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We study the persistence probability of a centered stationary Gaussian
process on Z or R, that is, its probability to remain positive for a long time.
We describe the delicate interplay between this probability and the behavior
of the spectral measure of the process near zero and infinity.

1. Introduction.

1.1. General Introduction. The persistence of a stochastic process f above a certain level
`, that is, the probability that f(t) > ` for all t in some large interval, is a classical topic
of study (see the recent surveys by Aurzada-Simon [3] and Bray-Majumdar-Schehr [8]).
Here we investigate the persistence probability for the class of Gaussian stationary processes
(GSP’s) above the mean. This quantity has been extensively studied since the 1950’s, by
Slepian [27], Newell-Rosenblatt [23] and many others, with old and new applications in
mathematical physics, engineering and other areas of probability [8–10, 26]. Nonetheless,
until recently, good estimates of the persistence decay were known only for particular cases
(e.g. [2,27]), and for families of processes with either summable or non-negative correlations.
The state of the art in the latter case was recently achieved by Dembo-Mukherjee [10], who
were able to determine the log persistence of non-negatively correlated GSP’s up to a constant
factor.

A few years ago, by introducing a spectral point of view, the first two authors were able
to provide general conditions under which the log persistence is bounded between two linear
functions [12]. This extended a result by Antezana-Buckley-Marzo-Olsen for the sinc-kernel
process [2], and provided the first general result on persistence of GSP’s which does not
require summability or non-negativity of correlations. However, these tools alone were in-
sufficient to provide answers to two long-standing questions formulated by Slepian in his
well known 1962 paper [27]:

• What are the possible asymptotic behaviors of the persistence probability of a GSP on
large intervals?

• What features of the covariance function determine this behavior?

Spectral methods were recently used by Krishna-Krishnapur [18] in order to give a lower
bound of e−cN

2
on the persistence of any GSP over Z, provided that the spectral measure has

a non-trivial absolutely continuous part. This gave rise to other interesting questions, stated
in [18] and related to us also by M. Sodin [28]:

• Is there a GSP that achieves a persistence of the order of e−cN
2
?
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• Is it possible for a GSP over R to have an even lower persistence?

In this paper we combine the spectral methods of [12] with tools from real and harmonic
analysis in order to provide nearly complete answers to all of these questions, in the case
where the spectral measure has a non–trivial absolutely continuous component. While our
methods do not employ [2] directly, they are nonetheless inspired by the behavior of the sinc-
kernel process. Our results promote a point of view which regards persistence as a spectral
property, governed by the interplay between the spectral behavior near zero and near infinity.

1.2. Mathematical overview and discussion. Let T ∈ {Z,R}. A Gaussian process on
T is a random function f : T → R whose finite marginals, i.e. (f(t1), . . . , f(tn)) for any
t1, . . . , tn ∈ T , have multi-variate centered Gaussian distribution. We say that f is stationary
if its distribution is invariant under translations by elements of T . For an introduction to
Gaussian processes see [1].

The persistence probability of a Gaussian stationary process (GSP) f on [0,N ] is defined
by

Pf (N) := P
(
f(t)> 0, ∀t ∈ (0,N ]∩ T

)
.

Notice that we consider persistence above the mean (the zero level). Our methods may be
applied to study other constant levels, though we expect some qualitative differences in the
results.

A GSP is determined uniquely by its covariance kernel r(t) = E[f(0)f(t)], t ∈ T.
Throughout the paper we implicitly assume Gaussian stationary processes to be almost-surely
continuous and with a continuous covariance kernel. Since r is continuous and positive-
definite, Bochner’s theorem implies that there exists a finite, symmetric, non-negative mea-
sure ρ on T ∗ (where R∗ is identified with R, and Z∗ is identified with [−π,π]) such that

(1.1) r(t) = ρ̂(t) =

∫
T∗
e−iλt dρ(λ).

The measure ρ is called the spectral measure of the process f . It is well known that any finite,
symmetric, non-negative measure on T ∗ corresponds to a unique GSP on T (see Lemma 3.7
for a construction).

While our main results are presented in Section 2, we state here a simplified version which
demonstrates our findings for particularly well-behaved spectral measures. We writeA(N) .
B(N) to denote that A(N) ≤ CB(N) for some C > 0 and all N , and A(N) � B(N) to
denote that both A(N) .B(N) and B(N) .A(N).

THEOREM 1.1. Let f be a GSP over R or Z. Suppose that its spectral measure is ab-
solutely continuous with density w(λ) satisfying

∫
|λ|δw(λ)dλ <∞ for some δ > 0, and

c1|λ|α ≤ w(λ) ≤ c2|λ|α for all λ in a neighborhood of 0 (and some α > −1, c1, c2 > 0).
Then , for large enough N :

logPf (N)


�−N1+α logN, α < 0

�−N, α= 0

.−N logN, α > 0.

Moreover, if w(λ) vanishes on an interval containing 0, then logPf (N) .−N2. In this case,
if the process is over R and it satisfies in addition w(λ)≥ λ−η for some η > 0 and all |λ|> 1,
then logPf (N)≤−eCN .
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In Section 2 we provide results which are more general than Theorem 1.1. The results are
given by the spectral mass near the origin ρ([0, 1

N ]). We do not require ρ to have density; but
rather a non-trivial absolutely continuous component for the upper bounds, and no additional
condition at all for the lower bounds.

For measures with a non–vanishing absolutely continuous component, our results prove
the “spectral gap conjecture” [18,28]. This conjecture states that any process whose spectral
measure vanishes on an interval around 0 should have persistence smaller than e−CN

2
. Prior

to this paper there has not been any rigorous example of a GSP whose persistence decays
faster than the order e−CN logN , although it was believed that the lower bound of e−CN

2

given by Krishna-Krishnapur in [18] for processes over Z should be attainable. In a later
work, joint with B. Jaye and F. Nazarov, we further developed the techniques of the present
paper in order to establish the spectral gap conjecture in full generality. This result appears
in a separate paper [13], which concentrates on the case of a spectral gap alone.

Interestingly, our stochastic result regarding a spectral gap corresponds with the following
analytic theorem of Eremenko-Novikov [11]: The Fourier transform of a measure with a
spectral gap has a positive asymptotic density of zeroes on the real line. Roughly speaking,
both results reflect the idea that functions with a spectral gap have a strong tendency to
oscillate. Another result in this flavor was obtained recently by Borichev-Sodin-Weiss [7].
They showed that any finite-valued stationary process on Z which has a spectral gap must
be periodic, thus giving a probabilistic counterpart to a theorem by Helson (see references
within [7]).

One may notice that no matching lower bound is given in Theorem 1.1 for the case α> 0.
Over Z we give such a matching lower bound (see Proposition 1 below), but over R this
is impossible. This is due to an interesting phenomenon which happens only in continuous
time: When the spectral measure vanishes at 0, then the heavier is the spectral tail at infin-
ity – the smaller is the persistence probability. This phenomena is reflected in the estimate
logPf (N) ≤ −eCN appearing in Theorem 1.1, and a precise formulation of it appears in
Proposition 5. A possible interpretation is that the heavy tail makes the process very rough,
and this non-smoothness makes it even harder to stay positive (as opposed to a smooth pro-
cess, for which positivity at a certain point makes it more likely for its whole neighborhood to
be positive). However, if the spectral measure is compactly supported, we believe matching
lower bounds should hold (as is the case over Z). This remains to be studied.

As noted earlier, one novelty in our work is the ability to capture persistence behavior
without requiring absolute summability or non-negativity of correlations. For non-negatively
correlated processes, that is, when r(t)≥ 0 for all t ∈ T , the asymptotic behavior of Pf (N)
could be obtained directly from r(t) without using the spectral measure. This was done by
Dembo-Mukherjee, first in [9] for the case α = 0 and later in [10] for α < 0 (using the
notation of Theorem 1.1). Notice that, when r(t) ≥ 0 the spectral measure at λ = 0 cannot
vanish, so the case α> 0 is impossible.

1.3. Outline of the paper. The rest of the paper is organized as follows.
Section 2 contains more precise formulations of our results. We present several proposi-

tions with explicit upper and lower bounds under spectral conditions (which imply, in partic-
ular, Theorem 1.1). These propositions are all corollaries of Theorems 4.1 and 5.1, which we
formulate in Sections 4 and 5 respectively. In Section 2 we also present Theorem 2.1 which
is an analytic tool in the flavor of the persistence results developed in this paper. Section 3
contains useful tools, such as spectral properties and decompositions of GSPs, ball and tail
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estimates, and well-known Gaussian inequalities. Section 4 is dedicated to the proofs of lower
bounds: We develop a general inequality (Theorem 4.1), from which we deduce Propositions
1 and 2. Section 5 is dedicated to the proofs of upper bounds: We develop a general inequality
(Theorem 5.1) from which we deduce Propositions 3, 4 and 5. Finally, Section 6 contains the
proof of the analytic (non-probabilistic) result, Theorem 2.1, which is used in Section 5.

2. Results. In this section we provide a more precise presentation of our results. Let f
be a GSP over R or Z with spectral measure ρ. For δ ∈R denote the δ-moment of ρ by

mδ =mδ(ρ) :=

∫
T∗
|λ|δ dρ(λ).

Throughout, we assume that ρ is normalized and has some finite positive moment, that is,

(2.1) ∃δ > 0 : mδ <∞, and m0 = ρ(T ∗) = 1.

To capture the spectral behavior near zero we will employ both negative moments and the
total measure on small intervals which we denote by

σ2
N := ρ([0, 1

N ]), for N > 0.

These two ways to describe a measure near 0 are related, e.g. by the following (see Observa-
tion 3.1):

(2.2)

{
If σ2

N ≤ bN−(γ+ε) for some b, ε > 0 and all N > 0, then m−γ <∞.
If m−γ <∞, then σ2

N ≤ bN−γ for some b > 0 and all N > 0.

The absolutely continuous component of ρ is denoted by ρac, and the notation ρac 6= 0
means that it is not trivial. The support of ρac is denoted by sprt (ρac), and |E| denotes the
Lebesgue measure of a set E. We reserve the letter Z to denote a standard Gaussian random
variable, i.e. Z ∼N (0,1).

2.1. Lower bounds. Here we provide explicit lower bounds for the persistence probabil-
ity. These bounds do not require the spectral measure to have a non-trivial absolutely contin-
uous part, and depend only on the spectral mass near the origin. In Section 4 we provide a
more general lower bound (Theorem 4.1) from which these propositions follow. Throughout,
we assume f is a GSP with spectral measure ρ satisfying the conditions in (2.1).

