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Abstract

In this thesis we study zeroes of stationary Gaussian functions. A Gaus-
sian function on a strip D = D∆ = {z : |Imz| < ∆} is a random func-
tion f : D → C whose finite marginals, that is (f(t1), . . . , f(tn)) for any
t1, . . . , tn ∈ D, have multi-variate centered Gaussian distribution. The
Gaussian functions that we consider will be almost surely continuous, and
for most of the results, almost surely analytic. We abbreviate GAF for
“Gaussian Analytic Function”.

A Gaussian function on D whose distribution is invariant with respect
to horizontal shifts (i.e., by any element of R), is called stationary. Gaussian
functions are a natural model for noise, and in this context stationarity is
the natural assumption of “time-invariance”. Zeroes of GAFs in various
domains attracted growing attention in recent years. One reason for this is
that they form new interesting examples of point processes.

In this thesis we address three natural questions regarding a probabilistic
model – asymptotic mean, fluctuations, and estimation of some rare events
- for the zeroes of stationary Gaussian functions. Usually, we consider func-
tions which are a.s. analytic in some strip (unless stated otherwise).

1. Horizontal density of zeroes: We show that almost surely, for all
intervals I ⊂ (−∆,∆), counting the zeroes in the “long” rectangle
[0, T ]× I and dividing by T converges to some (random) number (the
“horizontal density” of zeroes). Regarding this limit as a function of
the interval I, we get a locally-finite measure, and the convergence
holds also in the weak sense. We give a necessary and sufficient con-
dition for the limiting measure to be deterministic (a.s. not random),
and provide a simple formula for it in this case. Then we extend this
result to a family of “symmetric” GAFs which are real on the real axis,
and study some unique properties which appear in this case.

2. Fluctuations: We study the variance of the number of zeroes of a
stationary GAF in a long rectangle [0, T ]×I (T is large). We prove that
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it is always asymptotically between cT and CT 2 with some constants
c, C > 0, and give necessary and sufficient conditions for achieving
each bound.

3. Gap probability: We study the probability that there are no zeroes
at all in a “long” region. In this part we demonstrate results in the real
setting, i.e., for functions f : R → R. We do not assume analyticity,
but rather a mild mixing condition. We show that for a large family of
processes, the probability of having no zeroes at all in a long interval
[0, T ] is roughly exponentially small in T .
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Introduction

The primary object of study of this work is stationary point processes. In
general these are random variables taking values in the space of discrete sub-
sets of a metric space, whose distribution is invariant under some collection
of isometries. Each element of the chosen discrete subset is referred to as a
point, and hence the name – point process. Point processes have been a pri-
mary tool in modeling many physical phenomena, such as the arrangement
of particles in gas, the arrangement of electrons in charged matter, and the
times of radioactive decay of an array of atoms.

The most important example of a stationary point processes is undoubt-
edly the Poisson point process. This process, which is characterized by
independence of the process when restricted to disjoint subsets of the under-
lying space, has been extensively studied and applied to countless physical
models. This is primarily due to its simplicity, and indeed this is often the
only point process that an undergraduate student in mathematics or physics
encounters.

But the simplicity of the Poisson point process is precisely the cause of
its weakness: the points of the process neither tend to attract each other
nor to repel from each other. Many physical systems, however, demonstrate
attraction (scattering of planets in a galaxy) or repulsion (scattering of elec-
trons in charged material), so it is desirable to reflect these properties in
mathematical models. Generating attraction between points in a process is
generally an easier task (a well-known example is the Cox process, which
is a simple generalization of Poisson process defined via a random underly-
ing intensity). Generating repulsion, in a way which will be convenient to
analyze, is much harder.

This was one of the motivations which led researchers to look for other
natural point processes. One such family which is extensively studied is
determinantal point processes. These have the property that the density
of the joint probability of seeing a collection of points x1, . . . , xk is given
by a determinant of a k × k matrix whose i, j entry is F (xi, xj) for some
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positive-definite function F . Determinantal processes often demonstrate re-
pulsion, and have been successfully used in many physical models, especially
in statistical mechanics.

Few other ways to generate a point process with repulsion are known.
One main example, which is not too difficult to analyze, is by considering
the zero-set of a random analytic function. This is done, usually, by consid-
ering a sum of “basis” functions with stochastically independent Gaussian
coefficients (with some mild conditions which ensure convergence). The “ba-
sis” could be some set of algebraic polynomials, trigonometric polynomials,
translations of a certain function, etc. It is remarkable that repulsion be-
tween zeroes of such processes is natural and intrinsic, and is by no mean
an artificial aspect in their construction.

Another motivation for studying zeroes of Gaussian analytic functions,
is the interest in the random function itself. Some mathematicians view it as
representing the “typical” behavior of a function from a certain space, so that
randomness is just a tool to investigate the major part of that space. From
a more applied point of view, many noise models are either represented or
approximated by Gaussian (most likely, analytic) functions. Applications
include signal processing (e.g., radio and brain transmissions), statistical
mechanics (e.g., heat processes), and statistics (e.g., huge data arrays). For
these reasons Gaussian functions, and especially stationary ones, were ex-
tensively studied since the middle of the 20-th century, both in academy and
industrial research groups.

Much attention was drawn to questions about the behavior of the zero-set
(and other level-lines) of stationary Gaussian functions, as they are crucial
for applications. Naturally, much discussed were questions about the mean
number of zeroes, the fluctuations of this number, and estimating some rare
events of interest. Somewhat surprisingly, most of those basic questions
remained open, or were not fully settled, even after many years of research.

In this thesis we relate to some questions asked by Wiener, Slepian, Cuz-
ick and more recent works. New tools and ideas enable us to improve their
results, or give entirely new ones. Most of the thesis studies the behavior
of zeroes of complex Gaussian analytic functions (GAFs), defined in some
horizontal strip, and invariant to horizontal shifts. We also study and com-
pare their behavior to the zeroes of some real counterpart processes (defined
on the real line or on a strip containing it). We investigate three types
of questions about the number of zeroes in a “long” horizontal rectangle
Ra,b(T ) = [0, T ]× [a, b]:

• Limit density: When does the number of zeroes in Ra,b(T ) divided
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by the length T converge (as T rises) to a deterministic limit, and
what is this limit?

• Fluctuations: What is the order of magnitude of the fluctuations of
the number of zeroes in Ra,b(T )? When is it precisely linear in T , or
precisely quadratic?

• Gap probability: What is the probability of the rare event that there
are no zeroes in Ra,b(T )?

The rest of this work is divided into three chapters, each addressing a
question from the list above. In order to make these chapters self-contained,
we provide the relevant notation at the beginning of each chapter. The
content of each chapter has appeared as an independent paper or preprint.
Partial results from the first chapter also appeared in my M.Sc. thesis;
as they have been significantly extended in the present work, we find it
appropriate to incorporate them here. The rest of the introduction consists
of a description of the content of each chapter.

Definitions

A Gaussian analytic function (GAF) over a domain D ⊂ C is a random
function f : D → C which is almost surely analytic in D and whose marginal
distribution on any set of n points is Gaussian in Cn (with zero mean). It
is a well-known fact that every GAF can be represented as a random series

f(z) =
∑
n

ζnϕn(z),

where ϕn(z) are holomorphic functions in D such that
∑

n |ϕn|2 converges
uniformly on compacts, and ζn ∼ NC(0, 1) are i.i.d. complex Gaussian
random variables.

A random function on the horizontal strip D = D∆ = {|Im z| < ∆}
(where 0 < ∆ ≤ ∞) is called stationary if its distribution is invariant with
respect to horizontal shifts. Stationarity is a natural assumption in noise
modeling, and is exemplified by many natural random series, such as∑

n

ζnwne
iλnz,

∑
n∈Z

ζn
sin(π(z − n))

z − n
, e−|z|

2/2
∞∑
n=0

ζn
zn√
n!
, (1)

where in all examples ζn ∼ NC(0, 1) are i.i.d., and in the left-most one
wn, λn ∈ R are given (and obey

∑
nw

2
ne
λny < ∞ for all |y| < ∆, which

provides convergence in D∆).
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A stationary GAF is determined by the covariance function r(z) =

E
[
f(z)f(0)

]
, or by its inverse Fourier transform – which is a non-negative,

finite measure on R with a finite exponential moment. This measure is called
the spectral measure of f .

Ch. 1: Horizontal density of zeroes

Result for Gaussian Analytic Functions

Under certain assumptions on the spectral measure, Wiener proved that
the zeroes of a stationary GAF in a strip obey the law of large numbers,
and computed their horizontal density. This result appears in his classical
treatise with Paley [37, chapter X].

In Chapter 1 we prove a stronger result, removing unnecessary assump-
tions. We show that almost surely, for all intervals I ⊂ (−∆,∆), counting
the zeroes in the “long” rectangle [0, T ]× I and dividing by T converges to
νf (I), where νf is some (random) locally-finite measure, which we call the
horizontal density of zeroes. Secondly, we show that νf is a deterministic
measure if and only if the spectral measure of f is continuous or consists of
exactly one atom. Lastly, we compute the measure νf in case it is deter-
ministic, using a version of Edelman-Kostlan (or Kac-Rice) formula; in this

case νf has the continuous density 1
4π

d
dy

{
ψ′(y)
ψ(y)

}
where ψ(y) = E

[
|f(iy)|2

]
.

Result for Symmetric Gaussian Analytic Functions

A natural counterpart of GAFs are symmetric GAFs, that is, Gaussian an-
alytic functions f : D → C on a domain D ⊂ C which posses a symmetry
around the real axis: a.s., ∀z ∈ D : f(z) = f(z) (notice “Gaussian” this
time means that a marginal of n values has Gaussian distribution in R2n).
This is a family of models for random analytic functions with a fixed propor-
tion of real zeroes; the zeroes are therefore a “mixed” point process (one and
two dimensional). The study of such functions goes back to Kac [23], who
was interested in the expected number of real zeroes of random polynomials
with real coefficients.

Chapter 1 also treats stationary symmetric GAFs. That is, we prove
that almost surely the horizontal density of zeroes νf exists, characterize
when it is deterministic, and compute this measure in this case. Here,
νf is the sum of two parts: a measure with continuous density, given by
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1
4π

d
dy

{
ψ′(y)√

ψ(y)2−ψ(0)2

}
, and an atom at zero with weight 1

4π

√
ψ′′(0)
ψ(0) (once

again ψ(y) = E
[
|f(iy)|2

]
).

For the last computation, we develop a new Edelman-Kostlan (or Kac-
Rice) type formula for calculating the mean number of zeroes of a symmetric
GAF in any sub-domain of the original domain of definition. This formula
does not require stationarity, and extends works by Shepp and Vanderbei
[43], Prosen [39] and Macdonald [29].

Using this new formula, we show that in the symmetric GAF case the
zeroes repel from the real line at short distances. Moreover, a GAF and a
symmetric GAF which share the covariance kernel will have asymptotically
the same density of zeroes away from the real line. Special cases of this
behavior roused the interest of physicists, as models for condensation; see
for instance Schehr-Majumadar [41].

References: The results of this chapter appear in

• N. Feldheim, Zeroes of Gaussian Analytic Functions with Translation-
Invariant Distribution, Israel Journal of Mathematics 2012.

Ch. 2: Fluctuations of the number of zeroes

After studying convergence to the mean, it is natural to ask about fluctu-
ations of the number of zeroes. Continuing in the setup of the previous
chapter, let f be a stationary GAF in the strip D∆ and let V a,b(T ) be the
variance of the number of zeroes of f in [0, T ]× [a, b].

In Chapter 2, we show that V a,b(T ) is asymptotically between cT and
CT 2 with positive constants c and C, and give conditions (in terms of the
spectral measure) for the asymptotics to be exactly linear or quadratic in
T .

In more detail, first we show quadratic variance holds precisely when the
spectral measure contains at least one atom; this is mainly a consequence of
the results presented in Chapter 1. Much more effort is dedicated to showing
existence and positivity of the limit

L(a, b) = lim
T→∞

V a,b(T )

T
∈ (0,∞].

Next, we prove that L(a, b) is finite if the spectral measure obeys some L2

condition. Then we give conditions for the limit to be infinite (“super-linear”
variance).
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Naturally, fluctuations of zeroes of random functions (as well as fluc-
tuations of eigenvalues of random matrices and other models) have been
treated extensively in the literature, but usually these were obtained with
much effort. For instance, for the analogous question for real processes (not
necessarily real-analytic), an asymptotic formula for the variance was given
already in the 1960’s by Cramer and Leadbetter in their book [9], but the
rate of growth is not apparent from it. Cuzick [10] proved a Central Limit
Theorem for the number of zeroes, whose main condition is linear growth
of the variance. More than a decade later, Slud [45], using stochastic inte-
gration methods, gave a convenient condition for such linearity (which is, in
fact, an L2 condition similar to ours). More recently, a work by Granville
and Wigman [19] and an extension by Azäıs and León [5] used similar meth-
ods to study the number of zeroes of a Gaussian trigonometric polynomial
with integer frequencies {−N,−N + 1, . . . , N} in the interval [0, 2π]. They
showed the variance of this number is linear in N , and that a Central Limit
Theorem holds. Our proof seems more accessible, due to simplifications via
harmonic analysis and basic properties of analytic functions. On the other
hand, it does not extend directly to real processes.

References: The results of this chapter appear in

• N. Feldheim, Variance of the Number of Zeroes of Shift-Invariant
Gaussian Analytic Functions, submitted. See: arXiv:1309.2111.

Ch. 3: Gap probability for real stationary processes

In this chapter we consider, an a.s. continuous, stationary Gaussian function
f : R→ R (definitions are analogous to those given in the beginning of this
introduction, omitting analyticity). The gap probability is defined as

H(T ) := P(f > 0 on [0, T ])

(the name refers to the gap between sign-changes). The gap probability
was studied by many authors during the years 1950-1970, including Rice
and Slepian. While the behavior for small values of T was extensively ex-
plored, the regime of large T is not well-understood. In favorable cases, it
is expected that H(T ) decays roughly exponentially with T , demonstrating
“independent-like” behavior in long distances. In 2012, Antezana, Buckley,
Marzo and Olsen [3] gave exponential bounds for the gap probability of a

special model, whose correlation function is sinc(t) = sin(πt)
t (the sinc-kernel

model).
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In Chapter 3 which is joint work with Ohad Feldheim, we give lower and
upper exponential bounds on H(T ), valid for a large family of processes.
More precisely, we prove the following: Assume the spectral measure of the
process obeys some moment condition, and that in some neighborhood of
the origin it has density which is bounded away from zero and infinity. Then
e−c1T ≤ H(T ) ≤ e−c2T for some c1, c2 > 0 and all large enough T . We also
present similar bounds for Gaussian sequences under analogous conditions.

Our main tool is a spectral decomposition of our random function into
two parts: a rescaled sinc-kernel process which we are able to analyze, and a
second process whose influence on the gap probability we are able to control.

References: The results of this chapter appear in

• N. D. Feldheim, O. N. Feldheim, Long gaps between sign-changes of
Gaussian Stationary Processes. International Mathematics Research
Notices 2014; doi: 10.1093/imrn/rnu020. See also: arXiv:1307.0119.
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Chapter 1

Horizontal density of zeroes

1.1 Introduction

Following Wiener, we study zeroes of Gaussian analytic functions with
translation-invariant distribution, defined on a strip in the complex plane.
Under certain assumptions on the spectral measure, Wiener proved that
the zeroes obey the law of large numbers, and computed their horizontal
density (limiting measure). This result appears in his classical treatise with
Paley [37, chapter X]. Wiener’s proof is quite intricate; this may be why it
attracted little attention.

In this work, we simplify Wiener’s arguments and remove unnecessary
assumptions on the spectral measure. We incorporate the result into a
theorem that guarantees the existence of the horizontal limiting measure in
question, and asserts it is not random if and only if the spectral measure
is continuous or consists of a single atom. Then we prove a counterpart of
this theorem for a natural class of Gaussian analytic functions which have
a symmetry with respect to the real axis.

For this purpose, we developed a general Edelman-Kostlan-type formula
for computing the average zero-counting measure of zeroes of a symmetric
Gaussian analytic function in some domain (see Theorem 2 below). This
result extends those of Shepp and Vanderbei [43], Prosen [39] and Macdonald
[29].

1.1.1 Gaussian Analytic Functions

We deal with two classes of random Gaussian analytic functions.
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Definition 1.1.1. Let D ⊂ C be a domain, and let {φn}n∈N be analytic func-
tions in D such that the series

∑
n |φn(z)|2 converges uniformly on compact

subsets of D.

1. Let an be independent standard complex Gaussian random variables
(an ∼ NC(0, 1)). The random series

∑
n anφn(z) is called a Gaussian

Analytic Function (GAF, for short).

2. Let bn be independent standard real Gaussian variables (bn ∼ NR(0, 1)).
If the domain D and the functions φn are symmetric w.r.t. the real
axis (the latter means that φ(z) = φ(z), z ∈ D) then the random series∑

n bnφn(z) is called a symmetric Gaussian Analytic Function.

Our assumptions on {φn} ensure that the sums above a.s. converge to an
analytic function in D [22, Chapter 2]. Throughout this thesis we assume
that there is no z0 ∈ D such that φn(z0) = 0 for all n ∈ N (hence the
function f has no deterministic zeroes).

The covariance kernel of f(z) is defined by

K(z, w) = E(f(z)f(w)) =
∑
n

φn(z)φn(w) . (1.1)

The function K(z, w) is positive definite, analytic in z, anti-analytic in
w, and obeys the law K(z, w) = K(w, z). It turns out that every such
function K(z, w) of two variables z, w ∈ D uniquely defines a GAF in D.

If in addition K(x, y) is real whenever x, y ∈ D ∩ R, then K(z, w) also
uniquely defines a symmetric GAF with this kernel. We stress that a GAF
and a symmetric GAF with the same kernel are different random processes.

1.1.2 Stationarity

We assume our domain is the ∆-strip D = D∆ = {|Im z| < ∆} with 0 <
∆ ≤ ∞.

Definition 1.1.2. A GAF or a symmetric GAF in a strip D∆ is called
stationary if it is distribution-invariant with respect to all horizontal shifts,
i.e., for any t ∈ R, any n ∈ N, and any z1, . . . , zn ∈ D, the random n-tuples(

f(z1), . . . , f(zn)
)

and
(
f(z1 + t), . . . , f(zn + t)

)
have the same distribution.
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If f(z) is stationary in the ∆-strip, then

K(z, w) = r(z − w)

for some analytic function r : D2∆ → C. 1

Since r(t) is continuous and positive-definite, it is the Fourier transform
of a positive measure ρ (Bochner’s Theorem):

r(t) =

∫
R
e2πitλdρ(λ).

The measure ρ is called the spectral measure of the process f(z).

Since r(t) has an analytical extension to the 2∆-strip, ρ(λ) has a finite
exponential moment [27, Chapter 2]:

for each ∆1 < ∆,

∫ ∞
−∞

e2π·2∆1|λ|dρ(λ) <∞ . (1.2)

In fact, condition (1.2) is also sufficient for r(t) to have an analytic ex-
tension to the 2∆-strip. Therefore, beginning with a finite positive measure
ρ obeying (1.2), we can construct a kernel by

K(z, w) =

∫
R
e2πi(z−w̄)λdρ(λ). (1.3)

which defines in its turn a stationary GAF in the ∆-strip.

What measures could be spectral measures of a symmetric GAF? As we
mentioned earlier, a kernel K(z, w) defines a symmetric GAF if and only if it
is real for z, w ∈ R; By relation (1.3) this is equivalent to ρ being symmetric
with respect to the origin.

Finally, we mention that a random GAF or symmetric GAF may be
constructed, as follows, from its spectral measure ρ. If {ψn(z)}n comprise
an orthonormal basis in L2

ρ(R), then their weighted Fourier transforms

φn(z) = ψ̂n(z) =

∫
R
e2πizλψn(λ)dρ(λ)

1Indeed, define r(z) = K(z, 0). Since K(z, w) is assumed to be analytic in z, r is
analytic in D∆. Now by stationarity, for x, y ∈ R the covariance E(f(x)f(y)) depends on
(x − y) only, so that K(x, y) = K(x − y, 0) = r(x − y). Similarly, K(z, t) = r(z − t) for
any z ∈ D∆ and t ∈ R. Now, as K(z, w) is analytic in w and agrees with r(z − w) on an
open set, we conclude that r may be extended to D2∆ and that K(z, w) = r(z − w) for
any z, w ∈ D∆.
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comprise a basis in the Hilbert space F{L2
ρ(R)} (the Fourier image of L2

ρ(R)
with the scalar product transferred from L2

ρ(R)). One easily checks that

r(z − w) =
∑
n

φn(z)φn(w) .

Therefore, when used in Definition 1.1.1, the basis
{
φn
}

will result in a
random function with the desired kernel.

1.2 Results and Discussion

1.2.1 Main Theorem

It will be convenient to introduce some notation:

Notation 1. (zero-set, zero-counting measure) Let D ⊂ C be a region, and
f a holomorphic function in D. Denote the zero-set of f (counted with
multiplicities) by Zf , and the zero-counting measure by nf , i.e.,

∀φ ∈ C∞0 (D),

∫
D
φ(z)dnf (z) =

∑
z∈Zf

φ(z) .

