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Abstract

This paper studies the winding of a continuously differentiable Gaussian stationary process
f : R→ C in the interval [0, T ]. We give formulae for the mean and the variance of this random
variable. The variance is shown to always grow at least linearly with T , and conditions for it
to be asymptotically linear or quadratic are given. Moreover, we show that if the covariance
function together with its second derivative are in L2(R), then the winding obeys a central
limit theorem. These results correspond to similar results for zeroes of real-valued stationary
Gaussian functions by Malevich, Cuzick, Slud and others.

1 Introduction

Gaussian functions on various spaces, and in particular stationary functions (i.e., those functions
whose distribution is invariant under shifts), have long been an object of extensive study. Real
Gaussian stationary functions f : R→ R are a classical model of random signals, and in particular
much effort was devoted to the study of their zeroes [3, 4]. More recently, zeroes of complex
Gaussian functions f : C → C attracted attention, as they are interesting point processes with
intrinsic repulsion [18].

In this paper we study the winding, or the increment of the argument, of planar Gaussian
stationary processes f : R → C. In light of the argument principle, one might expect winding to
be the appropriate analogue in this setting of zeroes in the aforementioned examples; indeed our
results and methods are closely related to the corresponding ones for random zeroes, both in the
real [30] and complex [13] settings. In this sense, this work is part of an effort to simplify, unify
and generalize the tools which are used for analysing random zeroes.

In addition, this work is also motivated by a long history of works concerning the winding of
various planar processes. Winding is used to model the entanglement of polymers [15], and the
movement of a particle under a random magnetic field [9]. Limit laws and asymptotic behavior
of the winding were studied for Brownian motion [27, 32] and certain fractal curves [35], among
others. However, perhaps surprisingly, the winding of Gaussian stationary processes appears to be
a topic that has been largely ignored. Prior to this work, we know only of a paper by Le-Doussal,
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Etzioni and Horovitz [8] which provides predictions and intriguing examples regarding the nature
of the fluctuations of the winding. Their interest was inspired by their research on the winding of
particles in random environments [11]. The present paper establishes and extends their predictions.
In a somewhat different setting, the winding of the special “Gaussian kernel process” on various
curves in the complex plane was studied in [2]. More about background and motivation, including
previous related work, may be found in Section 2.

We now give a brief overview of our results. We define the winding (or the increment of the
argument) of f around the origin in the “time”-interval [0, T ] to be

∆(T ) =
1

2i

∫ T

0

[
f ′(t)

f(t)
−
(
f ′(t)

f(t)

)]
dt. (1)

This definition becomes clear when we recall that almost surely f does not vanish on the interval
[0, T ], and so a branch of log f may be defined locally. Then the infinitesimal change in the
increment of the argument is given by

d(argf(t)) = d(Im log f(t)) = Im
f ′(t)

f(t)
dt,

which does not depend on the branch of log f we have chosen.
We develop an asymptotic formula for the variance V (T ) = var [∆(T )] of the winding of f in

“time” [0, T ] (Theorem 1). By analysing this formula, we show that V (T ) is always at least linear
in T (Theorem 2). Then we prove that if the covariance function and its second derivative are in
L2, then V (T ) is asymptotically linear in T and a central limit theorem holds (Theorem 3). Finally
we show that if the spectral measure of the Gaussian process f does not contain any atoms, then
V (T ) is sub-quadratic (Theorem 4).

1.1 Definitions

A standard complex Gaussian, denoted NC(0, 1), is a C-valued random variable whose distribution
has density 1

πe
−|z|2 against Lebesgue measure on the plane. A complex Gaussian vector is a random

vector in Cn that is equal in distribution to Av, where v is a random vector in Cm whose components
are i.i.d. NC(0, 1)-distributed, and A is an n × m matrix (we always consider centred random
variables and processes, i.e., having mean 0).

A complex Gaussian process f : R→ C is a random process whose finite marginals are Gaussian
vectors; that is, for any n ∈ N and any t1, . . . , tn ∈ R the vector (f(t1), . . . , f(tn)) is a complex
Gaussian vector. Such a process is stationary if its distribution is invariant under all real shifts, that
is, for any n ∈ N, t1, . . . , tn ∈ R and s ∈ R the vectors (f(t1), . . . , f(tn)) and (f(t1+s), . . . , f(tn+s))
have the same distribution. We will write GSP to denote a Gaussian stationary process throughout
this article.

It is well-known that a GSP is determined by its covariance kernel r : R→ C, given by

r(t) = E[f(t)f(0)].

We normalize the process to have unit variance, that is, r(0) = 1, which implies that |r(t)| ≤ 1 for
all t (see (13)). We assume throughout that r is continuous (in fact, we will assume (3) below which
is much stronger). Since r is positive-definite and continuous, it follows from Bochner’s theorem
that it is the Fourier transform of some probability measure ρ on the real line;

r(t) = ρ̂(t) =

∫
R
e−itλdρ(λ). (2)
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The measure ρ is called the spectral measure of f . Throughout this article we assume that for some
α > 0 ∫

R
λ2 log1+α(1 + |λ|)dρ(λ) <∞. (3)

This condition ensures that f is a.s. continuously differentiable, and is in fact close to being
necessary (see [3, Ch. 1.4.1]). This condition also implies that r is twice differentiable and that
(see [4, Chapter 9, Lemma 1]) for all β ≤ α and C > 0 we have

|r′′(t)− r′′(0)| ≤ C

| log |t||β
for |t| ≤ δ(β,C). (4)

This in turn implies that r′′ is continuous on all of R. Recall that our main object of study is the
random variable

∆(T ) =
1

2i

∫ T

0

[
f ′(t)

f(t)
−
(
f ′(t)

f(t)

)]
dt.

A GSP is degenerate if its spectral measure consists of exactly one atom δφ. In this case, the
process may be represented as f(t) = ζ · e−iφt where ζ is a complex Gaussian random variable.
Thus f moves along a circle with random radius and random starting phase, but with constant
(non-random) angular speed. The winding is thus deterministically ∆(T ) = −φT , and we exclude
this case from our studies.

1.2 Results

In all of our results we assume that f : R → C is a non-degenerate GSP whose spectral measure
obeys condition (3). The first result gives explicit formulae for the mean and variance of ∆(T ).

Theorem 1. For any T > 0 we have:

1. E[∆(T )] = T Im r′(0).

2. Denoting R(x) = r′

r (x) for x such that r(x) 6= 0, we define K : R→ R by

K(x) =

{
1
2 |r
′(x)|2, if |r(x)| = 0 or 1,
|r(x)|2

1−|r(x)|2 Im 2 {R(x)−R(0)} − 1
2 log

(
1

1−|r(x)|2

)
Re {R′(x)}, if 0 < |r(x)| < 1.

(5)
Then K is integrable on any compact subset of R, and

var [∆(T )] = T

∫ T

−T

(
1− |x|

T

)
K(x)dx. (6)

Remark 1.1. It is not hard to see that K(x) is continuous at the points where r(x) = 0 (which
may be a large set). On the other hand, there is no natural definition of K(x) at the points
where |r(x)| = 1, and we have assigned the value 1

2 |r
′(x)|2 purely for convenience. In the course

of the proof we will show that these points are isolated and that K has a logarithmic, integrable
singularity at each of them.

Remark 1.2. One may check that the kernel K is always non-negative, but we will not reproduce
the calculations here since they will not be important for our purposes. An alternative form for the
variance, which may be more convenient for applications, will be given in the course of the paper
(see Proposition 4.1 below) - the kernel K̃ given there is trivially non-negative.
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Remark 1.3. The expression in Theorem 1 simplifies under the assumption that r is real-valued,
which means that r(t) = r(−t) for all t ∈ R, or equivalently that ρ is symmetric (i.e., ρ(−I) = ρ(I)
for all Borel subsets I ⊂ R). This is sometimes called reflectional symmetry. In this case (using
the reformulation given by Proposition 4.1) we get

var [∆(T )]

T
=

∫ T

−T

(
1− |x|

T

)
r′(x)2

1− r(x)2
dx+O

(
1

T

)
, as T →∞.

In particular,
var [∆(T )]

T
=

∫ ∞
−∞

(r′)2

1− r2
+ o(1), as T →∞,

provided that this infinite integral is finite. This coincides with predictions in a physics paper of
Le Doussal, Etzioni and Horovitz [8]. They also noticed the following simplification in this case:
denoting θ(x) = arcsin r(x) (θ is well-defined, since r is now real-valued), we have

var [∆(T )]

T
=

∫ ∞
−∞

(θ′)2 + o(1), as T →∞.

