoms of . Hence we may restrict ourselves to the
case b < lmax, as otherwise we can apply our arguments to a subinterval of positive measure whose
upper end satisfies this property. Observing that F; is monotone decreasing in s and that Fy > Fy
whenever u([s,s’)) > 0, we obtain the existence of a < a’ <V < b such that F, > F, > Fy > F,.
From Proposition 2.5 we obtain that F},, converges to a limit Fy. By the second part of Proposition 2.6
both the event A = {my, € [a,d'] a.e.} and the event B = {my, € [V, 1] a.e.} have positive probability.
In the former case we obtain Fy > F,s while in the latter Fy < Fjy. We conclude that the values of
Fy under the event A and under the event B must be almost surely distinct. Observing that in both
cases Voo ([b,00)) = pu([b, ftmax))?/ Fy, where the numerator is a non-zero constant, independent of Fy, we
conclude that v ([b, 00)) is not a constant random variable, as required. O

Thus we are left with proving Propositions 2.5 and 2.6. In the next section we reduce these propo-
sitions to several technical statements.
2.3 Properties of the empirical quantile process

In this section we present several lemmata concerning with the empirical quantile process my which will
be of use in the proof of Propositions 2.5 and 2.6. We begin by introducing several definitions.

Definition 2.7 (Barrier). A point z € R is called a barrier if there exists ko such that either my < x
for all k > kg, or mp > x for all k > k.

A point © € R is called a right-barrier if it is a.s. a barrier and P(my < x a.e.) > 0. Similarly,
x € R is called a left-barrier if it is a.s. a barrier and P(my > x a.e.) > 0.

Definition 2.8 (Separator). An interval I is called a separator if there exists ko such that either my < I
for all k > kg, or myp > I for all k > k.

An interval I is called a right-separator if it is a.s. a separator and P(3kg : my < I for all k > ko) >0.
Similarly, I is called a left-separator if it is a.s. a separator and P(3kg : my > I for all k > ko) > 0.

To prove our propositions, we require the following lemmata.
Lemma 2.9 (Boundedness). my is almost surely bounded.

Lemma 2.10 (Negative drift). Let xo < pimax-
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(a) If p™(x0) < 0, then there exists a < o such that (a, o] is a right-separator.
(b) If p(xo) < 0, then xqg is a right-barrier.
(¢) If img_szo+ p(x) < 0, then there exists b > xo such that (xo,b) is almost surely a separator.

Lemma 2.11 (Positive drift). Let o < fimax-
(a) If p(xo) > 0, then there exist a < xo < b such that (a,b) is a left-separator.
(b) If p*(z0) > 0, then xg is almost surely a barrier.
(¢) If img_yzo+ p(x) > 0, then there exists b > xo such that (xo,b) is almost surely a separator.

Lemma 2.12 (Zero drift). Let [a,b] be an interval such that p((a,b)) > 0, and p(x) = p*(z) =0 for
all z € [a,b]. Then [a,b] almost surely contains a barrier. Moreover, P(my, € [a,b] a.e.) > 0.

From these we also derive the following corollary.
Corollary 2.13. let a < b such that Fy, < Fyy, then [a,b] a.s. contains a barrier.

Proof. We consider three cases. If there exists x € [a, b] such that p(z) < 0, then, by Lemma 2.10b, the
point z is a.s. a barrier. Similarly, if there exists x € [a, b] such that pT(x) > 0, then, by Lemma 2.11b,
the point z is a.s. a barrier. Since p(z) < pt(z) for all x (by Observation 2.1), we obtain in the
remaining case, p(z) = pT(xz) = 0 for all z € [a,b]. We observe that, by definition, F, is monotone
decreasing on any interval of p-measure zero. Hence by the assumption F, < F,, together with (3),
we have pla,b] > 0. By Observation 2.1 we have u({a}) = p({b}) = 0 so that u(a,b) > 0. Thus, by
Lemma 2.12; the interval (a,b) almost surely contains a barrier. O

2.4 Proof of Proposition 2.5

By Lemma 2.9, the sequence mj is almost surely bounded. In addition, Fy is left-continuous and
monotone decreasing, so that if F),, converges, then its limit must be of the form Fj for ¢ € {m, m+}
for a finite m € R.
Let {mg, }ien and {mk;}ieN be two convergent subsequences of {my }ren whose limits we denote by
m and m’ respectively, and assume without loss of generality that m’ < m. To show convergence of
F,,, it would suffice to show that
lim Fp, , = lim F, . (7)

1—00 7 1—00
For any € > 0, we have m;, < m/ + ¢ for infinitely many values of k and mj > m — ¢ for infinitely
many values of k so that the interval (m’,m) does not contains any barrier. By Corollary 2.13, this
implies that F,,, = F},,, almost surly.
To derive convergence we consider two cases. If F,, = Fj, 1, then

Fn=Fny < Fpyy < By = Fip,

so that (7) holds with both sides equal to F,,, = Fy,+ = F,,y = Fpyo. On the other hand, if F,,, # F,,,
then m is a barrier by Corollary 2.13. Hence either my < m for almost all k, or mj > m for almost all
k and m = m/. In the latter case we immediately obtain (7) with both sides equal F,, 1. In the former,
since F,, < Fyy < F,y = F),, we obtain that (7) holds with both sides equal to F},.

Next, we establish the moreover part of the proposition. Let {my, };cn be a monotone convergent
subsequence of {my}reny and denote its limit by ¢ € {m, m+}, and observe that, by definition, there
cannot be a separator (a,b) containing m.
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First, observe that if jimax < 00 and pT (fimax) < 0 then by Lemma 2.10a there exists a < pimax such
that (a, ftmax] is a separator. Therefore if m = pmax < 00 then p*(pmax) > 0.

