ZEROES OF GAUSSIAN ANALYTIC FUNCTIONS WITH TRANSLATION-INVARIANT DISTRIBUTION

NAOMI D. FELDHEIM

Abstract

We study zeroes of Gaussian analytic functions in a strip in the complex plane, with translation-invariant distribution. We prove that the horizontal limiting measure of the zeroes exists almost surely, and that it is non-random if and only if the spectral measure is continuous (or degenerate). In this case, the limiting measure is computed in terms of the spectral measure. We compare the behavior with Gaussian analytic function with symmetry around the real axis. These results extend a work by Norbert Wiener.

Keywords: zeroes of Gaussian analytic functions, translation-invariance, ergodicity.

1. Introduction

Following Wiener, we study zeroes of Gaussian analytic functions with translation-invariant distribution, defined on a strip in the complex plane. Under certain assumptions on the spectral measure, Wiener proved that the zeroes obey the law of large numbers, and computed their horizontal density (limiting measure). This result appears in his classical treatise with Paley [17, chapter X]. Wiener's proof is quite intricate; this may be why it attracted little attention.

In this work, we simplify Wiener's arguments and remove unnecessary assumptions on the spectral measure. We incorporate the result into a theorem that guarantees the existence of the horizontal limiting measure in question, and asserts it is not random if and only if the spectral measure is continuous or consists of a single atom. Then we prove a counterpart of this theorem for a natural class of Gaussian analytic functions which have a symmetry with respect to the real axis.

For this purpose, we developed a general Edelman-Kostlan-type formula for computing the average zero-counting measure of zeroes of a symmetric Gaussian analytic function in some domain (see Theorem 3 below). This result extends those of Shepp and Vanderbei [19], Prosen [16] and Macdonald [13].

[^0]Acknowledgements: This work was done during and following my master's thesis in Tel-Aviv university, under the attentive guidance of Mikhail Sodin. I would like to thank him for his great devotion and fruitful influence on me and the project. I also thank Boris Tsirelson, for teaching me most of the probability I know in a most patient and inspiring way, and for contributing the idea and proof in appendix A. Lastly I thank Ofer Zeitouni and Jan-Fredrik Olsen for their helpful comments.
1.1. Gaussian Analytic Functions. We deal with two classes of random Gaussian analytic functions.

Definition 1.1. Let $D \subset \mathbb{C}$ be a domain, and let $\left\{\phi_{n}\right\}_{n \in \mathbb{N}}$ be analytic functions in D such that the series $\sum_{n}\left|\phi_{n}(z)\right|^{2}$ converges uniformly on compact subsets of D.
(1) Let a_{n} be independent standard complex Gaussian random variables $\left(a_{n} \sim \mathcal{N}_{\mathbb{C}}(0,1)\right)$. The random series $\sum_{n} a_{n} \phi_{n}(z)$ is called a Gaussian Analytic Function (GAF, for short).
(2) Let b_{n} be independent standard real Gaussian variables $\left(b_{n} \sim \mathcal{N}_{\mathbb{R}}(0,1)\right)$. If the domain D and the functions ϕ_{n} are symmetric w.r.t. the real axis (the latter means that $\phi(\bar{z})=\overline{\phi(z)}, z \in D)$ then the random series $\sum_{n} b_{n} \phi_{n}(z)$ is called a symmetric Gaussian Analytic Function.

Our assumptions on $\left\{\phi_{n}\right\}$ ensure that the sums above a.s. converge to an analytic function in D [5, Chapter 2]. Throughout the paper we assume that there is no $z_{0} \in D$ such that $\phi_{n}\left(z_{0}\right)=0$ for all $n \in \mathbb{N}$ (hence the function f has no deterministic zeroes).

The covariance kernel of $f(z)$ is defined by

$$
\begin{equation*}
K(z, w)=\mathbb{E}(f(z) \overline{f(w)})=\sum_{n} \phi_{n}(z) \overline{\phi_{n}(w)} . \tag{1}
\end{equation*}
$$

The function $K(z, w)$ is positive definite, analytic in z, anti-analytic in w, and obeys the law $K(z, w)=\overline{K(w, z)}$. It turns out that every such function $K(z, w)$ of two variables $z, w \in D$ uniquely defines a GAF in D.

If in addition $K(x, y)$ is real whenever $x, y \in D \cap \mathbb{R}$, then $K(z, w)$ also uniquely defines a symmetric GAF with this kernel. We stress that a GAF and a symmetric GAF with the same kernel are different random processes.
1.2. Stationarity. We assume our domain is the Δ-strip $D=D_{\Delta}=\{|\operatorname{Im} z|<$ Δ \} with $0<\Delta \leq \infty$.

Definition 1.2. A GAF or a symmetric GAF in a strip D_{Δ} is called stationary if it is distribution-invariant with respect to all horizontal shifts, i.e., for any $t \in \mathbb{R}$, any $n \in \mathbb{N}$, and any $z_{1}, \ldots, z_{n} \in D$, the random n-tuples

$$
\left(f\left(z_{1}\right), \ldots, f\left(z_{n}\right)\right) \quad \text { and } \quad\left(f\left(z_{1}+t\right), \ldots, f\left(z_{n}+t\right)\right)
$$

have the same distribution.