We use the abbreviation nf (B) =

∫
B
dnf (z) for the number of zeroes in a

Borel subset B ⊂ D.

Notation 2. Let y ∈ (−∆,∆). For a stationary GAF or symmetric-GAF
in D∆ with kernel K(z, w), denote

ψ(y) = K(iy, iy) =

∫ ∞
−∞

e−4πyλdρ(λ) .

In the case of a GAF, define the function

L(y) =
d

dy

(
ψ′(y)

4πψ(y)

)
= − d

dy

(∫∞
−∞ λe

−4πyλdρ(λ)∫∞
−∞ e

−4πyλdρ(λ)

)
. (1.4)

In the case of a symmetric-GAF, define for y 6= 0 the function

S(y) =
d

dy

(
ψ′(y)

4π
√
ψ(y)2 − ψ(0)2

)
= − d

dy


∫∞
−∞ λe

−4πyλdρ(λ)√(∫∞
−∞ e

−4πyλdρ(λ)
)2
−
(∫∞
−∞ dρ(λ)

)2

 ,

(1.5)
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and the positive number

R =
1

4π

√
ψ′′(0)

ψ(0)
= 2

√∫∞
−∞ λ

2dρ(λ)∫∞
−∞ dρ(λ)

. (1.6)

Finally, a stationary GAF is degenerate if its spectral measure ρf consists
of exactly one atom. Similarly a stationary symmetric GAF is degenerate if
ρf consists of two symmetric atoms (i.e., ρf = c(δq +δ−q) for some c, q > 0).

The following theorem is our main result. Denote by m1 the linear
Lebesgue measure.

Theorem 1. Let f be a stationary non-degenerate GAF or symmetric GAF
in the strip D∆ with 0 < ∆ ≤ ∞. Denote by νf,T the non-negative locally-
finite random measure on (−∆,∆) defined by

νf,T (Y ) =
1

T
nf ([0, T )× Y ), Y ⊂ (−∆,∆).

Then:

(i) Almost surely, the measures νf,T converge weakly to a measure νf when
T →∞.

(ii) The measure νf is not random (i.e. var νf (I) = 0 for every interval I)
if and only if the spectral measure ρf has no atoms.

(iii) If the measure νf is not random, then:

νf = Lm1, if f is a GAF,

νf = S m1 +Rδ0, if f is a symmetric-GAF,

where δ0 is the unit point measure at the origin.

The measure νf is referred to as “the horizontal limiting measure of
the zeroes of f”, or simply “the limiting measure”. In the discussion and
examples that follow, we assume the normalization ψ(0) =

∫
R dρ(λ) = 1.

Remark 1.2.1. The limiting measure νf might have atoms. Generally
speaking, the weak convergence in the theorem guarantees that νf,T ([a, b))
converges to νf ([a, b)) for all a, b ∈ (−∆,∆) with a possible exception of an
at most countable set, which corresponds to atoms of the limiting measure
νf . Yet, due to stationarity, in our case the limit exists on all intervals. We
prove the following result:
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Proposition 1.2.1. Almost surely, for any a, b ∈ (−∆,∆), we have:

lim
T→∞

νf,T ([a, b)) = νf ([a, b)).

The proof is included in Section 1.6, and may be easily modified to apply
to any type of interval (i.e., (a, b], (a, b) or [a, b]). Notice that in particular
for any a ∈ (−∆,∆), a is an atom of νf if and only if it is an atom of νf,T
for large enough T .

Remark 1.2.2. The part of the theorem pertaining to GAFs extends the
aforementioned Wiener’s theorem. In his work, Wiener assumed that the
spectral measure ρ has the L2-density dρ(λ) = |φ(λ)|2dλ, that satisfies con-
vergence conditions:

For any |y| < ∆, ∫ ∞
−∞

(1 + x2)2 |φ̂(x+ iy)|2dx <∞,

and ∫ ∞
−∞

(1 + x2) |(φ̂)′(x+ iy)|2dx <∞.

As above, φ̂ is the Fourier transform of φ. Under these assumptions, Wiener
proved that the limiting measure νf exists and equals Lm1, where L is
defined by (1.4).

Remark 1.2.3. (atomic spectral measure)
Consider a spectral measure consisting of two atoms:

ρ =
1

2
(δ−q + δq) .

The corresponding GAF is f(z) = (ζ1e
−2πiqz + ζ2e

2πiqz)/
√

2, where ζ1, ζ2 ∼
NC(0, 1), independently. The zeroes of such a function are

zk =
1

4πq

[
arg(

ζ2

ζ1
) + 2πk − i log

∣∣∣∣ζ2

ζ1

∣∣∣∣] , k ∈ N .

We see that all zeroes lie on the same (random) horizontal line, equally
spaced upon it. The height of this horizontal line is a non-degenerate random
variable, and so in this example νf is indeed random.

For symmetric GAFs, the spectral measure above is degenerate (all ze-
roes of the corresponding function are real). We mention that it is possi-
ble to construct a random analytic function with continuous spectrum, for
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which an arbitrarily close to 1 asymptotic proportion of zeroes lie on the
real line. For this, choose a continuous symmetric spectral measure, suffi-
ciently close (in the weak sense) to the degenerated measure 1

2(δ1 +δ−1). As
a concrete example, consider the symmetric GAF fε with spectral density
1
4ε(1I[−1−ε,−1+ε] + 1I[1−ε,1+ε]). Using Theorem 1 and Proposition 1.2.1, one
may compute that if ε is small enough, fε has, in average, 99% of its zeroes
in a long rectangle lying on the real line.

Remark 1.2.4. (behavior near the boundary and near the real line.)
We observe that S(y) and L(y) have the same asymptotic behavior as y ap-
proaches the boundary ±∆. Therefore, zeroes of a GAF and of a symmetric
GAF with the same kernel behave similarly near the boundary of the domain
of definition.

For a symmetric GAF, we observe a “contraction” of the zeroes to the
real line: there are zeroes on the line itself, but they are scarce as we ap-
proach it from below or above (see figure 1.3.1 below). This is confirmed by
a straightforward computation, which shows that S(y) = O(y), as y → 0.

1.2.2 Expected Zero-Counting Measures

In part (iii) of the theorem, the limit νf (a, b) is actually the expectation
Enf ([0, 1]×[a, b]). In order to calculate this quantity in the GAF case, we use
the following classical formula, which appeared in Edelman and Kostlan’s
joint work on random polynomials [13]. Several proofs of this formula are
known ([22, Chapter 2]).

Theorem. (Edelman-Kostlan formula) For a GAF f with covariance kernel
K(z, w), the expected zero-counting measure is given by

E[dnf (z)] =
1

4π
4 logK(z, z). (1.7)

This should be understood as equality of measures in the following sense:
for any compactly supported h ∈ C∞(D),

E
∫
D
h(z)dnf (z) =

1

4π

∫
h(z) 4 logK(z, z)dm2(z).

Here and throughout this chapter, m2 denotes the planar Lebesgue measure.

The proofs of this formula depend inherently on the fact that f(z) is a
complex Gaussian random variable for all z, which fails for the symmetric
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GAF. To that end, we prove the following result, that extends previous
results by Shepp and Vanderbei [43], Prosen [39] and Macdonald [29].

Theorem 2. For a symmetric GAF f on some region with covariance kernel
K(z, w), the expected zero-counting measure is given by

E[dnf (z)] =
1

4π
4 log

(
K(z, z) +

√
K(z, z)2 − |K(z, z)|2

)
, (1.8)

where the Laplacian is taken in the distribution sense.

Notice that stationarity is not assumed in the last two theorems. More-
over, this formula combines information about real and complex zeroes.

1.3 Examples

1.3.1 Paley-Wiener Process (Sinc-kernel Process)

Consider the spectrum

dρa(λ) =
1

2a
χ[−a,a](λ)dλ , a > 0.

Condition (1.2) holds for any ∆ > 0, so the sample function f is entire. The
kernel is:

K(z, w) =
sin(2πa(z − w))

2πa(z − w)
= r(z − w)

A base for construction of the GAF (in the sense of definition 1.1.1) is

φn(z) =
sin(2πaz)

2πaz − nπ
, n ∈ Z.

This example yields a surprising construction of a random series of simple
fractions with known poles and stationary zeroes: Take for instance a = 1.
Our function is

f(z) =
∑
n∈Z

an
sin(2πz)

2πz − nπ

where {an} are independent Gaussian random variables. Almost surely,
Zf ∩ 1

2Z = ∅, so we may divide by sin(2πz)/π and get the random series

g(z) =
∑
n∈Z

an
2z − n

.
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The poles of g are known (and lie on a one-dimensional lattice), but its
zeroes are a random set invariant to all horizontal shifts!

Using Theorem 1 for ρa, we get that the zero-counting measure has the
following density of zeroes:

La

( y

4πa

)
= 4πa2 d

dy

(
coth y − 1

y

)
.

Similarly, the symmetric GAF with the same spectral measure has the
continuous density of zeroes

Sa

( y

4πa

)
= 4πa2 d

dy

(
cosh y − sinh y

y√
sinh2 y − y2

)

plus an atom at y = 0, of size

R =
a√
3
.

Figure 1.1(a) represents the graphs of the continuous densities for the
parameter a = 1

4π .

1.3.2 Fock-Bargmann Space (Gaussian Spectrum)

Set

dρa(λ) =
1

a
√
π
e−λ

2/a2
dλ , a > 0.

Once again, f is entire (i.e., ∆ =∞). The Fourier transform of the measure
is

r(z) =
1

a
√
π

∫ ∞
−∞

e−λ
2/a2

e2πiλzdλ = e−a
2π2z2

,

therefore the covariance kernel is:

K(z, w) = e−a
2π2(z−w)2

.

This space has an orthonormal basis of the form (bz)n√
n!
e−cz

2
, where b =

√
2 aπ

and c = − a2

π2 .

In this model, the density of zeroes is constant:

La

( y

2πa

)
= 2πa2.
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Figure 1.1: Horizontal density of zeroes for GAF and symmetric GAF mod-
els with the same kernel. In each model, the lower graph represents the
continuous component of the mean zero-counting measure for the symmet-
ric GAF (the atomic part is an atom at y = 0, which is not graphed). The
upper graph represents the continuous (and only) part of this measure for
the appropriate GAF.
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This is the only model with Lebesgue measure as expected counting
measure of zeroes. For more information about this model and why the
distribution of zeroes determines the GAF, see the paper [46], the book [22,
Chapters 2.3, 2.5], or the papers [48], [33] and [32].

However, for the real coefficients case the continuous part of the limiting
measure has density

Sa

( y

2πa

)
= 2πa2 d

dy

(
ey

2√
e2y2 − 1

)

and the atom at y = 0 is of size
√

2a.
Both continuous densities are graphed in 1.1(b) for the parameter a = 1

4π .

1.3.3 Exponential Spectrum

Consider a symmetric measure with exponential decay, for instance

dρ(λ) = sech(πλ)dλ =
1

cosh(πλ)
dλ .

Here r(z) = sech(πz) as well. This model is valid in the strip −1
4 < Im(z) <

1
4 . Here

L(y) =
π

cos2(2πy)
.

For the symmetric GAF in this model, we have

S(y) =
π| sin(2πy)|
cos2(2πy)

.

We see that the zeroes concentrate near the boundaries of the region of
convergence (figure 1.1(c)).

1.4 Theorem 2: Zero-Counting Measure for a sym-
metric GAF

In this section we prove Theorem 2. Similar formulas were proved in specific
cases. Our proof follows Macdonald [29], who has considered random poly-
nomials (also in the multi-dimensional case). A novelty is in the extension
of his result to arbitrary symmetric GAFs.

Recall that for any analytic function f (not necessarily random) in a
domain D we have

nf =
1

2π
4 log |f |.



20 Horizontal density of zeroes

This is understood in the distribution sense.
Using this for our random f , we would like to take expectation of both

sides, to get:

E
[∫

X
h(z)dnf (z)

]
= E

[
1

2π

∫
X
4h(z) log |f(z)|dm2(z)

]
=

1

2π

∫
X
4h(z)E [log |f(z)|] dm2(z),

(1.9)

where m2 denotes the Lebesgue measure in C. The last equality is justified
by Fubini’s Theorem, as we show at the end of this section. Thus we can
conclude that (in the weak sense):

E(dnf ) =
1

2π
4 E log |f |. (1.10)

Let us return to our setup: f is a random function generated by a
basis φk(z) of holomorphic functions, each real on R, and such that the
sum

∑
k |φk(z)|2 converges locally-uniformly. Denote φk(z) = uk(z)+ ivk(z)

where uk, vk are real functions. Our random function is decomposed thus:

f(z) =
∑

bkφk(z) =
∑

bkuk(z) + i
∑

bkvk(z) = u(z) + iv(z),

where bk ∼ NR(0, 1) are real Gaussian standard variables. (u(z), v(z)) have
a joint Gaussian distribution, with mean (0,0) and covariance matrix

Σ =

( ∑
u2
k

∑
ukvk∑

ukvk
∑
v2
k

)
.

Lemma 1.4.1. The above matrix Σ has two positive eigenvalues λ2 ≥ λ1

obeying:

λ2,1 =
K(z, z)± |K(z, z)|

2

where K(z, w) =
∑
φk(z)φk(w) =

∑
φk(z)φk(w).

Proof. For any complex number φ = u+ iv, we have:

u2 =
1

2

(
|φ|2 + Re(φ2)

)
, v2 =

1

2

(
|φ|2 − Re(φ2)

)
, uv =

1

2
Im(φ2).

Applying this, we can rewrite Σ as

Σ =

(
1
2

(∑
|φk|2 + Re

∑
φ2
k

)
1
2 Im

∑
φ2
k

1
2 Im

∑
φ2
k

1
2

(∑
|φk|2 − Re

∑
φ2
k

) ) ,
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and then calculate its determinant and trace:

λ1λ2 = det Σ =
1

4

(
(
∑
|φk|2)2 − (Re

∑
(φ2
k))

2 − (Im
∑

(φ2
k))

2
)

=
1

4

(
K(z, z)2 − |K(z, z)|2

)
,

λ1 + λ2 = trace Σ =
∑
|φk|2 = K(z, z).

(1.11)
The lemma follows.

Using the law of bivariate-normal distribution, we get:

E[log |f(z)|] =
1

2π
√

det Σ

∫∫
R2

log(
√
x2 + y2)e−

1
2

(x,y)Σ−1(x,y)T dx dy (1.12)

=
1

2π
√

det Σ

∫∫
R2

log(
√
x2 + y2)e−

1
2

(λ−1
1 x2+λ−1

2 y2)dx dy.

Applying to the last integral the change of variables x = u
√
λ1, y =

w
√
λ2, with Jacobian

√
λ1λ2 =

√
det Σ, we have

E[log |f(z)|] =
1

2π

∫∫
R2

log(
√
λ1u2 + λ2w2)e−(u2+w2)/2du dw.

Now, changing to polar coordinates u = r cos θ, w = r sin θ, we get:

E[log |f(z)|] =
1

2π

∫ 2π

0
log(

√
λ1 cos2 θ + λ2 sin2 θ) dθ + C,

where C is a constant which does not depend on the point z (i.e., is inde-
pendent of λ1 and λ2). In the following, we write C for any such constant
(which may be different each time we use this symbol). These constants will
vanish when we apply Laplacian (recall (1.10)).

So, the integral we should compute is:∫ 2π

0
log
∣∣∣√λ1 cos θ + i

√
λ2 sin θ

∣∣∣ dθ
2π

= log(
√
λ1 +

√
λ2) +

∫ 2π

0
log

∣∣∣∣e2iθ +

√
λ1 −

√
λ2√

λ1 +
√
λ2

∣∣∣∣ dθ2π
+ C.

The remaining integral is computed easily by Jensen’s formula for the

function g(z) = z2 + c, where c =
√
λ1−
√
λ2√

λ1+
√
λ2
< 1. Indeed, it has two zeroes

in the unit circle, denoted a1 and a2, and so:∫ 2π

0
log
∣∣∣e2iθ + c

∣∣∣ dθ
2π

= log |g(0)|−log |a1|−log |a2| = log |c|−2 log
√
|c| = 0.
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Recalling (1.10) and using the relations (1.11), we arrive at

E[dnf (z)] =
4
2π

1

2
log
(
λ1 + λ2 +

√
4λ1λ2

)
=

1

4π
4 log

(
K(z, z) +

√
K(z, z)2 − |K(z, z)|2

)
.

1.4.1 Justification of (1.9)

We must show that the following integral converges:

1

2π

∫
X
| 4 h(z)| · E| log |f(z)| |dm2(z).

It is enough to prove that E| log |f(z)| | is bounded on a compact subset
S of the plane. Given z, f(z) is a 2-dimensional real Gaussian variable with
parameters noted above, so we get

E| log |f(z)|| = 1

2π
√

det Σ

∫∫
R2

| log(
√
x2 + y2)|e−

1
2

(λ−1
1 x2+λ−1

2 y2)dxdy.

As before, λ1, λ2 are the eigenvalues of Σ, dependent on z. By another
change of variables (x = u

√
λ1, y = w

√
λ2) we get:

E| log |f(z)|| = 1

4π

∫∫
R2

| log(λ1u
2 + λ2w

2)|e−(u2+w2)/2du dw.

Fix z, and assume λ1 ≤ λ2. Let us split the integral into two domains:
Ω+ = {(u,w) ∈ R2 : log(λ1u

2 + λ2w
2) ≥ 0} and Ω− = {(u,w) ∈ R2 :

log(λ1u
2 + λ2w

2) < 0}.
Then, on Ω+ we estimate 0 < log(λ1u

2 +λ2w
2) < log(λ2)+log(u2 +w2).

From here clearly the integral on Ω+ is bounded by C0 + C1 log λ2. By
lemma 1.4.1, λ2 = 1

2(K(z, z) + |K(z, z)|) is a continuous function of z, and
therefore is bounded on our compact set S.

For (u,w) ∈ Ω− notice that 0 > log(λ1u
2 +λ2w

2) > log(λ1u
2), therefore:∫∫

Ω−

| log(λ1u
2 + λ2w

2)|e−(u2+w2)/2du dw ≤∫∫
Ω−

(| log(λ1) + log(u2)|)e−(u2+w2)/2du dw ≤ C0 + C1| log λ1|.

Denote m = min{λ1(z) : z ∈ S}. If m = 0, this leads to K(z0, z0) = 0
for some z0 ∈ K, but this means z0 is a deterministic zero. Therefore m > 0
and | log λ1| is bounded from above.
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1.5 Theorem 1: Horizontal Limiting Measure

1.5.1 Preliminaries

We present the probability space of our interest, equipped with a measure-
preserving transformation. We explain the notion of ergodicity in this setup.

The probability space Ω is a countable product of copies of C, with
P being the product of complex Gaussian measures (one on each copy).
These copies represent the random coefficients in the construction of f :
each ω = {an}n ∈ Ω corresponds to a function fω(z) =

∑
anφn(z). Ff is

the Borel σ-algebra generated by the basic sets {ω ∈ Ω : fω(z) ∈ B(w, r)},
where z ∈ D, r > 0. Here B(w, r) = {p ∈ C : |p − w| < r}. The group of
automorphisms St shall be defined via the correspondence ω ↔ fω:

fStω(z) = fω(z + t).

The map St is measure-preserving, since we assumed that f is stationary.
Thus, we will say the random process f(z) is ergodic, if any measurable set
A ∈ Ff which is invariant to all translations (StA = A, ∀t ∈ R) is in fact
trivial (PA ∈ {0, 1}).

In a similar way, one can define when is the zero-set Zf ergodic (it is
itself a random point-process in the plane). The space Ω, the measure P on
it and the automorphisms {St} are just as before. Now, the σ-algebra FZf
is generated by the basic sets {ω ∈ Ω : Zfω ∩ B(z, r) 6= ∅} with z ∈ D, r >
0, B(z, r) ⊂ D. Regarding this definition and other basic notions on point
processes, see for instance Chapter 1.2 in the book [22].

Corollary 1.5.1. Ergodicity of f implies ergodicity of Zf .

Proof. It is enough to prove FZf ⊂ Ff . Let A be a countable dense set in
C. Basic sets of FZf can be written as

{Zfω ∩B(z, r) 6= ∅} =
⋃
m∈N

⋂
n∈N

⋃
p∈A∩B(z,r− 1

m
)

{
fω(p) ∈ B

(
0,

1

n

)}
,

which is indeed in Ff .

We will use the following classical result:

Theorem 3. (Fomin, Grenander, Maruyama) A stationary GAF (symmet-
ric or not) is ergodic w.r.t. horizontal shifts {f(z) → f(z + t)}t∈R if and
only if its spectral measure ρ has no atoms.
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This theorem was originally proved for real processes over R (see for
instance Grenander [20]), but small modifications extend it to a strip in the
complex plane for both types of functions (GAFs and symmetric GAFs).

1.5.2 Existence of the horizontal limiting measure (state-
ment (i) )

As above, for T ≥ 1, let νT be the random locally-finite measure on (−∆,∆)
defined by:

νT (Y ) = νf,T (Y ) :=
nf ([0, T )× Y )

T
, Y ⊂ (−∆,∆). (1.13)

In this section we show that a.s. the measures νT converge weakly as T tends
to infinity. First, we assume that T tends to infinity along positive integers.