Remark 1.4. Although the main focus of this paper is the “large-time” asymptotic behaviour, Le
Doussal, Etzioni and Horovitz [8] also mention the short-time asymptotics of var [∆(T )]. Our result
implies that var [∆(T )] ∼ (r′(0)2 − r′′(0))T log 1

T as T → 0 and further terms in the asymptotic
expansion may be obtained if one assumes some extra regularity - the existence of higher order
derivatives of r. In Lemma 3.3 we show that r′(0)2 − r′′(0) > 0.

Our next theorem states that the variance always grows at least linearly.

Theorem 2. There exists C > 0 (depending on the covariance function r) such that

var [∆(T )] ≥ C · T.

The case of asymptotically linear variance is of particular interest. Below we give a simple
condition that is sufficient for this to hold, and prove a central limit theorem (CLT) under this
hypothesis.

Theorem 3. If r, r′ ∈ L2(R), then

lim
T→∞

var [∆(T )]

T
∈ (0,∞). (7)

If in addition r′′ ∈ L2(R), then ∆(T ) verifies a central limit theorem, that is,

∆(T )− E[∆(T )]√
var [∆(T )]

→ NR(0, 1), (8)

in distribution as T →∞.

Remark 1.5. If r, r′′ ∈ L2(R) then also r′ ∈ L2(R) (see Observation 5.2). Therefore, the condition
r, r′′ ∈ L2(R) is enough to ensure both linear variance and a CLT.

On the other hand, the variance is trivially at most quadratic in T . The following theorem
gives a mild mixing condition for the variance to be sub-quadratic.
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Theorem 4. If the spectral measure ρ has no atoms, then

lim
T→∞

var [∆(T )]

T 2
= 0.

This was already proved in [13], but we repeat the proof at the end of this paper for completeness.
We note that, under the assumption that f a.s. has an analytic extension to a strip in the complex
plane, the converse to Theorem 4 holds (see [13, Remark 1.5]).

The rest of the paper is organized as follows. Section 2 is devoted to a discussion of motivation,
related previous work and interesting examples. In Section 3 we prove Theorem 1 about the mean
and variance. In Section 4 we prove Theorem 2 (concerning a lower bound for the variance), after
developing an alternative form for the variance (Proposition 4.1). In Section 5 we prove Theorem 3
concerning linear variance and a CLT. Finally, Section 6 contains the proof of Theorem 4 about
sub-quadratic variance.

Finally, a word about notation. By g . h we mean that g ≤ C · h, where C > 0 is a constant
(which may vary from line to line, and may depend on fixed parameters). We write g = O(h) if
|g| . h. Similarly, g ' h means that g . h and h . g. We use the notation g(T ) � h(T ) to denote
that limT→∞

g
h(T ) exists and is some finite positive constant, while we write g(T ) ∼ h(T ) to denote

the more precise limT→∞
g
h(T ) = 1

2 Discussion

2.1 Background and motivation

There are three major motivations for this work. The first comes from theoretical physics, where
the winding of planar random processes is used in models of polymers, flux lines in superconductors
and the quantum Hall effect (see [9, 15, 17] and the references therein). For this reason, and out
of pure mathematical interest, the winding has been studied for certain processes. For planar
Brownian motion B, Spitzer [32] proved, denoting the winding of B up to time T by ∆B(T ), that
∆B(T )/ log T converges in distribution to a Cauchy random variable. This inspired a long sequence
of works (most notably, Pitman-Yor [27, 28]). There was also much interest in windings of various
fractal random curves (e.g. SARW [29], SLE and related processes [35]). Very recently, winding
of Ornstein-Uhlenbeck processes [33] and of stable processes [7] were studied, including analysis
of large scale asymptotics and limit laws. Some other relatively recent studies of winding with
physical applications include [10,15,16,23].

Le Doussal-Etzioni-Horovitz [8] have studied the winding of planar Gaussian processes. The
authors provide a formula for the variance of the winding of a Gaussian process, not necessarily
stationary, with reflectional symmetry. Theorem 1 of this paper is a rigorous derivation of the
same formula for stationary processes, without assuming reflectional symmetry. We comment that
it is possible to apply our methods to non-stationary processes as well, but we did not pursue this
route. Le Doussal-Etzioni-Horovitz also noticed “diffusive behavior” (i.e., that the variance grows
at least linearly) in all examples of interest, which led them to predict that “for most stationary
processes the winding angle exhibits diffusion”. Theorem 2 establishes this fact for all sufficiently
smooth processes.

The second motivation for this work is the extensive study of the zeroes of real stationary
Gaussian processes f : R → R. Morally, in many scenarios zeroes are analogous to winding
(related, for instance, by the argument principle). The survey [24] gives a good account of the
research on zeroes of real GSPs, and we rely on it for details and references in what follows. The
mean number of zeroes was computed by Kac [20], while asymptotics of the variance were studied
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by Cramer-Leadbetter [4], Piterbarg [26] and many others; however, no accessible formula for the
variance was given. For this reason, the first CLTs contained conditions about the variance which
were hard to check. One such example is the work of Cuzick [5], who proved a CLT whose main
condition is linear growth of the variance. Our proof of the CLT in Theorem 3 is inspired by
his, where, using our formula from Theorem 1, we can give an explicit condition for this linear
growth. It is interesting to note that, after many years, Slud [30] gave a condition for linear
growth of the variance of the number of zeroes, which is similar to the one we recovered for the
winding in Theorem 3; i.e., that the covariance function and its second derivative are in L2(R)
(see remark 1.5). However, while in this article we analyse a concrete formula, Slud’s work relies
on more sophisticated methods including Wiener-Itō expansions. Moreover, he does not establish
“diffusive behavior” (c.f. Theorem 2) for zeroes. We do not know of a way to unify these results.

We note that Cuzick’s method was used by Granville-Wigman [14] to study the variance and
CLT for the zeroes of random trigonometric polynomials. Their work was reproved and generalised
to crossings of any level by Azäıs and León [1] using Wiener-Itō expansions.

The third motivation comes from the study of complex zeroes of random Gaussian analytic
functions. These have drawn increasing attention in recent years, as they provide rich and accessible
point processes in the plane (see the recent book [18]). One of us [13] proved very similar results
to ours about fluctuations of complex zeroes of stationary Gaussian analytic functions (without a
CLT). While, once again, the methods are different and a priori neither result implies the other,
the variance is shown to always be at least linear (as in Theorem 2), and the condition given for
asymptotic linearity is very similar to ours (as in Theorem 3). The proof of sub-quadratic variance
here (Theorem 4) is identical to that of [13].

In recent work [2] the authors also study the increment of the argument of a certain Gaussian
process, where previously the focus of study had been the zero set. At this superficial level our
work is quite similar to their’s, though the results are in fact quite different in spirit. In [2] the
authors study one particular process – the “Gaussian kernel process” given by (10) which extends
to an entire function1. This process is very regular since its covariance decays so rapidly. The
authors’ main focus is on the covariance between the increment of the argument along two planar
curves, and how this covariance depends on the geometry of the intersection of these curves. In
contrast in this paper we consider the simplest possible curve – a long section of the real line – and
consider a very wide class of Gaussian processes; indeed these processes may not even extend in a
sensible manner to a small neighbourhood of the real line. Further, in this paper we have tried to
make minimal assumptions on the decay of the covariance kernel. The only intersection between
the main theorems of the two papers is the conclusion that for the winding of the Gaussian kernel
process the variance is asymptotically linear and a CLT holds.

We end by posing three natural open problems. The first is to determine the asymptotic behavior
of the winding in case of non-linear variance (in particular, when the conditions of Theorem 3 do
not hold). In similar cases for random real zeroes, Slud has shown that there are regimes of CLT
and regimes of non-CLT behavior [31, Thm 3.2]. The second is to derive a quantitative CLT for the
winding, that is, to estimate the rate of convergence to the normal law. For these two questions,
it may well be the case that the more sophisticated methods of Wiener-Itō expansions could be
useful. The third is to prove a converse to Theorem 4 with no further assumptions (that is, that if
the spectral measure contains an atom, then the variance is quadratic).

1Strictly speaking, there is a difference in normalisation: in order to get an entire function one does not normalise
the variance to be 1 at every point.
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2.2 Examples

In this section we discuss some interesting GSPs. The last two examples were pointed out by Le
Doussal, Etzioni and Horovitz [8]. We stress that, while here we present only orders of magnitude
for var [∆(T )] in the various examples, often one may apply our results to retrieve exact constants.