PROPOSITION 1 (explicit lower bounds). Assume that mδ <∞ for some δ > 0. Assume
that σ2

N ≥ bN−γ holds on a subsequence of N, where b, γ > 0 are some constants. Then there
exists C,N0 > 0 such that along this subsequence, for N >N0,

logPf (N)≥


−CNγ logN, γ < 1

−CN, γ = 1

−CN logN, γ > 1, T = Z.

Here N0 and C depend only on b, γ, δ,mδ .

Note that in the case γ > 1, which corresponds to vanishing spectrum at the origin, we
give a lower bound only over T = Z. As was discussed in Section 1.2, a similar lower bound
is not true over R (see Proposition 5 below). However, over Z we obtain additional estimates
in the case of deeply vanishing spectrum at the origin.
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PROPOSITION 2 (lower bounds for vanishing spectrum). Over T = Z, assume that for a
certain N we have Nσ2

N < 1. Then for some universal C > 0 we have

logPf (N)≥CN(log(Nσ2
N )− 1).

In particular, if σ2
N ≥ e−AN

α
for someA> 0 and 0<α≤ 1, then logPf (N)≥−C ′N1+α.

Note that Proposition 2 reproduces the cases γ = 1 and γ > 1 of Proposition 1 (over Z).
However, it does not capture the lower bound of e−cN

2
which holds for any spectral measure

with density, as proven by Krishna-Krishnapur in [18].

2.2. Upper bounds. Here we state explicit upper bounds for the persistence probability.
In Section 5 we provide a more general upper bound (Theorem 5.1) from which these propo-
sitions follow. Throughout, we assume f is a GSP with spectral measure ρ satisfying the
conditions in (2.1).

PROPOSITION 3 (explicit upper bounds). Assume that ρac 6= 0 and σ2
N ≤ bN−γ for all

N > 0 and some b, γ > 0. Then there exist N0,C > 0 such that for all N >N0:

logPf (N)≤


−CNγ logN, γ < 1

−CN, γ = 1

−CN logN, γ > 1.

Here N0 and C depend on b, γ,m−γ+ε,m−2k, ν,E, where ε > 0 is arbitrary, E is a set on
which dρac ≥ νdx and γ = 2k + s with k ∈ N0 and s < 2. The dependence of C on E is
linear in |E|.

If the spectral measure has an infinite order zero at the origin, then the persistence be-
comes much smaller. In particular, the estimate e−cN

2
for the persistence of a process with a

spectral gap is implied by the following proposition. In addition, this proposition provides an
interpolation between this estimate and the results stated in Proposition 3.

PROPOSITION 4 (upper bounds for vanishing spectrum). Assume that ρac 6= 0 and
m−4 <∞. Then for large enough N we have

logPf (N)≤−CNk(N) log
(

cN
k(N)

)
,

where C and c are positive constants depending on ρ, and k = k(N) is any integer such that

1≤ k ≤min(1, c)N, km
1/k
−2k ≤N.

In particular:

• If ρ≡ 0 on [−δ, δ] for some δ > 0, then m−k < δ−k for all k > 0 and logPf (N) .−N2.
• Let A> 0. If m−2k < kAk for all k > 0, then logPf (N) .−N1+ 1

1+A logN .

(An example of this behavior is given by the spectral density e−
1

|λ|A 1[−1,1](λ).)
• If m−2k0 <∞ for some k0 ≥ 2 but m−2k =∞ for k > k0, then logPf (N) .−N logN .

(this is implied also by the case γ > 1 of Proposition 3.)

The next result shows that over R, if the spectral measure vanishes at zero and has a heavy
enough tail at infinity, then the persistence probability is tiny.

PROPOSITION 5 (tiny persistence). Let f be a GSP over R, whose spectral measure
ρ has an absolutely continuous component with density w(λ). Let α > 1. There exists a
constant C > 0 such that the following hold for large enough N .
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1. If ρ= 0 on [−1,1] and w(λ)≥ λ−α for |λ|> 1, then logPf (N)≤−eCN .
2. If m−4(ρ)<∞ and w(λ)≥ λ−α for |λ|> 1, then logPf (N)≤−CN1+ 2

α logN .

Using our methods one can generate many more such examples, for instance, it is possible
to get logPf (N)≤−eC

√
N with only first-order vanishing at 0 (by using a tail of 1

λ log2 λ
on

[1,∞)).

We note that by combining Proposition 1 with Proposition 3 we obtain Theorem 1.1. The
‘moreover’ part of Theorem 1.1 follows from the first cases of Propositions 4 and 5.

2.3. Limitations of analysis near the origin. Proposition 5 indicates that for spectral mea-
sures which nullify near the origin, the asymptotic behavior of logPf (N) is influenced by the
decay of the spectral measure near infinity. However, for compactly supported measures the
asymptotic behavior of logPf (N) appears to be governed, up to a constant, by the spectral
behavior near the origin. Nevertheless, even in this case, the leading constant itself cannot be
determined by this local behavior, as it is affected by the entire measure. We demonstrate this
through the following example, which is proved in Section 5.

PROPOSITION 6 (leading constant). There exist GSPs f1 and f2, whose spectral mea-
sures are supported on [−π,π] and coincide in a neighborhood of 0, for which

C1 <−
1

N
logPf (N)<C2 <−

1

N
logPf2(N)<C3.

for some constants C1,C2,C3 ∈ (0,∞) and all sufficiently large N .

2.4. An analytic result. Finally, we present an analytic result (in the flavor of persistence)
which plays a role in proving our upper bounds. It quantifies the fact that, if a function on
an interval takes values in [−L,L] and has a positive k-th derivative, then the average of
this k-th derivative cannot be too large with respect to L. The statement holds true both on
T = Z and on T = R, where over Z the notion of derivative is the usual discrete one (see
(6.4) below) and integrals are replaced by sums.

THEOREM 2.1 (deterministic result). Let T ∈ {Z,R} and N > 0. Fix k ∈ N such that
k ≤N . Suppose that f : T →R is k-times differentiable and f (k) > 0 on [−N,N ]⊂ T . Then

1

N

∫ 9
20N

− 9
20N

f (k) ≤
(
c0k

N

)k
sup

[−N,N ]

|f |,

where c0 > 0 is a universal constant.

Results of this type play a role in obtaining Remez-type inequalities in the context of
approximation theory. Theorem 2.1 is a variant of a theorem due to Bernstein [4], which
implies that if inf [−N,N ] f

(k) > k! then sup[−N,N ] |f | ≥ (N/c0)k (see [14, Sec. 2.1] for this
result and a short discussion). It appears though, that Bernstein’s proof has never appeared in
English, and as neither of the theorems implies the other, we provide a proof of our own in
Section 6. This proof also employs results from approximation theory and relies on the fact
that the k-th degree Chebyshev polynomial is in some sense extremal for this inequality.
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3. Preliminaries. This section contains tools which will be used throughout our proofs.
These tools include properties implied by finite spectral moments, decompositions of a GSP,
basic calculus for GSPs (that is, properties of its derivative and anti-derivative processes), ball
and tail estimates, and some famous Gaussian inequalities. We begin with some notations and
then sort our tools by topic.

3.1. Notation. Recall that we let T be either R or Z and correspondingly, we let T ∗

be R or [−π,π]. Let ρ be a positive, symmetric, and finite measure over T ∗ and denote by
L2
ρ(T

∗) the Hilbert space of functions {ϕ :
∫
|ϕ|2dρ <∞} with the inner product 〈ϕ1,ϕ2〉=∫

T∗ ϕ1ϕ2dρ. In case ρ has density 1IE with E ⊆ T ∗ being a compact, symmetric measurable
set, we abbreviate this space by L2

E .
Unless stated otherwise, we always assume f : T →R to be a GSP with spectral measure

ρ and covariance function r. As before, for δ ∈ R we denote the δ-moment of ρ by mδ =∫
T∗ |λ|

δ dρ(λ). Recall that we assume mδ <∞ for some δ > 0.
A set of integers Λ⊂ Z is said to have positive (central) density if

D−(Λ) := lim inf
N→∞

|Λ∩ [−N,N ]|
2N

> 0.

The symbol d
= indicates equality in distribution (between two random variables or pro-

cesses on the same space). The symbol ⊕ is used to sum two independent processes.

3.2. Spectral moments. Below are a few observations regarding spectral moments. The
first relates negative moments with the spectral mass near 0, as was stated in (2.2).

OBSERVATION 3.1. Let γ, ε > 0.

i. If ρ([0, λ])≤ bλγ+ε for some b > 0 and all λ > 0, then m−γ <∞.
ii. If m−γ <∞ then ρ([0, λ])≤ bλγ with b= 1

2m−γ .

PROOF. For the first item, assume that ρ([0, λ])≤ bλγ+ε and use integration by parts:∫ ∞
0

dρ(λ)

λγ
=− lim

λ→0

ρ([0, λ])

λγ
+ γ

∫ ∞
0

ρ([0, λ])

λγ+1
dλ

≤ 0 + γ

(
b

∫ 1

0

λ−1+εdλ+

∫ ∞
1

dλ

λ1+γ

)
<∞.

For the second part, notice that
∫∞

0
dρ(λ)
λγ ≥

1
τγ

∫ τ
0 dρ(λ) for any τ > 0.

The second observation relates positive moments with the behavior of the covariance func-
tion near 0.

OBSERVATION 3.2. If mδ <∞ for some δ ∈ (0,2], then

∀t ∈ T : r(t)≥ r(0)−C(δ)mδ|t|δ,
where C(δ) is a positive constant depending only on δ. In particular, C(2) = 1

2 .

PROOF. By definition r(t) is symmetric and we have:

r(0)− r(t) =

∫
R

(
1− cos(λt)

)
dρ(λ)≤C|t|δ

∫
R
|λ|δdρ(λ),

where C = C(δ) = supx∈R
1−cos(x)
|x|δ <∞ is finite when δ ∈ (0,2]. In particular, C(2) = 1

2 .
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We conclude with a property of negative moments.

CLAIM 3.3. For any spectral measure ρ, there exists τ ∈ (0,∞) such that m−2k+2 ≤
τ ·m−2k for all k ∈N.