If $f(z)$ is stationary in the Δ-strip, then for any $x, y \in \mathbb{R}$ the covariance $\mathbb{E}(f(x) \overline{f(y)})$ depends on $(x-y)$ only, so that $K(x, y)=r(x-y)$ for some real-analytic function $r: \mathbb{R} \rightarrow \mathbb{C}$. From this we deduce

$$
K(z, w)=r(z-\bar{w})
$$

(both functions are analytic in z, anti-analytic in w, and coincide for $z, w \in \mathbb{R}$), and so $r(t)$ has an analytic continuation to the 2Δ-strip $D_{2 \Delta}$.

Since $r(t)$ is continuous and positive-definite, it is the Fourier transform of a positive measure ρ (Bochner's Theorem):

$$
r(t)=\int_{\mathbb{R}} e^{2 \pi i t \lambda} d \rho(\lambda)
$$

The measure ρ is called the spectral measure of the process $f(z)$.
Since $r(t)$ has an analytical extension to the 2Δ-strip, $\rho(\lambda)$ has a finite exponential moment [12, Chapter 2]:

$$
\begin{equation*}
\text { for each } \Delta_{1}<\Delta, \int_{-\infty}^{\infty} e^{2 \pi \cdot 2 \Delta_{1}|\lambda|} d \rho(\lambda)<\infty \tag{2}
\end{equation*}
$$

In fact, condition (2) is also sufficient for $r(t)$ to have an analytic extension to the 2Δ-strip. Therefore, beginning with a finite positive measure ρ obeying (2), we can construct a kernel by

$$
\begin{equation*}
K(z, w)=\int_{\mathbb{R}} e^{2 \pi i(z-\bar{w}) \lambda} d \rho(\lambda) . \tag{3}
\end{equation*}
$$

which defines in its turn a stationary GAF in the Δ-strip.
What measures could be spectral measures of a symmetric GAF? As we mentioned earlier, a kernel $K(z, w)$ defines a symmetric GAF if and only if it is real for $z, w \in \mathbb{R}$; By relation (3) this is equivalent to ρ being symmetric with respect to the origin.

Finally, we mention that a random GAF or symmetric GAF may be explicitly constructed, as follows, from its spectral measure ρ. If $\left\{\psi_{n}(z)\right\}_{n}$ comprise an orthonormal basis in $L_{\rho}^{2}(\mathbb{R})$, then their Fourier transforms

$$
\phi_{n}(z)=\widehat{\psi_{n}}(z)=\int_{\mathbb{R}} e^{2 \pi i z \lambda} \psi_{n}(\lambda) d \rho(\lambda)
$$

comprise a basis in the Hilbert space $\mathcal{F}\left\{L_{\rho}^{2}(\mathbb{R})\right\}$ (the Fourier image of $L_{\rho}^{2}(\mathbb{R})$ with the scalar product transferred from $\left.L_{\rho}^{2}(\mathbb{R})\right)$. One easily checks that

$$
r(z-\bar{w})=\mathbb{E}(f(z) \overline{f(w)})=\sum_{n} \phi_{n}(z) \overline{\phi_{n}(w)} .
$$

Therefore, when used in Definition 1.1. the basis $\left\{\phi_{n}\right\}$ will us a random function with the desired kernel.

2. Results and Discussion

2.1. Main Theorem. It will be convenient to introduce some notation:

Notation 1. (zero-set, zero-counting measure) Let $D \subset \mathbb{C}$ be a region, and f a holomorphic function in D. Denote the zero-set of f (counted with multiplicities) by Z_{f}, and the zero-counting measure by n_{f}, i.e.,

$$
\forall \phi \in C_{0}^{\infty}(D), \quad \int_{D} \phi(z) d n_{f}(z)=\sum_{z \in Z_{f}} \phi(z)
$$

We use the abbreviation $n_{f}(B)=\int_{B} d n_{f}(z)$ for the number of zeroes in a Borel subset $B \subset D$.

Notation 2. Let $y \in(-\Delta, \Delta)$. For a stationary GAF or symmetric-GAF in D_{Δ} with kernel $K(z, w)$, denote

$$
\psi(y)=K(i y, i y)=\int_{-\infty}^{\infty} e^{-4 \pi y \lambda} d \rho(\lambda)
$$

In the case of a GAF, define the function

$$
\begin{equation*}
L(y)=\frac{d}{d y}\left(\frac{\psi^{\prime}(y)}{4 \pi \psi(y)}\right)=-\frac{d}{d y}\left(\frac{\int_{-\infty}^{\infty} \lambda e^{-4 \pi y \lambda} d \rho(\lambda)}{\int_{-\infty}^{\infty} e^{-4 \pi y \lambda} d \rho(\lambda)}\right) . \tag{4}
\end{equation*}
$$

In the case of a symmetric-GAF, define for $y \neq 0$ the function

$$
\begin{equation*}
S(y)=\frac{d}{d y}\left(\frac{\psi^{\prime}(y)}{4 \pi \sqrt{\psi(y)^{2}-\psi(0)^{2}}}\right)=-\frac{d}{d y}\left(\frac{\int_{-\infty}^{\infty} \lambda e^{-4 \pi y \lambda} d \rho(\lambda)}{\sqrt{\left(\int_{-\infty}^{\infty} e^{-4 \pi y \lambda} d \rho(\lambda)\right)^{2}-\left(\int_{-\infty}^{\infty} d \rho(\lambda)\right)^{2}}}\right) \tag{5}
\end{equation*}
$$

and the positive number

$$
\begin{equation*}
R=\frac{1}{4 \pi} \sqrt{\frac{\psi^{\prime \prime}(0)}{\psi(0)}}=2 \sqrt{\frac{\int_{-\infty}^{\infty} \lambda^{2} d \rho(\lambda)}{\int_{-\infty}^{\infty} d \rho(\lambda)}} . \tag{6}
\end{equation*}
$$

Finally, a stationary GAF is degenerate if its spectral measure ρ_{f} consists of exactly one atom. Similarly a stationary symmetric GAF is degenerate if ρ_{f} consists of two symmetric atoms (i.e., $\rho_{f}=c\left(\delta_{q}+\delta_{-q}\right)$ for some $\left.c, q>0\right)$.