Atomic spectral measure. As mentioned earlier, if ρ consists of one atom δφ then f(t) =
ζ e−iφt is a degenerate circular motion. However, a superposition of such processes results in
a random almost periodic function, with highly non-trivial behavior. Specifically, consider ρ =∑

j c
2
jδφj where cj , φj ∈ R are given,

∑
j c

2
j = 1 and

∑
j c

2
jφ

2
j <∞. The corresponding process is

f(t) =
∑
j

cjζj e
−iφjt, {ζj} are i.i.d. NC(0, 1). (9)

This is a stochastic version of the famous Lagrange model in celestial mechanics, as f represents the
motion of the “tip” of a chain of celestial bodies, each circling the previous one with fixed angular
speed and radius. The classical “Lagrange problem” was to show that, for any (deterministic)
choice of cj , φj and ζj , the winding of f should exhibit a mean motion, i.e., that the limit ωf :=

limT→∞
∆(T )
T should always exist. After many years of research it was proved by Jessen and

Tornehave [19, Theorem 26], but the concrete dependence of the limit on the parameters is not
fully understood.

For a random f as in (9), we obtain var [∆(T )] � T 2. To see this, first notice that f is a.s.
bounded (since it is almost periodic). Thus, for any j the event

Aj =

|cjζj | ≥ 2 sup
t∈R

∣∣∣∑
k 6=j

ckζke
−iφkt

∣∣∣


has positive probability, and therefore so too does the event {∆(T ) = −φjT + O(1) as T → ∞}.
As a consequence, the limiting distribution of ∆(T )

T contains atoms at the points −φj , whose mass

is at least P(Aj) (independent of T ). This yields that var
(

∆(T )
T

)
≥ C, and moreover, that a CLT

does not hold. Similar properties were observed for complex zeroes of the sum (9) (allowing t ∈ C),
see [12, Remark 2.3].

Sinc kernel. Taking ρ = 1
2π1I[−π,π] one obtains r(t) = sinc(t) = sin(πt)

πt . This process has the
representation f(t) =

∑
n∈Z ζnsinc(t−n), where {ζn}n∈Z are i.i.d. NC(0, 1). Notice that f(n) = ζn

for n ∈ Z, so this process may be regarded as a smooth (in fact, analytic) interpolation of the i.i.d.
sequence. For this example, Theorem 3 yields that var [∆(T )] � T , and a CLT holds.

Gaussian kernel. Take r(t) = e−t
2/2, or equivalently a Gaussian spectral measure. The

corresponding process can be written in the form

f(t) = e−t
2/2

∞∑
j=0

ζj
tj√
j!
, {ζj} are i.i.d. NC(0, 1). (10)

Theorem 3 may be applied to obtain var [∆(T )] � T and a CLT for the winding.
Exponential kernel and approximations. Consider rOU(t) = e−|t|. This process is a

time-space change of Brownian motion, called the Ornstein-Uhlenbeck (OU) process. Inspired by

Spitzer’s limit law for ∆B, Vakeroudis [33, Theorem 3.3] has recently shown that ∆OU(T )
T converges

in distribution to the Cauchy law; in particular the variance of the winding in each finite interval
is infinite. As the OU process is not differentiable, none of our results may be directly applied.
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However, one may approximate the OU process by differentiable processes. One way to do so is by
taking ra(t) = ea−

√
a2+t2 with a ↓ 0. For a fixed a > 0, since ra is infinitely differentiable, we may

apply Theorem 1 to see that the variance of the winding of the corresponding process in [0, T ] is
of order ln( 1

a) · T for T ≥ a1−ε. As a → 0 we see that the variance is unbounded, and this holds
even on certain short intervals that are not “too short”.

Another approximation may be derived using the spectral measure. The OU process has spec-

tral density 1
π(1+λ2)

, thus one may consider the spectral density M
π(M−1)

(
1

λ2+1
− 1

λ2+M2

)
which

approximates the OU process as M → ∞, and satisfies (3) for each fixed M . The corresponding

covariance kernel is rM (t) = Me−|t|−e−M|t|
M−1 , which is twice differentiable. Applying Theorem 1 one

gets a variance of size lnM · T for T ≥ M−1+ε, and again we see that as M →∞, the variance is
unbounded, even on certain short intervals.

Other intermediate growth examples. Using the formulae in Theorem 1 or Remark 1.3, it
is possible to construct examples where T � var [∆(T )]� T 2. For instance:

• For r(t) = J0(t), one has var [∆(T )] � T lnT . Here J0 stands for the 0-Bessel function of the
first kind.

• Let 0 < b < 1
2 . For r(t) = cos t

(1+|t|)b , one has var [∆(T )] � T 2−2b.

3 Formulae for the Mean and Variance: Theorem 1

3.1 Preliminaries

In the course of the proof of Theorem 1 we shall make use of the following lemmata. The first is
an extension of an exercise in Kahane’s celebrated book [21, Ch. XXII, Ex. 3].

Lemma 3.1. Let F1, F2, F
′
1, F

′
2 be jointly Gaussian complex random variables. Let

rjk = E[FjFk], sjk = E[F ′jFk], tjk = E[F ′jF
′
k].

Assume that r11, r22 6= 0 and that r11r22 6= |r12|2. Then:

(a) E
[
F ′1
F1

]
= s11

r11
.

(b) If r12 6= 0, then

cov

(
F ′1
F1
,
F ′2
F2

)
=

|r12|2

r11r22 − |r12|2

(
s12

r12
− s11

r11

)(
s21

r21
− s22

r22

)
while if r12 = 0, then cov

(
F ′1
F1
,
F ′2
F2

)
= s12s21

r11r22
.

(c) If r12 6= 0, then

cov

(
F ′1
F1
,

(
F ′2
F2

))
=

|r12|2

r11r22 − |r12|2

(
s12

r12
− s11

r11

)(
s21

r21
− s22

r22

)
+ log

(
r11r22

r11r22 − |r12|2

)
·
(
t12

r12
− s12s21

(r12)2

)
,

while if r12 = 0 then cov

(
F ′1
F1
,
(
F ′2
F2

))
= 0.
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Remark 3.1. If we fix all of the parameters except for r12 (and r21 = r12), then the covariances
computed in (b) and (c) are continuous functions of r12 (i.e., at r12 = 0).

If we drop any of the assumptions r11 6= 0, r22 6= 0 or r11r22 6= |r12|2 then the quantities
computed in (b) and (c) diverge. We only require r11 6= 0 for (a) to be finite.

All three parts of Lemma 3.1 are proved in a similar way, which we outline below.

Sketch of the proof of Lemma 3.1. Let ζ1, ζ2 be two i.i.d. NC(0, 1) random variables. Since F1, F
′
1

are jointly Gaussian, there are α, β, γ ∈ C such that the pair (F1, F
′
1) has the same distribution as

(αζ1, βζ1 + γζ2). In particular,

F ′1
F1

d
=
β

α
+
γ

α

ζ2

ζ1
.

Taking expectation, and recalling that E
[
ζ2
ζ1

]
= E[ζ2]E

[
1
ζ1

]
= 0, we get

E
[
F ′1
F1

]
=
β

α
.

All that remains is to express the parameters α and β using rjk, sjk and tjk for j, k ∈ {1, 2}. This
is done through covariance computations, namely

|α|2 = E[|F1|2] = r11, and βα = E[F ′1F1] = s11.

Thus β
α = s11

r11
, which completes the proof of part (a).

As the proofs of the remaining cases are long but contain no new ideas, we omit them from this
paper.

Next we note some basic properties of the covariance function.

Observation 3.2. Let r : R→ C be a covariance function which is twice-differentiable. Then

r(−x) = r(x), r′(−x) = −r′(x) and r′′(−x) = r′′(x). (11)

Also, for R(x) = r′(x)
r(x) (at the points where r(x) 6= 0), we have

R(x) = −R(−x), R′(x) =
r′′(x)

r(x)
− r′(x)2

r(x)2
and R′(x) = R′(−x). (12)

Proof. Recalling that r is the Fourier transform of a probability measure (as in (2)), we get that
r(−x) = r(x). All other relations follow easily from this.

The next lemma will allow us to analyse the behavior of r near its extremal points.

Lemma 3.3. Let r : R → C be the covariance function of a non-degenerate GSP, normalized so
that r(0) = 1.The following hold:

• For all t ∈ R, |r(t)| ≤ 1 = r(0).