Henceforth we assume that p is defined at m. Denote ST = {z : p(z) > 0}. For each z € ST
write If := (ag, b;) for the separator guaranteed by Lemma 2.11a and observe that m ¢ (a, b,) almost
surely. The collection {I; : x € ST} is an open cover of ST. Since R is second-countable, this collection
has a countable subcover. Since m is almost surely not in any of the sets of this subcover, we deduce
that m ¢ ST almost surely, that is,

p(m) < 0. (8)

Similarly, write S~ = {z : p*(z) < 0,lim_,+ p(t) # 0}. For each x € S~ write I := (a,bs)
where (ay, m] is the separator guaranteed by Lemma 2.10a, and (m, b,,) is the separator guaranteed by
either Lemma 2.10c or Lemma 2.11c, depending on the sign of lim; 4 p(t). Observe that m ¢ (ag, by)
almost surely. As before, the collection of separtors {I; : = € S™} is an open cover of S~ so that
m ¢ S~ almost surely. We deduce that

either p™(m) > 0 or tgrn{bl+ p(t) =0. (9)

Next, denote by A the set x such that 2x is an atom of y % u. Observe that for all z € A we have
F, # F,;. For any x € A which satisfies p*(z) < 0, we have, by Lemma 2.10a, that there exists a < m
such that (a, z] is a separator so that mg, can only converge to x from above almost surely, i.e., if m =z
then Fy = F,,4+ # F,, almost surely. Similarly, for any = € A which satisfies lim;_,+ p(t) # 0 we have,
by Lemma 2.10c and Lemma 2.11c, that almost surely there exists b > x such that (x,b) is a separator.
Thus, almost surely, my, can only converge to = from below, so that if m = x then Fy = F,, # Fy+
almost surely. Since A is countable we deduce that in case that m € A, the proposition is satisfied.

Finally for any x ¢ AUS*US™, by Observation 2.1 and the fact that A contains the atoms of u, we
have p(z) = p*(z) = limy_,+ p(t). By combining (8) and (9) we deduce that in case m ¢ AU ST U S~
we have p(m) = pt(m) = lim_y,+ p(t) = 0. Since in this case both F,, = F,,+, the proposition is
satisfied. 0.

2.5 Proof of Proposition 2.6

The case p(z) < 0 is immediate from Lemma 2.10b, the case p(z) > 0 of the first part is immediate
from Lemma 2.11a. The moreover part is immediate from Lemma 2.12. .

3 Preliminaries

In this section we establish the probabilistic infrastructure required to prove lemmata 2.9-2.12. In
Section 3.1 we introduce facts about general random walks with drift. In Section 3.2 we construct a
coupling of the quantile process with a random walk in changing environment and introduce relevant
notation for its analysis. In Section 3.3 we present a simple claim about continuous probability measures.

3.1 On general random walks

Let {Ax}r>k, be a sequence of events, adapted to a filtration {F}. Denote the stopping time T4, ) 1=
min{k > ko : Aj occurred}. The first result we recall is Azuma’s inequality [4] concerning martingales.

Lemma 3.1 (Azuma). Let X be a random process started at Xo = 0. Assume that
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o (X is a martingale) for all k we have E(Xp41 | Xo, ..., Xk) = Xg.
e (uniformly bounded steps) almost surely | X1 — Xg| < 1 for all k € N.

Then for every a > 0 we have P(Tx, >} < n) < exp(—%).
We also recall Hoeffding’s inequality for i.i.d. binomial random variables.

Lemma 3.2 (Hoeffding). If X ~ Bin(n,p), then for any ¢ > 0 we have P(X —pn > en) < e 2" and
P(X —pn < —en) < e 27,

We need the following variation on the classical “gambler’s ruin” problem (a.k.a. Cramér-Lundberg
inequality). Its proof, being standard, is omitted (see [14] and [10, Ch. XIV.2] for similar results).

Lemma 3.3. Let X be a random process started at Xo = 0 with the following properties:

e there exists 7 > 0 such that for all k € N we have: E(Xyy1 | Xo,..., Xg) < X — 17
e there exists M > 0 such that almost surely |Xpi1 — Xi| < M for all k € N.

Then there exists ¢ = quy € (0,1) such that for all £ > 0 we have:
P(T(x, >0 < 00 | Xo=0) < ¢*
We use this lemma to obtain the following bound.

Lemma 3.4. Let ﬁo € N and let {f tien be a sequence of random variables takmg values in Ny, adapted
to a filtration {]:0 Vien (ice., £ 00 qre ]:( )-measumble) Further let {X }zeN keNo be a collec-
tion of random processes on R, started at X() = 0, which are adapted to a ﬁltmtwn {.7:1 bien (i.e.,

XW X0 gre ]:1() measurable), and assume that for all i,k € N ]X ,S, 1| <1 almost surely,

and assume that fél) C ]:1( g C ]:0Hl for all i € N. Finally, let 7; be a stopping time for {Xk}keN-
Assume that the following conditions hold for some n,p > 0:

1. For oll k < 1; we almost surely have E ( P} ‘ Xo ,...,X,gi),}"éi)) < X,gi) -,

2. We almost surely have P (& >0 | fl(i_l)) > p.

Then, there exists q(n,p) € (0,1) such that

P(SieN,k<n: X0 > Ej) < q".
j=0

Proof. Denote Ej, = {Vk < 1; : X,gj) < L} and Fj = {{; = L}. For {L;} = {L;}en, a sequence
of non-negative integers, denote L; = >/ Li, E, (1,3 = Nieo E; 7, and Foia = Nieo FiL,. We
compute:

P(vieNk<n: X" <> 6) = 3 TP | Fio g B w)PEiL | Firg By )
J=0 {Li}ien 7=0

(10)

We now bound from below each term in this product. Observe that, for each j, the process (X () |

]:éj )) satisfies the conditions of Lemma 3.3 almost surely, so that there exists w = w(n) € (0,1) such

that
P(Ej,Lj | Fj,{Li}7Ej—1,{Li}) Z 1 — ’UJL (11)
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for each j, L € N. Let {B;};en be a sequence of i.i.d. Bernoulli(p) random variables independent from
everything else and write B; = Y7_; Bj. By our assumption, P(¢; > 0 | ]:1(171)) > P(B;j = 1) almost
surely. Thus, for any given sequence of numbers {L; };en we have:

P(F}L, y Fi 1 Eioi ) =2 P(By = I(L; > 0)). (12)

Using (11) and the stochastic domination provided by (12), we obtain a bound on the RHS of (10)
in terms of the random sequence {B;}:

1—P<3ieN,k<n:X,§")z @-)2 3 ﬁIP(Bj:bi)(l—wE)

Jj=0 {b;}€{0,1}N j=0
o o0
> > p(l—p)" (L —w)
iifo n=1
o0 [e.e]
=p)_ > (1-p"(1-uw)"
1;220 n=0
_ P _ wh — pwto
Cptwh—puwl p + wh — pwto