In this case, we use the subscript N instead of T . By a known theorem
(see for instance, [21, section 2.1]), a sequence of measures νN converges
weakly to some measure if and only if the sequence of real numbers νN (h)
is convergent for every h ∈ C∞0 (−∆,∆). It suffices to check whether νN (h)
is convergent for all h ∈ M , where M ⊂ C∞0 (−∆,∆) is a dense set of test-
functions, and we may choose M to be countable. Given a test-function
h ∈ M , denote by Ah the event that νN (h) is a convergent sequence of
numbers. To prove our claim it suffices to show P(Ah) = 1 for every h ∈M .
Note that νN (h) = 1

N (X1 +X2 + · · ·+XN ), where

Xk = Xk(h) =

∫
1l[k,k+1)(x)h(y) dnf (x, y) (1.14)

is a stationary sequence of random variables.

The random variables Xk are integrable. This follows at once from an
Offord-type large deviations estimate [22, Theorem 3.2.1]:

Theorem 4 (Offord-type estimate). Let f be a GAF or symmetric GAF
on a domain D. Then for any compact set K ⊂ D, the number nf (K) of
zeroes of f on K has exponential tail: there exist positive constants C and
c depending on the covariance function of f and on K such that, for each
λ ≥ 1,

P
{
nf (K) > λ

}
< Ce−cλ .

(This theorem is stated and proved in [22] for GAFs, but minor modifi-
cations are needed to verify it for symmetric GAFs.)
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Therefore, we can apply the Birkhoff theorem [9, chapter 7]. It yields
that the limit 1

N (X1 +X2 +· · ·+XN ) almost surely exists, and so P(Ah) = 1.
This completes the proof of the weak convergence of the sequence νN .

Now, we consider the general case in statement (i). Let T ≥ 1, and let
N = [T ] be the integer part of T . Then

νT (h) =
N

T
νN (h) +

1

T

∫
1l[N,T )(x)h(y) dnf (x, y)︸ ︷︷ ︸

=:RT (h)

.

We show that a.s. the second term on the right-hand side converges to zero
for all bounded compactly supported test functions h. It suffices to prove
this for all bounded test functions supported by an interval [−∆1,∆1] with
an arbitrary 0 < ∆1 < ∆. We have

|RT (h)| ≤ ‖h‖∞
T

nf
(
[N,N + 1)× [−∆1,∆1]

)
.

Employing the Offord-type estimate with K = [0, 1]× [−∆1,∆1] and using
translation-invariance of the zero distribution of f , we see that for each
ε > 0,

P
{
nf ([N,N + 1]× [−∆1,∆1]) ≥ εT

}
= P

{
nf ([0, 1]× [−∆1,∆1]) ≥ εT

}
< Ce−cεN .

Hence, for each M ∈ N,

P
{

lim sup
T→∞

|RT (h)| ≥ ε ‖h‖∞
}
≤
∞∑
M

Ce−cεN = C(1− e−cε)−1e−cεM ,

and we conclude that a.s.

lim
T→∞

RT (h) = 0

for all smooth compactly supported test functions h. This completes the
proof of statement (i) in Theorem 1. 2

1.5.3 Non-random limiting measure (statement (iia),(iii) )

Here we will prove that if the spectral measure ρf has no atoms, then the
horizontal mean zero-counting measure νf is not random, which is half of
statement (ii). We then compute the limit νf , which is statement (iii).
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Assume the spectral measure ρ is continuous. By Theorem 3 (Fomin-
Maruyama-Grenander) we get that f is ergodic, and by corollary 1.5.1 so
is Zf . Using the notation introduced in the proof of statement (i), we get
that for any smooth test function h, the stationary sequence of random
variables Xk(h) introduced in (1.14) is ergodic. In this case the Birkhoff
ergodic theorem asserts that, a.s.,

lim
N→∞

νN (h) = lim
N→∞

1

N

N−1∑
k=0

Xk(h) = EX0(h) .

Therefore, the horizontal mean zero-counting measure is non-random, and
equals

EX0(h) = E
∫

1l[0,1)(x)h(y) dnf (x, y) =

∫
1l[0,1)(x)h(y)Ednf (x, y) ,

where Ednf (x, y) is the mean zero-counting measure. For a GAF, we com-
pute it directly by Edelman-Kostlan formula (1.7); while for a symmet-
ric GAF we use the formula (1.8) (in Theorem 2). As before, denote

ψ(y) =

∫ ∞
−∞

e−4πyλdρ(λ). Note that

K(z, z) =

∫
e2πi·2ytdρ(t) = ψ(y), and

K(z, z) =

∫
e2πi(z−z)tdρ(t) =

∫
dρ(t) = ψ(0),

where z = x+ iy. Putting this into (1.8), we get the first intensity of zeroes:

Enf =
1

4π

d2

dy2
log
(
ψ(y) +

√
ψ(y)2 − ψ(0)2

)
=

1

4π

d

dy

ψ′(y)√
ψ(y)2 − ψ(0)2

.

For any y 6= 0, this is a derivative in the functional sense, which equals S(y).
At y = 0, the function is not defined; but the limits

lim
y→0+

ψ′(y)

4π
√
ψ(y)2 − ψ(0)2

= − lim
y→0−

ψ′(y)

4π
√
ψ(y)2 − ψ(0)2

= A

exist. This follows from ψ′(y)√
ψ(y)2−ψ(0)2

being an odd function, increasing in

y ∈ (0,∆). So, in order to compute Enf we take the required derivative
in the distribution sense, which yields the continuous point-wise derivative
S(y) (for y 6= 0) plus an atom of size 2A at y = 0.
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In order to compute A let us write this limit again, and apply L’Hôpital’s
rule:

4πA = lim
y→0+

ψ′(y)√
ψ(y)2 − ψ(0)2

= lim
y→0+

ψ′′(y) ·
√
ψ(y)2 − ψ(0)2

ψ(y) · ψ′(y)
= (4π)2E2

1

4πA
,

where E2 =

∫∞
−∞ λ

2dρ(λ)∫∞
−∞ dρ(λ)

is the ratio between the second and the zero mo-

ments of the spectral measure. We conclude that A =
√
E2, and therefore

the atom has twice this size.

1.5.4 Random limiting measure (statement (iib))

In this section we prove the second half of (ii). We present the proof for
symmetric GAFs, since it is slightly more involved. We assume that the
spectral measure has the form

ρf = cδq + cδ−q + µ,

where µ is a non-trivial measure. Our goal is to show that the horizontal
mean zero-counting measure of some segment νf (a, b) is a non-constant ran-
dom variable. We may assume that c = 1 and q = 1 (if q = 0 the analysis is
easier).

Since L2
ρ(R) is the direct sum of L2

δ1+δ−1
(R) and L2

µ(R), a union of any

orthonormal bases in these subspaces is an orthonormal basis in L2
ρ(R). By

the remark at the end of section 1.1.2, after applying Fourier transform on
this union we get a basis φn(z) from which a GAF with spectral measure ρ
can be constructed. This gives the representation

f(z) = g(z) + α cos(2πz) + β sin(2πz),

where g(z) is a symmetric GAF with spectral measure µ and α, β ∼ NR(0, 1)
are real Gaussians, independent of each other and of g. We write for short
η(z) = ηα,β(z) = α cos(2πz) + β sin(2πz).

Fix a, b ∈ (−∆,∆). Denote the number of zeroes of f in [0, T ] × [a, b)
by NT (g, α, β) = #{z ∈ [0, T ]× [a, b) : g(z) = −ηα,β(z)}.

Assume to the contrary that there is some constant C (depending on a
and b) such that

a.s. in α, β, ∃ lim
T→∞

NT (g, α, β)

T
= C. (1.15)
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Here we denote by Pg and Eg the probability and expectation (respec-
tively) conditioned on α, β. We claim that:

Eg lim
T→∞

NT (g, α, β)

T
= lim

T→∞

EgNT (g, α, β)

T
. (1.16)

This exchange is justified by the dominated convergence principle, as
seen by the following Offord-type estimate:

Proposition 1.5.1. Let g be a symmetric stationary GAF on a horizontal
strip, α and β are fixed real numbers. There exist positive constants C and
c such that:

sup
T≥1

Pg
(
NT (g, α, β)

T
> s

)
< Ce−cs,

This fact is proved in Section 1.7 below.

Next we claim that the right-hand side of (1.16) is just EgN1(g, α, β).
To see this, notice that for integer T , NT (g, α, β) is the sum of T iden-
tically distributed random variables, all distributed like N1(g, α, β). This
follows immediately from the stationarity of g and 1-periodicity of ηα,β(z).
Therefore, for integer T ,

1

T
EgNT (g, α, β) = EgN1(g, α, β).

For non-integer T , denote M = bT c. Since

EgN[M,T ] := E#{z ∈ [M,T ]× [a, b) : g(z) = −ηα,β(z)} ≤ EgN1 <∞,

it follows that for non-integer T ,

lim
T→∞

EgNT (g, α, β)

T
= lim

T→∞

(
EgNM

M
· M
T

+
EgN[M,T ]

T

)
= EgN1(g, α, β).

(1.17)

Combining (1.15), (1.16) and (1.17) we have:

a.s. in α, β, EgN1(g, α, β) = C. (1.18)

We divide the rest of our argument into three claims.

Claim 1.5.1. The function (α, β) 7→ EgN1(g, α, β) is continuous at the
point (0, 0).
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Claim 1.5.2. For any compact set K ⊂ D, let N(g, α, β;K) be the number
of solutions to g(z) = −ηα,β(z) with z ∈ K. Then

EgN(g, α, β;K)→ ncos(2πz)(K) as |α| → ∞.

Here ncos(2πz) is the zero-counting measure of cos(2πz).

Relying on the last claim and (1.18), we get that

EgN1(g, α, β) = 2δ0([a, b)) (1.19)

for almost all α, β. Since EgN1(g, α, β) is continuous at (α, β) = (0, 0)
(Claim 1.5.1), equation (1.19) is true for (α, β) = (0, 0). The following claim
asserts this happens only for one family of symmetric GAFs:

Claim 1.5.3. If for −∆ < a < 0 < b < ∆,

EgN1(g, 0, 0) = Eng([0, 1)× [a, b)) = 2δ0([a, b)),

then the spectral measure of g is 1
2(δ1 + δ−1), up to a constant multiplier.

From this last claim it follows that the spectral measure of f consists
only of symmetric atoms at ±1, which contradicts our assumption.

It remains now to prove the claims. In the course of their proof, we
justify the exchange of limits and expectations by the following

Proposition 1.5.2 (Offord-type estimate for sine-like levels). Let g be a
symmetric GAF on a domain D, and let α and β be fixed complex num-
bers. Then for any compact K ⊂ D, the number N(g, α, β;K) of solutions
to g(z) = −ηα,β(z) with z ∈ K has exponential tail: There exist positive
constants C and c such that

P(N(g, α, β;K) > s) ≤ Ce−cs.

The proof of the last proposition is similar to that of Proposition 1.5.1,
and is also included in Section 1.7.

Proof of Claim 1.5.1. First, observe that the event of g having a zero on the
boundary of [0, 1] × [a, b] is negligible, since the expectation of the number
such zeroes is zero (this expectation, computed using Theorem 2, is zero on
any line except the real line).
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Using this, it follows that almost surely in g, N1(g, α, β) approaches
N1(g, 0, 0) as (α, β) approaches (0, 0). By Proposition 1.5.2, we may pass to
the limit:

lim
(α,β)→(0,0)

EgN1(g, α, β0) = lim
(α,β)→(0,0)

∫
Pg(N1(g, α, β0) > s)ds =∫

lim
α→α0

Pg(N1(g, α, β0) > s)ds =

∫
Pg(N1(g, α0, β0) > s)ds = Eg(N1(g, α0, β0)).

Proof of Claim 1.5.2. Fix β and g. For any α 6= 0, the zeroes of

hα(z) =
g(z) + β sin(2πz)

α
+ cos(2πz)

and of f(z) = g(z) + ηα,β(z) are identical. Now notice that hα(z) converges
locally uniformly to cos(2πz) as α → ∞ (i.e., uniformly on any compact
set). By Hurwitz’s Theorem, this implies that the zero-counting measures
also converge locally uniformly, in the sense that for any compact K ⊂ D,

lim
α→∞

nhα(K) = ncos(2πz)(K).

By the bound in Proposition 1.5.2, this almost sure convergence in g yields
moment convergence:

Egnhα(K)→ ncos(2πz)(K), as α→∞.

Proof of Claim 1.5.3. Suppose the spectral measure is normalized, so that
ψ(0) =

∫
R dρ(λ) = 1 (else, multiply it by a constant). The premise and

Theorem 1 give two conditions on ψ(y) = K(iy, iy):

ψ′(y)√
ψ(y)2 − 1

= c , R = 2

√∫
R
λ2dρ(λ) = 2 ,

for some constant c ∈ R. Solving the left-hand side ordinary differential
equation, and using ψ(0) = 1, we get ψ(y) = cosh(cy). Since ψ is a Laplace
transform of ρ, we get ρ = 1

2(δc/2π+δ−c/2π). But the right-hand side equation
is satisfied only if c = 2π.
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1.6 Convergence on all intervals

In this section we prove Proposition 1.2.1. We use the notation developed
in section 1.5.1. For any point in the probability space ω ∈ Ω, let νωN be
the sequence of measures introduced in (1.13), for integer T = N (the non-
integer case follows just as in the proof of part (i) of Theorem 1, and will
not be discussed).

Define the set

C = {ω ∈ Ω : (νωN )N converges weakly}

Notice that by part (i) of Theorem 1, P(C) = 1. From general measure
theory, one can deduce that almost surely, νωN ([a, b)) converges to νω([a, b))
for all a, b out of a countable exceptional set. This exceptional set is the set
of atoms of νω (which might be random). We thus turn to define

A = {ω ∈ Ω : lim
N→∞

νωN{a} = νω{a}, for each atom a of νω} ⊂ C.

Claim 1.6.1. A is measurable with respect to Ff .

The proof of this claim will be presented in the end of this section. Our
next goal would be to prove:

Claim 1.6.2. P(A) = 1.

Our main tool will be the Ergodic Decomposition Theorem (proved, for
instance, in [1, chapter 2.2.8]):

Theorem 5 (Ergodic Decomposition). Let (Ω,F ,P) be a standard Borel-
space, equipped with a measure preserving transformation S : Ω→ Ω. Then
the set ES(Ω) of ergodic probability measures on Ω is not empty, and there
exists a map β : Ω → ES(Ω) such that for any measurable set A ∈ F the
following holds:

1. the map
{ Ω→ [0, 1]
ω 7→ βω(A)

is measurable.

2. P(A) =
∫

Ω βω(A)dP(ω).
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Proof of Claim 1.6.2. The stationary system (Ω,FZf ,P, S) defined in sec-
tion 1.5.1 and the set A defined above meet the requirements of the Ergodic
Decomposition Theorem. Therefore, in order to prove our claim it is enough
to show that

∀γ ∈ ES(Ω), γ(A) = 1.

Fix an S-ergodic measure γ. Since A is an S-invariant set, we get
γ(A) ∈ {0, 1}. Moreover, the event {νω has an atom in the interval I} is
also invariant, for any interval I ⊂ (−∆,∆). Therefore, γ-a.s. the limiting
measure νω has atoms at some known points (an)n∈N ⊂ (−∆,∆).

For a certain atom a = an, define the stationary sequence:

Xk(a) = nf ([k, k + 1)× {a}),

and notice that

νN{a} =
1

N

N−1∑
k=0

Xk(a).

As γ is ergodic, we have by Birkohff’s ergodic Theorem:

γ-a.s. νωN{a} converges to Eγnf ([0, 1)× {a}) = νω{a}, as N →∞

Since there are at most countably many atoms, we get γ(A) = 1.

We now know that P-a.s., the sequence νN is weak convergent and con-
verges on any atom of the limiting measure (to the desired limit). A general
claim from measure theory will assure us that in this case, νN converge on
any interval:

Claim 1.6.3. Suppose (νN )N is a weak-converging sequence of measures on
some interval I, and let ν be the limiting measure. If lim

N→∞
νN{a} = ν{a}

for every atom a of ν, then lim
N→∞

νN (J) = ν(J) for every interval J ⊂ I.

Proof. We demonstrate the case J = [a, b), where ν has no atom at b (other
cases are similar).

Given ε > 0, one can construct piecewise linear functions φ+, φ− ∈ C(I)
such that:

∀x, φ−(x) ≤ 1l(a,b) ≤ 1l[a,b)(x) ≤ φ+(x), (1.20)

and additionally

0 < ν(φ+)−
(
ν(φ−) + ν{a}

)
< ε.
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(For instance, for large enough parameter n, take φ+ supported on [a−
1
n , b + 1

n ], equals 1 on [a, b] and linear otherwise; φ− supported on [a, b],
equals 1 on [a+ 1

n , b−
1
n ], and linear otherwise).

By applying the measure νN to relation (1.20), we get:

νN (φ−) + νN{a} ≤ νN ([a, b)) ≤ νN (φ+)

But, from our assumptions, for large enough N we have

ν(φ−) + ν{a} − ε ≤ νN ([a, b)) ≤ ν(φ+) + ε

As the difference between those bounds does not exceed 3ε, we see the limit
limN→∞ νN ([a, b)) exists. Since ν(φ+) is as close as we want to ν([a, b)), we
are done.

It remains only to prove the measurability of A.

Proof of Claim 1.6.1. We first investigate some underlying objects. Denote
by P = P (−∆,∆) the space of all locally finite measures on (−∆,∆) in-
duced with the Lévy - Prokhorov metric (for which convergence in metric is
equivalent to weak convergence):

π(µ, ν) := inf{ε > 0 | ∀Y ∈ B µ(Y ) ≤ ν(Y ε) + ε and ν(Y ) ≤ µ(Y ε) + ε},

where B is the sigma-algebra of Borel subsets of (−∆,∆), and Y ε = ∪p∈YB(p, ε)
is an ε-neighborhood of Y .

We claim that the map

ω 7→ νω1 (·) = nfω([0, 1)× ·) ∈ P

is measurable; in fact, it is continuous (A small change of the coefficients
ω = (a1, a2, . . . ) in l2 sense will yield a small change in the counting measure
of zeroes νω1 in Lévy - Prokhorov sense).

Now consider the space X = PN of sequences of measures with the
product topology. Notice that the map Ω → X defined by ω 7→ {νωN}
is measurable, as each coordinate is measurable; Moreover, its image lies
almost surely in the (measurable subset) of weak converging sequences. The
map C → P which takes a weak converging sequence (νN ) ∈ C to its limit
ν ∈ P is also measurable. We arrive at

Observation 1. Any measurable set M ∈ P induces a measurable set M̃ =
{ω : νω ∈M} ⊂ C ⊂ Ω.
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Consider the event:

B = {ω ∈ Ω : the limiting measure νω has at least one atom} ⊂ C ⊂ X

By the last observation, B is measurable w.r.t. F .
We construct a measurable function h : B → (−∆,∆)N which maps

ω ∈ B to a list of all atoms of the limiting measure νω, as follows. Let
h1 : B → (−∆,∆) be the map which maps some ω ∈ B to the largest atom
among those of νω (if some (finite) number of atoms share this property,
return the left-most one). Again by observation 1, h1 is a measurable map.
In a similar manner we construct h2, which gives the second (left-most)
largest atom; and so forth. Our list of atoms is simply h = (h1, h2, . . . ). We
notice that

A = ∩i∈N{ω : (νωN{hiω})N is a convergent sequence of numbers} =: ∩i∈NEi.

All that remains is to prove measurability of E1.
Indeed, the map H : X × (−∆,∆)→ {0, 1} which matches ({νN}, a) to

the indicator of the event {(νN{a})N is a convergent sequence} is measur-
able; by composition of measurable maps 1lE1 = H((νωN ), h1ω) is a measur-
able function, as anticipated.

1.7 Exponential decay of some tail events

In the course of the proof of the main theorem, we used several times expo-
nential estimates on certain probabilities: Theorem 4, Propositions 1.5.2 and
1.5.1, and similar propositions for GAFs (which were not stated explicitly).
Such estimates are sometimes referred to as “Offord-type large deviations
estimates”. In this section we prove Propositions 1.5.1 and 1.5.2 (the proofs
are very similar). We adopt the proof of Sodin [46], presented also in [22,
chapter 7].

We first present our key-lemma, which deals with 2-dimensional Gaussian
random variables.

Lemma 1.7.1. If η ∼ NR2(µ,Σ), and E is an event in the probability space
with P(E) = p, then:

|E(χE log |η|)| ≤ p
[
−(1 +

1

2λ1
) log p+

p

4λ1
+

1

2
log(trace Σ + |µ|2)

]
,

where λ1 is the biggest eigenvalue of Σ.



1.7 Exponential decay of some tail events 35

Proof. Upper bound: by Jensen’s inequality,

1

p
E(χE log |η|2) ≤ log

(
E(|η|2χE)

p

)
≤ logE|η|2 − log p.