The following theorem is our main result. Denote by m_{1} the linear Lebesgue measure.

Theorem 1. Let f be a stationary non-degenerate GAF or symmetric GAF in the strip D_{Δ} with $0<\Delta \leq \infty$. Denote by $\nu_{f, T}$ the non-negative locally-finite random measure on $(-\Delta, \Delta)$ defined by

$$
\nu_{f, T}(Y)=\frac{1}{T} n_{f}([0, T) \times Y), \quad Y \subset(-\Delta, \Delta)
$$

Then:
(i) Almost surely, the measures $\nu_{f, T}$ converge weakly to a measure ν_{f} when $T \rightarrow \infty$.
(ii) The measure ν_{f} is not random (i.e. $\operatorname{var} \nu_{f}=0$) if and only if the spectral measure ρ_{f} has no atoms.
(iii) If the measure ν_{f} is not random, then:

$$
\begin{array}{lr}
\nu_{f}=L m_{1}, & \text { if } f \text { is a } G A F, \\
\nu_{f}=S m_{1}+R \delta_{0}, & \text { if } f \text { is a symmetric-GAF, }
\end{array}
$$

where δ_{0} is the unit point measure at the origin.
The measure ν_{f} is referred to as "the horizontal limiting measure of the zeroes of f ", or simply "the limiting measure". In the discussion and examples that follow, we assume the normalization $\psi(0)=\int_{\mathbb{R}} d \rho(\lambda)=1$.

Remark 2.1. The limiting measure ν_{f} might have atoms. Generally speaking, the weak convergence in the theorem guarantees that $\nu_{f, T}([a, b))$ converges to $\nu_{f}([a, b))$ for all $a, b \in(\Delta, \Delta)$ with a possible exception of an at most countable set, which corresponds to atoms of the limiting measure ν_{f}. Yet, due to stationarity, in our case the limit exists on all intervals. We prove, as an example, the following result:

Proposition 2.1. Almost surely, for any $a, b \in(-\Delta, \Delta)$, we have:

$$
\lim _{T \rightarrow \infty} \nu_{f, T}([a, b))=\nu_{f}([a, b)) .
$$

The proof is included in appendix A. Notice that in particular for any $a \in$ $(-\Delta, \Delta), a$ is an atom of ν_{f} if and only if it is an atom of $\nu_{f, T}$ for large enough T.

Remark 2.2. The part of the theorem pertaining to GAFs extends the aforementioned Wiener's theorem. In his work, Wiener assumed that the spectral measure ρ has the L^{2}-density $d \rho(\lambda)=|\phi(\lambda)|^{2} d \lambda$, that satisfies convergence conditions:
For any $|y|<\Delta$,

$$
\int_{-\infty}^{\infty}\left(1+x^{2}\right)^{2}|\widehat{\phi}(x+i y)|^{2} d x<\infty
$$

and

$$
\int_{-\infty}^{\infty}\left(1+x^{2}\right)\left|(\widehat{\phi})^{\prime}(x+i y)\right|^{2} d x<\infty
$$

As above, $\widehat{\phi}$ is the Fourier transform of ϕ. Under these assumptions, Wiener proved that the limiting measure ν_{f} exists and equals $L m_{1}$, where L is defined by (4).

Remark 2.3. (atomic spectral measure)

Consider a spectral measure consisting of two atoms:

$$
\rho=\frac{1}{2}\left(\delta_{-q}+\delta_{q}\right) .
$$

The corresponding GAF is $f(z)=\left(\zeta_{1} e^{-2 \pi i q z}+\zeta_{2} e^{2 \pi i q z}\right) / \sqrt{2}$, where $\zeta_{1}, \zeta_{2} \sim$ $\mathcal{N}_{\mathbb{C}}(0,1)$, independently. The zeroes of such a function are

$$
z_{k}=\frac{1}{4 \pi q}\left[\arg \left(\frac{\zeta_{2}}{\zeta_{1}}\right)+2 \pi k-i \log \left|\frac{\zeta_{2}}{\zeta_{1}}\right|\right], \quad k \in \mathbb{N}
$$

We see that all zeroes lie on the same (random) horizontal line, equally spaced upon it. The height of this horizontal line is a non-degenerate random variable, and so in this example ν_{f} is indeed random.

For symmetric GAFs, the spectral measure above is degenerate (all zeroes of the corresponding function are real). We mention that it is possible to construct a random analytic function with continuous spectrum, for which a given asymptotic proportion of zeroes lie on the real line. For this, choose a continuous symmetric spectral measure, sufficiently close (in the weak sense) to the degenerated measure $\delta_{q}+\delta_{-q}$.
Remark 2.4. (behavior near the boundary and near the real line.) We observe that $S(y)$ and $L(y)$ have the same asymptotic behavior as y approaches the boundary $\pm \Delta$. Therefore, zeroes of a GAF and of a symmetric GAF with the same kernel behave similarly near the boundary of the domain of definition.