Lo
>1— (1 - p)min <“’,1> .
p
Finally we let s be such that w® = p? and observe that
who Lo
(1 — p) min (, 1) < max (\/@, /1 —p> .
p
Setting ¢ = max (\/@, 1 — p), the proposition follows. O

3.2 The quantile random walks

We have seen that the empirical distribution of opinions depends entirely on the quantile random process
my. However, this process defies direct analysis as it has irregular steps and high dependence on the
past. To tame it, we introduce a pair of transformations of my, which we refer to as the quantile random
walks. These are defined as follows:

yr =71k —{j <k : x5 <my}l,

v =rk—|{j <k : z; <mj}| (13)
Observe that
P(yx+1 = yr + 1) = P(min(X,Y) > my | % > my),
Plyrr1 =y + 7 — 1) = P(min(X,Y) < my | % > my), (14)
Py, =y +7) =Pmin(X,Y) > my | X > my),
Py =y +r—1) =P(min(X,Y) <my | 555 > my).
The drifts of the walks y,y™ are
p(z) = E[(Ye+1 — &) | M = 2, Fe—1], (1)
pt(x) =By — ) | me = 2, Fral,
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where p and p* are those given in (1) and (3), respectively. We remark that the need for introducing the

+ variant of each notation arises from the fact that our theorems are stated in full generality, allowing

1 to have an atomic part. In case that p is a continuous measure — both notions almost surely coincide.
We further denote

Ur() =g <k oz <ai =[{7 <k : x5 <my}l,
vp(@) =[{J <k 2 <z} -|{j <k :z; <my}l.

Observe that, by the definition of the empirical quantile my, in (2),
mp <z =y <PL(x), and my >a <=yl > dp(e). (16)

Also notice that

{ Yrsa(2) = Yule) + W < 2) = Dag < ma), )
P (@) = P () + Way, < @) — Wz < my),
so that
mp > 2 = Yppa(e) SYp(z),  mp<ao= Yl () > 9 (), (18)

and for any a < b both (¢;7(b) — ¢; (a)) and (¢, (b) — ¢(a)) are monotone increasing. The evolution
of my, 1y, and yj, for a particular sequence of members {zy}7_, is illustrated in figure 1.
For given a < b, write

I = (pa) = Ag, 0 0)], PP =T AL Api=y -y >0, (19)

In what follows, we fix such a < b and write [, = I,Z’b and J, = Jg’b for short. We turn to prove a few
short claims concerning these sets.

Claim 3.5. y,jEJk — y €1, <= a<my<h.

Proof. Using (16), we have y < ¢ (b) + Ay < yp < ¢ (b)) <= my < b. Similarly, we have
yp > Up(a) — Ay — y,j > Yp(a) <= my > a. O

Claim 3.6. ’Ik—I—l’ - |Ik| = |Jk+1| - ‘Jk’ = ]I{a < Tk < b}
In particular |I| and |Jy| form the same integer-valued non-decreasing sequence, started at |Iy| = 0.

Proof. By (17), we have:

(L1 — Hi| = 34 (0) — ¢ (0) — (rra(a) — Pr(a)) + Appr — Ag
= T{zy < b} — Lz < mi} — (I{zy < a} — Loy < my})
+ I{xp < mp} — Lz < my}
= M{zp < b} — Wz < a} = T{a < xp, < b}

Which establishes the claim for Ij, and hence for J, as, by (19), Jp = I + A. O

Proposition 3.7. Suppose that p([a,b]) > 0. Then, almost surely, either my > b for all sufficiently
large k, or there exists £ € N such that xy € [a,b].
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1
r=3 + —+ + + [b,00) +[5,00) 1 [5,00)
1 1 [5,00) +[3,5) +[3,5) 3,5
zo=0 [mg=0 -+ -+ [5,00) S 2,5) ¢12,3) +[2,3) +1[2,3
yrbis 040,000 10,5 +00,2) +[0,2) +
Ir1 = 5) mi1 = 0 T T T T [0,2) T [172)
1 1 i il 1 110,1)
Ty =2 |my=0 k=0 k=1 k=2 k=3 k=4 k=5
1 1 1 + + (5,00) + (5,00
T3 =3 | m3=2 + + | f(5o00) 13,5 |35
+ + 1 (5,00) 1 (3,5 + +
T4=2 | my =2 + tGo0 {25 ¢(23 123 (23
Up ks 0%(0,00) 2(0,5] +(0,2) +(0,2] +(0,2) +(1,2]
r5=1 [ms=1 +{oy {0y {0} {0} {0}  {(0,1]
1 1 i 1 1 1 {0}

Figure 1: The evolution of vy, w:, yp and y: over the first five steps of a sample
of the process xj. In this particular example r = %, and the first six admitted
members hold opinions 0,5,2,3,2 and 1. The locations of y; (above) and y,j
(below) are depicted by a small disk, and the intervals which are mapped by w,j
(above) and v (below) to each integer are written next to it. Observe that my
could be computed by rounding down either y;, (or y,j) to the nearest integer, then
rounding up (down) to the nearest element of the image, and then looking on the
infimum of the corresponding preimage interval (in accordance with (16)). Also
observe how y; and y,;" evolve in exactly the same way as long as xp # my (see
(13)), and 1/1;, Y evolve in the same way except interval endpoints, as long as the
admitted members have distinct opinions (see (17)).
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Proof. We assume P(my < a) > P(xg,x1,...,75—1 < a) > 0, as otherwise the claim is straightforward.
Hence,

P(zy € [a,b] | Fr—1, mi < a) (min(X,Y) € [a,b] | % > a)

>
> P(X,Y € [a,8]) = u([a,8))? > 0. (20)

By the Borel-Cantelli lemma, this implies that almost surely one of the following holds:

e there exists ¢ such that zy € [a, b].
e 1z ¢ [a,b] for all k£ and there exists £y such that for all £ > £y, we have m; > a.

From Claim 3.6 it follows that in the former case |I;| = 1 for some ¢, while in the latter case my > b for
all £ > fy. The claim follows. O

In the following proposition we capture the idea that the probability that mj crosses an interval of
negative drift decays exponentially in the number of club members whose opinion lies in that interval.
Recall the notation v (I) = |{j < k: z; € I}].