• If there exists t 6= 0 such that |r(t)| = 1, then there exists λ0, λ1 ∈ R such that sprt(ρ) ⊆
λ0 + λ1Z.

• The set D = {t : |r(t)| = 1} is discrete.

9



• If r is twice differentiable, then there exists C > 0 such that for any tm ∈ D

1− |r(t)|2 = C(t− tm)2 + o
(
(t− tm)2

)
, as t→ tm.

Proof of Lemma 3.3. For any fixed t ∈ R, from (2) we have

|r(t)| =
∣∣∣∣∫

R
e−iλtdρ(λ)

∣∣∣∣ ≤ ∫
R

1 · dρ(λ) = r(0) = 1, (13)

which proves the first item. Equality in (13) holds if and only if e−iλt is a constant in L2(ρ). If
t 6= 0 this holds if and only if supp(ρ) ⊆ λ0 + 2π

t Z. This establishes items 2 and 3 of our lemma.
Suppose now that D 6= {0}, and write ρ =

∑
n∈Z anδλ0+nλ1 where an ≥ 0,

∑
n an = 1 and there

are at least two integers n such that an 6= 0. Then

r(t) = e−iλ0t
∑
n∈Z

ane
−inλ1t,

and one may verify that for any tm ∈ D

r(k)(tm) = e−iλ0tmr(k)(0),

for any k ∈ N for which r(k) is defined. The second order Taylor expansion for |r|2 gives

|r(t)|2 = |r(tm)|2 +
(
r(tm)r′(tm) + r(tm)r′(tm)

)
(t− tm)

+

(
1

2
r(tm)r′′(tm) + |r′(tm)|2 +

1

2
r(tm)r′′(tm)

)
(t− tm)2 + o

(
(t− tm)2

)
= 1 +

(
r′(0) + r′(0)

)
(t− tm)

+

(
1

2
r′′(0) + |r′(0)|2 +

1

2
r′′(0)

)
(t− tm)2 + o

(
(t− tm)2

)
= 1 +

(
r′′(0)− r′(0)2

)
(t− tm)2 + o

(
(t− tm)2

)
,

where the last simplifications are due to (11). The same conclusion holds for tm = 0 in the case
D = {0}. It remains to prove that C = r′(0)2 − r′′(0) ≥ 0. Indeed, using (2) once more we have:

−r′(0)2 = −
(∫

R
iλdρ(λ)

)2

=

(∫
R
λdρ(λ)

)2

≤
(∫

R
λ2dρ(λ)

)(∫
R
dρ(λ)

)
= −r′′(0).

Equality holds if and only if the function λ 7→ λ is a constant in L2(ρ), which is possible only if
ρ is a single atom (degenerate). Thus, by our hypothesis, r′(0)2 − r′′(0) > 0, which concludes the
proof of item 4.

We shall also use the following integrability lemma.

Lemma 3.4. Let f : R→ C be a non-degenerate GSP, which is almost surely continuously differ-
entiable, and let T > 0. Then:

(I)

∫ T

0
E
[∣∣∣f ′(t)
f(t)

∣∣∣] dt <∞.
10



(II)

∫ T

0

∫ T

0
E
[∣∣∣f ′(t) f ′(s)
f(t) f(s)

∣∣∣] dt ds <∞.
Moreover, the integrand in the second item is divergent only at points (t, s) where r(t− s) = 1, and
the two-dimensional Lebesgue measure of the set of such points is zero.

This lemma first appeared in [13, Lemma 3.4], and though it is stated there for functions that
are a.s. analytic, it applies in our setting with no changes to the proof.

Our last lemma is an elementary but useful change of variables.

Lemma 3.5. For h ∈ L1([−T, T ]) we have∫ T

0

∫ T

0
h(t− s)dt ds =

∫ T

−T
(T − |x|)h(x)dx.

Proof. ∫ T

0

∫ T

0
h(t− s)dt ds =

∫ T

0

∫ T−s

−s
h(x)dxds

=

∫ T

−T

∫ T∧(T−x)

0∧−x
h(x)ds dx =

∫ T

−T
(T − |x|)h(x)dx.

3.2 The mean.

We now prove Theorem 1, part 1. Applying the first item of Lemma 3.1 and recalling (1) (and the
normalisation r(0) = 1) we have

E[∆(T )] =
1

2i
E

[∫ T

0

(
f ′(t)

f(t)
−
(
f ′(t)

f(t)

))
dt

]
(∗)
=

1

2i

∫ T

0
E

[
f ′(t)

f(t)
−
(
f ′(t)

f(t)

)]
dt

=
1

2i

∫ T

0

[
r′(0)− r′(0)

]
dt

= T · Im r′(0).

The equality marked by (*) is justified by Fubini’s theorem, which may be applied due to the first
item of Lemma 3.4.
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3.3 The variance.

Here we prove part 2 of Theorem 1, pertaining to the variance. By the definition of ∆(T ) in (1),
we have

var [∆(T )] = −1

4
E
∫ T

0

∫ T

0

(
f ′(t)

f(t)
−
(
f ′(t)

f(t)

))(
f ′(s)

fs)
−
(
f ′(s)

f(s)

))
dt ds

+
1

4

(
E
∫ T

0

(
f ′(t)

f(t)
−
(
f ′(t)

f(t)

))
dt

)2

(∗∗)
= −1

4

∫ T

0

∫ T

0
cov

[
f ′(t)

f(t)
−
(
f ′(t)

f(t)

)
,
f ′(s)

f(s)
−
(
f ′(s)

f(s)

)]
dt ds

= −1

4

∫ T

0

∫ T

0

(
cov

[
f ′(t)

f(t)
,
f ′(s)

f(s)

]
− cov

[
f ′(t)

f(t)
,

(
f ′(s)

f(s)

)]
(14)

− cov

[(
f ′(t)

f(t)

)
,
f ′(s)

f(s)

]
+ cov

[(
f ′(t)

f(t)

)
,

(
f ′(s)

f(s)

)])
dt ds.

The exchange of the order of the operations in the equality marked (**) is justified by Fubini’s
Theorem, which may be applied due to Lemma 3.4. This lemma also allows us to ignore points
(t, s) where |r(t− s)| = 1, and we shall do so for the remainder of the proof.

Next we apply Lemma 3.1 in order to express each of the four terms in (14) using the covariance
function r and its derivatives. We use (11) to simplify our expressions. If r(t − s) 6= 0 then item
(b) of Lemma 3.1 implies that

cov

[
f ′(t)

f(t)
,
f ′(s)

f(s)

]
=

|r(t− s)|2

1− |r(t− s)|2

(
r′(t− s)
r(t− s)

− r′(0)

)(
r′(s− t)
r(s− t)

− r′(0)

)
, (15)

while item (c) implies that

cov

[
f ′(t)

f(t)
,
f ′(s)

f(s)

]
=

|r(t− s)|2

1− |r(t− s)|2

(
r′(t− s)
r(t− s)

− r′(0)

)(
r′(s− t)
r(s− t)

− r′(0)

)
(16)

+ log
1

1− |r(t− s)|2

(
−r
′′(t− s)
r(t− s)

− r′(t− s)r′(s− t)
r(t− s)2

)
.

At the points where r(t− s) = 0, we have (by the same lemma)

cov

[
f ′(t)

f(t)
,
f ′(s)

f(s)

]
= −|r′(t− s)|2, cov

[
f ′(t)

f(t)
,
f ′(s)

f(s)

]
= 0. (17)

We are now ready to plug (15), (16) and (17) into (14), and use the symmetry relations (12) in
order to simplify our expressions. We get

var [∆(T )] =

∫ T

0

∫ T

0
K(t− s) dt ds (18)

where

K(x) =

{
1
2 |r
′(x)|2, r(x) = 0

−1
4

[
|r(x)|2

1−|r(x)|2H(x)− 1
4 log 1

1−|r(x)|2

{
R′(x) +R′(x)

}]
, 0 < |r(x)| < 1.

12



Here

H(x) = (R(x)−R(0))(R(−x)−R(0))− (R(x)−R(0))(R(−x)−R(0))

− (R(−x)−R(0))(R(−x)−R(0)) + (R(x)−R(0)) (R(−x)−R(0))

= −2|R(x)−R(0)|2 + (R(x)−R(0))2 + (R(x)−R(0)
2

= −4[Im (R(x)−R(0))]2 < 0.