For a symmetric GAF, we observe a "contraction" of the zeroes to the real line: there are zeroes on the line itself, but they are scarce as we approach it from below or above (see figure 3.1 below). This is confirmed by a straightforward computation, which shows that $S(y)=O(y)$, as $y \rightarrow 0$.
2.2. Expected Zero-Counting Measures. In part (iii) of the theorem, the limit $\nu_{f}(a, b)$ is actually the expectation $\mathbb{E} n_{f}([0,1] \times[a, b])$. In order to calculate this quantity in the GAF case, we use the following classical formula, which appeared in Edelman and Kostlan's joint work on random polynomials [6]. Several proofs of this formula are known ([5], chapter 2).
Theorem 2. (Edelman-Kostlan formula) For a GAF f with covariance kernel $K(z, w)$, the expected zero-counting measure is given by

$$
\begin{equation*}
\mathbb{E}\left(n_{f}\right)=\frac{1}{4 \pi} \triangle \log K(z, z) \tag{7}
\end{equation*}
$$

This should be understood as equality of measures in the following sense: for any compactly supported $h \in C^{\infty}(D)$,

$$
\mathbb{E} \int_{D} h(z) d n_{f}(z)=\frac{1}{4 \pi} \int h(z) \triangle \log K(z, z) d m_{2}(z)
$$

Here and throughout this paper, m_{2} denotes the planar Lebesgue measure.

The proofs of this formula depend inherently on the fact that $f(z)$ is a complex Gaussian random variable for all z, which fails for the symmetric GAF. To that end, we prove the following result, that extends previous results by Shepp and Vanderbei [19], Prosen [16] and Macdonald [13].

Theorem 3. For a symmetric GAF f on some region with covariance kernel $K(z, w)$, the expected zero-counting measure is given by

$$
\begin{equation*}
\mathbb{E}\left(n_{f}\right)=\frac{1}{4 \pi} \triangle \log \left(K(z, z)+\sqrt{K(z, z)^{2}-|K(z, \bar{z})|^{2}}\right) \tag{8}
\end{equation*}
$$

where the Laplacian is taken in the distribution sense.
Notice that stationarity is not assumed in the last two theorems. Moreover, this formula combines information about real and complex zeroes.

3. Examples

3.1. Paley-Wiener Process (Sinc-kernel Process). Consider the spectrum

$$
d \rho_{a}(\lambda)=\frac{1}{2 a} \chi_{[-a, a]}(\lambda) d \lambda, \quad a>0 .
$$

Condition (2) holds for any $\Delta>0$, so the sample function f is entire. The kernel is:

$$
K(z, w)=\frac{\sin (2 \pi a(z-\bar{w}))}{2 \pi a(z-\bar{w})}=r(z-\bar{w})
$$

A base for construction of the GAF (in the sense of definition 1.1) is

$$
\phi_{n}(z)=\frac{\sin (2 \pi a z)}{2 \pi a z-n \pi}, \quad n \in \mathbb{Z}
$$

This example yields a surprising construction of a random series of simple fractions with known poles and stationary zeroes: Take for instance $a=1$. Our function is

$$
f(z)=\sum a_{n} \frac{\sin (2 \pi z)}{2 \pi z-n \pi}
$$

where $\left\{a_{n}\right\}$ are independent Gaussian random variables. Almost surely, $Z_{f} \cap$ $\frac{1}{2} \mathbb{Z}=\emptyset$, so we may divide by $\sin (2 \pi z) / \pi$ and get the random series

$$
g(z)=\sum \frac{a_{n}}{2 z-n} .
$$

The poles of g are known (and lie on a one-dimensional lattice), but its zeroes are a random set invariant to all horizontal shifts!

Using Theorem 1 for ρ_{a}, we get that the zero-counting measure has the following density of zeroes:

$$
L_{a}\left(\frac{y}{4 \pi a}\right)=4 \pi a^{2} \frac{d}{d y}\left(\operatorname{coth} y-\frac{1}{y}\right) .
$$

Similarly, the symmetric GAF with the same spectral measure has the continuous density of zeroes

$$
S_{a}\left(\frac{y}{4 \pi a}\right)=4 \pi a^{2} \frac{d}{d y}\left(\frac{\cosh y-\frac{\sinh y}{y}}{\sqrt{\sinh ^{2} y-y^{2}}}\right)
$$

plus an atom at $y=0$, of size

$$
R=\frac{a}{\sqrt{3}} .
$$

Figure $1(\mathrm{a})$ represents the graphs of the continuous densities for the parameter $a=\frac{1}{4 \pi}$.

(a) Paley-Wiener

(b) Fock-Bargmann

(c) exponential spectrum

Figure 1. Horizontal density of zeroes for GAF and symmetric GAF models with the same kernel. In each model, the lower graph represents the continuous component of the mean zerocounting measure for the symmetric GAF (the atomic part is an atom at $y=0$, which is not graphed). The upper graph represents the continuous (and only) part of this measure for the appropriate GAF.

3.2. Fock-Bargmann Space (Gaussian Spectrum). Set

$$
d \rho_{a}(\lambda)=\frac{1}{a \sqrt{\pi}} e^{-\lambda^{2} / a^{2}} d \lambda, \quad a>0
$$

Once again, f is entire. The Fourier transform of the measure is

$$
r(z)=\frac{1}{a \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\lambda^{2} / a^{2}} e^{2 \pi i \lambda z} d \lambda=e^{-a^{2} \pi^{2} z^{2}}
$$

therefore the covariance kernel is:

$$
K(z, w)=e^{-a^{2} \pi^{2}(z-\bar{w})^{2}}
$$

This space has an orthonormal basis of the form $\frac{(b z)^{n}}{\sqrt{n!}} e^{-c z^{2}}$, where $b=\sqrt{2} \frac{a}{\pi}$ and $c=-\frac{a^{2}}{\pi^{2}}$.