Proposition 3.8. Let [a,b] be an interval of positive measure-p such that p(x) < —e < 0 for all
x € [a,b]. Then there exists q = q(s, %) € (0,1) such that for all £,ty € N:
IP’(EIk >ty mEp>b ‘ Fro—1,mty < a, viy—1([a,b]) > E) <q". (21)

Proof. Denote I}, = IZ’b as in (19). In light of (16), Claim 3.5 and Claim 3.6 it would suffice to show
that, for all £,ty € N,

P(3k>to: yy > (0) ]fto,l,yto < I, 1| 2 0) < d". (22)
Define inductively for ¢ > 0

t; =min{k > t;_1: mp_1 < a, my > a},
si=min{k >t;: a<my <b, mpy1 & [a,b]},

By Claim 3.5, t; are times in which the walk ¥, entered the interval I from below while s; are times in
which y; is about to exit the interval in its next step. Denote p := % and observe that p > 0.

By Claim 3.6 and the definition of the quantile process, we almost surely have,

P(|1;,| > [It,—1] ‘ Fti1) (2 € [a,b] | Fro1,mi—1 < a,my > a)

>P
> P(min(X,Y) € [a,b] | 25X > a) > p. (23)

Write i = min{i : ¢; = co}. For each i < i, and k € [t;, s;] write X,S,i) = yr — yr, and observe that

this is a random walk started at X(gi) = 0 and satisfying X ,i:)_l -X ,ii) = yr+1 — Yk for k € [t;, s;]. By our

premise and (15) we have ]E<Xlii+)1 | Xéi), . ,X,gi),}"ti,l) < X,ii) — ¢ for all k € Ny. Further observe

that {X}i)}jeNJE[k] are F,, measurable. By (14) we have ]X,E?_I — X,Ef)| < 1 for any ¢ and k. Denote
tj = [Iy;| — |It;_,| for j > 1 and £y = [I,|. Consequently, for i € No we have L; := >, {; = [I,].
By Claim 3.6, ¢; > 0 for all j and by (23) we have P(¢; > 0 | Fy,—1) > p for all j. Since ¢; is Fy; 1
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measurable, and since t;41 > s; + 1 we conclude that the random processes {X ,gl)} and the process {¢;}
obey the conditions of Lemma 3.4 with n = ¢, .7-"51) = Fi,—1 and .7-"1(1) = Fs,. We deduce that

P(3ikeNst X > 1) <¢"

for some ¢ € (0,1) which depends only on € and p.
In order to obtain (22) it is enough to show that

V€ ftisi]: {XP > L) D {y > et )} (24)
Using the fact that {L;} is integer-valued together with (19), we have:
(X072 Ly = (X > L= 1) = {n > v, + 1] = 1) = {on > 035 () — () + o — 1},

so that in order to obtain (24) it would suffice to show that

Ui (0) = ¥yl (b) — Wy, (@) + ) — 1. (25)
Recalling that m; < b for all j € [t;, s;] and using (18) we have zpjﬂ(b) > 1/1]'-F (b) for all such j, and thus
Ui (0) = 4yt (b). (26)

Next, recalling the definition of ¢;, we have my,_1 < a, so that by (16) we obtain y;g_l < t,—1(a). By
(2) we have z4,_1 > a > my,—1 and hence, by (17), we deduce that 1, (a) = 9+,—1(a). Putting these
observations together we obtain

yg’; = yttfl +7r <ty_1(a) +r =1 (a) +7 < Py, (a) + 1. (27)

Inequalities (26) and (27) imply (25), concluding the proof.
U

Proposition 3.9. Let [b,a] be an interval with u([b,a]) > 0, such that p*(z) > e > 0 for all x € [b,al.
Then there exists ¢ = q(e, u([b, a])) such that for all £,ty € No:

IP’(EIk: >to: mp <b| From1,mu, > a, vy—1([b,a]) > E) <q". (28)

Proof. Under appropriate changes, such as replacing p with p* and the intervals I} with Jj (defined in
(19)), most of the proof is identical to that of Proposition 3.8. The only significant difference is in the
proof of a counterpart of (23), namely:

p([b, a)
P(|J¢| > | Je—1| | Fi—1,m4—1 > a,my < a) > —————= > pu([b, al). (29)
(=00, al)
Thus, we provide here only the proof of (29). To this end, we observe, using (2), that the event
{mi—1 > a, my < a} occurs if the median of zg, ..., z—2 is above a (i.e. v4_o((—00,a]) > r(t — 1)), the

next accepted member’s opinion lies in (—oo,a] (i.e. z;—1 < a), and this causes the new median m; to
be less then a (i.e. v4_2((—00,a]) +1 < rt). We thus have:

P(|J¢| >|Je—1| | Fee1, me—1 > a,my < a)
=P(x4—1 € [b,a] | Fim1,mi—1 > a,my < a)
=P(zi—1 € [b,a] | my—1,7(t — 1) < vy_o((—00,a]) <rt —1,z,1 < a),
=P (min(X,Y) € [b,a] | my—1,m4-1 > a, Z5X > my_q, min(X,Y) < a)
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The first equality follows from Claim 3.6. In the last equality we have used the fact that the distribution
of z;_1 is equal to that of min(X,Y") conditioned on % > my_1, where X and Y are i.i.d. u-distributed
random variables. We then observe that for any fixed values m > a and y > m we have

P(min(X,Y) € [b,a] | my—1 = m > a, 23X > m,min(X,Y) € [0,a],Y =y)
=P(X €[ba] | X € 2m —y,a])
p([b, a]

2P(X € al | X € 0a) =72

Therefore (29) holds, as required.
U

We conclude this part with the following simple observation about the continuity of the process my,
following directly from (2) and from the fact that members are admitted one-by-one.

Observation 3.10. Let i < j < { and suppose that mj < x; < my. Then there exists k € (j,£) such

that my, = x;.

3.3 A property of continuous measures

We shall use the following observation about continuous measures.

Lemma 3.11. Let u be probability measure with no atoms in [a,b] which satisfies u([a,b]) > 0. Then
there exist two intervals Iy, Is C [a,b], both of positive measure, such that # > 1.

Proof. Let ' = inf{d > a: Ve > 0 p((d,d +€)) > 0} and b’ = sup{d < b: Ve > 0 p((d —e€,d)) > 0}.
Since p([a, b]) > 0 these infimum and supremum are taken over non-empty sets and are therefore finite.
By the continuity of u on [a, b] we have o/ < V. Fix § = blz“, and set I1 = (a’,d’+9) and I, = (V' —6,b).
Then p(I;) > 0 for j = 1,2 and inf(I;) +inf(fr) =o' +b' -6 = 2(a’—|—5)+% > 2(a’+98) > 2sup(h).