PROOF. LetM > 1 be such that
∫M

0 dρ≥ 1
2

∫∞
0 dρ. This implies that

∫M
0 dρ≥

∫∞
M dρ and

so, we have for every j ∈N ,∫ M

0

dρ(λ)

λj
≥ 1

M j

∫ M

0

dρ(λ)≥ 1

M j

∫ ∞
M

dρ(λ)≥
∫ ∞
M

dρ(λ)

λj
.

It follows that for every j ∈N we have
∫M

0
dρ(λ)
λj ≥

1
2

∫∞
0

dρ(λ)
λj . We can therefore conclude

that

1

2
m−2k ≥

∫ M

0

dρ(λ)

λ2k
≥ 1

M2

∫ M

0

dρ(λ)

λ2k−2
≥ 1

2M2

∫ ∞
0

dρ(λ)

λ2k−2
=

1

4M2
m−2k+2.

3.3. Decomposition of a GSP.

3.3.1. Spectral decomposition. Assume that ρac 6= 0. This condition may be written
more explicitly as follows: There exists a number ν > 0 and a bounded set of positive mea-
sure E ⊂ T ∗ such that

(3.1) dρ= ν1IE(λ)dλ+ dµ, where µ is a non-negative measure.

By rescaling f we will assume that E ⊂ [−π,π] (see Claim 5.1). The next decomposition is
an extension of [12, Obs. 1], where it was assumed that E is an interval.

CLAIM 3.4. Suppose that condition (3.1) holds with E ⊆ [−π,π]. Then, there exist Λ =

{λn} ⊂ Z of positive density A, and a constant B > 0, such that f(λn)
d
=BZn ⊕ gn, where

Zn are i.i.d. standard Gaussian random variables and gn is a Gaussian process on Z.
Moreover, given ε > 0 one can have A = (1− ε) |E|2π , B =

√
c(ε)ν|E|, where c(ε) > 0 is a

constant depending only on ε.

The proof of Claim 3.4 is based on the following result by Bourgain and Tzafriri, which
is a consequence of their celebrated “Restricted Invertibility Theorem” [5]. The ‘moreover’
part is due to Vershynin [29, Thm. 1.5].

THEOREM A (Bourgain, Tzafriri, Vershynin). Let E ⊆ [−π,π] be a set of positive
Lebesgue measure. Then, there exist Λ = {λn} ⊂ Z and constants A,D > 0, such that:

(i) ∀{an} ∈ l2(Z) : D
∑
|an|2 ≤

∥∥∑ane
−iλnx

∥∥2

L2(E)
≤
∑
|an|2.

(ii) lim infN→∞
|Λ∩[−N,N ]|

2N >A.

Moreover, given ε > 0 one can have A = (1− ε) |E|2π and D = c(ε)|E|, where c(ε) > 0 is a
constant depending only on ε.

PROOF OF CLAIM 3.4. Let ε > 0, and let Λ = {λn} ⊂ Z be the sequence whose existence
is guaranteed by Theorem A. We have:∥∥∥∥∥∑

n

ane
−iλnx

∥∥∥∥∥
2

L2
ρ

=
∑
n,m

anam

∫
e−i(λn−λm)xdρ=

∑
n,m

anamr(λn − λm) = aTΣa,
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where Σ = (r(λn − λm))n,m∈Z is the infinite covariance matrix of the Gaussian process
(f(λn))n∈Z. We note that this matrix is symmetric, as r is symmetric. By item (i) of Theorem
A, and condition (3.1), we have for all {an} ∈ l2(Z),

Dν
∑
|an|2 ≤ ν

∥∥∥∑ane
−iλnx

∥∥∥2

L2(E)
≤
∥∥∥∑ane

−iλnx
∥∥∥2

L2
ρ

= aTΣa.

It follows that Σ− νDI defines a positive-definite operator on `2(Z) (here I(n,m) = 1I{n=
m} is the identity). Therefore, it is the covariance of some Gaussian process g : Z→ R (see
e.g. [21, Sec. 4, Thm. 2]). We obtain that

f(λn)
d
=
√
νDZn ⊕ gn, Zn ∼N (0,1) i.i.d.

This establishes the result with B =
√
νD =

√
c(ε)ν|E|.

The decomposition in Claim 3.4 will be useful to us together with the following two
claims, the first of which appeared in [12, Prop. 3.1].

CLAIM 3.5. Let (Zj)j∈Z be a sequence of i.i.d. centered Gaussian random variables. Let
q, b1, . . . , bN ∈R be numbers such that 1

N

∑N
j=1 bj ≤ q. Then:

P (Zj + bj≥0, 1≤ j ≤N)≤ P(Z1 ≤ q)N .

PROOF. Write Φ(b) := P(Z1 ≤ b) = P(Z1 ≥ −b). One may check that x 7→ log Φ(x) is
monotone and concave (for x > 0 it is straightforward, for x ≤ 0 one should use the tail
estimate in Lemma 3.14(a)). Thus we have:

logP (Zj + bj ≥ 0, 1≤ j ≤N) =

N∑
j=1

log Φ(bj)≤N · log Φ

 1

N

N∑
j=1

bj

≤N · log Φ(q).

CLAIM 3.6. Let f : Z/NZ→ R be a function satisfying 1
N

∑N−1
n=0 f(n) ≤ L, for some

L ∈R,N ∈N. Then, for every S ⊆ Z/NZ there exists τ ∈ Z/NZ, such that

1

|S|
∑
n∈S

f(n+ τ)≤ L.

PROOF. Let g : Z/NZ→ R be the function defined by g(τ) = 1
|S|
∑

n∈S f(n+ τ). Then
1
N

∑N−1
τ=0 g(τ)≤ L, which implies that there exists τ ∈ Z/NZ such that g(τ)≤ L.

3.3.2. Hilbert decomposition. We turn to a different type of decomposition. The next
proposition gives a classical basis representation of GSP’s.

LEMMA 3.7. Let ρ be a symmetric, non-negative measure on T ∗ with a finite positive
moment, and let ϕn be an orthonormal basis in L2

ρ(T
∗) which satisfies, for every n ∈ N,

ϕn(−λ) = ϕn(λ). Denote ψn(t) =
∫
R e
−iλtϕn(λ)dρ(λ). Then

f(t) =
∑
n

ζnψn(t), ζn ∼N (0,1) i.i.d.

is a continuous GSP over T with spectral measure ρ.
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We note that every space L2
ρ(T

∗), with a measure ρ satisfying the requirements above,
admits such an orthonormal basis. In this case, the condition on the elements of the basis,
ϕn(−λ) = ϕn(λ), implies that the functions ψn(t) are real.

PROOF. Standard arguments (see [16, Chapter 3, Thm. 2] or [15, Lemma 2.2.3]) yield that
the series defining f converges almost surely to a Gaussian function, with covariance

K(t, s) = E[f(t)f(s)] =
∑
n

ψn(t)ψn(s).

Denote et(λ) = eiλt. Since {ϕn} is an orthonormal basis in L2
ρ(T

∗), we have

∑
n

ψn(t)ψn(s) =
∑
n

〈ϕn, et〉L2
ρ(T∗)〈ϕn, es〉L2

ρ(T∗) = 〈et, es〉L2
ρ(T∗) = ρ̂(t− s).

Thus f is stationary with spectral measure ρ. Almost sure continuity of f follows from
the moment condition on ρ (in fact, it follows from the weaker condition

∫
log1+ε(1 +

|λ|)dρ(λ)<∞ for some ε > 0, see [1, Ch. 1.4.1]).

From Lemma 3.7 we deduce the following claim.

CLAIM 3.8. Let ϕ ∈ L2
ρ be a real symmetric function such that ‖ϕ‖L2

ρ
= 1. Write ψ(t) =∫

R e
−iλtϕ(λ)dρ(λ), then we have the decomposition

f(t)
d
= ζ ·ψ(t)⊕ g,

where ζ ∼N (0,1) and g is a Gaussian process which is independent of ζ .

PROOF. Such a function ϕ can be completed into a basis of L2
ρ, which satisfies the condi-

tions of Lemma 3.7. The result immediately follows.

3.4. Calculus of GSP’s. Next we discuss the relationship between the spectral measure
and differentiation or integration. The derivative of a function f : T →R, where T ∈ {Z,R},
is defined to be

f ′(t) =

{
limδ→0

f(t+δ)−f(t)
δ , T = R

f(t+ 1)− f(t), T = Z.

OBSERVATION 3.9 (derivative). Suppose that mδ <∞ for some δ > 2. Then f is a.s.
continuously differentiable, and f ′ is a GSP with spectral measure µ defined by:

(3.2) dµ(λ) =

{
λ2dρ(λ), T = R
2(1− cosλ)dρ(λ) T = Z.

PROOF. In the case T = R, the fact that f ′ exists a.s. and is a stationary continuous Gaus-
sian process follows from the moment condition (see [1, Ch. 1.4.1]). Differentiating the rela-
tion E[f(t)f(s)] =

∫
R e
−iλ(t−s)dρ(λ) once by t and once by s yields

µ̂(t− s) = E[f ′(t)f ′(s)] =

∫
R
e−iλ(t−s)λ2dρ(λ).
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In the case T = Z, differentiability is immediate and we compute:

µ̂(m− n) = E[f ′(m)f ′(n)] = E[(f(m+ 1)− f(m))(f(n+ 1)− f(n))]

= 2r(m− n)− r(m− n+ 1)− r(m− n− 1)

=

∫
(2− e−iλ − eiλ)e−iλ(m−n)dρ(λ) =

∫
e−iλ(m−n)2(1− cosλ)dρ(λ).

OBSERVATION 3.10 (stationary anti-derivative). Suppose that m−2 <∞ and mδ <∞
for some δ > 0. Then there exists a GSP F : T →R such that F ′ d= f .

PROOF. Let µ be the measure defined by

(3.3) dµ(λ) =

{
dρ(λ)
λ2 , T = R
dρ(λ)

2(1−cosλ) T = Z.

By the premise µ is a finite, non-negative, symmetric measure, and therefore defines a GSP
which we denote by F . Moreover, in the case T = R we have m2+δ(µ) =mδ(ρ)<∞. Thus
by Observation 3.9 it follows that F is a.s. continuously differentiable and F ′ d= f .

Observation 3.10 asserts that if m−2 <∞ then the anti–derivative process is stationary,
and in particular its variance is uniformly bounded. The next lemma, which is a generalization
of Proposition 3.2 in [12], provides estimates for the variance of the anti-derivative of a GSP
even when the latter is not stationary. We formulate and prove it in continuous time, noting
that the discrete analogue follows by simple modifications.