Further simplifications yield that, for x such that 0 < |r(x)| < 1,

K(x) =
|r(x)|2

1− |r(x)|2
(

Im 2{R(x)−R(0)}
)
− 1

4
log

1

1− |r(x)|2
· 2ReR′(x)

=
|r(x)|2

1− |r(x)|2
(R(x) +R(−x)− 2R(0)})2 − 1

2
log

1

1− |r(x)|2
· Re {R′(x)}.

Notice the formula we obtained for K coincides with the definition in (5). Once we show that
K ∈ L1([−T, T ]) for any T , we may use Lemma 3.5 to pass from the double integral in (18) to a
single integral. This yields

var [∆(T )] = T

∫ T

−T

(
1− |x|

T

)
K(x)dx,

which is precisely the identity (6) in Theorem 1.
It remains only to prove that K is locally integrable. Denote D = {t : |r(t)| = 1}. This set

is discrete by item 3 of Lemma 3.3. It is straightforward to check that K is continuous at any
point not in D, so we need only prove integrability of K on a neighborhood of an arbitrary point
in D. Let us first consider 0 ∈ D. Since r is continuous, there is an ε > 0 such that |r(x)| > 1

2
for all |x| < ε. Therefore for |x| < ε we have 1 − |r(x)|2 ' x2, R(x) + R(−x) − 2R(0) ' x2, and
ReR′(x) ' ReR′(0), which yields

|K(x)| ≤ |r(x)|2

1− |r(x)|2
|R(x) +R(−x)− 2R(0)|2 +

1

2
log

1

1− |r(x)|2
∣∣R′(x)

∣∣2
. x2 + log

1

x
, (19)

which is integrable in (−ε, ε). Using item 4 of Lemma 3.3, this argument may be repeated to show
integrability near any other point tm ∈ D.

4 An alternative form for the variance and a linear lower bound:
Theorem 2

The main goal of this section is to prove Theorem 2 concerning a linear lower bound on the variance.
However, most of the section will be devoted to prove the following reformulation of the second
part of Theorem 1, from which Theorem 2 will follow rather easily.

Proposition 4.1. Define K̃ : R→ R by

K̃(x) =


1
2 |r
′(x)|2, if |r(x)| = 0 or 1,
|r(x)|2

1−|r(x)|2 Im 2 {R(x)−R(0)}+ 1
4

(
log 1

1−|r(x)|2

)′ (
log{|r(x)|2}

)′
, if 0 < |r(x)| < 1.

(20)

13



Then K̃ is integrable on any compact subset of R, and

var [∆(T )]

T
=

∫ T

−T

(
1− |x|

T

)
K̃(x)dx+

1

2T

∫ 1

|r(T )|2
log

1

1− y
dy

y
. (21)

A few remarks are in order before we proceed with the proofs.

Remark 4.1. Notice that all terms in this expression are non-negative. It is interesting to note
that K̃ can be defined if r is only once differentiable, and suggests that (21) may continue to hold
in this case. (The random variable ∆(T ) can be defined if f is simply continuous.)

Remark 4.2. While the expression (20) is a natural one from the perspective of our proof, it has
the obvious drawback that it is not a continuous function. On the other hand we may modify (20)
on a (at most) countable set of points (which of course does not affect (21)) to get

K̃∗(x) =


|r′(x)|2, if r(x) = 0,
|r(x)|2

1−|r(x)|2 Im 2 {R(x)−R(0)}+ 1
4

(
log 1

1−|r(x)|2

)′ (
log{|r(x)|2}

)′
, if 0 < |r(x)| < 1

2(r′(0)2 − r′′(0)), if |r(x)| = 1,

which is a continuous function. (K̃∗ and K̃ differ on the sets {x : r(x) = 0, r′(x) 6= 0} and
{x : |r(x)| = 1}. The first is obviously at most countable, while Lemma 3.3 implies that the second
is. Lemma 3.3 (and the contents of its proof) and Observation 3.2 imply that K̃∗ is continuous at
the points where |r| = 1.)

4.1 Proof of Proposition 4.1

First recall that, by (6),
var [∆(T )]

T
=

∫ T

−T

(
1− |x|

T

)
K(x)dx,

where K is given by (5). Denoting F = {x ∈ R : |r(x)| = 0 or 1}}, and using the fact that (when
it’s defined) ReR(x) = Re r′

r (x) = 1
2

(
log |r(x)|2

)′
, we may rewrite (5) as

K(x) =

{
1
2 |r
′(x)|2, x ∈ F
|r(x)|2

1−|r(x)|2 Im 2
{
r′(x)
r(x) − r

′(0)
}

+ 1
4 log 1

1−|r(x)|2
(
− log{|r(x)|2}

)′′
, x 6∈ F.

(22)

Comparing this with (20), we see that the only difference between K and K̃ is in case x 6∈ F ,
and this difference lies only in the second term of the relevant expressions. Thus, in order to prove
Proposition 4.1, it is enough to study

ST =

∫
[−T,T ]\F

(
1− |x|

T

)
log

1

1− |r(x)|2
(
− log{|r(x)|2}

)′′
dx. (23)

Notice that (−T, T )\F is an open set, and therefore the union of disjoint intervals. We perform
integration by parts on each interval to rewrite ST . The boundary terms are given by evaluation
of the function (

1− |x|
T

)
log

1

1− |r(x)|2
(
− log |r(x)|2

)′

14



at points where either |x| = T , or |r(x)| = 0 or 1, and this function vanishes at all such points.
Therefore, the integration by parts yields

ST =

∫
[−T,T ]\F

((
1− |x|

T

)
log

1

1− |r(x)|2

)′ (
log |r(x)|2

)′
dx

=

∫
[−T,T ]\F

(
1− |x|

T

)(
log

1

1− |r(x)|2

)′ (
log |r(x)|2

)′
dx

− 2

T

∫
[0,T ]\F

log
1

1− |r(x)|2
(
log |r(x)|2

)′
dx, (24)

where in the last step we used the fact that |r|2 is even (see (11)). For the last term, we write2

[0, T )\F = (t0, t1)∪(t2, t3)∪· · ·∪(t2N , t2N+1) where 0 = t0 < t1 ≤ t2 < t3 ≤ · · · ≤ t2N < t2N+1 = T
and |r(t2n−1)| = |r(t2n)| for 1 ≤ n ≤ N . We then have∫

[0,T ]\F
log

1

1− |r(x)|2
(
log |r(x)|2

)′
dx =

N∑
n=0

∫ t2n+1

t2n

log

(
1

1− |r(x)|2

) d
dx{|r(x)|2}
|r(x)|2

dx

=

N∑
n=0

∫ |r(t2n+1)|2

|r(t2n)|2
log

(
1

1− y

)
· dy
y

(25)

=

∫ |r(T )|2

|r(0)|2
log

(
1

1− y

)
· dy
y

= −
∫ 1

|r(T )|2
log

(
1

1− y

)
· dy
y
.

Combining (23), (24) and (25) we arrive at

ST =

∫
[−T,T ]\F

(
1− |x|

T

)(
log

1

1− |r(x)|2

)′ (
log{|r(x)|2}

)′
dx+

2

T

∫ 1

|r(T )|2
log

1

1− y
dy

y
.

This, combined with (6) and (22) yields that

var [∆(T )]

T
=

∫ T

−T

(
1− |x|

T

)
K̃(x)dx+

1

2T

∫ 1

|r(T )|2
log

1

1− y
dy

y
,

where K̃ is given by (20). Since, by Remark 4.2, we may modify K̃ on a set of measure 0 to yield
a continuous function, integrability on a compact is trivial. Proposition 4.1 follows.

4.2 Proof of Theorem 2

By the third item of Lemma 3.3, there exists δ0 > 0 such that (0, δ0) ⊂ {x : 0 < |r(x)| < 1}. Notice
that in the expression for the variance given by Proposition 4.1, namely in (20) and (21), all of the
terms are non-negative (cf. Remark 4.1). Therefore,

var [∆(T )]

T
≥ 1

4

∫ δ0

0

(
log

1

1− |r(x)|2

)′ (
log{|r(x)|2}

)′
dx,

for all T > δ0. Write g(x) = |r(x)|2. By the fourth item of Lemma 3.3, we have g(x) = 1− Cx2 +
o(x2) as |x| → 0, with some C > 0. Thus

lim
x→0

(
log

1

1− |r(x)|2

)′ (
log{|r(x)|2}

)′
= lim

x→0

g′(x)2

(1− g(x))g(x)
= lim

x→0

4C2x2 + o(x2)

Cx2 + o(x2)
= 4C > 0,

2It might be the case that “N = ∞”, i.e., that we have a countable number of points in [0, T ) where r vanishes.
We leave it to the reader to check that this does not affect the proof.
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and so g′2

(1−g)g > 2C on some interval (−δ1, δ1). Taking δ = min{δ0, δ1}, we obtain

var [∆(T )]

T
≥ Cδ

4

for all T ≥ δ. The theorem follows.