O

4 Proofs of key lemmata

4.1 Proof of Lemma 2.10: negative drift

Proof outline. The proofs of the three parts of the lemma are rather similar. All three rely on the
observation that to the left of every point at which p(my), the drift of yg, is negative, one can identify
an interval I of positive measure where the drift is bounded away from zero from below uniformly. Our
purpose is to use this property to show that if my is below I for sufficiently many steps, then it will
never leave it from above. This is shown in Lemma 4.1 below. To show Lemma 4.1, we divide the
process my, into excursions into I entering it from below. We show that the probability of my ever
exiting I from above in a given excursion is less than 1, and that it decays exponentially in the number
of club members whose opinion lies in I at the start of the excursion (using Proposition 3.8). We further
show that my will exit I from below after sufficiently many visits to I (using Lemma 3.3 on drifting
random walks, and our choice of I), and that each time that a new excursion starts, there is a positive
probability, bounded away from zero, that a new member with opinion in I will be admitted to the
club. We then argue that the probability of ever exiting I from above decays to 0 exponentially fast as
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the number of members in I accumulates, so that, by the Borel-Cantelli Lemma, the probability that
infinitely many such crossings will occur must be zero.

Our key auxilary lemma is the following.

Lemma 4.1. lete > 0, a < B < v and I € {(B,7],(8,7)}, such that (e, B]) > 0, p((o, BlUT) < 5
and p(x) < —e for all x € [o, B]UI. Then vy is a right-barrier, and if I # () then I is a right-separator.

We present the proof of Lemma 2.10 and then turn to prove Lemma 4.1.

Proof of Lemma 2.10. Part (a). Let o be such that p™(zg) < 0 and write ¢ = —%. Let

a := inf {x : oz, ) < g,p+(x) < —5}.
Using Observations 2.3 and 2.4, we deduce that a > —oco and p([a, zo)) > 0. Using the fact that p < p™
(Observation 2.1), we deduce that p(x) < —¢ for all z € [a, z¢). As u([a,zg)) > 0, there exists b € [a, z¢)
such that p([a,b]) > 0. Hence a < b < zp and ¢ satisfy the conditions of Lemma 4.1. We conclude that
(b, x| is a right-separator, as required.

Part (b). Let x¢ be such that p(zg) < 0. If p™(z¢) < O then this part follows from part (a).
Otherwise, we have p*(zg) > 0 so that, by Observation 2.1, we have pu({zo}) > 0. Hence the conditions
of Lemma 4.1 are satisfied with o = § = v = xg and € = —p(z(). We conclude that ¢ is a right-barrier,
as required.

Part (c). Let zp be such that lim, ;.4 p(z) < 0 and write € = — limg_,,,+ p(x)/2. Write

b =sup {:U s op(xe,x) <

a = inf {m: w(z,b) < =, p(x) < —5}.

Observe that a < zy < b. By lower-semicontinuity of p (Observation 2.1), we have p(x) < —e for all
x € [a,b]. By Observation 2.3, we see that p([a,xo]) > 0. Hence the conditions of Lemma 4.1 are
satisfied with @ = a, 8 = xg, 7 = b and e. We deduce that (xq,b] is a right-separator, so that, by
definition, (zg,b) is also a right-separator — as required. O

Proof of Lemma 4.1. Denote the events E = {mj, > I a.e.} and T = {my, < I a.e.} (here F is associated
with escaping while T' is associated with being trapped). Our purpose is to show that P(EUT) = 1.

We define a sequence of discrete stopping times {t;}ien,, setting tp = inf{t € N : z; € [a, ]} and
defining for i > 0,

i — )

inf{t >t;_1 : my <a, m_1>a} ti—1 <oo

o tifl =
these are subsequent entry times of my into the set (—oo,a]. From Proposition 3.7 we obtain that,
almost surely, {tp < co} U E holds.

Next, we use induction to show that
PH{VieNy:t; <o} UEUT) = 1. (30)

Indeed, assume that t; < co and let us show that either t;11 < oo, F or T holds. To this end, define a
sequence of stopping times {Sé'}{jeNo} by setting s = inf{s > t; : ms € (o, f]U I} and

g {imf{sé1 <s<tiy1: ms € (o,BlUI, me_y & (a, fJUT} 5371 < 00
A
b = 00.

00 st
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These are subsequent entry times of my, to the set (a, 5] U I between times ¢; and ¢;4;. To show (30),
it would suffice to show that P({Vj € Ny : s§ < oo}) = 0. Define Zj, := y; — ; (a) and observe that,
by (16), tit1 = inf{k > s} : Z < 0}. Writing Ay, = {my. € (o, 8] U I}, we compute

E(Ziks1 — Zi | Fr—1, Ak) = E(yrs1 — Uk | Fre1, A) — B (@) — o (@) | Fre1, Ar)
< —e+Plar <my | Fro1, Ar) = P(o < a | Fro1, Ag)

< e+ Pay € (, BlUT | Fior, Ar) < — + u((e, SlUT) < —g,

where the transition between the first line and the second uses (15), (17) and our assumption on p and
the last inequality uses our assumption that u((c, 3] UT) < 5. Write

7’; = inf{k > s§- : myg >y} = inf{k > sé- D Zg > (7) — i (@)}

and observe that {t;11 < T]Z} C {sé_H = oo}. Notice that the process {Z : k € [sé,min(T;,tiH)} has

bounded steps and drift at most —e, so by applying Lemma 3.3, there exists ¢ > 0 such that

MS?H =] ]:33*1’33' < 00) (tit1 < T; | Fs§*1asé‘ < 00)

>P
> P(Tz,>1y | Zo <0) >gq.