If η = u+ iv, then

E|η|2 = Eu2 + Ev2 = var u+ (Eu)2 + var v + (Ev)2 = trace Σ + |µ|2

Putting this in the previous equation, we get:

E(χE log |η|) ≤ p

2
[log(trace Σ + |µ|2)− log p]. (1.21)

Lower bound:

E(χE log |η|) ≥ −E(χE log− |η|)
= −E(log− |η|χE∩{|η|<p})− E(log− |η|χE∩{|η|>p})

The second term may be bounded below by

− E(log− |η|χE∩{|η|>p}) ≥ p log p (1.22)

For the first term, we begin with some general manipulations:

−E(log− |η|χE∩{|η|<p}) ≥ −E(log− |η|χ{|η|<p}) = −E
[
χ|η|≤p

∫ 1

0
χs>|η|

ds

s

]
= −

∫ 1

0
P[|η| < min(p, s)]

ds

s

Let us therefore bound from above the probability P(|η| < R). Denote
by λ1, λ2 the eigenvalues of Σ, where λ1 ≥ λ2 ≥ 0.

P(|η| < R) =
1

2π
√
|Σ|

∫
|x|<R

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
dm2(x)

≤ 1

2π
√
|Σ|

∫
|x|<R

exp

(
−1

2
xTΣ−1x

)
dm2(x)

≤ 1

2π

∫
|y|<R

exp

(
−1

2
(λ−1

1 y1 + λ−1
2 y2)

)
dm2(y)

≤
∫ R/

√
λ1

0
e−

1
2
r2
rdr = 1− e−

R2

2λ1
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We have used the changes of variables y = Ux where U is the orthogonal
matrix diagonalizing Σ, and later yi =

√
λiwi for i = 1, 2.

Continuing, we have:

−E(log− |η|χE∩{|η|<p}) ≥ −
∫ p

0

1− e−s2/2λ1

s
ds−

∫ 1

p

1− e−p2/2λ1

s
ds

=
1

2

∫ p2/2λ1

0
e−t log(2λ1t)dt

≥ 1

2

∫ p2/2λ1

0
log(t)dt+

p2

4λ1
log(2λ1) =

p2

2λ1
(log p− 1

2
)

Therefore our lower bound is

E(χE log |η|) ≥ p2

2λ1
(log p− 1

2
)− p log p ≥ − p2

4λ1
+ (1− 1

2λ1
)p log p

Combining the two bounds we get the desired result.

We now turn to the proof of our propositions.

Proof of Proposition 1.5.1. Take φ(z) = φT (z) a real C2 function, whose
support is [−1

2 , T + 1
2 ]× [a′, b′] with −∆ < a′ < a < b < b′ < ∆, and which

takes the value 1 on [0, T ]× [a, b). We may build such φT (z) that will obey
also the bound ‖∆φ‖L1 < 10(T + b− a). Assume α and β are fixed for now,
and fix also s > 0. We are interested in dominating the probability of the
event AT = {NT > sT}. Write p = pT = P(AT ).

We have

NT <
1

2π

∫
∆φT (z) log |f(z)|dm2(z) ,

and therefore,

sT · p ≤ Eg(χATNT ) ≤ Eg
(
χAT

1

2π

∫
∆φ(z) log |f(z)|dm2(z)

)
=

1

2π

∫
∆φ Eg (χAT log |f(z)|) dm2(z)

≤ 1

2π
‖∆φ‖L1 sup

z∈D
Eg (χAT log |f(z)|)

Before we continue, let us justify the exchange of expectation and inte-
gral. Recall f(z) = g(z) + ηα,β(z); so in order to use Fubini’s theorem we
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need ∫
D
Eg|∆φ(z) · log |g(z) + ηα,β(z)||dm2(z)

=

∫
D
|∆φ(z)|Eg| log |g(z) + ηα,β(z)| | <∞ (1.23)

For each z ∈ D, f(z) = g(z)+ηα,β(z) is a 2 dimensional Gaussian random
variable, with mean µ(z) = ηα,β(z), and the same covariance matrix Σ(z)
as the 2 dimensional Gaussian r.v. g(z). By lemma 1.4.1, we see that both
µ(z) and Σ(z) depend continuously on the paremeter z. So, the function
Eg| log |g(z) + ηα,β(z)| is bounded above for z ∈ support(φ), which ends this
argument.

Notice further, that in our stationary case λ1(z), λ2(z), the eigenvalues
of Σ(z), depend on y only, where z = x+ iy. Therefore they have lower and
upper bounds on R × [a′, b′]. Notice that also µ(z), being a trigonometric
function, has such bounds. By applying lemma 1.7.1 with η(z) = g(z) +
ηα,β(z), we get:

sup
z∈R×[a′,b′]

E(χAT log |g(z) + ζ|) < p(c1 − c2 log p).

where c1, c2 are positive constants (c1 depending on α, β, the horizontal lines
a, b, and the kernel of g). Putting all this together, we get:

sT · p ≤ 5

π
(T + b− a)p(c1 − c2 log p),

which leads to the exponential bound we strived for:

∃c, C > 0 such that pT = Pg(NT > T s) ≤ Ce−cs, ∀T ≥ 1 .

Proof of Proposition 1.5.2. We follow the outline of the previous proof. Let
φ(z) be a real C2 function supported on a compact K ′ such that K ⊂ K,
and φ(z) = 1 for all z ∈ K. Denoting N = N(g, α, β;K) and A = {N > s},
we have

N <
1

2π

∫
∆φ(z) log |f(z)|dm2(z),
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and so

sP(A) ≤ Eg(χAN) ≤ Eg
(
χA

1

2π

∫
∆φ(z) log |f(z)|dm2(z)

)
=

1

2π

∫
∆φ Eg (χA log |f(z)|) dm2(z)

≤ 1

2π
‖∆φ‖L1 sup

z∈K′
Eg (χA log |f(z)|)

≤ c3 · P(A)(c1 − c2 logP(A)).

The change of integral and expectation is justrified by (1.23) on the
domain K ′ (no change in the arguments), and in the last line we used
Lemma 1.7.1 with uniform bounds on λ1(z), λ2(z) and µ(z) for z ∈ K ′.
The constant c3 stands for 1

2π ‖∆φ‖L1 . The last inequality clearly leads to
an exponential bound in s on the probability P(A).

1.8 Directions of further research

1.8.1 Random Trigonometric Series

The results described in this chapter do not give much information about the
measure νf when the spectral measure contains atoms (i.e., when νf is ran-
dom). It would be interesting to know, for instance, under what conditions
is νf a.s. free of atoms or absolutely continuous.

These questions have the following concrete form, when the spectral mea-
sure is purely atomic: The function is described by a random trigonometric
series

f(z) =
∑
n

anwne
iλnz

where an ∼ NC(0, 1) are i.i.d., and wn, λn ∈ R obey
∑

nw
2
ne
λny <∞ for all

|y| < ∆. Continuity and other traits of νf might be effected by the choice of
parameters {λn} and {wn} (in fact, arithmetic properties of the frequencies
{λn} are expected to play a role in the answer).

By the argument principle, these questions relate to the mean incre-
ment of the argument of f(z) on some horizontal line (often called “mean
motion”). For deterministic functions it is a well-known problem, posed
by Lagrange, to determine whether the mean motion always exists. The
answer was proved to be positive in a sequence of works ranging between
1916-1945 (including authors such as Weyl, Wintner, Jessen and Tornehave),
but hardly anything could be said about the limit itself or its dependence
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on the parameters. I believe the stochastic version will be easier to analyze
and will shed light on the deterministic questions as well.

1.8.2 Universality

In related models, such as random polynomials, random matrices and some
lattice models, replacing the probabilistic distribution (in some range of well-
behaved distributions) will not affect the limiting object. This phenomenon
is often called universality. In our context, it is interesting to consider
random stationary series, aside from Gaussian. For an explicit example,
consider the Paley-Wiener process

f(z) =
∑
n∈Z

an
sin(π(z − n))

z − n
,

where {an}n∈Z are i.i.d. random variables, with Ea0 = 0 and E|a0|2 = 1.

The resulting sum is a stationary function with covariance E
[
f(z)f(w)

]
=

sin(π(z−w)
z−w , so in particular the values of points lying on the lattice Z are

independent (distributed like a0).
It would be interesting to investigate limiting properties of f and their

dependence on the distribution of the coefficients. In particular, we ask
when is the horizontal density of zeroes non-random, and when is it the
same as in the Gaussian case.
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Chapter 2

Fluctuations of the number
of zeroes

2.1 Introduction

In Chapter 1, we gave a law of large numbers for the zeroes in a long horizon-
tal rectangle [0, T ]×[a, b] (Theorem 1), which extends a result of Wiener [37,
chapter X]. Here we go further to study the variance of the number of ze-
roes in such a rectangle. In Theorems 6 and 7 we show that this number is
asymptotically between cT and CT 2 with positive constants c and C, and
give conditions (in terms of the spectral measure) for the asymptotics to be
exactly linear or quadratic in T . In Theorem 8 we give some conditions for
intermediate variance.

2.1.1 Recapitulation of Definitions

We recall some definitions and notation from the previous chapter. Let f be
a stationary GAF in the strip D∆. In other words, f is a random variable
taking values in the space of analytic functions onD∆, whose finite marginals
have a mean zero complex Gaussian distribution, and whose distribution is
invariant to real shifts. As before, denote the covariance function by

r(t) = F [ρ](x) =

∫
R
e−2πitλdρ(λ),

where ρ is a non-negative finite measure on R, which we call the spectral
measure of f . We recall that, since r(t) has an analytic continuation to the
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strip D2∆, ρ must have a finite exponential moment:

for each |∆1| < ∆,

∫ ∞
−∞

e2π·2∆1|λ|dρ(λ) <∞ . (2.1)

2.1.2 Results

In Chapter 1, we have studied convergence to the mean of the number of ze-
roes of a stationary analytic function in a long rectangle (recall Theorem 1).
The next natural question is, how big are the fluctuations of the number of
zeroes in a long rectangle? More rigorously, define

Ra,bT = [−T, T )× [a, b], V a,b
f (T ) = var

[
nf (Ra,bT )

]
,

where for a random variable X the variance is defined by

var (X) = E (X − EX)2 .

We are interested at the asymptotic behavior of V a,b
f (T ) as T approaches in-

finity. The next two theorems show that V a,b
f (T ) is asymptotically bounded

between cT and CT 2 for some c, C > 0, and give conditions under which
each of the bounds is achieved. We begin by stating the upper bound result,
a relatively easy consequence of Theorem 1.

Theorem 6. Let f be a non-degenerate stationary GAF in a strip D∆.
Then for all −∆ < a < b < ∆ the limit

L2 = L2(a, b) := lim
T→∞

V a,b
f (T )

T 2
∈ [0,∞)

exists. This limit is positive if and only if the spectral measure of f has a
non-zero discrete component.

The lower bound result, which is our main result, is stated in the follow-
ing theorem.

Theorem 7. Let f be a non-degenerate stationary GAF in a strip D∆.
Then for all −∆ < a < b < ∆ the limit

L1 = L1(a, b) := lim
T→∞

V a,b
f (T )

T
∈ (0,∞]

exists. Moreover, the limit L1(a, b) is finite if ρ is absolutely continuous with
density dρ(λ) = p(λ)dλ, such that

(1 + λ2)e2π·2yλp(λ) ∈ L2(R), for y ∈ {a, b}. (2.2)
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Remark 2.1.1. Another form of condition (2.2) is the following: For y ∈
{2a, 2b}, ∫

R
|r(x+ iy)|2dx,

∫
R
|r′′(x+ iy)|2dx <∞.

This implies also that
∫
R |r
′(x + iy)|2dx < ∞. Moreover, since the set

{c : e2π·cλp(λ) ∈ L2(R)} is convex, it implies the same condition for all
y ∈ [2a, 2b].

The next theorem deals with conditions under which L1(a, b) is infinite.

Theorem 8. Let f be a non-degenerate stationary GAF in a strip D∆.

(i) Suppose J ⊂ (−∆,∆) is a closed interval such that for every y ∈ J ,
the function λ 7→ (1 + λ2)e2π·2yλp(λ) does not belong to L2(R). Then
for every α ∈ J the set {β ∈ J : L1(α, β) <∞} is at most finite.

(ii) The limit L1(a, b) is infinite for particular a, b if either ρ does not have
density, or, if it has density p and for any two points λ1, λ2 ∈ R there
exists intervals I1, I2 such that Ij contains λj (j = 1, 2) and

(1 + λ)e2π·2yλp(λ) 6∈ L2(R \ (I1 ∪ I2)), (2.3)

for at least one of the values y = a or y = b.

Remark 2.1.2. There is a gap between the conditions given for linear vari-
ance (in Theorem 7) and those for super-linear variance (in Theorem 8). For
instance, the theorems do not decide about all the suitable pairs (a, b) in case
the spectral measure has density 1√

|λ|
1I[−1,1](λ). On the other hand, we are

ensured to have super-linear variance in case ρ has a singular part. If ρ has
density p ∈ L1(R) which is bounded on any compact set, then (1+λ2)p(λ) ∈
L2(R) implies asymptotically linear variance, and (1 + λ)p(λ) 6∈ L2(R) im-
plies asymptotically super-linear variance.

Remark 2.1.3. Minor changes to the developments in this chapter may
be made in order to prove analogous results regarding the increment of
the argument of a stationary GAF f along a horizontal line. Namely, let
V a,a(T ) denote the variance of the increment of the argument of f along the
line [0, T ]× {a} (for some −∆ < a < ∆). Then:

• the limit L2(a) = limT→∞
V a,a(T )
T 2 exists, belongs to [0,∞), and is

positive if and only if the spectral measure contains an atom.
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• the limit L1(a) = limT→∞
V a,a(T )

T exists, belongs to (0,∞], and is finite
if ρ has density p(λ) such that (1 +λ2)e2π·2aλp(λ) ∈ L2(R). Moreover,
L1(a) is infinite if for any λ0 ∈ R there is an interval I containing λ0

such that the measure (1 + λ)e2π·2aλdρ(λ) restricted to R \ I is not in
L2(R).

In fact, the first item is essentially proved in this chapter (Claim 2.3.11
below).

The rest of the chapter is organized as follows: Theorem 6 concerning
quadratic growth of variance is proved in Section 2.2, and is mainly a con-
sequence of Theorem 1. For theorems 7 and 8 we develop in Section 2.3
an asymptotic formula for V a,b

f (T )/T (Proposition 2.3.1 below). Then we
prove Theorem 7 by analyzing this formula and using tools from harmonic
analysis. We end by proving Theorem 8 in Section 2.5.

2.1.3 Discussion

We mention here some related results in the literature (though they do not
seem to apply directly to our case). The question for real processes (not
necessarily real-analytic) was treated by many authors. An asymptotic for-
mula for the variance was given in Cramer and Leadbetter [9], but the rate
of growth is not apparent from it. Cuzick [10] proved a Central Limit Theo-
rem (CLT) for the number of zeroes, whose main condition is linear growth
of the variance. Later, Slud [45], using stochastic integration methods he de-
veloped earlier with Chambers [8], proved that in case the spectral measure
has density which is in L2(R), this condition is satisfied. It is interesting to
note that the condition for linear variance in the present theorem (condi-
tion (2.2)) is the main assumption in the work by Slud for real (non-analytic)
processes.

More recently, Granville and Wigman [19] studied the number of zeroes
of a Gaussian trigonometric polynomial of large degree N in the interval
[0, 2π], and showed the variance of this number is linear in N . This work
was extended to other level-lines by Azäıs and León [5].

Sodin and Tsirelson [48] and Nazarov and Sodin [34] studied fluctuations
of the number of zeroes of a planar GAF (a special model which is invariant
to plane isometries), proving linear growth of variance and a CLT for the
zeroes in large balls (as the radius approaches infinity).
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2.2 Theorem 6: Quadratic Variance

Recall the notation RT = Ra,bT = [−T, T ]× [a, b]. From Proposition 1.2.1 we
know that

lim
T→∞

nf (RT )

T
= Z,

where Z is some random variable and the limit is in the almost sure sense.
Moreover, varZ > 0 if and only if the spectral measure of f contains an
atom. Clearly

var

(
lim
T→∞

nf (RT )

T

)
= varZ

Theorem 6 would be proved if we could change the limit with the variance
on the left-hand side. By dominant convergence, it is enough to find an
integrable majorant for the tails of

XT =
nf (RT )

T
and X2

T =
nf (RT )2

T 2
.

To this end we refer to an Offord-type estimate, which provides exponential
bounds on tails of XT :

Proposition 2.2.1. Let f be a stationary GAF in some horizontal strip,
then using the notation above we have

∃C, c > 0 : sup
T≥1

P(XT > s) < Ce−cs = h(s).

The statement is very similar to that of Proposition 1.5.1, where α = β =
0 and g is a GAF (not a symmetric GAF). We omit the proof as it follows
directly from the proof of the latter proposition, changing every Gaussian
distribution in R2 to one in C (a particular case).

We may then conclude that

sup
T≥1

P(X2
T > s) < Ce−c

√
s = h(

√
s).

Since both h(s) and h(
√
s) are integrable on R, we have the desired majo-

rants. Exchanging limit and variance then yields:

lim
T→∞

var (nf (RT ))

T 2
= lim

T→∞
var

(
nf (RT )

T

)
= var

(
lim
T→∞

nf (RT )

T

)
= varZ,

and the result is proved.
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2.3 An Asymptotic Formula for the Variance

This section is devoted to the derivation of a formula for the variance
V a,b
f (T ) = varnf ([−T, T ] × [a, b]) where T is large. We prove the follow-

ing:

Proposition 2.3.1. Let f be a stationary GAF in D∆ with spectral measure
ρ. Suppose ρ has no discrete component. Then for any −∆ < a < b < ∆,
and any T ∈ R, the series

va,b(T ) =
1

4π2

∑
k≥1

1

k2

∫
R

∫
R
T sinc2 (2πT (λ− τ))ha,bk (λ+ τ)dρ∗k(λ)dρ∗k(τ)

converges, and

lim
T→∞

(
V a,b(T )

2T
− va,b(T )

)
= 0.

Here ρ∗k is the k-fold convolution of ρ, sinc(x) = sinx
x , and

ha,bk (λ) =
(
lak(λ)e2πaλ − lbk(λ)e2πbλ

)2
,

where

lyk(λ) =
∂

∂y

(
1

rk(2iy)

)
+

2π

rk(2iy)
λ, for y ∈ (−∆,∆), k ∈ N.

2.3.1 Integrals on significant edges.

The boundary of the rectangle RT = [−T, T ]× [a, b] is composed of four seg-
ments ∂RT =

⋃
1≤i≤4 Ij with induced orientation from the counter-clockwise

orientation of ∂RT , where I1 = [−T, T ] × {a} and I3 = [T,−T ] × {b}. By
the argument principle,

nf (RT ) =
∑

1≤i≤4

1

2π
4T
i arg f,

where 4T
i arg f is the increment of the argument of f along the segment Ii

(a.s. f has no zeroes on the boundary of the rectangle RT
1).

1 To see this, first notice that the distribution of nf (Ij) for j = 2, 4 (the number of
zeroes in a “short” vertical segments) does not depend on T . If it were not a.s. zero, then
Enf (I2) > 0. Now for any finite set of points {tj}Nj=1 ⊂ [0, 1], we have Enf ([0, 1]× [a, b]) ≥∑N
j=1 Enf ({tj}× [a, b]) = NEnf (I2), yielding Enf ([0, 1]× [a, b]) =∞ - which is false. For
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Then, by the argument principle,

V a,b
f (T ) = var [nf (RT )] =

1

4π2

∑
1≤i,j≤4

cov
(
4T
i arg f, 4T

j arg f
)
, (2.4)

where
cov (X,Y ) = E[XY ]− EX · EY.

Our first claim is that asymptotically when T is large, the terms involving
the (short) vertical segments are negligible in this sum.

Claim 2.3.1. As T →∞,

V a,b
f (T ) =

1

4π2

∑
i,j∈{1,3}

cov
(
4T
i arg f, 4T

j arg f
)

+O

(
1 +

√
var (4T

1 arg f) +
√

var (4T
3 arg f)

)
.

Proof. We demonstrate how to bound one of the terms in (2.4) involving
a “short” vertical segment (corresponding, say, to i = 2). We have by
stationarity:

var (4T
2 arg f) = var (40

2 arg f) =: c2

Therefore by Cauchy-Schwarz,

cov
(
4T

1 arg f, 4T
2 arg f

)
≤
√

var (4T
1 arg f)

√
var (4T

2 arg f)

= c ·
√

var (4T
1 arg f).