In this model, the density of zeroes is constant:

$$
L_{a}\left(\frac{y}{2 \pi a}\right)=2 \pi a^{2} .
$$

This is the only model with Lebesgue measure as expected counting measure of zeroes. For more information about this model and why the distribution of zeroes determines the GAF, see [22, [15], [14] or [5, Chapters 2.3, 2.5].

However, for the real coefficients case the continuous part of the limiting measure has density

$$
S_{a}\left(\frac{y}{2 \pi a}\right)=2 \pi a^{2} \frac{d}{d y}\left(\frac{e^{y^{2}}}{\sqrt{e^{2 y^{2}}-1}}\right)
$$

and the atom at $y=0$ is of size $\sqrt{2} a$.
Both continuous densities are graphed in 1(b) for the parameter $a=\frac{1}{4 \pi}$.
3.3. Exponential Spectrum. Consider a symmetric measure with exponential decay, for instance

$$
d \rho(\lambda)=\operatorname{sech}(\pi \lambda) d \lambda=\frac{1}{\cosh (\pi \lambda)} d \lambda
$$

Here $r(z)=\operatorname{sech}(\pi z)$ as well. This model is valid in the strip $-\frac{1}{4}<\operatorname{Im}(z)<\frac{1}{4}$. Here

$$
L(y)=\frac{\pi}{\cos ^{2}(2 \pi y)} .
$$

For the symmetric GAF in this model, we have

$$
S(y)=\frac{\pi|\sin (2 \pi y)|}{\cos ^{2}(2 \pi y)} .
$$

We see that the zeroes concentrate near the boundaries of the region of convergence (figure 1(c)).

4. Proof of Theorem 3-Zero-Counting Measure for a symmetric GAF

In this section we prove Theorem 3. Similar formulas were proved in specific cases. Our proof follows Macdonald [13], who has considered random polynomials (also in the multi-dimensional case). A novelty is in the extension of his result to arbitrary symmetric GAFs.

Recall that for any analytic function f (not necessarily random) in a domain D we have

$$
n_{f}=\frac{1}{2 \pi} \triangle \log |f| .
$$

This is understood in the distribution sense.
Using this for our random f, we would like to take expectation of both sides, to get:

$$
\begin{align*}
\mathbb{E}\left[\int_{X} h(z) d n_{f}(z)\right]= & \mathbb{E}\left[\frac{1}{2 \pi} \int_{X} \Delta h(z) \log |f(z)| d m_{2}(z)\right]= \\
& \frac{1}{2 \pi} \int_{X} \triangle h(z) \mathbb{E}[\log |f(z)|] d m_{2}(z), \tag{9}
\end{align*}
$$

where m_{2} denotes the Lebesgue measure in \mathbb{C}. The last equality is justified by Fubini's Theorem, as we show at the end of this section. Thus we can conclude that (in the weak sense):

$$
\begin{equation*}
\mathbb{E}\left(n_{f}\right)=\frac{1}{2 \pi} \triangle \mathbb{E} \log |f| \tag{10}
\end{equation*}
$$

Let us return to our setup: f is a random function generated by a basis $\phi_{k}(z)$ of holomorphic functions, each real on \mathbb{R}, and such that the sum $\sum_{k}\left|\phi_{k}(z)\right|^{2}$ converges locally-uniformly. Denote $\phi_{k}(z)=u_{k}(z)+i v_{k}(z)$ where u_{k}, v_{k} are real functions. Our random function is decomposed thus:

$$
f(z)=\sum b_{k} \phi_{k}(z)=\sum b_{k} u_{k}(z)+i \sum b_{k} v_{k}(z)=u(z)+i v(z)
$$

where $b_{k} \sim \mathcal{N}_{\mathbb{R}}(0,1)$ are real Gaussian standard variables. $(u(z), v(z))$ have a joint Gaussian distribution, with mean $(0,0)$ and covariance matrix

$$
\Sigma=\left(\begin{array}{cc}
\sum u_{k}^{2} & \sum u_{k} v_{k} \\
\sum u_{k} v_{k} & \sum v_{k}^{2}
\end{array}\right) .
$$

Lemma 4.1. The above matrix Σ has two positive eigenvalues $\lambda_{2} \geq \lambda_{1}$ obeying:

$$
\lambda_{2,1}=\frac{K(z, z) \pm|K(z, \bar{z})|}{2}
$$

where $K(z, w)=\sum \phi_{k}(z) \overline{\phi_{k}(w)}=\sum \phi_{k}(z) \phi_{k}(\bar{w})$.
Proof. For any complex number $\phi=u+i v$, we have:

$$
u^{2}=\frac{1}{2}\left(|\phi|^{2}+\operatorname{Re}\left(\phi^{2}\right)\right), v^{2}=\frac{1}{2}\left(|\phi|^{2}-\operatorname{Re}\left(\phi^{2}\right)\right), u v=\frac{1}{2} \operatorname{Im}\left(\phi^{2}\right) .
$$