LEMMA 3.11 (general anti-derivative). Let b≥ 0 and γ ∈ [0,2). Suppose that ρ([0, λ])≤
bλγ for all λ > 0. Then for all N > 0:

var

(∫ N

0

f(t)dt

)
≤ bC(γ) var (f(0)) ·N2−γ ,

where C(γ) = 16
2−γ .

PROOF. Without loss of generality assume var (f(0)) = 1. We calculate the variance:

var

(∫ N

0

f(t)dt

)
= E

[(∫ N

0

f(t)dt

)2
]

=

∫∫
[0,N ]2

E(f(t)f(s))dt ds

=

∫ N

0

∫ N

0

ρ̂(t− s)dt ds=N

∫
|t|<N

(
1− |t|

N

)
ρ̂(t)dt.

The change in order of integration and expectation follows from Fubini’s theorem. The in-
verse Fourier transform of N(1− |t|N )1I[−N,N ](t) is given by N2 sinc2(N2 λ) where sinc(x) =
sinx
x (the definition of Fourier transform is given in (1.1)). We use the estimate

sinc2(Nλ/2)≤

{
1, |λ| ≤ 1

N ,

4(Nλ)−2, |λ|> 1
N ,
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combined with Parseval’s formula [17, Sec 2.2], to get:

var

(∫ N

0

f(t)dt

)
=N2

∫
R

sinc2(Nλ/2)dρ(λ)

≤ 2N2ρ([0, 1
N ]) + 8

∫ ∞
1/N

dρ(λ)

λ2

= 2N2ρ([0, 1
N ]) + 8

(
2

∫ ∞
1/N

ρ([0, λ])

λ3
dλ−N2ρ([0, 1

N ])

)
≤ 16b

∫ ∞
1/N

λγ−3dλ≤ 16b

2− γ
N2−γ .

Lastly we need estimates on the supremum of a GSP and its anti-derivative. We achieve
this using Dudley’s metric entropy bound [1, Thm. 1.3.3], which reads as follows. For a Gaus-
sian process H on I , we define a canonical semi-metric by dH(a, b) :=

√
E(H(a)−H(b))2.

For any ε > 0, let N(ε) be the minimal number of dH -balls of radius ε which cover I . Then
Dudley’s bound states that there exists a universal constant K > 0 such that

(3.4) E sup
I
H ≤K

∫ diam(I)

0

√
logN(ε)dε,

where diam(I) is the diameter of I under dH . The following lemmas are applications of this
bound.

LEMMA 3.12. Let f be a GSP for which m0 =
∫
dρ(λ) and m2 =

∫
λ2dρ(λ) <∞.

Denote a =
√

m2

4m0
. Then there is a universal constant K > 0 such that for all N > 1 we

have

E

(
sup
[0,N ]

f

)
≤K

√
m0 ·max{log(aN),1},

PROOF. By stationarity we have df (x, y) =
√

2(r(0)− r(x− y)), from which we de-
duce diam([0,N ])≤

√
4m0. Moreover, by Observation 3.2, df (x, y)≤√m2|x− y|, which

implies that N(ε)≤max(1,
√
m2

N
ε ) and diam([0,N ])≤√m2N . We consider two cases. If

2
√

4m0 ≤
√
m2N , then by Dudley’s bound

E sup
[0,N ]

f ≤K
∫ √4m0

0

√
log

(√
m2N

ε

)
dε=K

√
m2N

∫ ∞√
m2

4m0
N

√
logu

u2
du.

Note that for A> 1 one has:∫ ∞
A

√
logu

u2
du=

√
logA

A
+

1

2

∫ ∞
A

1

u2
√

logu
du≤

√
logA

A

(
1 +

1

2 logA

)
,

which implies that under these conditions E sup[0,N ] f ≤ K̃
√
m0 log(aN) where a=

√
m2

4m0

and K̃ is some universal constant. On the other hand, if 2
√

4m0 ≥
√
m2N Dudley’s bound

gives

E sup
[0,N ]

f ≤K
∫ √m2N

0

√
log

(√
m2N

ε

)
dε=K

√
m2N

∫ ∞
1

√
logu

u2
du≤ K̃

√
m0,

so the desired bound holds.
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LEMMA 3.13. Let f be a GSP such that ρ([0, λ]) ≤ bλγ for some 0 ≤ γ < 2 and all
λ > 0. Then, for all N > 1:

E sup
x∈[0,N ]

(∫ x

0

f(t)dt

)
≤ c(γ)

√
bm0N

1−γ
2 ,

where c(γ)> 0 is a constant depending only on γ and m0 =
∫
dρ.

PROOF. DenoteH(x) =
∫ x

0 f(t)dt. ThenH is a Gaussian process, whose canonical semi-
metric may be bounded by Lemma 3.11:

dH(x, y) =

√
var

(∫ y

x

f(t)dt

)
=

√
var

(∫ y−x

0

f(t)dt

)
≤C · |y− x|1−

γ
2 ,

where C = c0(γ)
√
bm0. From now on cj , j ∈ N, will denote constants which depend only

on γ. Denoting α := 1− γ
2 , we see that diam([0,N ])≤CNα, andN(ε)≤max

(
1, N

(ε/C)1/α

)
(by taking balls of Eucleadian radius (ε/C)1/α). By Dudley’s bound (3.4), for 0≤ γ < 2 we
have:

E sup
x∈[0,N ]

H(x)≤K
∫ CNα

0

√
log

(
C1/αN

ε1/α

)
dε=

K√
α

∫ CNα

0

√
log

(
CNα

ε

)
dε

= c1(γ)CNα

∫ ∞
1

√
logu

u2
du= c2(γ)

√
bm0N

1−γ2 .

3.5. Ball and tail estimates. The terms “ball” and “tail” events refer to a stochastic pro-
cess remaining inside or outside a ball, respectively. These have been immensely studied, see
e.g. [20]. The following bounds, which will be repeatedly used, are ball and tail estimates for
the one-dimensional Gaussian variable Z ∼N (0,1).

LEMMA 3.14. For all x > 0:

(a) 1√
2π

(
1
x −

1
x3

)
e−x

2/2 ≤ P(Z > x)≤ 1√
2π

1
xe
−x2/2.

In particular, for x≥ 2 : e−x
2 ≤ P(Z > x)≤ e−x2/2.

(b)
√

2
πxe

−x2/2 ≤ P(|Z| ≤ x)≤ x.
In particular, for 0< x≤ 1 : 1

4x≤ P(|Z| ≤ x)≤ x.

We omit the proof, as its first part is a standard bound on the Gaussian tail (see [1, eq.
(1.2.2)]), while the second part follows from a straightforward integral estimate.

The estimates in Lemma 3.14 imply the following comparison of tail probabilities.

CLAIM 3.15. For any δ > 0 there exists θ > 0 such that P
(
Z ≤ x

)
≤ P

(
|Z| ≤ θx

)
for

all x > δ.

PROOF. We first note that the inequality in the statement can be rewritten as P
(
Z > x

)
≥

P(|Z| > θx). Let δ > 0. There exists θ1 = θ1(δ) such that P(Z > 2) ≥ P(|Z| > θ1δ). Set
θ = max{2, θ1}. To show that the inequality above holds for all x≥ δ we consider two cases.
First, assume that x≥ 2. Then, by part (a) of Lemma 3.14 we have

P(Z > x)≥ e−x2 ≥ 2e−(2x)2/2 ≥ P(|Z|> 2x)≥ P(|Z|> θx).
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Next, consider the case where δ ≤ x≤ 2. Then,

P(Z > x)≥ P(Z > 2)≥ P(|Z|> θ1δ)≥ P(|Z|> θx).

Now we turn to bound the ball probability of a Gaussian process. For discrete time this is
given by the Khatri-Sidak inequality [22, Ch. 2.4], which is a particular case of the recently
proved Gaussian correlation inequality [19, 24].

LEMMA 3.16 (Khatri-Sidak). for any ` > 0 and any centered Gaussian vector Z one
has:

P(|Zj | ≤ `, j = 1, . . . ,N)≥
N∏
j=1

P(|Zj | ≤ `).

The next lemma extends this inequality to continuous time, provided that ` is large enough.
We use the standard “chaining method”, which is nicely presented in [20].

LEMMA 3.17 (Large ball). Let h be a GSP over R which satisfies mδ <∞ with a given
δ > 0. Then there exist `0 > 0 and c≥ 1 such that for all ` > `0 and all N ∈N the following
holds:

P (|h(t)| ≤ `, ∀t ∈ [0,N ])≥ P (c|h(0)| ≤ `)N .

The constants c and `0 depend only on δ, mδ and m0.

We remark that the dependence of the constant c on properties of the spectral measure is
essential, as can be seen by scaling arguments. This is a major difference between continuous-
time (i.e. Lemma 3.17) and discrete-time (i.e. Lemma 3.16).

PROOF. Assume, without loss of generality, that m0 = varh(0) = 1. Fix a number c≥ 1
(to be specified later) and let `0 ∈N be large enough such that, in particular,

(3.5) e−( `0c )
2

≤ 1
12 .

By part (a) of Lemma 3.14, for any `≥ `0 we have:

(3.6) P
(
|h(0)| ≤ `

c

)N
≤ (1− 2e−

`2

c2 )N ≤ exp(−2Ne−
`2

c2 ),

where in the right inequality we used the fact that log(1− x) ≤ −x for all 0 < x < 1. Let
α= 1 +

∑∞
k=1

1
k2 . For k ∈N, define the event

Ak =
N2k⋂
j=1

{∣∣h(j2−k)− h((j − 1)2−k)
∣∣≤ `

αk2

}
,

while A0 =
⋂N
j=0

{
|h(j)| ≤ `

α

}
. Since every real number equals n+

∑∞
k=1 εk2

−k for some
n ∈ Z and εk ∈ {0,1}, the almost-sure continuity of h implies that,⋂

k≥0

Ak ⊂ {|h(t)| ≤ `, ∀t ∈ [0,N ]}.
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Therefore,

P
(
|h(t)| ≤ `, ∀t ∈ [0,N ]

)
≥ P

( ⋂
k≥0

Ak

)
= lim

K→∞
P
( ⋂

0≤k≤K

Ak

)
.