Thus, for all j € Ny such that IP(S;- < 00) > 0 we have ]13’(53Jrl < 00 | 32 < 00) < 1 —gq. Using the
conditional second Borel-Cantelli lemma [5] we obtain P({Vj € Ny : sé- < 00}) =0, and establish (30).
Next, applying Proposition 3.8 with [a, b] := [«, 5], to := t;, and &, we obtain the existence of g < 1

such that for all 7 € Ny,
P(TC | Ft—1,ti < 00) < ]P’(Elk >t my > f ‘ Fri—1,me;, < a,v,—1([a, f]) > 1) <gq. (31)

Denote L; = [{t < j : 3t € (t;,tit1),m¢ > B} for j € NU {oo}. By (31) for all i € N we obtain,
P(Loo > L | Fiy—1,ti < 00) < q. Hence P({Loo > k} N {Vi € Ny : t; < 0o}) < ¢* for any k € N, so that
P(T°N{Vi e Ny : t; < co}) = 0. Combined with (30) it follows that P(EUT') = 1, so that by definition,
if I # 0 then (8,7] is a separator, while if I = (), then 7 is a barrier. Moreover, from (31) we obtain
P(T) > 0, so that if I # @, then (3, 7] is a right-separator, while if I = (), then ~ is a right-barrier. [J

4.2 Proof of Lemma 2.11: positive drift

The proof is analogous to that of Lemma 2.10. Firstly, we introduce a counterpart of Lemma 4.1.

Lemma 4.2. let ¢ > 0 and v < § < a be such that p((v,a)) < 5, p([8,a]) > 0 and p*(x) > € for all
x e lU[B,a] for I € {[,8),(~,B8)}. Then P(my > I a.e.) >0 and if I # 0 then I is almost surely
a separator, while if I = () then, almost surely, either my > ~ almost everywhere or my, < v almost

everywhere.

Mutatis mutandis, the proof of Lemma 4.2 is the same as that of Lemma 4.1. A few noteworthy
alterations are the following. Define T = {my, > I a.e.} and E = {my, < I a.e.} and Zj, := ¥y(a) — y.
In addition, Proposition 3.9 plays in the proof the role previously given to Proposition 3.8.

Proof of Lemma 2.11. Part (a). Let x¢ be such that p(x¢) > 0 and denote ¢ := p(go). Write

,p(z) 2 E}. (32)

| ™

a=sup{z ¢ plro,z) <
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Using Observation 2.3 and the fact that g < pmax we deduce that p((xo,a]) > 0. Using the fact that
p < pt (Observation 2.1) and that p*(z) = limy_,— p(t), we deduce that p*(z) > ¢ for all = € [c, d]
for some ¢ < zg. As u((xo,al) > 0, we can choose b € (xg,a] such that u([b,a]) > 0. Hence c < b < a
and ¢ satisfy the conditions of Lemma 4.2. We conclude that (c,b) is a left-separator containing ¢, as
required.

Part (b). Let xp be such that p*(zg) > 0. If p(xg) > 0 then this part follows from part (a).
Otherwise, we have p(zg) < 0. If p(zg) < 0, then by Lemma 2.10b, zg is a right-barrier and we are
done. In the remaining p(z¢) = 0 case, by Observation 2.1, we have u({zo}) > 0. Hence the conditions
of Lemma 4.2 are satisfied with « = 8 = v = 29 and € = p'(x9). We conclude that either my > zg
almost everywhere, or my < z¢ almost everywhere. By Observation 2.2, we have lim,_,; 1 p(x) > 0.
Hence there exists b > x( such that p*(z) > e > 0 for all z € [x¢,b] and some ¢ > 0. By Lemma 4.2,
(z0,b] is a separator and hence xg is a barrier.

Part (c). Let z¢ be such that lim;_,;,+ p(z) > 0 and denote € := limg_,;,+ p(z)/2. We repeat the
arguments of Part a, setting a as in (32) and b € (2o, a] so that wu([b,a]) > 0. This way we obtain that
pT(xz) > ¢ for all z € (zg,a]. Hence 9 < b < a and ¢ satisfy the conditions of Lemma 4.2 and we
deduce that, almost surely, (zg, b) is a separator, as required.

O

4.3 Proof of Lemma 2.12: zero drift

Proof outline. Our purpose is to show that if a process visits a positive measure interval I with
p(I) = 0, sufficiently many times, then it will eventually find itself entrapped within. To do so we
identify inside I a sub-interval I;, which we in turn sub-divide into a countable sequence of nested shells
with outer shells thinner than inner ones. We then show that after every visit of m; to the innermost
shells, there is a probability bounded away from zero that it will never leave the interval. To do so we
construct an event under which this happens, and bound its probability from below. On this event, by
the time at which the walk breaks out from the i-th shell, many elements are added to the ¢ + 1-th shell,
so that it takes significantly more time for the walk to cross it. By showing that this sequence of times
converges to infinity we conclude that the walk never breaks out of I.

Let I = [a,b] be such that u(I) > 0 and p*(z) = p(z) = 0 for all z € I. By Observation 2.1 this
implies that 4 has no atoms in [a, b]. Hence, by Lemma 3.11, there exist intervals I, Io C I, such that
wu(l;) >0 (j =1,2) and # > I;. We further divide the interval I} = [«, ] as follows. Let ¢ € I
be the minimal point satisfying u([a, c]) = u([c, 8]). Define two sequences ¢ =19 <1 <1r9g < --- < f8
and ¢ = ly > {1 > o > -+ > a such that u([rj,7j+1]) = p([lj11,¢]) = 270D (). Fix a parameter
ng € N. For any t > 0 and j € N let

N;(t) = min (Vt_l([€j+2,5j+1]), vi—1([rj+1, Tj+2]))-

Fix tg,no € N and denote the event By = {my, € [¢1,71], No(to) > no}. Our proof relies on the following
lemma, whose proof appears later in this section.

Lemma 4.3. There exists ng such that if to > 7,(?737,) + 5, then P(By) > 0 and

P(Vk > to: my € I ‘ Fio—1,Bo) >

W =

We turn to establish Lemma 2.12.
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Proof of Lemma 2.12. The fact that P(my € Ia.e.) > 0 is immediately implied by Lemma 4.3. We are
left with showing that almost surely, I contains a barrier.