Applying this, we can rewrite Σ as

$$
\Sigma=\left(\begin{array}{cc}
\frac{1}{2}\left(\sum\left|\phi_{k}\right|^{2}+\operatorname{Re} \sum \phi_{k}^{2}\right) & \frac{1}{2} \operatorname{Im} \sum \phi_{k}^{2} \\
\frac{1}{2} \operatorname{Im} \sum \phi_{k}^{2} & \frac{1}{2}\left(\sum\left|\phi_{k}\right|^{2}-\operatorname{Re} \sum \phi_{k}^{2}\right)
\end{array}\right),
$$

and then calculate its determinant and trace:

$$
\begin{align*}
\lambda_{1} \lambda_{2}=\operatorname{det} \Sigma & =\frac{1}{4}\left(\left(\sum\left|\phi_{k}\right|^{2}\right)^{2}-\left(\operatorname{Re} \sum\left(\phi_{k}^{2}\right)\right)^{2}-\left(\operatorname{Im} \sum\left(\phi_{k}^{2}\right)\right)^{2}\right) \\
& =\frac{1}{4}\left(K(z, z)^{2}-|K(z, \bar{z})|\right), \tag{11}\\
\lambda_{1}+\lambda_{2}=\operatorname{trace} \Sigma & =\sum\left|\phi_{k}\right|^{2}=K(z, z) .
\end{align*}
$$

The lemma follows.
Using the law of bi-normal distribution, we get:

$$
\begin{align*}
\mathbb{E}[\log |f(z)|]= & \frac{1}{2 \pi \sqrt{\operatorname{det} \Sigma}} \iint_{\mathbb{R}^{2}} \log \left(\sqrt{x^{2}+y^{2}}\right) e^{-\frac{1}{2}(x, y) \Sigma^{-1}(x, y)^{T}} d x d y= \tag{12}\\
& \frac{1}{2 \pi \sqrt{\operatorname{det} \Sigma}} \iint_{\mathbb{R}^{2}} \log \left(\sqrt{x^{2}+y^{2}}\right) e^{-\frac{1}{2}\left(\lambda_{1}^{-1} x^{2}+\lambda_{2}^{-1} y^{2}\right)} d x d y
\end{align*}
$$

Applying to the last integral the change of variables $x=u \sqrt{\lambda_{1}}, y=w \sqrt{\lambda_{2}}$, with Jacobian $\sqrt{\lambda_{1} \lambda_{2}}=\sqrt{\operatorname{det} \Sigma}$, we have

$$
\mathbb{E}[\log |f(z)|]=\frac{1}{2 \pi} \iint_{\mathbb{R}^{2}} \log \left(\sqrt{\lambda_{1} u^{2}+\lambda_{2} w^{2}}\right) e^{-\left(u^{2}+w^{2}\right) / 2} d u d w
$$

Now, changing to polar coordinates $u=r \cos \theta, w=r \sin \theta$, we get:

$$
\mathbb{E}[\log |f(z)|]=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left(\sqrt{\lambda_{1} \cos ^{2} \theta+\lambda_{2} \sin ^{2} \theta}\right) d \theta+C
$$

where C is a constant which does not depend on the point z (i.e., is independent of λ_{1} and λ_{2}). In the following, we write C for any such constant (which may be different each time we use this symbol). These constants will vanish when we apply Laplacian (recall (10)).

So, the integral we should compute is:

$$
\begin{aligned}
& \int_{0}^{2 \pi} \log \left|\sqrt{\lambda_{1}} \cos \theta+i \sqrt{\lambda_{2}} \sin \theta\right| \frac{d \theta}{2 \pi} \\
& =\log \left(\sqrt{\lambda_{1}}+\sqrt{\lambda_{2}}\right)+\int_{0}^{2 \pi} \log \left|e^{2 i \theta}+\frac{\sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}}{\sqrt{\lambda_{1}}+\sqrt{\lambda_{2}}}\right| \frac{d \theta}{2 \pi}+C
\end{aligned}
$$

The remaining integral is computed easily by Jensen's formula for the function $g(z)=z^{2}+c$, where $c=\frac{\sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}}{\sqrt{\lambda_{1}}+\sqrt{\lambda_{2}}}<1$. Indeed, it has two zeroes in the unit circle, denoted a_{1} and a_{2}, and so:
$\int_{0}^{2 \pi} \log \left|e^{2 i \theta}+c\right| \frac{d \theta}{2 \pi}=\log |g(0)|-\log \left|a_{1}\right|-\log \left|a_{2}\right|=\log |c|-2 \log \sqrt{|c|}=0$.
Recalling (10) and using the relations (11), we arrive at

$$
\begin{aligned}
\mathbb{E}\left(d n_{f}\right) & =\frac{\triangle}{2 \pi} \frac{1}{2} \log \left(\lambda_{1}+\lambda_{2}+\sqrt{4 \lambda_{1} \lambda_{2}}\right) \\
& =\frac{1}{4 \pi} \triangle \log \left(K(z, z)+\sqrt{K(z, z)^{2}-|K(z, \bar{z})|^{2}}\right) .
\end{aligned}
$$

4.1. Justification of (9). We must show that the following integral converges:

$$
\frac{1}{2 \pi} \int_{X}|\triangle h(z)| \cdot \mathbb{E}|\log | f(z)| | d m_{2}(z)
$$