5 Linear Variance and CLT: Theorem 3

In this section we prove Theorem 3. We begin with some observations regarding our premises.

Observation 5.1. r ∈ L2(R) if and only if the spectral measure ρ has density p(λ) ≥ 0 (w.r.t.
the Lebesgue measure) such that p ∈ L2(R). Similarly, r(k) ∈ L2(R) if and only if ρ has density
p(λ) ≥ 0 such that λkp(λ) ∈ L2(R).

This observation follows from basic properties of Fourier transform.

Observation 5.2. If r, r′′ ∈ L2(R), then r′ ∈ L2(R).

Proof. By Observation 5.1, the spectral measure has density p ≥ 0 which satisfies p(λ) ∈ L2(R)
and λ2p(λ) ∈ L2(R). Therefore∫

R
λ2p2(λ) dλ ≤

∫
R

min(1, λ4)p2(λ) dλ <∞,

which yields λp(λ) ∈ L2(R). This is equivalent to r′ ∈ L2(R) by Observation 5.1.

5.1 Linear Variance

In this subsection we show the first part of Theorem 3, that is, that if r, r′ ∈ L2(R) then the
variance of ∆(T ) is asymptotically linear (in the sense of (7)).

From Proposition 4.1, we have

var [∆(T )]

T
=

∫ T

−T

(
1− |x|

T

)
K̃(x) dx+O

(
1

T

)
, (26)

where K̃ ≥ 0 is given by (20). Since the integrand in (26) converges pointwise to K̃(x) (as T →∞)
and is dominated by it, by the dominated convergence theorem it is enough to show that∫

R

∣∣K̃(x)
∣∣ dx <∞. (27)

in order to get a finite limit as T →∞ in (26). Thus we need only show (27) in order to obtain (7).
By our premise, |r(x)| → 0 as |x| → ∞, and so there is a > 0 such that |r(x)| < 1

2 for |x| > a.

By Proposition 4.1, K̃ is integrable on any finite interval, and in particular on [−a, a]. For |x| > a
and r(x) 6= 0 we use the definition of K̃ in (20) to get

|K̃(x)| . |r(x)|2

1− |r(x)|2
|R(x)−R(0)|2 +

(
d
dx{|r(x)|2}

)2
(1− |r(x)|2)|r(x)|2

. |r(x)|2|R(x)−R(0)|2 +

∣∣r′(x)r(x)
∣∣2

|r(x)|2

. |r(x)|2 + |r(x)r′(x)|+ |r′(x)|2. (28)

For x such that r(x) = 0 we have K̃(x) = 1
2 |r
′(x)|2, so (28) holds there as well. Since r and r′ are

both in L2(R), each term on the left-hand side of (28) is integrable on R. This proves (27), and we
are done.
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5.2 CLT

In this section we prove the central limit law in Theorem 3. The main steps are as follows:

1. Construct an M -dependent stationary Gaussian process fM : R→ C, that approximates the
original process f (in a way to be clarified). For this we employ an approximation strategy
of Cuzick [5], although the idea goes back to Malevich [25].

2. Show that the increment of the argument of fM , denoted ∆M (T ), obeys a CLT as T → ∞
for each fixed M .

3. Show that (∆M (T )−E∆M (T ))/
√

var (∆M (T )) approaches (∆(T )−E∆(T ))/
√

var (∆(T )) as
M →∞ in L2(P), uniformly in T .

These steps will conclude the proof, by the following standard lemma.

Lemma 5.3. Suppose that, for T > 0 and M > 0, X(T ) and XM (T ) are real-valued random
variables with mean 0 and variance 1. Suppose further that the following holds:

• For each fixed M ,

XM (T )
d−→ NR(0, 1), as T →∞.

• We have
lim
M→∞

E
[
(X(T )−XM (T ))2

]
= 0,

uniformly in T .

Then
X(T )

d−→ NR(0, 1), as T →∞.

5.2.1 Constructing an approximating process

In this section we construct a finitely-dependent process fM which will be close, in some sense, to f .
We remind the reader that we are working under the hypothesis that r, r′ and r′′ are in L2(R). By
Observation 5.1, the spectral measure has density p(λ) ≥ 0 with respect to the Lebesgue measure.
For what follows, it will be convenient to write p(λ) = g2(λ). We may represent the processes as
an integral against white noise,

f(t) =

∫
R
e−iλtg(λ) dW(λ), (29)

where W = 1√
2

(B1 + iB2) with B1 and B2 being two independent one-dimensional Brownian

motions. For details on this representation see, for instance, [4, Ch. 7.5].
For M > 0, define

PM (λ) =
M

K1
sinc4(Mλ),

where sinc(λ) = sin(πλ)
πλ , and 3 K1 =

∫∞
−∞ sinc4(λ) dλ. Note that PM (λ) ≥ 0 for all M > 0 and

λ ∈ R, and that ∫ ∞
−∞

PM (λ) dλ = 1.

3We remark that one may compute K1 = 2
3
, though this value will be unimportant for our purposes.
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For each M > 0, we define a new process by

fM (t) =

∫
R
e−iλt (g2 ∗ PM )1/2(λ) dW(λ),

where dW(λ) is the same white noise as in (29) (that is, the processes f and fM are coupled).
Indeed, the process fM is well defined since (g2 ∗ PM )(λ) ≥ 0 for all λ ∈ R, and

λ 7→ e−iλt(g2 ∗ PM )1/2(λ) ∈ L2(R).

Further, fM is a Gaussian stationary process with spectral measure

dρM (λ) = (g2 ∗ PM )(λ) dλ,

and covariance kernel rM,M (t) = E[fM (t)fM (0)] satisfying

rM,M (t) = ρ̂M (t) = r(t) P̂M (t). (30)

We further define r0,M (t) = E[f(t)fM (0)], and notice that

r0,M (t) =

∫
e−iλtg(λ)(g2 ∗ PM )

1
2 (λ)dλ.

5.2.2 Properties

In this subsection we clarify in what sense fM approximates f . More importantly we prove the
following key result, which concerns the convergence of the covariance kernels rM,M and rM,0, and
will be essential in proving the CLT in Theorem 3.

Proposition 5.4. As M →∞, we have

r0,M , rM,M → r,

r′0,M , r
′
M,M → r′,

r′′0,M , r
′′
M,M → r′′,

in both L2(R) and L∞(R).

We recall the definition of M -dependence.

Definition (M -dependence). Let T ⊆ R, and M ≥ 0. A stochastic process (X(t))t∈T is M -
dependent if for any s1, s2 ∈ T such that s2 − s1 > M , the sigma-algebras generated by (X(t))t≤s1
and (X(t))t≥s2 are independent.

Proposition 5.5. The process fM is almost surely continuously differentiable, and 4πM -dependent.

Further, fM approximates f in the following sense, which we immediately deduce from the
previous two propositions.

Corollary 5.6. As M →∞, we have

fM (t)→ f(t) and f ′M (t)→ f ′(t)

in L2(P), uniformly in t ∈ R.

18



We will now give a series of lemmata and observations which will lead to the proof of the
previous two propositions.

Lemma 5.7. P̂M (t) satisfies the following properties:

1. P̂M (t) is twice continuously differentiable on R.

2. 0 ≤ P̂M (t) ≤ 1 for all t ∈ R.

3. P̂M (t) = 0 for |t| > 4πM .

4. For any 0 < ε < 1 we have P̂M (t) = 1 − K2
M2 t

2 + O
(
t2+ε

M2+ε

)
, as t → 0, where 4 K2 =

1
2K1

∫
R λ

2sinc4(λ) dλ and the implicit constant depends only on ε.