Let F:= {my, < {1 i.0.} N {my > r; i.0.}. If F° holds then either r; or ¢; is a barrier and we are
done. Thus it remains to show that

P(F N {I does not contain a barrier}) = 0. (33)
If P(F') = 0 we are done. Otherwise, let ny be as in Lemma 4.3. For j € N define

so =min{s € N: mg € [¢1,r1], No(s) > no},

sj =min{s > sj_1 : mg € [1,r1], me—1 & [(1,71]}.
Under F, we have s; < oo for all j (using Proposition 3.7 with [a,b] = [¢1,r1] and Observation 3.10).
By Lemma 4.3 we have P({Vk > s; : my, € Iy | Fs;—1} N F) > 1, for all j € N. Thus by the conditional

Borel-Cantelli Lemma [5], P({my € I a.e.} N F') = 1, which implies that under F', every point of Iy C I
is a barrier, (33) follows. O

It remains to prove Lemma 4.3. For j € N, define inductively

N;(t;), t; <oo,
tj = 1nf{k‘ > tjfl LMy g [Ej,rj]}, Nj = ]( j) I
00, t; = oo.
Let § = 273u(I1)u(I2) and denote (for j € N) the events:
Aj={tjr —t; > NPy U {tj = 0o}, Bj={Njs1 > 827/ Nj*} U {t; = oo}.
Notice that both A; and B; are F,
properties, whose proofs we provide at the end of this section.

_1-measurable. In proving Lemma 4.3 we rely on three key
Claim 4.4. For each j € N:
P(AS | Fiymn) < e V2,
Claim 4.5. There exists a constant C > 0 such that for all j € N,
BBy | FiyriAy) > 1 20077
Claim 4.6. For all Q > 0 and tg > 0 there exists ng = no(Q) such that

M) B; € (N = Q00

j€Np jEN
Proof of Lemma 4.3. First we show that for any ng and ¢y > ﬁ + 5 we have P(By) > 0. Let
K1, K3, K3 C N be disjoint sets of integers such that {0,1,...,tp — 1} = K1 U Ko U K3, |K1| = [1%],

|Ka| = [%2], and |K3| > 3. Let (Xy,Y%) denote the opinions of the independent candidates at stage k.
Define
Gy :i= {Vk eKi: X € [52,51]} N {Vkﬁ e Ky: X € [7‘1,7‘2]}

N {Vk € Kg: X € [ﬁl,n]} N {Vk <ty: Y € IQ}.

r’l—r

Under Gy we have Ny(typ) > min (@ ﬂ) > ng. Now notice that under Gy we have

Vig—1([l2, 1]) = | K1 | <v (| K1 |+ K2 |+[K3]) =rto and vy, —1([l2, m1]) = [ K1 |+ Ka| > (| K1 |+ K2|+|K3]) =to,
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which implies that my, € [¢1,71]. We deduce that Gy C By. Since {Xj} and {Y}} are all independent
it follows that P(Gy) > P(By) > 0.
Let @ > 0 be a large parameter, to be chosen later. By Claim 4.6, there exists ng = ng(Q) so that

() B € (N 220 (34)

J€Ng JEN

Let ty > ﬁ + 5, so that P(By) > 0 by the arguments above. Using (34) and the bounds from
Claims 4.4 and 4.5 we have:

IP’(W : N, > @1 | .7-}071,30) > P( ﬂ B; ﬂ Aj | ]:toflaBO)

jeN JEN
= [[P(B) | Fio-1,Bo,-- -, Bj-1, A1,..., Aj) [[ P(4 | Fig-1,Bo, ... Bj1,A1,..., A1)
JEN JEN

[o.¢] o .
 r9—2§ n71.5 _ ) A—i.1.5Q(1.1)7 _1_+Qu.1)d
> ] (1—2e C27%N; )(1—6 VNJ/Q) 2H<1—26 C477el 50D ) (1—6 3e? )
j=1 j=1
Z Ca—3el.5Q(1.1)7 i 1,3001.1)7
>1-2 - e 2

j=1 Jj=1

We may choose () sufficiently large to have both Cel5Q1Y > 8j and %e%Q(l‘l)j > 27 for all j € N. For
such Q we obtain

o0 o0 . [e @]
‘ : 48R _1l.3eal Y
P(Vj: N; > Q0D | By >1—2Y e C47et500DT N7 —je? >1-3Y e ? >2.
i N, B 2123 > SRS

Since tj41 > Nj, we have {lim; ;o t; = 00} D {Vj: N; > QDY Thyg

]P’(mk e [ Vk >ty | Fto 1,30) >IP)( lim t; = o0 | fto 1,30) >
j—00

oo\»—l

as required. ]

At last, we prove Claims 4.4, 4.5 and 4.6.

Proof of Claim 4.4. We observe that, since p™ = 0 on I, the process {y,ir - yg c ke [tj,tj]} is a
martingale Z;, whose steps are uniformly bounded by 1, started at 0 and stopped when k = t;1, that

is, when my, & [¢j,7;]. Observe that at this stopping time |Z; |y;;+1 — Yy, | > N;. We may thus

j+1| =

apply Azuma’s inequality (Lemma 3.1) to obtain

P(tisn =t < NJ2 tj < 00 | Fiyot) S P(Tpxonyy < N} | Fiyor) S exp (= NP/(@NJP)) = e VN2,

O
Proof of Claim 4.5. We begin by noticing that for every j,k > 0 we have
P(ak € [rj41,mjt2] | me € I, Fr—1) 2 P{X € [rjq1,7j42], Y € YUY € [rjy1,1mj10], X € Ip})
= 2p1([rj1, 7v0)) p(T2) = 27V p(ly) (L), (35)
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The same holds when [r;,r;41] is replaced by [¢j41, ¢;].

Now, assume that ¢; < oo and denote N]/'+1 = Vi —1([1j41, 7j42]) and NJ’.’Jrl = v —1([0j 42, L))
so that Nj11 = min(N},, N7,;). Let Z ~ Bin(n,p) be a binomially distributed random variable with
n = N].1-5 and p = 2777 2u(I)u(lz). By (35), the random variables Nj,y and NJ,, conditioned on

tiy1—t; > le'5 and JF, 1, stochastically dominate Z. Thus,

—G— n
P (N, > 279730u(L) p(lo) N | Fiy o, ti —t; > NM) > P (Z > %) ,

and the same bound holds when N7, is replaced by N

1 Since Njy1 = min(N;

"
i1 N7 ) we may

apply a union bound to obtain
P(B; | Fij—1,t5 < 00, Aj)
>1-P(Nj,, <6277 Nj° | Fyyoq, Aj) —P(Njy <6277 NJP | Fyoa, Aj)
>1-92P(Z > %)

>1 -2 P2 =] 9 C2TVNG?