It is enough to prove that $\mathbb{E}|\log | f(z)|\mid$ is bounded on a compact subset S of the plane. $f(z)$ is a 2 -dimensional real Gaussian variable with parameters noted above, so we get

$$
\mathbb{E}|\log | f(z)\left|\left|=\frac{1}{2 \pi \sqrt{\operatorname{det} \Sigma}} \iint_{\mathbb{R}^{2}}\right| \log \left(\sqrt{x^{2}+y^{2}}\right)\right| e^{-\frac{1}{2}\left(\lambda_{1}^{-1} x^{2}+\lambda_{2}^{-1} y^{2}\right)} d x d y
$$

As before, λ_{1}, λ_{2} are the eigenvalues of Σ, dependent on z. By another change of variables $\left(x=u \sqrt{\lambda_{1}}, y=w \sqrt{\lambda_{2}}\right)$ we get:

$$
\mathbb{E}|\log | f(z)\left|\left|=\frac{1}{4 \pi} \iint_{\mathbb{R}^{2}}\right| \log \left(\lambda_{1} u^{2}+\lambda_{2} w^{2}\right)\right| e^{-\left(u^{2}+w^{2}\right) / 2} d u d w
$$

Fix z, and assume $\lambda_{1} \leq \lambda_{2}$. Let us split the integral into two domains: $\Omega_{+}=\left\{(u, w) \in \mathbb{R}^{2}: \log \left(\lambda_{1} u^{2}+\lambda_{2} w^{2}\right) \geq 0\right\}$ and $\Omega_{-}=\left\{(u, w) \in \mathbb{R}^{2}:\right.$ $\left.\log \left(\lambda_{1} u^{2}+\lambda_{2} w^{2}\right)<0\right\}$.

Then, on Ω_{+}we estimate $0<\log \left(\lambda_{1} u^{2}+\lambda_{2} w^{2}\right)<\log \left(\lambda_{2}\right)+\log \left(u^{2}+w^{2}\right)$. From here clearly the integral on Ω_{+}is bounded by $C_{0}+C_{1} \log \lambda_{2}$. By lemma 4.1. $\lambda_{2}=\frac{1}{2}(K(z, z)+|K(z, \bar{z})|)$ is a continuous function of z, and therefore is bounded on our compact set S.

For $(u, w) \in \Omega_{-}$notice that $0>\log \left(\lambda_{1} u^{2}+\lambda_{2} w^{2}\right)>\log \left(\lambda_{1} u^{2}\right)$, therefore:

$$
\begin{aligned}
& \iint_{\Omega_{-}}\left|\log \left(\lambda_{1} u^{2}+\lambda_{2} w^{2}\right)\right| e^{-\left(u^{2}+w^{2}\right) / 2} d u d w \leq \\
& \iint_{\Omega_{-}}\left(\left|\log \left(\lambda_{1}\right)+\log \left(u^{2}\right)\right|\right) e^{-\left(u^{2}+w^{2}\right) / 2} d u d w \leq C_{0}+C_{1}\left|\log \lambda_{1}\right| .
\end{aligned}
$$

Denote $m=\min \left\{\lambda_{1}(z): z \in S\right\}$. If $m=0$, this leads to $K\left(z_{0}, z_{0}\right)=0$ for some $z_{0} \in K$, but this means z_{0} is a deterministic zero. Therefore $m>0$ and $\left|\log \lambda_{1}\right|$ is bounded from above.

5. Proof of Theorem 1-Horizontal Limiting Measure

5.1. Preliminaries. We present the probability space of our interest, equipped with a measure-preserving transformation. We explain the notion of ergodicity in this setup.

The probability space Ω is a countable product of copies of \mathbb{C}, with \mathbb{P} being the product of complex Gaussian measures (one on each copy). These copies represent the random coefficients in the construction of f : each $\omega=\left\{a_{n}\right\}_{n} \in \Omega$ corresponds to a function $f_{\omega}(z)=\sum a_{n} \phi_{n}(z) . \quad \mathcal{F}_{f}$ is the Borel σ-algebra generated by the basic sets $\left\{\omega \in \Omega: f_{\omega}(z) \in B(w, r)\right\}$, where $z \in D, r>0$. Here $B(w, r)=\{p \in \mathbb{C}:|p-w|<r\}$. The group of automorphisms S_{t} shall be defined via the correspondence $\omega \leftrightarrow f_{\omega}$:

$$
f_{S_{t} \omega}(z)=f_{\omega}(z+t) .
$$

The map S_{t} is measure-preserving, since we assumed that f is stationary. Thus, we will say the random process $f(z)$ is ergodic, if any measurable set $A \in \mathcal{F}_{f}$ which is invariant to all translations $\left(S_{t} A=A, \forall t \in \mathbb{R}\right)$ is in fact trivial $(\mathbb{P} A \in\{0,1\})$.

In a similar way, one can define when is the zero-set Z_{f} ergodic (it is itself a random point-process in the plane). The space Ω, the measure \mathbb{P} on it and the automorphisms $\left\{S_{t}\right\}$ are just as before. Now, the σ-algebra $\mathcal{F}_{Z_{f}}$ is generated by the basic sets $\left\{\omega \in \Omega: Z_{f_{\omega}} \cap B(z, r) \neq \emptyset\right\}$ with $z \in D, r>0, B(z, r) \subset D$.
Corollary 5.1. Ergodicity of f implies ergodicity of Z_{f}.
Proof. It is enough to prove $\mathcal{F}_{Z_{f}} \subset \mathcal{F}_{f}$. Let A be a countable dense set in \mathbb{C}. Basic sets of $\mathcal{F}_{Z_{f}}$ can be written as

$$
\left\{Z_{f_{\omega}} \cap B(z, r) \neq \emptyset\right\}=\bigcup_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{p \in A \cap B\left(z, r-\frac{1}{m}\right)}\left\{f_{\omega}(p) \in B\left(0, \frac{1}{n}\right)\right\}
$$

which is indeed in \mathcal{F}_{f}.
We will use the following classical result:
Theorem 4. (Fomin, Grenander, Maruyama) A stationary GAF (symmetric or not) is ergodic w.r.t. horizontal shifts $\{f(z) \rightarrow f(z+t)\}\}_{t \in \mathbb{R}}$ if and only if its spectral measure ρ has no atoms.