Now, by Observation 3.2 we have var
(
h(2−k) − h(0)

)
= 2(1 − r(2−k)) ≤ β2−dk, where

d= min(δ,2) and β = β(d,md) is a given constant. By Lemma 3.16, stationarity and Lemma
3.14(a), we have:

P(∩0≤k≤KAk)≥ P
(
|h(0)| ≤ `

α

)N ∏
1≤k≤K

P
(
|h(2−k)− h(0)| ≤ `

αk2

)N2k

≥
(

1− 2e−
`2

2α2

)N ∏
1≤k≤K

(
1− 2e

− `22dk

2βα2k4

)N2k

.

Since −2x≤ log(1− x) for all 0< x < 1
2 , we find that if `0 is large enough then all `≥ `0

satisfy

P
(
|h(t)| ≤ `, ∀t ∈ [0,N ]

)
≥ exp

(
−4N

(
e−

`2

2α2 +

K∑
k=1

2ke
− `22dk

2βα2k4

))
.

In light of (3.6), we need only check that there is a choice of `0 and c so that for any ` > `0
one has:

exp

(
−4N

(
e−

`2

2α2 +

∞∑
k=1

2ke
− 2dk

2βα2k4
`2

))
≥ exp(−2Ne−

`2

c2 ),

which is equivalent to
∞∑
k=1

2ke
− 2dk

2βα2k4
`2 ≤ 1

2
e−( `c)

2

− e−
1
2( `α)

2

.

If c2 ≥ 4α2, it is enough to show that
∞∑
k=1

2ke
− 2dk

2βα2k4
`2 ≤ 1

2
e−( `c)

2

− e−2( `c)
2

,

which by applying (3.5) reduces to
∞∑
k=1

2ke
− 2dk

2βα2k4
`2 ≤ 1

3
e−

`2

c2 .

Setting
2

c2
= min

(
min
k∈N

2dk

2βα2k5
,

1

2α2

)
and using the inequality

∑∞
k=1 q

k ≤ 2q for q < 1
2 ,

we have:
∞∑
k=1

2ke
− 2dk

2βα2k4
`2 ≤

∞∑
k=1

(2e−2`2/c2)k ≤ 4e−2`2/c2 ≤ 1

3
e−

`2

c2 ,

where in each of the last two inequalities we used the estimate (3.5). This completes the
proof.
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3.6. Two famous Gaussian inequalities. We end with two famous Gaussian bounds. The
first is a comparison between ball probabilities due to Anderson [22, Ch. 2.3].

LEMMA 3.18 (Anderson). Let X,Y be two independent, centered Gaussian processes
on I . Then for any ` > 0,

P
(

sup
I
|X ⊕ Y | ≤ `

)
≤ P

(
sup
I
|X| ≤ `

)
.

The second lemma is due independently to Borell and Tsirelson-Ibragimov-Sudakov, see
[1, Thm. 2.1.1].

LEMMA 3.19 (Borell-TIS). Let X be a centered Gaussian process on I which is almost
surely bounded. Then for all u > 0 we have:

P
(

sup
I
X −E sup

I
X > u

)
≤ exp

(
− u2

2σI

)
,

where σI = supt∈I varX(t).

4. Lower bounds. The main result of this section is the following general inequality.

THEOREM 4.1 (general lower bound). Let f be a GSP with spectral measure ρ obeying
(2.1), and let δ > 0 be such that mδ =mδ(ρ)<∞. Then there exist

β =

{
β(δ,mδ), T = R
2
√

2, T = Z
and `0 =

{
`0(δ,mδ), T = R
0, T = Z

such that, for all ` > `0 and N > 0, we have:

Pf (N)≥ P
(
σNZ > `

)
· P
(
β|Z|< `

)N
.

Theorem 4.1 gives a recipe for estimating Pf (N) from below: given N and ρ, one should
choose a level `= `(N,ρ) so that the factors in the theorem’s estimate are of the same order.
This recipe is used to derive Propositions 1 and 2. We start by proving Theorem 4.1.

4.1. General lower bound: proof of Theorem 4.1 .

PROOF. We use the Hilbert decomposition discussed in Subsection 3.3.2. Fix N > 0 and
define

ϕN :=
1√
2σN

11[− 1
N
, 1
N

]∩sprtρ,

where, as in the introduction, σ2
N = ρ([0,1/N ]). Then, ϕN ∈ L2

ρ and ‖ϕN‖L2
ρ

= 1. Write
ψN (t) =

∫
T∗ e

−iλtϕ(λ)dρ(λ). Claim 3.8 implies that

f(t)
d
= ζψN (t)⊕R(t)

where ζ ∼N(0,1) and R is a centered Gaussian (not necessarily stationary) process. Thus,
for any ` > 0 we have:

(4.1) Pf (N)≥ P
(
ζψN (t)≥ `, ∀t ∈ [0,N ]

)
· P
(
|R(t)| ≤ `, ∀t ∈ [0,N ]

)
.
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To estimate the first term, we note that for t ∈ [0,N ] the function ψN satisfies

ψN (t) =
1√
2σN

∫ 1
N

0

cos(tλ)dρ(λ)≥ 1√
2σN

cos

(
t

N

)
σ2
N ≥

1

2
√

2
σN .

Therefore,

P(ζψN (t)≥ `,∀t ∈ [0,N ])≥ P
(
σNζ ≥ 2

√
2`
)
.

For the second term, we use Lemma 3.18 to get:

P(|R(t)| ≤ `, t ∈ [0,N ])≥ P(|f(t)| ≤ `, t ∈ [0,N ]).

We now apply ball estimates – Lemma 3.16 over Z, and Lemma 3.17 over R – to obtain:

P
(
|f(t)| ≤ `, t ∈ [0,N ]

)
≥ P

(
β|f(0)| ≤ `

)N
,

where over Z the above is valid for all ` > 0 and with β = 1, while over R, as varf(0) = 1, it
is valid with ` > `0(mδ, δ) and a certain β = β(δ,mδ). By plugging our estimates back into
(4.1) and substituting ˜̀= 2

√
2`, the result follows.

4.2. Explicit lower bounds: proof of Proposition 1 . Let `0 = 0 and β = 1 over Z, while
`0 = `0(mδ, δ) and β = β(δ,mδ) over R as are given in Theorem 4.1. Applying Lemma
3.14(a) to Theorem 4.1 gives the following estimate for all ` >max{`0,2σN} and N > 0:

(4.2) Pf (N)≥ exp
(
−`2/σ2

N

)
· P(β|Z| ≤ `)N .

By our premise, there are some b, γ > 0 such that σ2
N ≥ bN−γ along a subsequence of N .

Let N be a member of that subsequence. We will choose the level `= `(N) and estimate the
terms in (4.2) in each of three cases.

Case 1: spectrum exploding at 0 (γ < 1). Put `= `(N) = β
√

2 logN , then there exists
N0 such that for N >N0 we have `(N)> `0. This yields for the first term

exp
(
−`2/σ2

N

)
≥ e−CNγ logN ,

while by Lemma 3.14(a) we have for the second term

P
(
β|Z| ≤ `

)N
≥
(

1− 2e− logN
)N

=
(
1− 2

N

)N ≥ e−2.

Case 2: spectrum bounded near 0 (γ = 1). Fix an arbitrary ` >max{`0, β}. Then

exp
(
−`2/σ2

N

)
≥ e−`2N/b,

while

P(β|Z| ≤ `)N ≥ P(|Z| ≤ 1)N = e−cN .

Case 3: spectrum vanishing at 0 (γ > 1) over Z. Put `2 = 8Nσ2
N ≥ 8bN1−γ . The first

term is

exp
(
−`2/σ2

N

)
= e−8N .

Using Lemma 3.14(b) we bound the second term:

P
(

2
√

2|Z| ≤ `
)N
≥ P

(
|Z| ≤

√
bN (1−γ)/2

)N
≥
(√

b
4 N

(1−γ)/2
)N
≥ e−CN logN .

In all cases, the estimate stated in Proposition 1 follows.
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4.3. Vanishing spectrum over Z: proof of Proposition 2 . Over T = Z, assume that
Nσ2

N < 1. We imitate the proof of the case γ > 1 of Proposition 1, and set `2 = 8Nσ2
N . We

estimate both parts of (4.2). As above, the first term is estimated by e−8N . By Lemma 3.14(b)
the second term satisfies

P
(

2
√

2|Z| ≤ `
)N

= P
(
|Z| ≤ σN

√
N
)N
≥ eCN(log(Nσ2

N )−1).

The estimate follows.

5. Upper bounds . The main result of this section is a general upper bound on the per-
sistence probability.

Assume that f is a GSP whose spectral measure ρ satisfies ρac 6= 0. This implies that there
exist ν > 0 and E ⊆ R s.t. E is a bounded set of positive measure on which dρac ≥ ν dx.
Further, assume that γ ≥ 0 is such that m−γ(ρ)<∞ and let k ∈ N ∪ {0} and 0≤ s < 2 be
such that γ = 2k+ s. Put r = max{k, s/2}. We have the following.

THEOREM 5.1 (general upper bound). There exist universal positive constants c0, c1,
and a constant c(s) depending only on s, such that the following holds; let f be a GSP
whose spectral measure ρ obeys (2.1) and has a nontrivial absolutely continuous component.
Let E,ν, γ, k, s, r be as described above. Set

α= c0|E|, β =

(c1k)−k
√

ν|E|
m−2k

, k > 0

c(s)
√

ν|E|
m−s

, k = 0
and θ =

{√
m−2k+2(ρ)
4m−2k(ρ) , k > 0

1, k = 0.

Then there exists N0(E)> 0 such that for every N >max{N0,2k} and

`0(N) = 2N−r max{
√

log(θN),1}

the following holds for all ` > `0(N):

Pf (N)≤ 2P
(
N−rZ > `

)
+ 2P

(
β|Z|< `

)αN
.

We make two additional remarks which we establish at the end of the proof of Theo-
rem 5.1.

REMARK 1. Over R, if E contains an interval J , then one can take N0 = 2π
|J | .

REMARK 2. In case γ < 2, one may replace the condition m−γ <∞ with σ2
N ≤ bN−γ

for all N > 0 and some b > 0. In this case β = c(s)
√

ν|E|
2b , while other constants remain

unchanged.

Theorem 5.1 gives a recipe for estimating Pf (N): given N and ρ, one should choose a
level ` = `(N,ρ) so that the factors in the theorem’s estimate are of the same order. This
recipe is used to derive Propositions 3, 4 and 5.