We now give an alternative formulation of Claim 2.3.1. Using Cauchy-
Riemann equations we write:

4T
1 arg f =

∫ T

−T

(
∂

∂x
arg f(x+ ia)

)
dx = −

∫ T

−T

∂

∂a
log |f(x+ ia)| dx =: −Xa(T )

4T
3 arg f = −

∫ T

−T

(
∂

∂x
arg f(x+ ib)

)
dx =

∫ T

−T

∂

∂b
log |f(x+ ib)| dx = Xb(T )

j = 1, 3, recall that since there are no atoms in the spectral measure, f is ergodic with
respect to horizontal shifts (this is Fomin-Grenander-Maruyama Theorem, see explanation
and references within [15]). This implies that each horizontal line (such as La = R×{a})
either a.s. contains a zero or a.s. contains no zeroes. If the former holds, then also
Enf ([0, 1]×{a}) > 0, and the measure νf from Theorem 1 has an atom at a - contradiction
to part (iii) of that Theorem.
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Denoting Ca,b(T ) = cov (Xa(T ), Xb(T )) we may rewrite Claim 2.3.1 as

V a,b
f (T ) =

1

4π2

(
Ca,a(T )− 2Ca,b(T ) + Cb,b(T )

)
+O

(
1 +

√
Ca,a(T ) +

√
Cb,b(T )

)
,

and so we arrive at:

Claim 2.3.1a. As T →∞, we have:

V a,b(T )

2T
=
Ca,a(T )− 2Ca,b(T ) + Cb,b(T )

4π2 · 2T
+O

(
1 +

√
Ca,a(T ) +

√
Cb,b(T )

T

)
.

Later on we shall prove that limT→∞

√
Ca,a(T )

T = 0 if no atom is present
in the spectral measure (Claim 2.3.11 below). This may be viewed as a
one-dimensional counterpart of Theorem 6 (though the methods of proof
are different). In the mean time, we turn to find an expression for Ca,b(T ),
which will be refined through most of the section.

2.3.2 Passing to covariance of logarithms

Our first step is a technical change of order of operations.

Claim 2.3.2.

Ca,b(T ) =

∫ T

−T

∫ T

−T

∂2

∂a ∂b
cov (log |f(t+ ia)|, log |f(s+ ib)|) dt ds.

We comment that the right-hand-side (RHS) of the equation contains a
mixed partial derivative, so for Ca,a(T ) the computation is as follows: take
the prescribed mixed derivative (as if a 6= b) and then substitute b = a.

Proof. Following the definition of Ca,b(T ), we shall first prove that

E
{∫ T

−T
dt

∫ T

−T
ds

(
∂

∂a
log |f(t+ ia)| ∂

∂b
log |f(s+ ib)|

)}
− E

{∫ T

−T

∂

∂a
log |f(t+ ia)| dt

}
E
{∫ T

−T

∂

∂b
log |f(s+ ib)| ds

}
coincides with∫ T

−T

∫ T

−T

[
E

∂2

∂a ∂b
{log |f(t+ ia)| log |f(s+ ib)|}

− E
∂

∂a
log |f(t+ ia)|E ∂

∂b
log |f(s+ ib)|

]
dt ds.

(2.5)
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Notice that ∣∣∣∣ ∂∂a log |f(x+ ia)|
∣∣∣∣ ≤ ∣∣∣∣f ′(x+ ia)

f(x+ ia)

∣∣∣∣ .
Therefore, by Fubini’s theorem, it is enough to prove the following two
statements:

(I) E
∣∣∣f ′(t+ia)
f(t+ia)

∣∣∣ <∞ for all t ∈ R, a ∈ (−∆,∆), and

∫ T

−T
E
∣∣∣∣f ′(t+ ia)

f(t+ ia)

∣∣∣∣ dt <∞.
(II) E

∣∣∣f ′(t+ia)
f(t+ia)

f ′(s+ib)
f(s+ib)

∣∣∣ < ∞ for all t, s ∈ R, t 6= s and (a, b) ∈ (−∆,∆)2,

and ∫ T

−T

∫ T

−T
E
∣∣∣∣f ′(t+ ia)

f(t+ ia)

f ′(s+ ib)

f(s+ ib)

∣∣∣∣ dt ds <∞.
After proving this, it will also follow that (2.5) coincides with∫ T

−T

∫ T

−T

∂2

∂a ∂b

[
E{log |f(t+ ia)| log |f(s+ ib)|}

− E log |f(t+ ia)|E log |f(s+ ib)|
]
dt ds,

thus ending the proof of our claim. Indeed, it is enough to see that for any
fixed t, s, t 6= s and given a0, b0 we have

∂

∂a
E log |f(t+ ia)|

∣∣
a=a0

= E
∂

∂a
log |f(t+ ia)|

∣∣
a=a0

, (2.6)

∂2

∂a ∂b
E{log |f(t+ ia)| log |f(s+ ib)|}

∣∣
a=a0, b=b0

(2.7)

= E
∂2

∂a ∂b
{log |f(t+ ia)| log |f(s+ ib)|}

∣∣
a=a0, b=b0

.

To see this, fix ε > 0 and define the event

Gε = {ω ∈ Ω : fω(z) 6= 0 ∀z ∈ B(t+ ia0, ε) ∪B(s+ ib0, ε)},

where B(w, ε) = {z ∈ C : |z − w| < ε}. Under Gε, each derivative ( ∂
∂a or

∂2

∂a ∂b) is in fact a limit of a sequence of random variables, which are domi-

nated by
∣∣∣f ′(t+ia)
f(t+ia)

∣∣∣+1 or
∣∣∣f ′(t+ia)
f(t+ia)

f ′(t+ib)
f(t+ib)

∣∣∣+1 respectively. By items I and II,
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these majorants have finite expectations, so by dominated convergence we
get that

∂

∂a

∣∣
a=a0

E (log |f(t+ ia)| 1IGε) = E
(
∂

∂a

∣∣
a=a0

log |f(t+ ia)| 1IGε
)
, (2.8)

and a similar statement for the double derivative. Now,

E
(
∂

∂a
log |f(t+ ia)|

)
= lim

ε→0+
E
(
∂

∂a
log |f(t+ ia)| 1IGε

)
= lim

ε→0+

∂

∂a
E (log |f(t+ ia)| 1IGε)

=
∂

∂a
lim
ε→0+

E (log |f(t+ ia)| 1IGε)

=
∂

∂a
E (log |f(t+ ia)|) .

The first and last equalities are due to limε→0 = P(Gε) = 1. The second
is precisely (2.8), and the third follows from monotonicity of the limit in
ε (Dini’s theorem). This establishes (2.6). An analogous argument estab-
lishes (2.7).

We now turn to prove (I). Let z = t+ia be fixed. The vector (f(z), f ′(z))
is jointly Gaussian, in fact we may write

f(z) = ρf ′(z) + Y (z)

where ρ is a number and Y (z) is a Gaussian random variable independent
of f ′(z). Therefore,(

f(z)|f ′(z)
)
∼ NC(0, σ2) + µ(f ′(z));

that is, f(z) conditioned on the value of f ′(z) is Gaussian, with mean de-
pending on f ′(z) and variance not depending on it (equal to σ2 = var (Y (z))).
The following is a straightforward computation.

Lemma 2.3.1. Let σ > 0 and ζ ∼ NC(0, σ2). Then there is a constant
Cσ > 0 such that for any µ ∈ C, E 1

|ζ+µ| < Cσ.

Using this lemma, we have

E
∣∣∣∣f ′(z)f(z)

∣∣∣∣ = E E
(∣∣∣∣f ′(z)f(z)

∣∣∣∣ ∣∣∣ f ′(z)) ≤ E
(
|f ′(z)| · CIm(z)

)
,

where CIm(z) is a constant which depends only on Im(z). The notation
E E(X|Y ) for random variables X,Y means first taking the conditional
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expectation of X given Y (which results in a function of Y ), then taking
expectation of this function. Now (I) follows easily.

We now turn to prove (II). We use the notation f . g to stand for the
inequality f ≤ C · g, where C > 0 is a constant (which may vary from line
to line). Similarly, f h g stands for f = C · g with some C > 0.

Let q > 2, and let 1 < p < 2 be such that 1
p+ 1

q = 1. By Hölder inequality
we have∫ T

−T

∫ T

−T
E
∣∣∣∣f ′(t+ ia) f ′(s+ ib)

f(t+ ia) f(s+ ib)

∣∣∣∣dtds
≤
∫ T

−T

∫ T

−T

[
E
∣∣∣∣f ′(t+ ia)f ′(s+ ib)

∣∣∣∣q]1/q
[
E
∣∣∣∣f(t+ ia)f(s+ ib)

∣∣∣∣−p
]1/p

dt ds

.
∫ T

−T

∫ T

−T
E

[∣∣∣∣f(t+ ia)f(s+ ib)

∣∣∣∣−p
]1/p

dt ds. (2.9)

The last inequality is an application of Cauchy-Schwarz inequality and sta-
tionarity, as follows:[
E
∣∣∣∣f ′(t+ ia)f ′(s+ ib)

∣∣∣∣q] 1
q

≤
(√

E|f ′(t+ ia)|2q E|f ′(s+ ib)|2q
) 1
q

=
(
E[|f ′(ia)|2q]E[|f ′(ib)|2q]

) 1
2q <∞

(finiteness follows from the fact that f ′(ia) and f ′(ib) are both Gaussian
random variables, thus have finite moments of any order).

Let

A =

{
(t, s) ∈ [−T, T ]2 : |r(t− s+ ia+ ib)|2 ≤ 2

3

}
.

We split the last integral in (2.9) into two parts: on A and on Ac = [−T, T ]2\
A. For the integral on A, we use the following lemma (to be proved later in
this subsection).

Lemma 2.3.2. Let Z1, Z2 be NC(0, 1) random variables with E[Z1Z2] = α,
and let 1 < p < 2. Then

E
[
|Z1Z2|−p

]
≤ (1− |α|2)−

p
2 Γ
(

1− p

2

)2

Using lemma 2.3.2, we have:∫∫
A

(
E
∣∣∣∣f(t+ ia)f(s+ ib)

∣∣∣∣−p
)1/p

dt ds .
∫∫

A

(
1− |r(t− s+ ia+ ib)|2

)− 1
2 . T 2,
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which is bounded. In order to bound the integration on Ac, we use another
lemma (to be proved in the end of this subsection).

Lemma 2.3.3. Suppose ξ1, ξ2 are independent NC(0, 1) random variables,
and let Z1 = αξ1 and Z2 = βξ1 +γξ2 where α, β, γ ∈ C\{0}. Let 1 < p < 2.
Then there exists a constant c > 0 such that

E
[

1

|Z1Z2|p

]
≤ c

|αβ|p

∣∣∣∣γβ
∣∣∣∣2−2p

.

Moreover, given 1 < p < 2 and a number M > 0, the constant c may be
chosen uniformly for all parameters α, β, γ such that | γβ | < M .

We would like to apply this lemma with Z1 = f(t + ia) and Z2 =
f(s+ ib). This yields the choice of parameters α, β, γ so that α =

√
r(2ia),

αβ = r(t− s+ ia+ ib) and |β|2 + |γ|2 = r(2ib). Thus∣∣∣∣γβ
∣∣∣∣2 =

r(2ia)r(2ib)− |r(t− s+ ia+ ib)|2

|r(t− s+ ia+ ib)|2

is uniformly bounded for (t, s) ∈ Ac. Now, applying Lemma 2.3.3 we get
that for some c > 0,

∫∫
Ac

(
E
∣∣∣∣f(t+ ia)f(s+ ib)

∣∣∣∣−p
)1/p

dt ds

.
∫∫

Ac

(
c

|r(t− s+ ia+ ib)|p
(r(2ia)r(2ib)− |r(t− s+ ia+ ib)|2)1−p

|r(t− s+ ia+ ib)|2−2p

) 1
p

dt ds

.
∫∫

Ac

(
r(2ia)r(2ib)− |r(t− s+ ia+ ib)|2

)− p−1
p dt ds

.
∫
{x:|r(x+ia+ib)|≥2/3}

(
r(2ia)r(2ib)− |r(x+ ia+ ib)|2

)− p−1
p dt ds,

where the last inequality is obtained by a simple change of varibales (similar
to Claim 2.3.4 below). If a 6= b, then |r(x + ia + ib)|2 ≤ r(ia + ib)2 <
r(2ia)r(2ib), and the integral is finite. In case a = b, there may be isolated
points x0 for which |r(x0 + 2ia)|2 = r(2ia)2. Taylor expansion near any of
those points gives |r(x + 2ia)|2 = r(2ia)2 − C(x − x0)2 + o((x − x0)2) as x
tends to x0. Notice C > 0 since

|r(x+ 2ia)| =
∣∣∣∣∫

R
e−2πixλe2π·2aλdρ(λ)

∣∣∣∣ ≤ ∫
R
e2π·2aλdρ(λ) = r(2ia).
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Thus, the finiteness of the integral is equivalent to that of
∫
|x−x0|<δ(x −

x0)−2(p−1)/pdx (with some δ > 0), which is indeed finite for 1 < p < 2.

The proof of Claim 2.3.2 is complete.

It remains now to prove the lemmata.

Proof of Lemma 2.3.2. Let ξ1, ξ2 be independent NC(0, 1) random variables,
write Z1 = ξ1 and Z2 = αξ1 +

√
1− |α|2ξ2. Then:

E
[
|Z1Z2|−p

]
=

1

π2

∫∫
C2

|ξ1(αξ1 +
√

1− |α|2ξ2)|−pe−|ξ1|2−|ξ2|2dm(ξ1)dm(ξ2)

Now, by the Hardy-Littlewood re-arrangement inequality, we have:

1

π

∫
C
|αξ1 +

√
1− |α|2ξ2|−pe−|ξ2|

2
dm(ξ2) ≤ (1− |α|2)−

p
2 · 1

π

∫
C
|ξ2|−pe−|ξ2|

2
dm(ξ2)

= (1− |α|2)−
p
2 Γ
(

1− p

2

)
.

So,

E
[
|Z1Z2|−p

]
≤ (1− |α|2)−

p
2 Γ
(

1− p

2

)
· 1

π

∫
C
|ξ1|−pe−|ξ1|

2
dm(ξ1)

= (1− |α|2)−
p
2 Γ
(

1− p

2

)2

Proof of Lemma 2.3.3. In this proof we shall use the notation f . g to
denote f ≤ Cg, were C > 0 is a constant which may depend on p and M
only (M is an upper bound on | γβ |), and may vary from line to line.

We begin by writing-out the desired expectation explicitly.

E
[
|Z1Z2|−p

]
= |αβ|−p E

[ ∣∣ξ2
1 +

γ

β
ξ1ξ2

∣∣−p ]
= |αβ|−p · 1

π2

∫∫
C2

∣∣z2 +
γ

β
zw
∣∣−pe−|z|2−|w|2 dm(z) dm(w)

= |αβ|−pπ−2

∫
C
|z|−p

(∫
C

∣∣z +
γ

β
w
∣∣−pe−|w|2dm(w)

)
e−|z|

2
dm(z)

(2.10)
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we bound the inner integral as follows:∫
C

∣∣z +
γ

β
w
∣∣−pe−|w|2dm(w)

.
∫
|w|≤ 1

2

∣∣β
γ
z
∣∣ |z|−pe−|w|2dm(w) + |z|−pe−

1
4

∣∣β
γ
z
∣∣2 ∣∣∣∣βγ z

∣∣∣∣2 +

∫
|w|>2

∣∣β
γ
z
∣∣
∣∣∣∣γβw

∣∣∣∣−pe−|w|2dm(w)

= |z|−p
(

1− e−
1
4

∣∣β
γ
z
∣∣2)

+

∣∣∣∣βγ
∣∣∣∣2|z|2−pe− 1

4

∣∣β
γ
z
∣∣2

+

∣∣∣∣βγ
∣∣∣∣pI (∣∣∣∣βγ z

∣∣∣∣) ,
where

I (s) =

∫
|w|>2s

|w|−pe−|w|2dm(w) .

{
1, 0 < s ≤ 1,

s−pe−4s2 , s > 1.

The last bound is achieved by changing to polar coordinates, as follows:

I(s) =

∫ ∞
2s

r−p+1e−r
2
dr . s−p+1

∫ ∞
2s

e−r
2
dr . s−p+1 1

2s
e−4s2 .

Returning to the double integral in (2.10), we have:

E
[∣∣ξ2

1 +
γ

β
ξ1ξ2

∣∣−p]
.
∫
C

{
|z|−2p

(
1− e−

1
4

∣∣β
γ
z
∣∣2)

+

∣∣∣∣βγ
∣∣∣∣2|z|2−2pe

− 1
4

∣∣β
γ
z
∣∣2

+ |z|p
∣∣∣∣βγ
∣∣∣∣p I (∣∣∣∣βγ z

∣∣∣∣)
}
e−|z|

2
dz

This is the sum of three integrals, which we bound separately. For the
first, we have:

∫
C
|z|−2p

(
1− e−

1
4

∣∣β
γ
z
∣∣2)

e−|z|
2
dz

.
∫
|z|≤
∣∣ γ
β

∣∣
∣∣∣∣βγ
∣∣∣∣2 |z|2−2pdz +

∫
|z|>
∣∣ γ
β

∣∣ |z|−2pe−|z|
2
dz

h
∣∣∣∣βγ
∣∣∣∣2 ∣∣∣∣γβ

∣∣∣∣4−2p

+O(1) h
∣∣∣∣γβ
∣∣∣∣2−2p
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Next, denote A = 1 + 1
4

∣∣β
γ

∣∣2 and compute∫
C
|z|2−2pe−A|z|

2
dz

h
∫ ∞

0
r2−2pe−Ar

2
rdr [r = |z| ]

=
1

2A

∫ ∞
0

( s
A

)1−p
e−sds [s = Ar2]

h A−(2−p).

Thus, the second integral is

∣∣∣∣βγ
∣∣∣∣2 ∫

C
|z|2−2pe

−
(

1+ 1
4

∣∣β
γ

∣∣2)|z|2
dz h

∣∣∣∣βγ
∣∣∣∣2
(

1 +
1

4

∣∣∣∣βγ
∣∣∣∣2
)−(2−p)

h
∣∣∣∣γβ
∣∣∣∣2−2p

.

Finally, the last integral is∣∣∣∣βγ
∣∣∣∣p ∫

C
|z|−pI

(∣∣∣∣βγ z
∣∣∣∣) e−|z|2dz

h
∣∣∣∣βγ
∣∣∣∣p
{∫
|z|<| γ

β
|
|z|−pe−|z|2dz +

∣∣∣∣γβ
∣∣∣∣p ∫
|z|>| γ

β
|
|z|2pe−(1+4

∣∣β
γ

∣∣2)|z|2
dz

}

h
∣∣∣∣βγ
∣∣∣∣p ∣∣∣∣γβ

∣∣∣∣2−p +

(
1 + 4

∣∣∣∣βγ
∣∣∣∣2
)p−1

h
∣∣∣∣γβ
∣∣∣∣2−2p

.

The proof is complete.

2.3.3 Expansion in terms of the original covariance function.

The covariance between logarithms of two Gaussians can be expressed as a
power series, using the following claim.

Claim 2.3.3. Let ξ∗, η∗ ∼ NC(0, 1) be standard complex Gaussian random
variables. Then

cov (log |ξ∗|, log |η∗|) =
1

4

∞∑
k=1

|Eξ∗η∗|2k

k2
.
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A proof is included in the book [22, Lemma 3.5.2], or in a slightly different
language in the paper by Nazarov and Sodin [34, Lemma 2.2].

For any centered complex Gaussian random variable ξ ∼ NC(0, σ2) we
may write ξ = σξ∗ where ξ∗ ∼ NC(0, 1), and thus get

log |ξ| − E log |ξ| = log |ξ∗| − E log |ξ∗|.

Therefore Claim 2.3.3 implies that for any centered complex Gaussians ξ
and η we have:

cov (log |ξ|, log |η|) =
1

4

∞∑
k=1

1

k2

(
|E(ξη)|2

E|ξ|2E|η|2

)k
.

We now apply this formula for ξ = f(t + ia) and η = f(s + ib): By
stationarity and our notation, we have

|E(f(t+ ia)f(s+ ib))|2

E|f(t+ ia)|2 E|f(s+ ib)|2
=
|r(t− s+ ia+ ib)|2

r(2ia) r(2ib)
=: q(t− s, a, b),

so that Claim 2.3.2 gives:

Ca,b(T ) =
1

4

∫ T

−T
dt

∫ T

−T
ds

∂2

∂a ∂b

∞∑
k=1

1

k2
q(t− s, a, b)k. (2.11)

2.3.4 From double to single integral

Next, we pass to a one-dimensional integral using a simple change of vari-
ables:

Claim 2.3.4. For any function Q ∈ L1([−2T, 2T ]), the following equality
holds: ∫ T

−T

∫ T

−T
Q(t− s)dt ds = 2

∫ 2T

−2T
(2T − |x|)Q(x)dx

Applying Claim 2.3.4 to (2.11) we get:

Ca,b(T )

2T
=

1

2

∫ 2T

−2T

(
1− |x|

2T

)
∂2

∂a ∂b

∑
k≥1

qk(x, a, b)

k2
dx (2.12)
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2.3.5 Some properties of q

We digress shortly to summarize some properties of q, which we will use
later in our proofs. In the following, when we do not specify the variables
we mean the statements holds on all the domain of definition. We use the
subscript notation for partial derivatives (such as qa for ∂

∂aq).

Claim 2.3.5. The function

q(x, a, b) =
|r(x+ ia+ ib)|2

r(2ia) r(2ib)
(2.13)

is well-defined, infinitely differentiable on R × (−∆,∆)2, and satisfies the
following properties:

1. q(x, y1, y2) ∈ [0, 1].
q(x, y1, y2) = 1 if and only if (x = 0 and y1 = y2).

2. supx∈R q(x, y1, y2) < 1 for any y1 6= y2 in (−∆,∆).