)

where in the last line we applied Hoeffding’s bound (Lemma 3.2) with ¢ = p/2, and C = 27°u(I;)?u(I2)?.
O

Proof of Claim 4.6. Setting X; = log N; for j € Ny, we have:

. 3
ﬂBj C ﬂ (N1 > 627N 0 {Ny > no} © ﬂ {XjJrl > §Xj —jlog2 + 10g5} N{Xo > logno}.
J€N J€No J€No

Using induction one sees that, for any @ > 0, under the right-most event, X; > Q(1.1) for all j > 1,
provided that ng is sufficiently large. The claim follows.
O

4.4 Proof of Lemma 2.9: boundedness

We may assume that p is not compactly supported, since otherwise the lemma is straightforward. By
Observation 2.4, there exists M such that p*(m) > % for all m € (—oo, M| and p((—o0, M]) € (0,%).
Hence, by Lemma 4.2 applied with v = —o0, 8 = —oo and a = M, the sequence of quantiles m;, almost
surely enters (—oo, M) only a finite number of times, so that my, is almost surely bounded from below.

By Theorem A and the definition of p™, liminf,, . p™(m) = —(1 — r), so that there exists an
increasing sequence b; — oo such that, for all j € N,

P (b)) <~ (1) (36)

and p([b1,00)) < 1. Let a; be a sequence be such that a; < b; < a1 and

1 _ p(lay, b)) n((aj,b5) _ 1
15wl o)’ pllago0) = 7 0
Then for each x € [a;, b;] we have (using (36) and the right side of (37)):
pl(2,00)*  [pl(@,b) + p(b,0o))® _ Ap(lbj,00)* N 17T
G m(Beo) (e Rro0)  © rrm(Eh00) @B <
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Therefore,

. 1—7r
VieN: plagp) < ——5 (38)
Let to = ng = 1. For each j € N define inductively
tj=inf{k >t;_1: my > by, }, kj = min{k € N: my, <bg}.

Our goal is to prove that, almost surely, there exists a finite j with ¢; = oo. Define for j € N:
sj=1inf{k € N: x > ay,}.
We have s; < t;. By (37) we have
P, € [an,,buy] | 85 < 00, Fy 1) 2 10
which yields
P (1,1 (n, by ]) > 1] < 00, Fiy 1) > 10

By Proposition 3.8 applied with a = ay;, b = by, € = % we have

P (tj =00 | tj_l < oo,ftj_l,utj_l([anj,bnj]) > 1) >1—gq.

Here g depends only on the negative upper bound on p|[an, b,.]» Which, by (38) is —1%7" and thus uniform
J »Ymn

i
pllan o, ])), which by the left part of (37) is also uniform in j. We conclude

in j, and the lower bound on o))
nj?

that for all j,

1
]P’(tj = 00 ’ tj_l < OO,]:tj_l) > E(l — q) > 0.

Hence we may apply the conditional Borel-Cantelli lemma, and obtain that almost surely there exists
a finite j for which t; = oo, as required.

5 Uniqueness of the limit

5.1 Proof of Proposition 1.3: an example of non-uniqueness

Fix a parameter p € (0,1). Let u be the atomic probability measure defined by

p=> (1-p)p's; o,

£eNg

where d,, is the Dirac measure at z. Observe that for every a € {1 —27¢}:

P(X;YZa):IP’(XZa)]P’(Yza), (39)

where X,Y are i.i.d. p-distributed random variables. Let » € (0,1) be such that r < 1 — p?. At every
atom a = 1 — 27¢ we have

P(X )2

+ _ = _

pr(a) = —x~ —1+r=r>0,
P (24 > a)

P(X > a)

2
_ a _ _ 9
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Thus, by Proposition 3.8 applied with [a,b] = {a}, which is of positive measure and negative drift, for
any ko € N we have

P(my < a for all k > ko | Frg—1,Mky < a,vk,—1({a}) > 1) > 0.

This implies that the stopping time 7 := min{¢t € N: m; = a} satisfies
P(my <aforallk>7|Fr_1,7 <o0) >0.

We note that P(7 < c0) > 0 (e.g. 7 = 1 under the event that both candidates in the first round
of applications hold the opinion a, which is an event of positive probability). In addition, by (39),
P33k >71:mk <al|Fr_1,7 <o0) =0, so that P(my =a for all k > 7| Fr_1,7 < 00) > 0. Hence

P(my = a a.e.) > 0.

Thus we have shown that P(vs = d,) > 0 for every atom a of p — and hence that v is supported on

an infinite number of limit distributions, as required.

5.2 Proof of Proposition 1.4: a condition for uniqueness

Our proof uses ideas from [9]. Write P(X > m) = e 9(™). By the hypothesis, ¢’ > 0 and ¢"” < 0
everywhere in [fmin, fimax). We note that, in particular, ¢’ must be a concave, non-decreasing, positive

function on [fmin, fmax]- As these conditions cannot hold when pipin = —00, we may assume, without

loss of generality, that pmin = 0. By (1) we have p(m) = ﬁ + r — 1 where

P (XY >
wm) = P =m)
P(X > m)?
We need to prove that W(m) is strictly monotone increasing in m. We have:
P(X4+Y >2m) = / P(Y > 2m — x)du(z) = / e ICm=2) 4, (z)
0 0
However duy = —d(e™9) = e 94/, so that:
f(]oo e_g(Qm_x)_g(x) g/(x)dx
e—QQ(m)

_ / % 20m)=g(a)-g(2m=2) (1)
0

W(m) =

= /m e29(m)—g(m+x)—g(m—z) (¢'(m+z)+ g (m—2z))da + e29(m)—g(2m)
0
Differentiation with respect to m yields,
W(m) = / " p20(m)—g(mta)—g(m—z)
0
X ( (2¢'(m) =g (m+z)— g (m—2)) (¢'(m+2z)+ ¢ (m—2))+g"(m+z)+g"(m - x))dm
T 2m=92m) (3 (m) + 24/ (2m)),

by the premises that ¢’ > 0 and ¢” > 0 on the support of u. Moreover, for z < m we have
2¢'(m) —g'(m+2z) — ¢’ (m — z) = —22¢9" (¢m) > 0 (for some ¢, € (M — x,m + x)). Lastly, since
Umin = 0, we have ¢’(0) > 0. We conclude that ¥’'(m) > 4629(7”)*9(27”)9’(0) > 0 for all m € [tmin, fmax),
so that W is strictly monotone on the support of u, as required.
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