We will use the following reduction.

CLAIM 5.1. It is enough to prove Theorem 5.1 assuming that condition (3.1) holds for
E ⊆ [−π,π].
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PROOF. Over Z the claim is trivial. Let T = R. Suppose that Theorem 5.1 holds when
E ⊆ [−π,π]. In the general case, let ρ = ν1IE + µ for some ν > 0 and measurable E ⊂ R.
Set the constants α and β, as well as the function `0(N), as defined in Theorem 5.1. Let q > 1
be such that 1

qE ⊆ [−π,π] and let f̃ be the GSP defined by f̃(x) = f(xq ). Then f̃ has spectral
measure ρ̃ = qν1I1

q E
+ µ̃ whose moments satisfy mγ(ρ̃) = q−γmγ(ρ) for any γ ∈ R. Thus

the corresponding values of α̃, β̃ and ˜̀
0(N) satisfy: α̃ = q−1α, β̃ = q−rβ and ˜̀

0(qN) =
q−r`0(N), where as above, r = max{k, s/2}. Set N0(1

qE) as defined in Theorem 5.1 and
let N0(E) =N0(1

qE). Note that since q > 1, if N >max{N0(1
qE), k} then qN satisfies the

same condition. So, given N >max{N0(1
qE), k} and ` > `0(N) we may apply Theorem 5.1

for f̃ , with Ñ = qN and ˜̀= q−r` > ˜̀
0(Ñ), to get:

Pf (N) = P
(
f(t)> 0 ∀t ∈ [0,N ]

)
= P

(
f̃(t)> 0 ∀t ∈ [0, qN ]

)
≤ P

(
(qN)−rZ > q−r`

)
+ 2P

(
q−rβ|Z| ≤ q−r`

)α
q ·qN

= P
(
N−rZ > `

)
+ 2P (β|Z| ≤ `)αN .

5.1. General upper bound: proof of Theorem 5.1 . We turn to prove Theorem 5.1. We
will give full details for the case T = R, as the proof for T = Z is almost identical. Through-
out the proof we denote by C universal constants which may change from line to line, and by
C(s) constants depending only on s, which again, may change from line to line. We divide
the proof into several steps.

Step I: Let γ > 0 be such that m−γ <∞ and write γ = 2k + s, where k ∈ N ∪ {0} and
0 ≤ s < 2. If k 6= 0 then, by applying Observation 3.10 k times, we find that there exists a
GSP Fk which satisfies F (k)

k
d
= f . We denote the spectral measure of Fk by µk and note that,

by Observation 3.9, dµk = dρ(λ)
λ2k

. We therefore have, due to stationarity,

var (Fk(t)) =m−2k(ρ) ∀t ∈R,

and, due to Lemma 3.12,

E
(

sup
[0,N ]

Fk

)
≤C

√
m−2k(ρ) max{log (θkN) ,1},

where θk :=
√

m−2k+2(ρ)
4m−2k(ρ) .

If k = 0, we integrate one time to get the process F s
2
(t) :=

∫ t
0 f(τ)dτ , so that F ′s

2

d
= f .

Notice that in this case, F s
2

is a Gaussian process, but not necessarily stationary. From Ob-
servation 3.1 we deduce that ρ([0, λ]) ≤ 1

2m−s(ρ)λs for all λ > 0. Since we assume that
m0 = 1, Lemma 3.11 implies that, for every N > 0,

sup
t∈[0,N ]

var (F s
2
(t))≤C(s)m−s(ρ)N2−s.

while Lemma 3.13 implies that, for every N > 1, we have

E
(

sup
[0,N ]

F s
2
(t)
)
≤C(s)

√
m−s(ρ)N1− s2 .
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Write θ0 = 1 and recall that r = max{k, s/2}. For ` > 2N−r max{
√

log(θkN),1} set

M(N) = E
(

sup
[0,N ]

Fr

)
+
√

2 sup
t∈[0,N ]

var (Fr(t))N
r`.

Our estimates yield

M(N)≤

{
C
√
m−2k(max{

√
log(θkN),1}+Nk`), k > 0

C(s)
√
m−sN

1− s2 (1 +N s/2`), k = 0
,

or rather, due to the condition on `,

(5.1) M(N)≤

{
C
√
m−2kN

k`, k > 0

C(s)
√
m−sN`, k = 0.

Step II: Consider the event

G=
{

sup
[0,N ]

|Fr| ≤M(N)
}
.

We will estimate the persistence probability through:

(5.2) Pf (N)≤ P(Gc) + P({f > 0 on [0,N ]} ∩G) =: P1 + P2.

To estimate P1, we apply the Borell-TIS inequality (Lemma 3.19). Using also the fact that
Fr and −Fr are identically distributed, we get

P1 = 2P

(
sup
[0,N ]

Fr > E
(

sup
[0,N ]

Fr
)

+
√

2 sup
[0,N ]

var (Fr)N
r`

)
≤ 2e−N

2r`2 ≤ 2P
(
N−r|Z|> `

)
,(5.3)

where in the last step we use Lemma 3.14(a) and the fact that `N r > 2.

Step III: We turn to the estimate of P2. A simple translation yields

P2 = P

({
f̃ > 0 on [−N

2 ,
N
2 ]
}
∩
{

sup
[−N/2,N/2]

F̃r ≤M(N)
})

,

where f̃(x) = f(x+ N
2 ) has the same distribution as f , and F̃r := Fr(x+ N

2 ) obeys the same

differential relation as Fr (namely, F (r)
r

d
= f if r = k ≥ 1 and F ′r

d
= f if r < 1). Since k ≤ N

2
we may apply Theorem 2.1 to get

P2 ≤ P

{f > 0 on [−N
2 ,

N
2 ]
}
∩
{ 1

N

∫ 9
40N

− 9
40N

f ≤ L
} ,(5.4)

where, by (5.1),

(5.5) L=

{
(Ck)k

√
m−2k ` k > 0

C(s)
√
m−s `, k = 0.

Set IN = [− 9
40N,

9
40N − 1]∩Z. Observe that if f > 0 and 1

N

∫ 9N/40

−9N/40 f ≤ L, then∣∣∣{v ∈ [0,1] : 1
N

∑
n∈IN

f(n+ v)< 2L
}∣∣∣≥ 1

2
.
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Let v ∼Unif([0,1]) be a uniform random variable which is independent of f . On the product
of the probability spaces of f and v define the events

V =
{
f(n+ v)> 0, n ∈ IN

}
∩
{ 1

N

∑
n∈IN

f(n+ v)< 2L
}
,

and

U =
{
f(t)> 0, t ∈ [0,N ]

}
∩
{ 1

N

∫ 9
40N

− 9
40N

f ≤ L
}
.

Then

Pf,v
(
V
)
≥ Pf,v

(
V | U

)
Pf
(
U
)
≥ 1

2
Pf
(
U
)
.

The estimate in (5.4) and the stationarity of f now imply that

(5.6) P2 ≤ 2Pv,f
(
V
)
≤ 2Pf

({
f(n)> 0, n ∈ IN

}
∩
{

1
|IN |

∑
n∈IN

f(n)< 6L
})
.

Step IV: By Claim 5.1 we assume, without loss of generality, that dρ(λ)≥ ν1IE(λ)dλ for
ν > 0 and E ⊆ [−π,π]. By Claim 3.4 used with ε= 1

2 , there exist Λ = {λn} ⊆ Z of density
A= 1

4π |E| and a number B =
√
Cν|E| such that

(5.7) f(λn)
d
=BZn ⊕ gn, where {Zn} are i.i.d. N (0,1).

By the definition of the density D−(Λ), there exists N0, depending only on E, such that
for all N >N0 we have |Λ ∩ IN | > A|IN |/2. From this point we assume N to satisfy this
condition. Denote

(5.8) d=
⌊A|IN |

4

⌋
,

where bac is the integer value of a. Let ΛN be the set containing the smallest 2d−1 elements
of Λ∩ IN .

For τ ∈ [0, |IN | − 1] ∩ Z consider the two disjoint sets (ΛN + τ) ∩ IN and (ΛN + τ −
|IN |) ∩ IN . One of these sets has more elements then the other and, in particular, at least d
elements. Let S̃(τ) be the first d elements of that set. Further, let S(τ) be the corresponding
translate of S̃(τ) by either τ or τ − |IN | so that S(τ)⊆ΛN .

If 1
|IN |

∑
j∈IN f(j) < 6L then, by Claim 3.6, there exists a minimal τ ∈ [0, |IN | − 1] so

that
1

|ΛN |
∑

j∈(ΛN+τ)∩IN

f(j) +
1

|ΛN |
∑

j∈(ΛN+τ−|IN |)∩IN

f(j)< 6L.

Recalling that |ΛN |= 2d− 1< 2d, this implies, in particular, that

1

d

∑
j∈S̃(τ)

f(j)< 12L.
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We apply the law of total probability to the expression in (5.6) and find that

P2 ≤ 2
∑

0≤τ0≤|IN |−1

P
({
f(j)> 0, j ∈ S̃(τ0)

}
∩
{1

d

∑
j∈S̃(τ0)

f(j)< 12L
}
∩
{
τ = τ0

})

≤ 2 max
0≤τ0≤|IN |−1

P
({
f(j)> 0, j ∈ S̃(τ0)

}
∩
{1

d

∑
j∈S̃(τ0)

f(j)< 12L
})

= 2 max
0≤τ0≤|IN |−1

P
({
f(j)> 0, j ∈ S(τ0)

}
∩
{1

d

∑
j∈S(τ0)

f(j)< 12L
})
,

where the last step is due to the stationarity of the process f .
Let

Σ :=
{
x := (x1, . . . , xd) : x1, . . . , xd ≥ 0,

1

d

d∑
n=1

xn ≤ 12L
}
⊂Rd,

and denote Z := (Z1, ...,Zd) where the Zi are i.i.d. random variables with distribution
N (0,1). Since for every τ , S(τ) ⊂ Λ and |S(τ)| = d, the decomposition in (5.7) implies
that

(5.9) P2 ≤ 2 sup
g∈Rd

PZ
(
BZ ∈Σ− g

)
,

Step V: We claim that,

(5.10) sup
g∈Rd

PZ
(
BZ ∈Σ− g

)
≤ P (B|Z1| ≤CL)d

where C > 0 is a universal constant. To this end we consider two cases.