3. For fixed y1 and y2 let gy1,y2(x) be one of the functions q, qa, qb, qab
evaluated on the line {(x, y1, y2) : x ∈ R}. Then gy1,y2 ∈ L∞(R). If
condition (2.2) holds, then for any y1, y2 ∈ [a, b] we have also gy1,y2 ∈
L1(R) ∩ C0(R) (i.e., is integrable and tends to zero as x→ ±∞).

4. qa(0, t, t) = 0, for any t ∈ (−∆,∆).

Proof. Since r(2iy) > 0 for all y ∈ R, the function q is indeed well-defined;
differentiability follows from that of r(z).

For item 1, notice that

q(x, a, b) =

(∫
e2π(a+b)λe−2πixλdρ(λ)

)2∫
e2π·2aλdρ(λ)

∫
e2π·2aλdρ(λ)

and so, by Cauchy-Schwarz, is in [0, 1]. Equality q(x, a, b) = 1 holds only if
the function λ 7→ e2π·aλe−2πixλ is a constant times the function λ 7→ e2π·bλ,
ρ-a.e., but, if ρ is non-atomic, this is impossible unless x = 0 and a = b.

Further, we notice that

|r(x+ ia+ ib)| =
∣∣∣∣∫ e2π(a+b)λe−2πixλdρ(λ)

∣∣∣∣ ≤ ∫ e2π(a+b)λdρ(λ) = r(ia+ ib),

so that q(x, a, b) ≤ q(0, a, b) < 1 (the right-most inequality is by item 1).
Taking the supremum yields item 2.
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For item 3, notice any one of the functions q, qa, qb, qab is the sum of
summands of the form

C(a, b) r(j)(x+ ia+ ib) r(m)(−x+ ia+ ib), (2.14)

where 0 ≤ j,m ≤ 2 are integers. It is enough therefore to explain why
r(j)(x+ ia+ ib) is bounded and approaches zero as x→ ±∞, for any integer
0 ≤ j ≤ 2. Recall that

r(j)(x+ iy) = cjFλ[λje2πyλ dρ(λ)](x),

where cj is some constant. As a function of x, this is a Fourier transform of
a non-atomic measure, therefore has the desired properties.

If condition (2.2) holds, then dρ(λ) = p(λ)dλ, and the function λ 7→
λje2π(y1+y2)λp(λ) is in L2(R). Then, its Fourier transform r(j)(x+ iy1 + iy2)
is also in L2(R), and each summand of the form (2.14) is in L1(R), as
anticipated.

For item 4, notice that for all x ∈ R and all a, b ∈ (−∆,∆) we have
the symmetry q(x, a, b) = q(x, b, a), and therefore for all t ∈ R: qa(x, t, t) =
qb(x, t, t). On the other hand, for all t ∈ (−∆,∆) it holds that q(0, t, t) = 1,
so taking derivative by t we get qa(0, t, t) · 1 + qb(0, t, t) · 1 = 0. This proves
the result.

2.3.6 Change of derivative and sum

We would like to take derivative term-by-term in (2.12).

Claim 2.3.6. For all x 6= 0,

∂2

∂a ∂b

∑
k≥1

qk(x, a, b)

k2
=
∑
k≥1

∂2

∂a ∂b

qk(x, a, b)

k2
(2.15)

Proof. Fix x 6= 0. For shortness, we do not write the variables (x, a, b), and
use again the subscript notation for partial derivatives. We compute:

Sa,bk (x) :=
∂2

∂a ∂b

{
qk
}

=

{
qab, k = 1

k(k − 1)qk−2qaqb,+kq
k−1qab k > 1.

Therefore, ∣∣∣∣∣Sa,bk (x)

k2

∣∣∣∣∣ ≤ qk−2|qaqb|+
1

k
qk−1|qab|. (2.16)
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By part 1 of Claim 2.3.5, q(x, a, b) < 1 (notice this holds also if a = b).

We deduce that
∑∣∣∣∣Sa,bkk2

∣∣∣∣ <∞. i.e., the RHS of (2.15) converges in absolute

value. By standard arguments, this is enough to prove equality (2.15).

Thus, continuing (2.12), we arrive at

Ca,b(T )

2T
=

1

2

∫ 2T

−2T

(
1− |x|

2T

)∑
k≥1

∂2

∂a ∂b

qk(x, a, b)

k2
dx (2.17)

2.3.7 Parseval’s identity

The next claim is a special case of Parseval’s identity for measures (see
Katznelson [24, VI.2.2]):

Claim 2.3.7. For any finite measure γ on R,∫ 2T

−2T

(
1− |x|

2T

)
F [γ](x)dx =

∫
R

2T sinc2(2πTξ)dγ(ξ).

where sinc(ξ) = sin ξ
ξ and F [γ] is the Fourier transform of γ.

In order to apply this claim to simplify equation (2.17), we shall first

find a finite measure γa,bk such that F [γa,bk ](x) = q(x, a, b)k. This is done in
the next step.

2.3.8 The search for an inverse Fourier transform

For now, we keep a, b and k fixed. Our goal is to find a measure whose
Fourier transform results in qk(x, a, b) (or, instead, in |r(x + ia + ib)|2k).
This measure is given in Claim 2.3.8 in the end of this subsection. In order
to present it we must first discuss some definitions and relations between
operations on measures.

Denote byM(R) the space of all finite measures on R, similarlyM+(R)
denotes all finite non-negative measures on R. For two measure µ, ν ∈M(R)
the convolution µ ∗ ν ∈M(R) is a measure defined by:

∀ϕ ∈ C0(R) : (µ ∗ ν)(ϕ) =

∫∫
ϕ(λ+ τ)dµ(λ)dν(τ).

When both measures have density, this definition agrees with the standard
convolution of functions. We write µ∗k for the iterated convolution of µ with
itself k times.
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Next recall that

r(z) =

∫
R
e−2πizλdρ(λ) =: F [ρ](z).

By properties of Fourier transform,

rk(z) = F [ρ∗k](z),

or, writing z = x+ iy we have

rk(x+ iy) =

∫
R
e−2πixλe2πyλdρ∗k(λ). (2.18)

This gives rise to the following notation: for a measure µ ∈ M+(R)
having exponential moments up to 2∆ (i.e., obeying condition (2.1)), and a
number y ∈ (−2∆, 2∆), we define the exponentially rescaled measure µy ∈
M+(R) by

∀ϕ ∈ C0(R) : µy(ϕ) = µ(e2πyλϕ(λ)) =

∫
R
e2πyλϕ(λ)dµ(λ)

Observation. For any µ, ν ∈M(R) and any |y| < 2∆,

(µ ∗ ν)y = µy ∗ νy.

Proof. for any test function ϕ ∈ C0(R) we have:∫
ϕ d(µy ∗ νy) =

∫∫
ϕ(λ+ τ) dµy(λ)dνy(τ)

=

∫∫
ϕ(λ+ τ)e2πy(λ+τ) dµ(λ)dν(τ) =

∫
ϕ d(µ ∗ ν)y

As a corollary, we get that for any |y| < 2∆ and any k ∈ N,

(ρy)
∗k = (ρ∗k)y.

Therefore there will be no ambiguity in the notation ρ∗ky .
Next, we define for µ ∈M(R) the flipped measure flip{µ} ∈ M(R) by:

flip{µ}(I) = µ(−I) for any interval I ⊂ R,

and the cross-correlation of measures µ, ν ∈M(R) by:

µ ? ν := µ ∗ flip{ν}.
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An alternative definition, via actions on test-functions, would be:

∀ϕ ∈ C0(R) : (µ ? ν)(ϕ) =

∫∫
ϕ(λ− τ)dµ(λ)dν(τ).

Notice that the cross-correlation operator is bi-linear, but not commutative.

Now relation (2.18) easily implies:

• rk(x+ iy) = F [ρ∗ky ](x)

• rk(x+ iy) = F [ρ∗ky ](−x) = F [flip{ρ∗ky }](x),

which leads at last to the end of our investigation:

Claim 2.3.8. For any x ∈ R, |y| < 2∆ and k ∈ N, we have:

|rk(x+ iy)|2 = F
[
(ρ∗ky ) ? (ρ∗ky )

]
(x).

This measure acts on a test-function ϕ ∈ C0(R) in the following way:

(ρ∗ky ? ρ∗ky )(ϕ) =

∫∫
ϕ(λ− τ)e2πy(λ+τ)dρ∗k(λ)dρ∗k(τ).

2.3.9 Taking the double derivative

Using Claim 2.3.8, we rewrite equation (2.17):

Ca,b(T )

2T
=

∫ 2T

−2T

(
1− |x|

2T

)∑
k≥1

1

2k2

∂2

∂a ∂b

{
F [ρ∗ka+b ? ρ

∗k
a+b](x)

rk(2ia)rk(2ib)

}
dx (2.19)

The double derivative in this expression may be rewritten using the
following claim.

Claim 2.3.9.

Sa,bk (x) :=
∂2

∂a ∂b

F [ρ∗ka+b ? ρ
∗k
a+b](x)

rk(2ia)rk(2ib)
= F

[
lak(λ)ρ∗ka+b ? l

b
k(λ)ρ∗ka+b

]
(x).

where lak(λ), lbk(λ) are linear functions in λ, given by

lak(λ) =
∂

∂a

(
1

rk(2ia)

)
+

2π

rk(2ia)
λ =

2

rk(2ia)

(
−ik r

′(2ia)

r(2ia)
+ πλ

)
.
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Proof. Recall that

F [ρ∗ka+b ? ρ
∗k
a+b](x) =

∫∫
e−ix(λ−τ)e2πi(a+b)(λ+τ)dρ∗k(λ)dρ∗k(τ),

and notice we may differentiate by a and b under the integral, as the result
would be continuous and integrable w.r.t. ρ∗k. From here, the proof is a
straightforward computation.

Futher, using Claim 2.3.7 and the definitions from Section 2.3.8, we have
for fixed k,∫ 2T

−2T

(
1− |x|

2T

)
Sa,bk (x) dx =

∫ 2T

−2T

(
1− |x|

2T

)
F
[
lak(λ)ρ∗ka+b ? l

b
k(λ)ρ∗ka+b

]
(x)

=

∫
R

∫
R

2T sinc2(2πT (λ− τ)) lak(λ)lbk(τ)e2π(a+b)(λ+τ)dρ∗k(λ)dρ∗k(τ).

(2.20)

Now, recalling Claim 2.3.1a, we use the form (2.19) and Claim 2.3.9, we
write the expression which, up to an error term, is asymptotically equivalent

to
V a,bf (T )

2T :

1

4π2

∫ 2T

−2T

(
1− |x|

2T

)∑
k≥1

1

2k2
(Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x))dx

=
1

4π2

∑
k≥1

1

2k2

∫ 2T

−2T

(
1− |x|

2T

)
(Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x))dx (2.21)

=
1

4π2

∑
k≥1

1

k2

∫
R

∫
R
T sinc2(T (λ− τ))ha,bk (λ+ τ)dρ∗k(λ)dρ∗k(τ),

where

ha,bk (λ) =
(
lak(λ)e2πaλ − lbk(λ)e2πbλ

)2
. (2.22)

The exchange of sum and integral in the first equality of (2.21) is justified
by the monotone convergence theorem, as each term in the series is non-
negative. The second equality follows from (2.20).

We summarize the result in the following claim.

Claim 2.3.10.

Ca,a(T )− 2Ca,b(T ) + Cb,b(T )

4π2 · 2T

=
∑
k≥1

1

4π2k2

∫
R

∫
R
T sinc2(2πT (λ− τ))ha,bk (λ+ τ)dρ∗k(λ)dρ∗k(τ),
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where ha,bk is given by (2.22).

One more step is required in order to establish Proposition 2.3.1.

2.3.10 The error term

At last, we show that the error term in Claim 2.3.1a approaches zero as T
tends to infinity.

Claim 2.3.11. If ρ contains no atoms, then for any a ∈ (−∆,∆):

lim
T→∞

Ca,a(T )

T 2
= 0.

Proof. By Theorem 3, since ρ has no atoms, f is an ergodic process. Thus,
by the ergodic theorem,

lim
T→∞

1

T
Xa(T ) = EXa(1) (2.23)

converges almost surely and in L1 to a constant. Recall Xa(T ) has finite sec-
ond moment (this is precisely relation II, which was proved for Claim 2.3.2).
Thus, the convergence in (2.23) is also in the L2 sense (see [12, Exercise
7.2.1]). This yields the convergence

lim
T→∞

1

T 2
var (Xa(T )) = lim

T→∞

1

T 2
Ca,a(T )→ 0,

which is our claim.

2.4 Theorem 7: Linear and Intermediate Variance

The proof is divided into two parts. First we prove the existence of the limit
L1 and its positivity, and later we prove that it is finite under condition (2.2).

2.4.1 Existence and Positivity.

In this section we prove that L1 exists and belongs to (0,∞]. If ρ has at

least one atom, Theorem 6 implies that limT→∞
V a,bf (T )

T 2 > 0, and therefore

L1 = limT→∞
V a,bf (T )

T =∞. We thus assume that ρ has no atoms.
Using the formula for the variance obtained in Proposition 2.3.1, and

recalling the functions ha,bk are non-negative, we see that the limit L1 exists
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and is in [0,∞]. More effort is needed in order to establish that L1 > 0. We
begin with a simple bound arising from Proposition 2.3.1:

lim inf
T→∞

V a,b
f (T )

2T
=

1

4π2
lim inf
T→∞

∑
k≥1

1

k2

∫
R

∫
R
T sinc2(2πT (λ− τ))ha,bk (λ+ τ)dρ∗k(λ)dρ∗k(τ)

≥ 1

4π2
lim inf
T→∞

∫
R

∫
R
T sinc2(2πT (λ− τ)) ha,b1 (λ+ τ) dρ(λ)dρ(τ)

≥ C0 lim inf
ε→0+

∫
R

∫
R

1

2ε
1I{(λ, τ) : |λ− τ | < ε}ha,b1 (λ+ τ) dρ(λ)dρ(τ),

(2.24)

where C0 > 0 is an absolute constant. The last step follows from ignoring
the integration outside

Diagε = 1I{(λ, τ) : |λ− τ | < ε},

for ε < 1
4T . Next we turn to investigate ha,b1 . Recall its form is given in

Proposition 2.3.1 or more recently in (2.22).

Claim 2.4.1. The function ha,b1 has exactly two real zeroes.

Proof. By the form of ha,b1 , ha,b1 (λ) = 0 if and only if

e2π(b−a)λ =
la1(λ)

lb1(λ)
=

1
r(2ia)

(
πλ− i r′r (2ia)

)
1

r(2ib)

(
πλ− i r′r (2ib)

) = C · λ− ψ(a)

λ− ψ(b)
,

where C > 0 is a positive constant and ψ(y) = 1
2π

d
dy [log r(2iy)]. Since y 7→

log r(2iy) is a convex function, for a < b we have ψ(a) < ψ(b). Therefore,

λ 7→ C λ−ψ(a)
λ−ψ(b) is a strictly decreasing function, with a pole at ψ(b) and with

the same positive limit at ±∞. Thus, it crosses exactly twice the increasing
exponential function e2π(b−a)λ.

The next claim will enable us to bound ha,b1 from below, on most of the

real line. Denote by z1, z2 ∈ R (z1 < z2) the two real zeroes of ha,b1 whose
existence is guaranteed by Claim 2.4.1. We also use the notation B(x, δ) for
the interval of radius δ > 0 around x ∈ R.

Claim 2.4.2. For all δ0 > 0, there exists cδ > 0 such that for all λ ∈
R \ (B(z1, δ0) ∪B(z2, δ0)):

ha,b1 (λ) > cδ(1 + λ2) max(e2a·2πλ, e2b·2πλ).
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Proof. Since the function
ha,b1 (λ)

(1+λ2)e2a·2πλ
=
(
la1(λ)−lb1(λ)e2π(b−a)λ

√
1+λ2

)2

approaches

strictly positive limits as |λ| → ∞, there exist Ma, ca > 0 such that

∀|λ| ≥Ma : ha,b1 (λ) ≥ ca(1 + λ2)e2a·2πλ.

Similarly, there exist some Mb, cb > 0 such that ∀|λ| ≥ Mb : ha,b1 (λ) ≥
cb(1 + λ2)e2b·2πλ. Take M = max(Ma,Mb). Since h(λ) attains a positive
minimum on [−M,M ] \ (B(z1, δ0) ∪B(z2, δ0)), there exists some c > 0 such
that for all λ in this set, h(λ) ≥ c(1 + λ2) max(e2a·2πλ, e2b·2πλ). Choosing
now cδ = min(c, ca, cb) will yield the result.

The next claim is a slight modification of the previous one, in order to
fit our specific need.

Claim 2.4.3. For every δ > 0 there exist a set F = Fδ = R \ (I1 ∪ I2)
such that Ij is an interval containing zj and of length at most δ (j = 1, 2),
ρ(F ) > 0, and there exists cδ > 0 such that for all small enough ε,

h(λ+ τ) ≥ cδ(1 + (λ+ τ)2) max
(
e2a·2π(λ+τ), e2b·2π(λ+τ)

)
,

for all λ, τ ∈ (F × F ) ∩Diagε.

Proof. Choose F = R \
(
B
(
z1
2 , δ0

)
∪B

(
z2
2 , δ0

))
, where δ0 ≤ δ is small

enough so that ρ(F ) > 0. Then, for ε ≤ δ0 and (λ, τ) ∈ (F ×F )∩Diagε, we
have

|λ+ τ − zj | ≥ |2τ − zj | − |λ− τ | ≥ 2δ0 − ε ≥ δ0.

Choosing the constant cδ > 0 which is the consequence of applying Claim 2.4.2
will end our proof.

Fix a parameter δ > 0, and fix F = Fδ to be the set provided by
Claim 2.4.3. Continuing from equation (2.24), we have

lim inf
T→∞

V a,b
f (T )

2T
≥ cδ lim inf

ε→0

∫∫
F×F

1

2ε
1IDiagε(λ, τ) e2π·2a(λ+τ)dρ(λ)dρ(τ)

= cδ lim inf
ε→0

∫
F

1

2ε
ρ2a ((τ − ε, τ + ε) ∩ F ) dρ2a(τ)

= cδ lim inf
ε→0

∫
R

1

2ε
µ (τ − ε, τ + ε) dµ(τ),

where µ is the restriction of ρ2a to F , i.e. µ(ϕ) = ρ2a(1IF · ϕ) for any test-
function ϕ. Notice that by the choice of F , µ(R) = ρ2a(F ) > 0. The next
lemma characterizes the limit we are investigating.
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Lemma 2.4.1. Let µ ∈ M+(R) (µ 6≡ 0). Then the following limit exists
(finite or infinite):

lim
ε→0+

∫
R

1

2ε
µ (τ − ε, τ + ε) dµ(τ) =

∫
R
|F [µ]|2(x)dx.

Positivity of the lower bound which we gave for the limit L1 is now clear.

Proof of Lemma 2.4.1. Denote ϕε = 1
2ε1I(−ε,ε) for ε > 0. Rewriting the

integral and using Parseval’s identity, we get:

Iµ(ε) :=
1

2ε

∫
R
µ (τ − ε, τ + ε) dµ(τ)

=

∫
R

(µ ∗ ϕε)(τ)dµ(τ)

=

∫
R

(F [µ] · F [ϕε])(x)F [µ](−x)dx

=

∫
R

sinc(2πεx)|F [µ]|2(x)dx

Since |sinc(2πεx)| ≤ 1, we have the upper bound Iµ(ε) ≤
∫
R |F [µ]|2(x)dx.

For a lower bound we shall use the following general fact:

Observation. For any ψ1, ψ2 ∈ C0(R) and µ ∈M+(R),∫
ψ1 d(µ ∗ ψ2) =

∫
(ψ1 ∗ flip{ψ2}) dµ.

Proof.∫
ψ1 d(µ ∗ ψ2) =

∫
ψ1(x+ y) dµ(x)ψ2(y)dy

=

∫ (∫
ψ1(x+ y) flip{ψ2}(−y) dy

)
dµ(x) =

∫
(ψ1 ∗ flip{ψ2})(x)dµ(x).

Using the last observation and the fact that ϕε ∗ ϕε ≤ 2ϕ2ε we get:∫
R

(µ ∗ ϕε) d(µ ∗ ϕε) =

∫
R
µ ∗ (ϕε ∗ ϕε)dµ ≤ 2

∫
R
µ ∗ ϕ2ε dµ = 2Iµ(2ε)
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On the other hand,∫
R

(µ ∗ ϕε) d(µ ∗ ϕε) =

∫
|F [µ ∗ ϕε]|2 =

∫
|F [µ]|2 · sinc2(2πεx) dx

≥
∫
K
|F [µ]|2 · sinc2(2πεx) dx

for any compact set K ⊂ R. Sin ce the limit lim
ε→0+

sinc(2πεx) = 1 is uniform

in x ∈ K, the last expression approaches
∫
K |F [µ]|2 as ε → 0+. Thus,

by choosing K and then ε > 0 properly, the lower bound may be made
arbitrarily close to

∫
R |F [µ]|2. This concludes the proof.