Proof. The first item follows from the fact that∫
R
|λ|2+εPM (λ) dλ <∞ (31)

for all 0 < ε < 1. Notice that ŝinc(t) = 1I[−π,π](t). So

P̂M (t) = P̂1

(
t

M

)
=

1

K1
(ŝinc4)

(
t

M

)
=

1

K1
1I∗4[−π,π]

(
t

M

)
,

where ∗4 denotes the fourth convolution power. Clearly, P̂M (t) ≥ 0 for all t ∈ R. Also, by basic
properties of the Fourier transform we have P̂M (t) ≤ P̂M (0) =

∫
R PM = 1, which establishes the

second item. Further, since 1I∗4[−π,π] is supported on [−4π, 4π], the third item follows. Finally notice
that

P̂1(0) =

∫
R
P1 = 1,

P̂
′

1 (0) = −i
∫
R
λP1(λ) dλ = 0,

P̂
′′

1 (0) = −
∫
R
λ2P1(λ) dλ = −2K2,

and by a standard Taylor expansion, taking (31) into account, the fourth item follows.

Lemma 5.8. The following hold:

1. rM,M is a twice differentiable function on R, supported on [−4πM, 4πM ].

2. rM,M (0) = r(0) = 1 and r′M,M (0) = r′(0).

3. |rM,M (t)| ≤ |r(t)| for all t.

Recalling that rM,M (t) = r(t)P̂M (t) (see (30)), Lemma 5.8 follows immediately from Lemma 5.7
and our assumptions about r.

This previous lemma immediately implies that fM is a 4πM -dependent process. The next
lemma will complete the proof of Proposition 5.5.

4Again, it is possible to compute K2 = 3
8π2 .
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Lemma 5.9. Suppose that (3) holds for α > 0. Then∫
R
λ2 log1+α′(1 + |λ|)dρM (λ) <∞

for any α′ < α.

Proof. Combining Item 4 of Lemma 5.7 with (4) we see that for all C > 0 we have

|r′′M,M (t)− r′′M,M (0)| ≤ C

| log |t||α
for |t| ≤ δ(α,C).

Then [4, Chapter 9, Lemma 2] completes the proof.

For Proposition 5.4 we shall need two further lemmas about the kernel PM .

Lemma 5.10. For any 1 ≤ p <∞ and h ∈ Lp(R), we have PM ∗ h
Lp−→ h as M →∞.

Proof. Observe that (PM )M>0 is a summability kernel ; that is, PM (·) ≥ 0,
∫
R PM = 1, and for every

fixed ε > 0 the convergence limM→∞
∫
|x|>ε PM = 0 holds. A standard property of summability

kernels (see [22, Ch. VI]) establishes our lemma.

Lemma 5.11. P̂
′
M , P̂

′′
M → 0 in L2 and L∞ as M →∞.

Proof. Notice that P̂M (t) = P̂1

(
t
M

)
and so P̂

′
M (t) = 1

M P̂
′

1

(
t
M

)
. This implies that∥∥∥P̂ ′M∥∥∥2

2
=

1

M2

∫
R

∣∣P̂ ′1 ( t
M )
∣∣2 dt =

1

M

∫
R

∣∣P̂ ′1 (s)
∣∣2 ds→ 0

and ∥∥∥P̂ ′M∥∥∥∞ =
1

M

∥∥∥P̂ ′1 ∥∥∥∞ → 0.

Similarly ∥∥∥P̂ ′′M∥∥∥2

2
=

1

M3

∫
R

∣∣P̂ ′′1 (s)
∣∣2 ds→ 0,

and ∥∥∥P̂ ′′M∥∥∥∞ =
1

M2

∥∥∥P̂ ′′1

∥∥∥
∞
→ 0.

We will also need two simple observations.

Observation 5.12. The following hold:

• If hn
L1

→ h, then ĥn
L∞→ ĥ.

• If hn
L2

→ h, then ĥn
L2

→ ĥ.

Observation 5.13. If h, hn ≥ 0 and h2
n
L1

→ h2, then hn
L2

→ h.

Proof. Since for any x, y ≥ 0 we have |x− y|2 ≤ |x2 − y2| it follows trivially that∫
|hn − h|2 ≤

∫
|h2
n − h2| → 0.
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Proof of Proposition 5.4. Recall our hypothesis that r, r′ and r′′ ∈ L2. By Observation 5.1 we
deduce that

λjg2(λ) ∈ (L1 ∩ L2)(R)

Since PM is a summability kernel, we may apply Lemma 5.10 to see that(
λjg2(λ)

)
∗ PM → λjg2(λ) in L1 and L2 for j = 0, 1 and 2. (32)

By Observation 5.12 this implies that

r(j)P̂M → r(j) in L2 and L∞. (33)

Recalling that
rM,M = rP̂M

we see that the case j = 0 in (33) is equivalent to rM,M → r. Further, since |r(t)| ≤ r(0) = 1, we

have rP̂
′
M → 0 in L2 and L∞ by Lemma 5.11. This, combined with the case j = 1 in (33) and

r′M,M = r′P̂M + rP̂
′
M ,

implies that r′M,M → r′ in L2 and L∞. Arguing similarly we have r′′M,M → r′′ in L2 and L∞.

It remains to prove the convergence of r0,M and its derivatives. First recall that r̂0,M = g(g2 ∗
PM )

1
2 . We have

∫
R
λ2g(λ)(g2 ∗ PM )

1
2 (λ)dλ ≤

(∫
R
λ2g(λ)2dλ

)1
2
(∫

R
λ2(g2 ∗ PM )(λ)dλ

)1
2
< +∞

and so r0,M is indeed twice differentiable. By Observation 5.13, the L1 convergence in (32) with
j = 0 implies that (

g2 ∗ PM
) 1

2 → g in L2.

Thus for j = 0, 1 and 2∥∥∥r(j)
0,M − r

(j)
∥∥∥
∞
≤
∥∥∥λjg((g2 ∗ PM )

1
2 − g

)∥∥∥
1
≤
∥∥λjg∥∥

2
·
∥∥∥(g2 ∗ PM

) 1
2 − g

∥∥∥
2
→ 0, M →∞,

which proves the desired L∞ convergence. As for L2 convergence, we have

1√
2π

∥∥∥r(j)
0,M − r

(j)
∥∥∥

2
=
∥∥∥λjg((g2 ∗ PM )

1
2 − g

)∥∥∥
2

=
∥∥∥λ2jg2

(
(g2 ∗ PM )

1
2 − g

)2∥∥∥ 1
2

1

≤
∥∥λjg2

∥∥ 1
2

2

∥∥∥(λj/2(g2 ∗ PM )1/2 − λj/2g
)2∥∥∥ 1

2

2

≤
∥∥λjg2

∥∥ 1
2

2

∥∥λj(g2 ∗ PM )− λjg2
∥∥ 1

2

2
.

The last inequality follows from the observation that
∥∥(ψ − φ)2

∥∥
2
≤
∥∥ψ2 − φ2

∥∥
2

for ψ, φ ≥ 0. Now∥∥λj(g2 ∗ PM )− λjg2
∥∥

2
=

1√
2π

∥∥∥r(j)
M,M − r

(j)
∥∥∥

2
→ 0, M →∞,

which completes the proof.

21



5.2.3 CLT for the approximating process

In this subsection we prove that ∆M (T ) satisfies a CLT as T →∞.

Proposition 5.14. For each fixed M ≥ 0,

∆M (T )− E[∆M (T )]√
var [∆M (T )]

→ NR(0, 1)

in distribution as T →∞.

Our main tool is the following theorem of Diananda [6, Theorem 4], which guarantees a CLT
for sums of M -dependent sequences.

Theorem 5 (Diananda). Let (Xn)n∈N be an M -dependent sequence of identically distributed real-
valued random variables, with mean 0 and finite variance. Define SN =

∑N
n=1Xn, and suppose

that the variance of SN is at least linear, that is,

lim inf
N→∞

var (SN )

N
> 0.

Then
SN√

var (SN )

N→∞−→ NR(0, 1)

in distribution.

Applying it, and accounting for differences between discrete and continuous time, we now prove
our proposition.

Proof of Proposition 5.14. Fix M > 0 throughout the proof. Since fM is a (4πM)-dependent
process, so too is the sequence

∆M,n =

∫ n

n−1
Im

{
f ′M (t)

fM (t)

}
dt, n ∈ N.

We may apply Diananda’s Theorem to ∆M,n = ∆M,n−E∆M,n, as this is a sequence of identically

distributed random variables (due to stationarity), and var
(∑N

n=1 ∆M,n

)
= var ∆M (N) ∼ CMN

(by Section 5.1). Let T ≥ 0, N = bT c and define EM (T ) = ∆M (T ) −
∑N

n=1 ∆M,n. We now show
that the error EM (T ) is small in an appropriate sense, which allows us to conclude asymptotic
normality for ∆M (T ).