Case 1: 144LB−1 < 1. For a fixed g ∈Rd we have

PZ
(
BZ ∈Σ− g

)
≤B−d

∣∣Σ− g∣∣=B−d|Σ|= (12LdB−1)d

d!

≤ (36LB−1)d ≤ P (B|Z1| ≤ 144L)d ,

where the last step holds by Lemma 3.14(b).

Case 2: 144LB−1 ≥ 1. For a fixed g ∈ Rd we first note that if 1
d

∑d
n=1 gn > 12L, then

the shifted simplex Σ − g does not contain 0. Therefore, in that case, there exists another
shift h, with 1

d

∑d
n=1 hn ≤ 12L, such that PZ(BZ ∈ Σ− g)≤ PZ(BZ ∈ Σ− h) (one may

take h to be the point where ‖x‖ attains its minimum on Σ− g, noticing that the density of
Z is monotone decreasing in ‖x‖). We can therefore assume, without loss of generality, that
1
d

∑d
n=1 gn ≤ 12L. By Claim 3.5 we have

P
(
BZ ∈Σ− g

)
≤ P (BZn + gn≥0, n= 1, ..., d)≤ P (BZ1≤12L)d .

Now, Applying Claim 3.15 with δ = 1/12 we get, for some (universal) η > 0, that
P (BZ1≤ 12L)< P (B|Z1| ≤ 12ηL). This establishes (5.10) with C = max(144,12η).

Inserting (5.10) into (5.9) we find that

(5.11) P2 ≤ 2P (B|Z1| ≤CL)d .
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Step VI: We insert the estimates (5.3) and (5.11) into (5.2), to find that under the condi-
tions of the theorem,

(5.12)
Pf (N)≤2P

(
N−rZ > `

)
+ 2P (B|Z1| ≤CL)d

=2P
(
N−rZ > `

)
+ 2P (β|Z1| ≤ `)αN ,

where due to (5.5) and the fact that B =
√
Cν|E|,

β =

(Ck)−k
√

ν|E|
m−2k

, k > 0

C(s)
√

ν|E|
m−s

, k = 0,

while due to (5.8), α=C|E|, for some universal constant C . This completes the proof of the
theorem.

We end this section by proving Remarks 1 and 2.

Proof of remark 1: Recall that N0 was such that for N > N0 and any interval I =
[−N/2,N/2] we have |Λ ∩ I| > D−(Λ) |I|/2, where Λ is the set from Theorem A. Now,
if E is contains an interval J , one can directly check that the lattice ΛE = 2π

|J |Z obeys the
properties in Theorem A. Therefore, indeed, we may take N0 = 2π

|J | .

Proof of remark 2: We note that the condition m−γ <∞ was used only twice: first, for
k ≥ 1, in order to apply Observation 3.10 and obtain stationarity of Fk, and second, for
all k, in order to apply Observation 3.1 and obtain ρ([0, λ]) ≤ 1

2m−s(ρ)λs for all λ > 0.
Therefore, in case k = 0 (that is, γ < 2), we may directly assume that ρ([0, λ])≤ bλs for all
λ > 0 and some b > 0. The proof goes through, with m−s replaced by 2b everywhere.

5.2. Explicit upper bounds: proof of Proposition 3 . In this section we prove Proposi-
tion 3 by applying Theorem 5.1. Firstly, we note that we may apply Theorem 5.1, even though
our assumption σ2

N < bN−γ is formally slightly weaker than the assumption m−γ <∞ of
the theorem (see (2.2)). Indeed, for γ ≤ 1, this is possible, by Remark 2; while for γ > 1, we
use (2.2) to deduce that m−γ′ <∞ for all γ′ ∈ (1, γ), and then apply Theorem 5.1 with γ re-
placed by some γ′ ∈ (1, γ) (the form of the upper bound will not be effected by this change).
For simplicity, we keep using the letter γ (and not γ′) also in the latter case.

In each case, we must choose an appropriate `= `(N,β,γ) in Theorem 5.1. We leave it to
the reader to verify that in all cases our choice satisfies

(5.13) `≥ 2N−r max

(√
log(

√
m−2k+2

4m−2k
N),1

)
for large enough N (depending on β,γ), thus fulfilling the requirements of the theorem.

Case 1: spectrum exploding at 0 (0< γ < 1). Set ` > 0 so that e−`
2/β2

= logN
N1−γ .

We note that, as (5.13) is satisfied, we may apply Lemma 3.14(a). Using this and the
inequality log(1− x)≤−x we obtain for some positive constant c1,

Pf (N)≤ 2P(N−γ/2Z > `) + 2P (β|Z| ≤ `)αN

≤ 2e−N
γ`2/2 + 2

(
1− 2e−`

2/β2
)αN

≤ 2e−N
γ`2/2 + 2e−αN ·2e

−`2/β2

≤ 2e−c1N
γ logN + 2e−2αNγ logN ≤ exp (−CNγ logN) .
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Case 2: spectrum bounded near 0 (γ = 1). In this case we choose ` = 1 (or any other
constant) to obtain the exponential bound:

Pf (N)≤ 2P(Z >
√
N) + 2P

(
β|Z| ≤ 1

)αN
≤ e−CN .

Case 3: spectrum vanishing at 0 (γ > 1). Again we note that, as (5.13) is satisfied, we
may apply Lemma 3.14. Using both parts of this lemma together with Theorem 5.1 we get
that

(5.14) Pf (N)≤ 2P(N−rZ > `) + 2P (β|Z| ≤ `)αN ≤ 2e−N
2r`2/2 + 2

(
`2

β2

)αN/2
.

Setting `2 = β2(2r− 1)N1−2r logN we get for some constant c1,

Pf (N)≤ 2e−
1
2β

2(2r−1)N logN + 2e−c1(2r−1)N logN

≤ exp(−CN logN).

In all cases, the estimate holds for N > N0(E,α,β, γ) and C(α,β, γ). Moreover, C is
proportional either to α or β2, thus is linear in |E|.

5.3. Vanishing of infinite order: proof of Proposition 4. For a given N > 0 we may apply
Theorem 5.1 with γ = 2k, so long asm−2k <∞, k ≤ N

2 and our chosen level `(N)> `0(N).
We will choose k = k(N) later. Denote τ := sup{

√
m−2k+2/m−2k : k ∈ N0,m−2k <∞},

and note that τ <∞ by Claim 3.3. Let

(5.15) `(N) =N−k ·
√
c0|E|kN log

τN

c1k
,

where all the constants (c0, c1, |E|) are as in Theorem 5.1. Notice that indeed, this choice
obeys `(N)> `0(N), for every large enough N and k ≤ N

2 . By (5.14) and the explicit forms
of α,β and ` we get:

Pf (N)≤ 2 exp(−N2k`2/2) + 2 exp
(
αN(log `− logβ)

)
≤ 2 exp

(
−c0

2
|E|kN log

τN

c1k

)
(5.16)

+ 2 exp

{
c0|E|N

(
−k log

N

c1k
+

1

2
log

c0m−2k

ν
+

1

2
log

(
kN log

τN

c1k

))}
Now, we use k = k(N) ∈N0 which satisfies

(5.17) c1k
(c0m−2k

ν

)1/k
≤N, and k ≤ N

2
.

For this k we have
1

2
log

c0m−2k

ν
≤ k

2
log

N

c1k
, so (5.16) becomes

Pf (N)≤ 2 exp

(
−c0

2
|E|kN log

τN

c1k

)
+ 2 exp

{
c0|E|N

(
−k

2
log

N

c1k
+

1

2
log

(
kN log

τN

c1k

))}
≤ exp

(
−CNk log

cN

k

)
,
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for some constants C and c depending on ρ. Finally, we note that, if ν and E do not vary
with N , one may replace (5.17) with the choice of any integer k = k(N) satisfying

1≤ k ≤min
(

1
2 , c
)
N, km

1/k
−2k ≤N.

This will effect our bound only by a multiplicative constant in the exponent. The specific
examples follow easily.

5.4. Tiny persistence: proof of Proposition 5. Here we prove Proposition 5 from The-
orem 5.1. Let w(λ) be the density of the absolutely continuous component of the spectral
measure. Condition (3.1) becomes w ≥ ν1IE for some E of positive measure and ν > 0. The
proof will follow that of Proposition 4, however this time choose E = [1, xN ] and a suit-
able νN , both of which depend on N . We note that, by Remark 1, our estimates are valid for
all N > 1 (provided that xN is big enough). We shall choose k = k(N) that satisfies (5.17)
and `= `(N) as in (5.15). It remains to optimize the choice of xN .

Part 1. Since w(λ) = 0 for |λ| ≤ 1, we have m−k ≤ 1 for all k > 0. Also, w(λ)≥ x−αN for
λ ∈ [1, xN ]. Putting νN = x−αN , (5.17) becomes

c1c
1/k
0 kx

α/k
N ≤N and k ≤ N

2 .

By choosing xN = e
cN
α and k = cN , for an appropriate universal constant c > 0, we satisfy

these inequalities. We may therefore conclude by (5.16) that for large enough N ,

Pf (N)≤ exp(−CxN ·N2)≤ exp(−eC1N ).

Part 2. In this case we have k = 2 and ν = x−αN . Thus (5.17) becomes cxα/2N ≤ N , for
some constant c > 0. This is satisfied by the choice xN =

(
N
c

)1/α, which yields the bound
Pf (N)≤ exp(−CN1+ 2

α logN).

5.5. Leading constant: proof of Proposition 6. In this section we construct a family of
examples which establish Proposition 6. Fix w ∈ L1([−π,π]) obeying a < w(λ)< b for all
λ ∈ [−δ, δ]. Denote by f1 the GSP whose spectral measure has density w. By Theorem 1.1,
there exist constants C1,C2 ∈ (0,∞) such that C1 <− 1

N logPf1(N)< C2, for all N suffi-
ciently large.

Now, let f2 be the GSP whose spectral measure has density w(λ) + ν1I±[δ,π](λ), where
ν is to be defined shortly. Clearly, the spectral measures of f1 and of f2 coincide in [−δ, δ].
Once again, by Theorem 1.1, we have C4 <− 1

N logPf2(N)<C3, for some C3,C4 ∈ (0,∞)
and all large enough N > 0. Our goal is to show that if ν is sufficiently large, then C2 <C4.
By Theorem 5.1 and Remark 2, it holds that

Pf2(N)≤ 2P
(
Z > `

√
N
)

+ 2P
(
ν
π− δ
b
|Z| ≤ `

)c(π−δ)N
,

where δ, b and c are fixed. We proceed similarly to the proof of Proposition 3. For `= 2
√
C2,

using Lemma 3.14(a), we have

2P
(
Z > `

√
N
)
≤ 2e−

1
2
`2N = 2e−2C2N .