2.4.2 Linear Variance

Recall that, combining (2.21) and Claims 2.3.1a and 2.3.11, we obtained the
formula

V a,b(T )

2T
(2.25)

=
1

8π2

∑
k≥1

1

k2

∫ 2T

−2T

(
1− |x|

2T

) (
Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x)

)
dx+ o(1),

where

Sa,bk (x) :=
∂2

∂a ∂b

{
qk(x, a, b)

}
,

and Sa,ak (x) denotes the evaluation of the same mixed partial derivative at
the point (x, a, a). In the next claim we prove strong convergence properties
of similar sums, provided that condition (2.2) holds.

Claim 2.4.4. If condition (2.2) is satisfied, then for every k ∈ N the func-

tions Sa,ak (x), Sa,bk (x) and Sb,bk (x) are in L1(R) with respect to the variable
x. Moreover, ∑

k≥1

1

k2

∫
R
Sk(x)dx converges,

with any of the three possible superscripts on the letter S.

Let us first see how to finish the proof of linear variance using this claim.
Again, as we saw in section 2.3.9, each term of the series in the RHS of (2.25)
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is non-negative. Therefore, by the monotone convergence theorem:

lim
T→∞

V a,b
f (T )

2T

=
1

8π2

∑
k≥1

1

k2
lim
T→∞

∫ 2T

−2T

(
1− |x|

2T

)
(Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x)) dx.

The limit in each term can be computed using the following:

Claim 2.4.5. If Q : R→ [0,∞) is integrable on R, then

lim
T→∞

∫ T

−T

(
1− |x|

T

)
Q(x)dx =

∫
R
Q.

Proof. Notice that:∫ √T
−
√
T

(
1− 1√

T

)
Q(x)dx ≤

∫ T

−T

(
1− |x|

T

)
Q(x)dx ≤

∫ T

−T
Q(x)dx,

and both ends of the inequality approach the limit
∫
RQ.

We conclude that

lim
T→∞

V a,b
f (T )

2T
=

1

8π2

∑
k≥1

1

k2

∫
R

(Sa,ak (x)− 2Sa,bk (x) + Sb,bk (x)) dx,

which is finite by Claim 2.4.4.
Lastly, once we know the limit is finite we may obtain another formula of

it using Proposition 2.3.1. We may take term-by-term limit of T →∞, again
by monotone convergence, and get an alternative form for the asymptotic
varaince:

lim
T→∞

V a,b
f (T )

2T
=

1

8π3

∑
k≥1

1

k2

∫
R

(
p∗k(λ)

)2
ha,bk (2λ)dλ ∈ (0,∞).

All that remains now is to prove Claim 2.4.4.

Proof of Claim 2.4.4. We recall that Sa,bk was computed in the proof of
Claim 2.3.11, to be:

Sk =
∂2

∂a ∂b

{
qk
}

=

{
qab, k = 1

k(k − 1)qk−2qaqb,+kq
k−1qab k > 1.

(2.26)



2.4 Theorem 7: Linear and Intermediate Variance 69

Step 1: Let g be one of the functions q, qa, qb or qab. Then g(x, a, a),
g(x, a, b) and g(x, b, b) are all in

(
L1 ∩ L∞

)
(R) with respect to the variable

x.

This is, in fact, part 3 of Claim 2.3.5. This step ensures that Sa,ak , Sa,bk
and Sb,bk are in L1(R) with respect to x.

We turn now to prove the ”moreover” part of the claim. We use (2.26)
in order to rewrite the desired series:∑

k≥1

1

k2

∫
R
Sk(x)dx (2.27)

=

∫
R
qab dx+

∑
k≥2

∫
R
qk−2qaqb dx+

∑
k≥2

1

k

∫
R
qk−2 (qqab − qaqb) dx.

Once again, all functions are evaluated at (x, a, a), (x, a, b) or (x, b, b) and
what follows holds for each of the three options. By step 1,∫

R
|qab| dx <∞,

∫
R
|qaqb| dx <∞. (2.28)

For the middle sum in (2.27), it is therefore enough to show that:

Step 2: The sum
∑

m≥1

∫
R q

mqaqb dx converges.

Proof. We will show, in fact, that the positive series
∑

m≥1

∫
R q

m|qaqb| dx
converges.

First, in case we are evaluating at (x, a, b) (a < b), our series converges
due to (2.28) and the bound in part 2 of Claim 2.3.5. Now assume we are
evaluating at (x, t, t) (where t ∈ {a, b}). As we deal with a positive series, it
is enough to show that both

(I)
∑

m≥1

∫ 1
−1 q

m|qaqb| dx <∞, and

(II)
∑

m≥1

∫
|x|≥1 q

m|qaqb| dx <∞.

Denote by C = supx∈R |qaqb(x, t, t)| ∈ (0,∞). The sum in (II) is bounded
by

C
∑
m≥1

∫
|x|≥1

qm(x, t, t) dx = C

∫
|x|≥1

q

1− q
(x, t, t) dx ≤ C ′

∫
R
q(x, t, t) dx,

where C ′ ∈ (0,∞) is another constant. C, C ′ and
∫
R q(x, t, t)dx are all finite

by part 3 of Claim 2.3.5.
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We turn to show (I). By parts 1 and 4 of Claim 2.3.5, the sum

∑
m≥1

qm|qaqb| dx =
|qaqb|
1− q

is well-defined for all x (including x = 0). By the monotone convergence
theorem, item (I) is then equivalent to∫ 1

−1

|qaqb|
1− q

(x, t, t) dx <∞,

which is indeed finite as an integral of a continuous function on [−1, 1].

At last, only the right-most sum in (2.27) remains. Using the bounded-
ness and integrability guaranteed in Step 1, it is enough to show:

Step 3: The sum
∑

m≥1
1

m+2

∫
R q

m dx converges.

Proof. We use a fact which is the basis for on of the standard proofs of the
Central Limit Theorem (CLT). For completeness, we include a proof in the
end of this subsection.

Lemma 2.4.2. Let g ∈ L1(R) be a probability density, i.e., g ≥ 0 and∫
R g = 1. Suppose further that

(a)
∫
R |λ|

kg(λ)dλ <∞ for k = 1, 2, 3 and

(b)
∫
R |F [g](x)|ν dx <∞ for some ν ≥ 1.

Then there exists C > 0 such that for all m ≥ ν,∫
R
|F [g](x)|mdx < C√

m
.

We would like to apply the lemma to

ga,b(λ) =
e2π(a+b)λp(λ)

r(ia+ ib)
.

Notice that indeed this is probability measure, as by equation (2.18) with
k = 1:

F [ga,b](x) =
r(x+ ia+ ib)

r(ia+ ib)
,
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and in particular F [ga,b](0) =
∫
R g

a,b = 1. This choice also obeys the extra
integrability conditions in the lemma (as condition (2.1) implies (a) and (2.2)
implies (b) with ν = 2). We see now that

q(x, a, b) =
r(ia+ ib)2

r(2ia)r(2ib)
· |F [ga,b](x)|2 ≤ |F [ga,b](x)|2,

the last inequality following from the log-convexity of y 7→ r(iy). Similarly
we define ga,a and have q(x, a, a) = |F [ga,a](x)|2. Thus in all three cases of
evaluation, using the lemma with the appropriate function g yields:∑

m≥1

1

m+ 2

∫
R
qm dx ≤

∑
m≥1

1

m+ 2

∫
R
|F [g](x)|2mdx

< C
∑
m≥

1

(m+ 2)
√

2m
<∞,

as required.

Combining all three steps with (2.27), we end the proof of Claim 2.4.4.

Our last debt now is to prove Lemma 2.4.2. The proof is a minor varia-
tion of the proof for CLT appearing in Feller [18, Chapter XV.5].

Proof of Lemma 2.4.2. WriteG(x) = F [g](x). We may assume that
∫
R λg(λ) =

0 (otherwise we shall consider, instead of g, the function gµ(λ) = g(λ + µ)
where µ :=

∫
R λg(λ)dλ. There is no penalty since |F [gµ](x)| = |F [g](x)|

for all x ∈ R). By assumption (a), G(x) is thrice differentiable, and by the
above assumptions G(0) = 1 and G′(0) = 0.

To prove the lemma, it is enough to show that

lim
m→∞

√
m

∫
R
|G(x)|mdx exists and is finite.

Notice that
√
m
∫
R |G(x)|mdx =

∫
R |G (x/

√
m) |mdx, and so it is enough to

show that

lim
m→∞

∫
R

∣∣∣∣ ∣∣∣∣G( x√
m

)∣∣∣∣m − e−αx2

2

∣∣∣∣ dx = 0, (2.29)

for some value of α > 0, which in fact is α := G′′(0).
We shall achieve (2.29) by splitting the integral into three parts, and

showing each could be made less than a given ε > 0 if m ≥ ν is chosen large
enough.
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Fix R > 0 (to be determined later). By Taylor expansion,

G(x) = G(0) + xG′(0) +
x2

2
G′′(0) + o(x2) = 1 +

αx2

2
+ o(x2), x→ 0 (2.30)

and so |G(x/
√
m)|m → e−αx

2/2 as m→∞, uniformly in x ∈ [−R,R]. Thus
the integral in (2.29) computed on [−R,R] converges to zero as m→∞.

From the expansion (2.30) we get

∃δ > 0 ∀|x| < δ : |G(x)| ≤ e−
αx2

4 .

Consider the integration in (2.29) for R ≤ |x| ≤ δ
√
m. For such x we have

|G(x/
√
m)|m ≤ e−

αx2

4 , and so the integrand is less than 2e−
αx2

4 . Choosing

R so that 4
∫∞
R e−

αx2

4 < ε will satisfy our needs.
Lastly, consider the integration on δ

√
m ≤ |x| < ∞. By properties of

Fourier transform, η := sup|x|≥δ |G(x)| ∈ (0, 1). Thus

∫
|x|≥δ

√
m

∣∣∣∣ ∣∣∣∣G( x√
m

)∣∣∣∣m − e−αx2

2

∣∣∣∣ dx ≤ ηm−ν √m∫
R
|G|ν+

∫
|x|≥δ

√
m
e−

αx2

2 < ε,

for m large enough. Here we have used condition (b).

2.5 Theorem 8: Super-linear variance

In this section we prove the two items of Theorem 8, in reverse order.

2.5.1 Item (ii): Super-linear variance for particular a, b

Assume condition (2.3) holds for the particular a and b at hand. Fix a
parameter δ > 0, and let F = Fδ be the set provided by Claim 2.4.3. The
premise ensures that, if δ is small enough, at least one of the measures
(1 + λ)ρ2a|Fδ and (1 + λ)ρ2b|Fδ does not have L2-density. WLOG assume
it is the former. At first, assume also ρ2a|F is not in L2. Repeating the
arguments of the Subsection 2.4.1 we get the lower bound

lim inf
T→∞

V a,b
f (T )

2T
≥ cδ

∫
R
|F [µ]|2(x)dx,

where µ = ρ2a|F and cδ > 0. The LHS is therefore infinite, and so L1 =∞.
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We are left with the case that λρ2a|Fδ does not have L2-density, but
ρ2a|Fδ does (denote it by p2a). The argument is similar. Continuing from
(2.24) and employing Claim 2.4.3, we get

lim inf
T→∞

V a,b
f (T )

2T
≥ cδ lim inf

ε→0

∫
F

∫
F

1

2ε
1I(τ−ε,τ+ε)(λ)(λ+ τ)2p2a(λ) p2a(τ)dλdτ

≥ cδ · 4
∫
K
λ2p2a(λ)2dλ,

where K ⊂ F is compact. But, by our assumption, by choosing K properly

the last bound can be made arbitrarily large, so that limT→∞
V a,bf (T )

2T =∞.

2.5.2 Item (i): Super-linear variance for almost all a, b

Let ρ be such that the condition in item (i) holds. If ρ has a singular
component, then the condition in item (ii) holds for all possible a, b and so
L1(a, b) =∞ with no exceptions. Otherwise, ρ has density p(λ). Define the
set

E = {(a, b) : a, b ∈ J, a < b, the condition in item (ii) fails for a, b}.

If E = ∅, once again L1(a, b) =∞ for all a, b ∈ J with no exceptions.

Assume then there is some (a0, b0) ∈ E. This means there exists λ1, λ2

such that for any pair of intervals I1, I2 such that λj ∈ Ij (j = 1, 2), both the
functions (1+λ2)e2π·2a0λp(λ) and (1+λ2)e2π·2b0λp(λ) are in L2(R\(I1∪I2)),
but at least one of them (WLOG, the former) is not in L2(R). Observe that
the existence of such λ1, λ2 depends solely on p(λ), and may therefore be
regarded as independent of the point (a0, b0) ∈ E. Moreover, at least one
among λ1 and λ2 (say, λ1) is such that for any neighborhood I containing
it, p 6∈ L2(I).

Suppose now a, b ∈ E are such that

ha,b1 (λ1) > 0, (2.31)

where ha,b1 (λ) =
(
la1(λ)e2πaλ − lb1(λ)e2πbλ

)2
is the function appearing in the

the first term of our asymptotic formula, and in the lower bound in inequal-
ity (2.24). Recall ha,b1 is non-negative and has only two zeroes by Claim 2.4.1.

We may choose δ > 0 smaller than the minimal distance between λ1

and a zero of ha,b1 , and then construct F = Fδ as in Claim 2.4.3. Certainly
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λ1 ∈ Fδ, and so the measure µ = ρ2a|Fδ is not in L2(R) (it is even not in
L2(I) for any neighborhood I of λ1). Just as in subsection 2.4.1 we shall get

lim inf
T→∞

V a,b
f (T )

2T
≥ cδ

∫
R
|F [µ]|2(x)dx =∞.

We end by showing that for a given point λ1 ∈ R and a given a ∈ J , the
set of b ∈ J which do not obey (2.31) is finite. Indeed, this is the set

{b ∈ J : ha,b(λ1) = 0} = {b ∈ J : ϕ(a) = ϕ(b)}

where

ϕ(y) = e2πyλ1 ly1(λ1) =
∂

∂y

(
e2πλ1y

r(2iy)

)
.

Suppose the desired set is not finite. Since ϕ is real-analytic, it must be
constant on J . But then r(2iy) = e2πλ1y

cy+d for some c, d ∈ R, and the corre-
sponding spectral density would satisfy condition (2.2) for all relevant a, b.
This contradiction ends the proof.

2.6 Directions of further research

2.6.1 Related fluctuation problems

Most likely, it is possible to extend the methods developed in this chapter
in order to study fluctuations in other models. These include:

• the number of zeroes of a real stationary Gaussian function: it might
be possible to simplify Slud’s result, and to show that the variance is
always at least linear under mild assumptions on the spectral measure.

• the increment of the argument of a stationary Gaussian function f :
R→ C.

• smooth statistics of the zeroes of a GAF: For a compactly supported
smooth test-function φ : D∆ → R, study the number of zeroes weighted
according to φ; that is,

∑
φ(T−1x+ iy), where the sum is taken over

all x+ iy which are zeroes of f .

2.6.2 A Central Limit Theorem

It is expected that the number of zeroes of a stationary GAF in long rectan-
gles converges, after appropriate scaling, to a Gaussian distribution (i.e., a
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“Central Limit Theorem”, or CLT, for the zeroes). This conjecture is sup-
ported by analogous theorems applying to real functions (mentioned above).
More support comes from a work by Nazarov and Sodin [34] for the “pla-
nar GAF” (a special GAF which is invariant to plane isometries), in which
they prove CLT for zeroes in large balls as the radius approaches infinity. It
would be desirable to prove a CLT for zeroes of a stationary GAF, beginning
with the case of linear fluctuations (i.e., when V a,b(T ) grows linearly in T ).
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Chapter 3

Gap probability for real
stationary processes

3.1 Introduction

3.1.1 Definitions

Let T be either Z or R, with the usual topology. A Gaussian process (GP)
on T is a random function f : T → R whose finite marginals, that is
(f(t1), . . . , f(tn)) for any t1, . . . , tn ∈ T , have multi-variate centered Gaus-
sian distribution. A GP on Z is called a Gaussian sequence, while a GP on
R is called a Gaussian function. The Gaussian functions that we consider
will be almost surely continuous.

A GP on T whose distribution is invariant with respect to shifts by any
element of T , is called stationary. We abbreviate GSP, GSS and GSF for
Gaussian stationary processes, sequences and functions respectively.

For a GSP f on T define the covariance function r : T → R as

r(t) = E(f(0)f(t)).

Observe that due to stationarity, for every t, s ∈ T we have

E [f(s)f(t)] = r(t− s).

It is not difficult to verify that r(·) is a positive-definite continuous function
(continuity follows from almost sure continuity of f). By Bochner’s theorem,
there is a finite non-negative measure ρ on T ∗ such that

r(t) = ρ̂(t) :=

∫
T ∗
e−iλtdρ(λ).
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Here T ∗ is the dual of T , i.e. Z∗ ' [−π, π] and R∗ ' R. Notice that ρ must
be symmetric, i.e., for any interval I: ρ(−I) = ρ(I). We use the notation
M(T ∗) for the set of all finite non-negative symmetric measures on T ∗. The
measure ρ = ρf ∈ M(T ∗) is called the spectral measure of the process f .
Any ρ ∈M(T ∗) uniquely defines a GSP on T .

Throughout the chapter, we shall assume the following condition:

∃δ > 0 :

∫
T ∗
|λ|δdρ(λ) <∞. (3.1)

This condition is enough to ensure that the associated process f will be a.s.
continuous (see Adler and Taylor [2, Chapter 1, p. 22]). Notice that this
holds trivially in case T = Z.

3.1.2 Results

Let f : T → R be a GSP. Define the “gap probability” of f to be

Hf (N) = P (∀t ∈ [0, N) ∩ T : f(t) > 0) ,

where N ∈ R is a parameter. This describes half the probability that no
sign-changes of f occurred in a time interval of length N . We study the
asymptotics of this probability as N →∞. It makes no essential difference
to regard N as an integer, and we usually do so.

Our main results are the following. Let f be a Gaussian stationary pro-
cess on T = Z or T = R, with spectral measure ρ ∈M(T ∗), satisfying (3.1).

Theorem 9 (upper bound). Suppose that there exists a > 0 and two num-
bers M,m > 0 such that

for any interval I ⊂ (−a, a), m|I| ≤ ρ(I) ≤M |I|.

Then there exists C > 0 such that for all large enough N ,

Hf (N) ≤ e−CN .

Theorem 10 (lower bound). Suppose that there exists a > 0 and a number
m > 0 such that

for any interval I ⊂ (−a, a), m|I| ≤ ρ(I).

Then there exists c > 0 such that for all large enough N ,

Hf (N) ≥ e−cN .
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Remark 3.1.1. The condition in Theorem 9 may be replaced by the fol-
lowing: There exist two intervals J1 = (−a, a) and J2, and two numbers
M,m > 0, such that

(a) for any interval I ⊂ J1: ρ(I) ≤M |I|, and

(b) for any interval I ⊂ J2: m|I| ≤ ρ(I).

The necessary changes in the proof are indicated in Section 3.3.1. How-
ever, the authors believe condition (a) might be enough to ensure an upper
exponential bound on H(N).

Remark 3.1.2. Examples for which H(N) tends to zero slower than any
exponential in N are known; Newell and Rosenblatt construct one in [35].

Examples for which H(N) tends to zero faster than any exponential in N
are also known. A simple example was pointed out to us by M. Krishnapur.
Let (Yj)j∈Z be a GSS with i.i.d. entries, distributed N (0, 1), and define
Xj = Yj − Yj−1 for all j ∈ Z. Then X is a GSS with HX(N) = 1

N ! =

e−N logN(1+o(1)). Notice that the spectral measure has density 2(1− cos(λ)),
λ ∈ [−π, π], which vanishes at λ = 0.

3.1.3 Overview

The rest of the chapter is organized as follows. Section 3.2 is devoted to
discussion of the results. This includes an historical background, and a
simple yet useful observation that we shall use (Observation 2 below). The
results are then proved independently: Theorem 9 (an upper exponential
bound) is proved in Section 3.3, while Theorem 10 (a lower exponential
bound) is proved in Section 3.4.

3.2 Discussion

3.2.1 Background

Gap probability, sometimes referred to by the name “persistence probabil-
ity” or “hole probability”, was studied extensively in the 1960’s, by Slepian
[44], Longuet-Higgins [28], Newell-Rosenblatt [35] and others. In addition
to proving some bounds and inequalities (such as the well-known “Slepian
Inequality”), they developed series expansions which approximate this prob-
ability quite well for small intervals. In a few examples, exact expressions
for the gap probability were calculated (see [44] and references therein).
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In the last decade or two, physicists (such as Majumdar-Bray [30] and
Ehrhardt-Majumdar-Bray [14]) proposed some new methods of approxima-
tion, especially for the long-range regime. These suggest that in many cases
of interest the gap probability H(N) behaves asymptotically like e−θN , with
some θ > 0.

Dembo and Mukherjee [11, Theorem 1.6] observed that if the covariance
function r(t) is non-negative, this asymptotic behavior follows from Slepian
Inequality and subadditivity. I.e., the limit

θf = lim
N→∞

− logHf (N)

N

exists, and is finite and non-negative (finiteness is not mentioned explicitly in
the reference, but follows easily from the proof therein using the continuity
of f). To our knowledge, even in this simpler case no general bounds on θf
were known. A computation of the limit θf , as well as its existence for r(t)
which changes sign, are open.