Denote EM (T ) = EM (T )− EEM (T ) and notice that

EM (T ) =

∫ T

N
Im

{
f ′M (t)

fM (t)

}
dt.

Asymptotic normality of ∆M (T ) will follow if we show that

EM (T )

var ∆M (T )
→ 0 in probability, as T →∞,

and
var

(∑N
n=1 ∆M,n

)
var ∆M (T )

→ 1, as T →∞.
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Since var ∆M (T ) ∼ CMT as T → ∞, we have
var (

∑N
n=1 ∆M,n)

var ∆M (T ) = var ∆M (N)
var ∆M (T ) ∼

N
T ∼ 1, as

T →∞.
Moreover, by stationarity var EM (T ) ≤ sup0≤t≤1 var ∆M (t) = cM < ∞, and so for each fixed

ε > 0,

P

(∣∣∣∣∣ EM (T )√
var ∆M (T )

∣∣∣∣∣ > ε

)
≤ 1

ε2

var EM (T )

var ∆M (T )
→ 0,

as T →∞. The proof is complete.

5.2.4 Quantifying the approximation

In this section we show that, when appropriately normalized, ∆M (T ) approaches ∆(T ) in L2(P)
as M → ∞, uniformly in T . This is stated precisely in the following proposition. For brevity, we
write ∆(T ) = ∆(T )− E∆(T ) and ∆M (T ) = ∆M − E∆M (T ).

Proposition 5.15. There exists T0 > 0 satisfying the following: Given ε > 0, there exists M0 =
M0(ε) > 0 such that for all T ≥ T0 and M ≥M0 we have

E

 ( ∆M (T )√
var ∆M (T )

− ∆(T )√
var ∆(T )

)2
 < ε.

In fact, given our previous variance computations, it is enough to prove the following.

Proposition 5.16. There exists T0 > 0 satisfying the following: Given ε > 0, there exists M0 =
M0(ε) > 0 such that for all T ≥ T0 and M ≥M0 we have

1

T
E
[ (

∆M (T )−∆(T )
)2 ]

< ε.

Proof of Proposition 5.16. Repeating the arguments of Section 3.3 and using Lemma 5.8, we get

E
[ (

∆M (T )−∆(T )
)2 ]

= T

∫ T

−T

(
1− |x|

T

)(
K(x)− 2K0,M (x) +KM,M (x)

)
dx,

where K(x) is as before (recall (5)), and

K∗(x) =

{
1
2 |r
′
∗(x)|2, if r∗(x) = 0
|r∗(x)|2

1−|r∗(x)|2 Im 2
{
r′∗(x)
r∗(x) − r

′(0)
}
− 1

4 log 1
1−|r∗(x)|2

d2

dx2

(
log |r∗(x)|2

)
, otherwise.

Here ∗ may be either the index (0,M) or (M,M). We leave K, K0,M and KM,M undefined at
x = 0. We therefore have

1

T
E
[(

∆M (T )−∆(T )
)2] ≤ ∫

R
|K(x)− 2K0,M (x) +KM,M (x)| dx.

Thus it is enough to show that

Goal: K0,M
L1−→ K and KM,M

L1−→ K. (34)

We shall give a unified proof for both limits. We use the notation (rM ,KM ) to represent either
the pair (r0,M ,K0,M ) or the pair (rM,M ,KM,M ). We will repeatedly use that, by Proposition 5.4,
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rM , r
′
M and r′′M converge to r, r′ and r′′ respectively, in L∞(R). (Notice that by Lemma 3.3, K(x)

is a finite number whenever x 6= 0.) In particular, this implies that

KM (x) −→ K(x), pointwise, (35)

for x 6= 0.
We will prove L1 convergence separately on two different subsets of R, which are chosen ac-

cording to the size of r. Fix some δ > 0 (to be specified later), and write

A = {x : |r(x)| ≥ δ} \ {0}
B = {x : |r(x)| < δ}

We begin with the convergence on A. Notice that A is bounded (since limx→±∞ |r(x)| = 0).

Denote RM =
r′M
rM

. Similar to (19), we have

|KM (x)| ≤ |rM (x)|2

1− |rM (x)|2
|RM (x) +RM (−x)− 2R(0)|2 +

1

2
log

1

1− |rM (x)|2
∣∣R′M (x)

∣∣2
≤ L · (x2 + log

1

x
),

where L is a constant, uniform in M . Thus KM has an integrable majorant on A and so (35) and
the dominated convergence theorem yield, for any fixed δ > 0,∫

A
|KM −K| → 0. (36)

Next we turn to convergence on B. Note that, since rM → r in L∞, we may assume that
|rM (x)| ≤ 2δ for all x ∈ B. Using the Taylor expansions

1

1− |rM |2
= 1 +O(|rM |2), log

1

1− |rM |2
= |rM |2 +O(|rM |4),

we have for x ∈ B and rM (x) 6= 0

KM (x) =− 1

4

|rM (x)|2

1− |rM (x)|2

[(
r′M (x)

rM (x)

)2

+

(
r′M (x)

rM (x)

)2

− 2

∣∣∣∣r′M (x)

rM (x)

∣∣∣∣2 − 4r′(0)
r′M (x)

rM (x)

+ 4r′(0)

(
r′M (x)

rM (x)

)
+ 4r′(0)2

]

+
1

4
log

1

1− |rM (x)|2

[(
r′M (x)

rM (x)

)2

+

(
r′M (x)

rM (x)

)2

−
r′′M (x)

rM (x)
−
(
r′′M (x)

rM (x)

)]
=

1

2
|r′M (x)|2 − r′(0)2|rM (x)|2 + r′(0)rM (x)r′M (x)− r′(0)rM (x)r′M (x) (37)

− 1

4
r′′M (x)rM (x)− 1

4
r′′M (x)rM (x)

+O(|rM (x)r′M (x)|2 + |rM (x)|4 + |r′M (x)rM (x)3|+ |r′′M (x)rM (x)3|).

Notice that when rM (x) = 0 we have simply KM (x) = 1
2 |r
′
M (x)|2, which also coincides with (37)

in this case. The same arguments may be applied to get an expression for K(x), given by replacing
rM by r everywhere in the right-hand side of (37). Therefore, we have

24



∫
B
|KM −K| ≤

1

2

∫
B

∣∣|r′M |2 − |r′|2∣∣+ |r′(0)|2
∫
B

∣∣|rM |2 − |r|2∣∣
+ 2|r′(0)|

∫
B

∣∣rMr′M − rr′∣∣+
1

2

∫
B
|rMr′′M − rr′′|

+ δ2O
( ∥∥r′∥∥2

2
+ ‖r‖22 +

∥∥r′∥∥
2
‖r‖2 +

∥∥r′′∥∥
2
‖r‖2

)
Let ε > 0 be given. By the L2 convergences in Proposition 5.4, and by observing that if

ψn
L2

−→ ψ and φn
L2

−→ φ then ψnφn
L1

−→ ψφ, we get that for large enough M∫
B
|KM −K| ≤ ε+ c0δ

2,

where c0 is a constant (depending only on r). Thus, by choosing δ = δ(ε) appropriately, we get∫
B
|KM (x)−K(x)| dx < 2ε,

for large enough M . Together with (36), this establishes the goal (34).

5.2.5 Conclusion: Proof of the CLT in Theorem 3

At last, we conclude the proof of the central limit theorem appearing in (8). We apply Lemma 5.3
with X(T ) = ∆(T ) and XM (T ) = ∆M (T ). The first condition (a CLT for ∆M ) is guaranteed
by Proposition 5.14. The second condition (a uniform L2 approximation) is guaranteed by Propo-
sition 5.15. Thus Lemma 5.3 implies that ∆(T ) satisfies a CLT in the sense of (8), and we are
done.

6 Sub-quadratic variance: Theorem 4

Lastly, we include the proof of Theorem 4.

Proof of Theorem 4. Since ρ has no atoms, f is an ergodic process (this is the classical Fomin-
Grenander-Maruyama theorem, see [12, Theorem 4] and the references therein). By standard
arguments, this also implies that ∆(T ) is ergodic. Recall that the first and second moment of ∆(T )
are finite (this is precisely Lemma 3.4). Thus, by Von-Neumann’s ergodic theorem, we have

lim
T→∞

∆(T )

T
= E∆(1), (38)

where the convergence is both in L1 and L2 (see [34, Cor. 1.14.1]). We conclude that

lim
T→∞

var [∆(T )]

T 2
= 0.
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