Next choose ν so large that, for sufficiently large N ,

2P
(
ν
π− δ
b
|Z| ≤ `

)c(π−δ)N
≤ e−2C2N .
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This implies

C1 <−
1

N
logPf1(N)<C2 < 2C2 −

log 3

N
≤− 1

N
logPf2(N)<C3,

for sufficiently large N , as required.

6. Proof of the analytic theorem. In this section we prove Theorem 2.1, first for con-
tinuous and then for discrete time.

6.1. Continuous time. Here we always assume I = [−1,1] (the general case follows by
scaling). We will prove the following slightly stronger version of Theorem 2.1 in continuous
time. Notice that the constant ± 9

20 in the integral limits is improved to be ± 9
10 .

PROPOSITION 7. Let f be k-times differentiable with infI f
(k) > 0. Suppose that∫ 0.9

−0.9 f
(k) ≥ k!. Then supI |f | ≥ 1

ck
, where c > 0 is a universal constant.

The proof will use Chebyshev’s polynomials of the first kind, defined through

Tk(x) = cos(k arccosx), x ∈ [−1,1].

Fix k ∈N, and let xj = cos
(

(k−j)π
k

)
, j = 0,1, . . . , k be the k + 1 extremal points for Tk(x)

(hereafter called “Chebyshev extrema of order k”). Notice that−1 = x0 < x1 < · · ·< xk = 1
and Tk(xj) = (−1)k−j .

Let the L∞({xj})-norm of a function f : {xj} → R be ‖f‖ = max |f(xj)|. A classical
property of Chebyshev polynomials is the following.

CLAIM 6.1. For k ∈ N, the polynomial a21−kTk has minimal L∞({xj})-norm among
all polynomials of degree k and leading coefficient a > 0. The value of this norm is a21−k.

PROOF. Without loss of generality, we may assume that a= 1. Suppose Pk was a monic
polynomial of degree k with ‖Pk‖ < 21−k. Recall that 21−kTk(xj) = (−1)k−j21−k on all
points xj . Thus the difference w(x) = 21−kTk(x)− Pk(x) alternates signs when evaluated
on the points {xj}. By the intermediate value theorem, w has at least k roots. But this is
impossible, since w is a polynomial of degree ≤ k− 1.

Denote by f [x0, x1, . . . , xk] the leading coefficient of the unique degree-k polynomial
which interpolates f at the points x0, x1, . . . , xk. The next claim states that, under similar
conditions to those of Proposition 7, this leading coefficient cannot be too small.

CLAIM 6.2. Suppose that f : I → R is (k − 1)-times differentiable, and that f (k−1) is
piecewise differentiable with f (k) > 0 and

∫ 0.9

−0.9 f
(k) ≥ k!. Then:

f [x0, x1, . . . , xk]≥M−k,

where M > 0 is a universal constant.

First let us see how Claim 6.2 may be used to conclude the proof of Proposition 7.

PROOF OF PROPOSITION 7. Let f : I → R be as in the premise, that is, f (k) > 0 for all
x ∈ I and

∫ 0.9

−0.9 f
(k) ≥ k!. Let Pk be the interpolation polynomial of f at the Chebyshev

extremal points {xj}kj=0, and let a = f [x0, . . . , xk] denote the leading coefficient of Pk. By
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Claim 6.2, we have |a| ≥M−k (where M > 0 is universal), so that by Claim 6.1 we deduce
that

sup
I
|f | ≥ max

0≤j≤k
|f(xj)|= max

0≤j≤k
|Pk(xj)| ≥ |a|21−k ≥ (2M)−k.

It remains to prove Claim 6.2. To do so, we apply the following standard result from
interpolation theory, known as the Hermite-Genocchi formula (see e.g. [25, Thm 4.2.3]):

LEMMA 6.3 (The Hermite-Genocchi formula). Let {xj}kj=0 ⊂ I be distinct points, and
let f : I→R be (k−1)-times differentiable with f (k−1) being piecewise differentiable. Then:

f [x0, x1, . . . , xk] =

∫
Σk

f (k)
(
t0x0 + t1x1 + . . . tkxk

)
dσ,

where

(6.1) Σk = {(t0, . . . , tk) : ∀j tj ≥ 0 and
k∑
j=0

tj = 1},

and dσ is the induced volume form on Σk.

Notice that Σk is a k-dimensional simplex (embedded in Rk+1), thus Volk(Σk) = 1/k!.
The following lemma enables us to bound efficiently the integral which appears in the
Hermite-Genocchi formula.

LEMMA 6.4. Fix k ∈N, and let {xj}kj=0 ⊂ I be the Chebyshev extrema points. Write Σk

for the simplex in (6.1). Then there exists a non-negative continuous function gk ∈ C(I) so
that for any F ∈ L1(I) we have

(6.2)
∫

Σk

F
(
t0x0 + t1x1 + . . . tkxk

)
dσ =

∫ 1

−1

F (s)gk(s)ds.

Moreover, there exists L> 1 such that for all k ∈N and all |s| ≤ 0.9, we have gk(s)≥ 1
k!Lk

.

PROOF. If k = 1 the statement is true with g1(s)≡ 1
2 . For k > 1, the function

gk(s) = Volk−1

({
(t0, t1, . . . , tk) :

∑
j

tjxj = s,
∑
j

tj = 1, ∀i ti ≥ 0
})

satisfies (6.2) with any F ∈ L1(I), due to a change of variables (and Fubini’s theorem). It is
clear that gk is non-negative and continuous on I .

For s ∈ I = [−1,1] define the set

As =

(t0, . . . , tk) :

k∑
j=0

tj = 1,
k∑
j=0

tjxj = s, (t1, . . . , tk−1) ∈
[
0,

1

20(k− 1)

]k−1


Recalling that x0 = −1 and xk = 1 we notice that, given (t1, . . . , tk−1) ∈ [0,1/(20(k −
1))]k−1, there is a unique pair (t0, tk) ∈R2 that satisfies the independent linear equations

(6.3)

{∑k
j=0 tj = 1,∑k
j=0 tjxj = s,

⇐⇒

{
t0 + tk = a

−t0+tk = b,
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where a, b are numbers (depending on t1, . . . tk−1). Therefore, As is a (k − 1)-dimensional
manifold (embedded in Rk+1), which may be viewed as the graph of a linear function on

the domain
[
0, 1

20(k−1)

]k−1
. This implies that Volk−1(As)≥

(
1

20(k−1)

)k−1
≥ 1

k!Lk
for some

L> 0.
It remains to check that if |s| ≤ 0.9, for any (t1, . . . , tk−1) ∈

[
0, 1

20(k−1)

]k−1
the solution

to (6.3) obeys t0 ≥ 0, tk ≥ 0 (allowing us to conclude that gk(s) ≥ Volk−1(As)). Solving
explicitly we have

t0 =
1

2

(
1− s−

k−1∑
j=1

tj(1− xj)
)
,

so that t0 ≥ 0 if and only if
∑k−1

j=1 tj(1− xj)≤ 1− s. We verify this as follows:

k−1∑
j=1

tj(1− xj)≤
2

20(k− 1)
· (k− 1) =

1

10
≤ 1− s,

where we used that |s| ≤ 0.9. The verification of tk ≥ 0 is obtained in a symmetric way.

Now we return to prove Claim 6.2.

PROOF OF CLAIM 6.2. By using Lemma 6.3 and then applying Lemma 6.4 with F =
f (k), we get that:

f [x0, x1, . . . , xk] =

∫
Σk

f (k)
(
t0x0 + t1x1 + . . . tkxk

)
dt

≥ 1

k!Lk

∫ 0.9

−0.9

f (k)(s)ds

≥ 1

Lk
.

where L> 0 is a universal constant.

6.2. Discrete time. In this section we prove Theorem 2.1 in discrete time using an inter-
polation method. We denote the discrete derivative operator by ∆ that is,

(6.4) (∆f)(n) = f(n+ 1)− f(n).

When applied iteratively k times we write ∆k.
A somewhat stronger version of Theorem 2.1 over Z (similar to Proposition 7) is the

following.

PROPOSITION 8. Let k,N ∈ N be two numbers which satisfy N ≥ k. Let f : Z→ R be
such that ∆(k)f(n)> 0 for every n ∈ [−N,N ]. Denote IN = [− 9

10N,
9
10N ]∩Z and suppose

that 1
N

∑
n∈IN f

(k)(n)≥ k!
Nk

. Then sup
[−2N,2N ]

|f | ≥ 1

ck
, where c > 0 is a universal constant.

PROOF. Let B0(x) = 1I[
−1

2 ,
1
2

)(x) and Bk(x) = (B0)∗k(x), where (B0)∗k is the convolu-

tion of B0 with itself k times (e.g. B1 =B0 ∗B0). Define the continuous time function:

F (x) =
∑
n∈Z

f(n)Bk+1(x− n).
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Observe that Bk takes values in [0,1], is finitely supported, is a piecewise degree-k polyno-
mial, and

∑
n∈ZBk(x− n) = 1 for all x ∈ R. The derivative of F is given by the following

relation (see [6, eq. (10.3)]):

F ′(x) =
d

dx

(∑
n∈Z

f(n)Bk+1(x− n)

)
=
∑
n∈Z

(∆f)(n)Bk(x− n),

where ∆ is the discrete derivative (recall (6.4)). By repeating this k times we get:

F (k)(x) =
∑
n∈Z

∆kf(n)B1(x− n).

Since ∆kf(n)> 0 for all n ∈ [−N,N ]∩Z, we have F (k)(x)> 0 for all x ∈ [−N+1,N−
1]. Moreover, we have,

1

N

∫ 0.9N

−0.9N

F (k) ≥ 1

2N

∑
n∈[−0.9N,0.9N ]∩Z

∆kf(n)≥ 1

2

k!

Nk
.

Therefore, by Proposition 7 we deduce that

sup
n∈[−2N,2N ]∩Z

f(n)≥ sup
n∈[−N−k,N+k]∩Z

f(n)≥ sup
x∈[−N+1,N−1]

F (x)≥ 1

ck
,

for some universal number c, as required. This concludes the proof.
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