We note that [11], along with other works by physicists such as Schehr-
Majumdar [40], draw connections between gap probabilities of GSPs, those
of diffusion processes, and those of zeroes of random polynomials.

The first attempt to tackle the case where r(t) is not non-negative was
done by Antezana, Buckley, Marzo and Olsen [3]. They were able, using
novel ideas, to obtain exponential upper and lower bounds for Hf (N) for

the particular case of the cardinal sine covariance r(t) = sin(πt)
t , which cor-

responds to indicator spectral density 1I[−π,π]. Our results may be viewed
as an extension of their result to other stationary Gaussian processes, using
an idea of spectral decomposition. Recently Antezana, Marzo and Olsen
were able to generalize this same result in the direction of Gaussian analytic
functions over de-Branges spaces [4].

Via private communication we learned of results by Krishnapur-Maddaly
regarding lower bounds for the gap probability of a GSS. It seems that our
conditions for a lower exponential bound are currently stronger, but they
have given very mild conditions which ensure Hf (N) ≥ e−cN2

(where c > 0
is a constant, and the inequality holds for large enough N). Though the
results are similar in spirit, their methods seem to be very different from
ours.

Lastly we mention an analogous result for the planar Gaussian analytic
function ∑

n∈Z
an

zn√
n!
, where an ∼ NC(0, 1) are i.i.d.
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Bounds concerning hole probabilities for this model were obtained by Sodin
and Tsirelson [49], and later refined by Nishry [36]. Nishry showed that
the probability of having no zeroes in a ball of radius R in the plane is
asymptotically e−(e2/4+o(1))R4

, as R → ∞. For discussion of such results
and comparison to other point processes in the plane, see [22, Chapter 7].

3.2.2 A Key Observation

We include here the basic observation which will be used to prove both
Theorems 9 and 10. We use the symbol ⊕ to indicate the sum of two
independent processes or random variables.

Observation 2. Let f be a GSP on T with spectral measure ρ ∈ M(T ∗),
and suppose ρ = ρ1 +ρ2, where ρ1, ρ2 ∈M(T ∗). Then the following equality
holds in distribution:

f
d
= f1 ⊕ f2,

where fj is a GSP with spectral measure ρj (j = 1, 2), and f1 is independent
(as a process) from f2.

Proof. We calculate the covariance function of f1⊕f2 using the independence
of the processes:

E
[

(f1(0) + f2(0)) (f1(t) + f2(t))
]

= Ef1(0)f1(t) + Ef2(0)f2(t)

= ρ̂1(t) + ρ̂2(t) = ρ̂(t).

This covariance function is equal to that of f . As all processes are Gaussian,
the observation follows.

3.3 Theorem 9: Upper bound

This section is devoted to the proof of Theorem 9.

Let f be a GSF or GSS with spectral measure ρ, obeying the conditions
of Theorem 9. Let k ∈ N be such that π

k ≤ a, and denote J := [−π/k, π/k] ⊂
[−a, a]. We decompose the spectral measure as follows:

dρ(λ) = m1IJ(λ)dλ+ dµ(λ),

where µ ∈M(T ∗) is non-negative and there exists M ′ > 0 such that

for any interval I ⊂ (−a, a) : µ(I) ≤M ′|I|. (3.2)
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By Observation 2, we may represent

f
d
= S ⊕ g

where S and g are independent processes, with spectral measures m1IJ(λ)
and µ respectively.

Next, we observe that sampling S in a certain lattice results in indepen-
dent random variables:

Observation 3 (indicator spectrum). The GSP (S(t))t∈T having spectral
density m1I[−π/k,π/k] has the property that (S(jk))j∈Z are i.i.d. Gaussian
random variables.

Proof. By taking the Fourier transform of the given measure, the covariance
function of S is

E [S(s)S(t)] = 2m
sin(πk (t− s))

t− s
.

Thus S(jk) and S(nk) are uncorrelated for any j, n ∈ Z, j 6= n; as these are
Gaussian random variables - independence follows.

In order to apply Observation 3, we look at a certain translated lattice
{jk + ` : j ∈ Z} on which S is indeed independent. The translation (which
we call “split”) of the sampled lattice will depend on g.

More precisely, fix a number q > 0 (say, q = 1), and define the set
G ⊂ C(T ) as follows:

G =

h ∈ ZR :
1

N

N∑
j=1

h(j) < q

 , case of GSS

G =

{
h ∈ C(R) :

1

N

∫ N

0
h(t)dt < q

}
, case of GSF.

Using the law of total probability we have:

P (f(t) = S(t) + g(t) > 0, 0 ≤ t < N)

≤ P
(
S(t) + g(t) > 0, 0 ≤ t < N

∣∣∣ g ∈ G)+ P (g 6∈ G) .

It is enough to show that there exist C1, C2 > 0 such that for large enough
N ,

(i) P
(
S(t) + g(t) > 0, 0 ≤ t < N

∣∣∣ g ∈ G) ≤ e−C1N , and
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(ii) P (g 6∈ G) ≤ e−C2N .

We proceed the proof for the function-case, noting the sequence-case follows
similar lines and is generally easier.

We begin by showing (i). It is enough to show that there is C1 > 0 such
that for any large enough N and any fixed g ∈ G,

P (S(t) + g(t) > 0, 0 ≤ t < N) ≤ e−C1N . (3.3)

Indeed, this would imply (using the independence of g and S):

P (S(t) + g(t) > 0, 0 ≤ t < N | g ∈ G)

= E
[
P
(
S(t) + g(t) > 0, 0 ≤ t < N

∣∣ g) ∣∣ g ∈ G] ≤ e−C1N ,

as required.
To that end, we use a property which holds when the event g ∈ G occurs,

stated below.

Observation 4. Let g be a continuous function such that 1
N

∫ N
0 g(t)dt < q,

and assume N ∈ N is divisible by k, then there exists a number l ∈ [0, k)
such that

k

N

N/k−1∑
j=0

g(jk + `) < q.

Proof. Else, for every l ∈ [0, k) the reverse inequality holds. Integrating it
over l ∈ [0, k] yields a contradiction.

Now, fix a function g ∈ G. We can find a special split `g whose existence
is guaranteed by Observation 4. Therefore:

P (S(t) + g(t) > 0, 0 ≤ t < N)

≤ P (S(jk + `g) + g(jk + `g) > 0, j = 0, 1, . . . , N/k − 1) ,

where (S(jk + `))j∈Z are i.i.d Gaussians (whose variance is independent of

lg), and k
N

∑N/k−1
j=0 g(jk + `g) < q. The following inequality will give the

desired bound.

Proposition 3.3.1. Let X1, . . . , XN be i.i.d standard Gaussian random
variables (distributed N (0, 1)), and let q ∈ R. There is a constant Cq > 0

such that for any numbers b1, . . . , bN ∈ R which obey 1
N

∑N
j=1 bj < q, the

following holds:

P (Xj + bj > 0, 1 ≤ j ≤ N) ≤ e−CqN .
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Proof. Denote by Φ(b) = P(X1 < b) the cumulative distribution function of
X1. By symmetry, Φ(b) = P(X1 > −b). Using the “i.i.d.” property of the
variables {Xj}Nj=1 we have:

p = P (Xj + bj > 0, 1 ≤ j ≤ N) =

N∏
j=1

P (Xj > −bj) =

N∏
j=1

Φ(bj).

Taking logarithm and using the concavity and monotonicity of x 7→ log Φ(x),
we get:

log p =
N∑
j=1

log Φ(bj) ≤ N · log Φ

(∑N
j bj

N

)
< N · log Φ(q),

and so Cq = − log Φ(q) > 0 is the desired constant.

In order to prove (ii), we shall use the following:

Proposition 3.3.2. 1
N

∫ N
0 g(t)dt ∼ NR(0, σ2

N ), where σ2
N ≤

C0
N for all N ∈

N and some constant C0 > 0.

Proof. The normality of the given integral follows from general arguments
of convergence of Gaussian random variables. We focus on the bound on its
variance. Recall that µ denoted the spectral measure of g. We calculate the
variance:

σ2
N =

1

N2
E
(∫ N

0
g(t)dt

)2

=
1

N2

∫∫
[0,N ]2

E(g(t)g(s))dt ds

=
1

N2

∫ N

0

∫ N

0
µ̂(t− s)dt ds =

1

N

∫
|t|<N

(
1− |t|

N

)
µ̂(t)dt.

The change in order of integration and expectancy in the first equality is
easily justified by use of Fubini’s theorem.

The inverse Fourier transform of (1− |t|N )1I[−N,N ](t) is given by

KN (λ) = N

(
sin(Nλ/2)

Nλ/2

)2

≤ min

(
N,

π2

Nλ2

)
Using first Plancherel’s Identity, and then condition (3.2) on the bounded-
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ness of µ, we get:

σ2
N =

1

N

∫
R
KN (λ)dµ(λ)

≤
∫
|λ|< π

N

dµ(λ) +
π2

N2

(∫
π
N
≤|λ|<a

+

∫
|λ|≥a

)
1

λ2
dµ(λ)

≤M ′ · 2π

N
+
π2

N2

(
M ′
∫
π
N
≤|λ|<a

dλ

λ2
+

1

a2
µ({|λ| > a})

)

≤ C0

N
,

where C0 is a constant (depending on µ).

At last, we prove (ii). Denote by γ a standard Gaussian random variable.
Using the Proposition 3.3.2 together with the well-known inequality

∀y > 0 : P (γ > y) <
1√
2πy

e−y
2/2,

we get:

P(g 6∈ G) = P
(

1

N

∫ N

0
g(t) ≥ q

)
= P(σN · γ ≥ q) = P

(
γ ≥ q

σN

)
≤ 1√

2π
· σN
q
e
− 1

2
· q

2

σ2
N

≤ 1

q

√
C0

2πN
e
− q2

2C0
N ≤ e−C2N ,

for a suitable choice of C2 > 0 (depending only on q and µ). Theorem 9 is
proved.

3.3.1 Extension: Proof of Remark 3.1.1

Remark 3.1.1 states a somewhat more general condition under which the
conclusion of Theorem 9 is true. The proof is only a slight modification of
the one presented. First, choose `, k ∈ N so that

J :=

[
(2`− 1)π

k
,
2`π

k

]
⊂ J2 ∪ (−J2).

Now decompose the measure as follows:

dρ(λ) = m1IJ∪−J(λ)dλ+ dµ(λ).
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By the premise, µ ∈M(T ∗) obeys the boundedness condition (3.2) (just as
before). Applying Observation 2 we get

f
d
= S ⊕ g,

where S has spectral measure m1IJ∪−J(λ)dλ and g has spectral measure µ.
We define G as before and strive to prove items (i) and (ii). Item (ii) fol-
lows from Proposition 3.3.2 and the calculation following it with no change.
The only property used in order to prove item (i) is the independence of
(S(jk))j∈Z (i.e., Observation 3). Let us show this still holds.

One way to end the argument is by calculation of the Fourier transform
of 1IJ∪−J(λ)dλ and observing it vanishes at kj, j ∈ Z (just as in the proof
of Observation 3). We give here a more general argument, relying on two
observations:

Observation 5. Let (f(t))t∈R be a GSF with spectral measure ρ, and α > 0.
Then the GSF x 7→ f(αx) has spectral measure 1

α ρα, where

∀I ⊂ R : ρα(I) = ρ({x ∈ R : αx ∈ I}).

Proof. E [f(αt)f(αs)] = ρ̂(α(t− s)) = 1
α ρ̂α(t− s).

Observation 6. If (f(t))t∈R is a GSF with spectral measure ρ, then the
GSS (f(j))j∈Z has the folded spectral measure ρ∗ ∈M([−π, π]) obtained by:

ρ∗(I) =
∑
n∈Z

ρ(I + 2πn).

Proof. ρ∗ is the unique measure in M([−π, π]) such that ρ̂∗(j) = ρ̂(j) for
any j ∈ Z.

Combining the last two observations, we get that if (S(t))t∈T has spectral
density m1IJ∪−J(·), then the spectral density of (S(kj))j∈Z is m

k 1I[−π,π](·).
Now Observation 3 leads to the desired conclusion.

3.4 Theorem 10: Lower bound

In this section we prove Theorem 10.
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3.4.1 Reducing GSS to GSF

Theorem 10 is easily reduced to the case of functions, by noticing the fol-
lowing:

Observation 7. Any finite measure ρ ∈M([−π, π]) generates a GSF f and
a GSS X. The distribution of (X(j))j∈Z is the same as that of (f(j))j∈Z
(since their covariance functions coincide). Moreover, for any number N :

Hf (N) = P(f(x) > 0, x ∈ [0, N) ∩ R)

≤ P(f(j) > 0, j ∈ [0, N) ∩ N) = HX(N).

Therefore, in order to bound HX(N) from below where X is a GSS, it
is enough to bound Hf (N) from below where f is the GSF with the same
spectral measure as X.

3.4.2 Proof for GSF

Let (f(t))t∈R be a GSF with spectral measure ρ, obeying the condition
of Theorem 10. By scaling f (and therefore scaling its spectral measure
according to Observation 5), we may assume the condition is satisfied with
a = π.

Just as in the proof of Theorem 9, we decompose the spectral measure
in the following manner:

dρ = m1I[−π,π](λ)dλ+ dµ.

Applying Observation 2 we have

f
d
= S ⊕ g

where S and g are independent processes, and the spectral measure of S has
density m1I[−π,π](λ).

We have:

Hf (N) = P (S(x) + g(x) > 0, 0 ≤ x < N)

≥ P (S(x) > d, 0 ≤ x < N) P
(
|g(x)| ≤ d

2
, 0 ≤ x < N

)
, (3.4)

where d > 0 is a parameter of our choice. The first probability is bounded
from below by the following theorem:
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Theorem 11 (Antezana, Buckley, Marzo, Olsen [3]). Let S(x) be the GSF
with spectral measure dρ(λ) = 1I[−π,π](λ)dλ. Then for any d > 0 there exists
a constant cd > 0, such that for all N ∈ N,

P (S(x) > d, 0 ≤ x < N) ≥ e−cdN .

In [3], the theorem is stated for the case d = 0, but the above can be
obtained by minor modifications to the proof given there.

We turn to bound the second probability in (3.4), i.e., the probability of
the event {|g(x)| ≤ ε, 0 ≤ x < N}. This is known in literature as a “small
ball probability”, and is bounded from below by the following result:

Lemma 3.4.1 (Talagrand [50], Shao-Wang [42] ). Let (f(t))t∈I be a centered
Gaussian process on a finite interval I. Suppose that for some c > 0 and
0 < δ ≤ 2,

df (s, t)2 := E|f(s)− f(t)|2 ≤ c|t− s|δ, s, t ∈ I.

Then, for some K > 0 and every ε > 0,

P
(

sup
t∈I
|f(t)| ≤ ε

)
≥ exp

(
−K|I|
ε2/δ

)
.

The proof of Lemma 3.4.1, apart from being deduced from a much more
general result in Talagrand’s paper, may be found in notes by Ledoux [25,
Ch. 7, statement (7.13)] (in a slightly different formulation). Shao and Wang
decided to omit a proof from their paper as they learned that Talagrand’s
result generalizes theirs; but their Theorem 1.1 is the closest formulation to
the one above.

We use this lemma to prove the following:

Proposition 3.4.1. Let f be a Gaussian stationary function on R with
spectral measure ρ, obeying the moment condition (3.1). Then for all ε > 0
there exists C,K > 0 such that for any interval I:

P
(

sup
t∈I
|f(t)| < ε

)
≥ Ce−K|I|.

Applying the proposition to f = g, I = [0, N) and ε = d
2 > 0, will give

the desired bound on the second factor in (3.4), thus ending the proof of
Theorem 10.
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Proof of Proposition 3.4.1. First we notice that if the moment condition (3.1)
is satisfied with a certain exponent δ > 0, then it is also satisfied by any
smaller positive exponent. Therefore we may assume 0 < δ < 2.

We shall check that f obeys the condition of Lemma 3.4.1 with this
same δ, i.e. that there exists a constant c > 0 such that

df (s, t)2 ≤ c|t− s|δ, s, t ∈ I.

Indeed:

df (s, t)2 = E(f(s)− f(t))2 = 2(r(0)− r(s− t))

= 2

∫
R

(
1− cos(λ(s− t))

)
dρ(λ) ≤ 2L|t− s|δ

∫
R
|λ|δdρ(λ),

where L = supx∈R
1−cos(x)
|x|δ <∞. The proposition follows.

3.4.3 Directions of further research

Investigation of the gap probability

The results of this chapter show that there is a relation between spectral
properties of a Gaussian stationary process, and the asymptotics of its gap
probability. It would be desirable to understand this relation better, and use
it to find accurate asymptotics of the gap probability; i.e., to prove existence
of the limit

lim
T→∞

− logH(T )

T
,

presumably under some spectral conditions. As mentioned earlier, this limit
is known to exists if the correlation function r(t) is non-negative, and is
conjectured to exist in a much broader setup; but even for simple examples
in which r(t) changes sign, such as the sinc-kernel, the existence is open.
Further, it would be interesting to compute the limit (which is unknown also
when r(t) ≥ 0), and to characterize when is it 0 or +∞. This, I conjecture,
has to do with the spectral measure vanishing or being unbounded near the
origin, respectively.

Another direction is to extend the bounds obtained in Theorems 10 and 9
to similar probabilities for complex-valued functions. For instance, it would
be desirable to bound the probability that a stationary “smooth” function
f : R→ C does not wind around zero for a long time-interval.
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Exponential concentration

For stationary Gaussian functions f : R→ R, another rare event of interest
is that the number of zeroes in a long interval [0, T ] is “far” from the mean
number of zeroes (by more then αT , where α > 0 is given). The probability
of such an event is expected to be exponentially small in T (with a constant
depending on α). “Exponential concentration” around the mean is natural
to expect when Offord-type estimates hold (i.e., when the tail of the distri-
bution of the number of zeroes in a compact set decays exponentially; see
[22, Chapters 3.2 and 7.1]). Exponential concentration was proved for nodal
lines of Gaussian spherical harmonics, by Nazarov and Sodin [31].

A significant step towards proving such a result for real Gaussian pro-
cesses was done by Tsirelson in a course he gave in TAU [51]. There he proves
exponential concentration for weighted counting functions of the zeroes (de-
pending on the derivative at each zero), under the assumption of purely
atomic spectral measure. As a first step, it would be natural to extend this
result to arbitrary spectral measures (with similar weighted counting func-
tions). This might shed light on the methods and conditions needed for the
original problem; yet, it seems, some new ideas and techniques will still be
required.
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[5] J.-M. Azäıs, J.R. León, CLT for crossings of random trigonometric
polynomials, Electron. J. Probab. 18 (2013) , 1-17.

[6] P. Bleher and D. Ridzal, SU(1, 1) Random Polynomials, Journal of
Statistical Physics (2002), Vol 106, numbers 1-2, p.147-171.

[7] E. Bogomolny, O. Bohigas, and P. Leboeuf, Quantum Chaotic Dynam-
ics and Random Polynomials, J. Statist. Phys. 85 (1996), 639-679.

[8] D. Chambers and E. Slud, Central limit theorems for nonlinear func-
tionals of stationary Gaussian processes, Probab. Th. Rel. Fields 80
(1989), 323-346.

[9] H. Cramér and M.R. Leadbetter, Stationary and Related Stochas-
tic Processes, Wiley series in Probability and Mathematical Statistics
(1967).

[10] J. Cuzick, A central limit theorem for the number of zeros of a stationary
Gaussian process, Ann. Probab. 4 (1976), 547-556.



92 BIBLIOGRAPHY

[11] A. Dembo and S. Mukherjee, No zero-crossings for random polyno-
mials and the heat equation, Annals of Probability, to appear. See
arXiv:1208.2382.

[12] R. Durrett, Probability: Theory and Examples, Cambridge University
Press, fourth edition (2010).

[13] A. Edelman and E. Kostlan, How many zeros of a random polynomial
are real? Bull. Are. Math. Soc. (N.S), 32 (1995), 1-37.

[14] G.C. Ehrhardt, S.N. Majumdar and A.J. Bray, Persistence exponents
and the statistics of crossings and occupation times for Gaussian sta-
tionary processes, Physical Review E 69 (2004), 016106.

[15] N. Feldheim, Zeroes of Gaussian Analytic Functions with Translation-
Invariant Distribution, Israel Journal of Mathematics 195 (2013), 317-
345.

[16] N. Feldheim, Variance of the Number of Zeroes of Shift-Invariant Gaus-
sian Analytic Functions, submitted. arXiv:1309.2111.

[17] N. D. Feldheim, O. N. Feldheim, Long gaps between sign-changes
of Gaussian Stationary Processes. To appear in IMRN, doi:
10.1093/imrn/rnu020. See also: arXiv:1307.0119.

[18] W. Feller, An Introduction to Probability Theory and Its Applications,
Vol. 2, 2nd edition, John Wiley and Sons (1971).

[19] A. Granville, I. Wigman, The distribution of the zeros of random
trigonometric polynomials, American Journal of Mathematics 133
(2011), 295-357.

[20] U. Grenander, Stochastic Processes and Statistical Inference, Arkiv for
Matematik 1 (1950), 195-277.
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