This theorem was originally proved for real processes over \mathbb{R} (see for instance Grenander [7]), but small modifications extend it to a strip in the complex plane for both types of functions (GAFs and symmetric GAFs).
5.2. Existence of the horizontal limiting measure (statement (i)). As above, for $T \geq 1$, let ν_{T} be the random locally-finite measure on $(-\Delta, \Delta)$ defined by:

$$
\begin{equation*}
\nu_{T}(Y)=\nu_{f, T}(Y):=\frac{n_{f}([0, T) \times Y)}{T}, \quad Y \subset(-\Delta, \Delta) \tag{13}
\end{equation*}
$$

In this section we show that a.s. the measures ν_{T} converge weakly as T tends to infinity. First, we assume that T tends to infinity along positive integers.

In this case, we use the subscript N instead of T. By a known theorem in distribution theory (see for instance, [8, section 2.1]), a sequence of measures ν_{N} converges weakly to some measure if and only if the sequence of real numbers $\nu_{N}(h)$ is convergent for every $h \in C_{0}^{\infty}(-\Delta, \Delta)$. It suffices to check whether $\nu_{N}(h)$ is convergent for all $h \in M$, where $M \subset C_{0}^{\infty}(-\Delta, \Delta)$ is a dense set of test-functions, and we may choose M to be countable. Given a test-function $h \in M$, denote by A_{h} the event that $\nu_{N}(h)$ is a convergent sequence of numbers. To prove our claim it suffices to show $\mathbb{P}\left(A_{h}\right)=1$ for every $h \in M$. Note that $\nu_{N}(h)=\frac{1}{N}\left(X_{1}+X_{2}+\cdots+X_{N}\right)$, where

$$
\begin{equation*}
X_{k}=X_{k}(h)=\int \mathbb{1}_{[k, k+1)}(x) h(y) d n_{f}(x, y) \tag{14}
\end{equation*}
$$

is a stationary sequence of random variables.
The random variables X_{k} are integrable. This follows at once from an Offord-type large deviations estimate [5, Theorem 3.2.1]:

Theorem 5 (Offord-type estimate). Let f be a GAF on a domain D. Then for any compact set $K \subset D$, the number $n_{f}(K)$ of zeroes of f on K has exponential tail: there exist positive constants C and c depending on the covariance function of f and on K such that, for each $\lambda \geq 1$,

$$
\mathbb{P}\left\{n_{f}(K)>\lambda\right\}<C e^{-c \lambda}
$$

Therefore, we can apply the Birkhoff theorem [4, chapter 7]. It yields that the limit $\frac{1}{N}\left(X_{1}+X_{2}+\cdots+X_{N}\right)$ almost surely exists, and so $\mathbb{P}\left(A_{h}\right)=1$. This completes the proof of the weak convergence of the sequence ν_{N}.

Now, we consider the general case in statement (i). Let $T \geq 1$, and let $N=[T]$ be the integer part of T. Then

$$
\nu_{T}(h)=\frac{N}{T} \nu_{N}(h)+\underbrace{\frac{1}{T} \int \mathbb{1}_{[N, T)}(x) h(y) d n_{f}(x, y)}_{=: R_{T}(h)} .
$$

We show that a.s. the second term on the right-hand side converges to zero for all bounded compactly supported test functions h. It suffices to prove this for all bounded test functions supported by an interval $\left[-\Delta_{1}, \Delta_{1}\right]$ with an arbitrary $0<\Delta_{1}<\Delta$. We have

$$
\left|R_{T}(h)\right| \leq \frac{\|h\|_{\infty}}{T} n_{f}\left([N, N+1) \times\left[-\Delta_{1}, \Delta_{1}\right]\right)
$$

Employing the Offord-type estimate with $K=[0,1] \times\left[-\Delta_{1}, \Delta_{1}\right]$ and using translation-invariance of the zero distribution of f, we see that for each $\varepsilon>0$, $\mathbb{P}\left\{n_{f}\left([N, N+1] \times\left[-\Delta_{1}, \Delta_{1}\right]\right) \geq \varepsilon T\right\}=\mathbb{P}\left\{n_{f}\left([0,1] \times\left[-\Delta_{1}, \Delta_{1}\right]\right) \geq \varepsilon T\right\}<C e^{-c \varepsilon N}$. Hence, for each $M \in \mathbb{N}$,

$$
\mathbb{P}\left\{\limsup _{T \rightarrow \infty}\left|R_{T}(h)\right| \geq \varepsilon\|h\|_{\infty}\right\} \leq \sum_{M}^{\infty} C e^{-c \varepsilon N}=C\left(1-e^{-c \varepsilon}\right)^{-1} e^{-c \varepsilon M}
$$

and we conclude that a.s.

$$
\lim _{T \rightarrow \infty} R_{T}(h)=0
$$

for all smooth compactly supported test functions h. This completes the proof of statement (i) in Theorem 1 .
5.3. Non-random limiting measure (statement (iia),(iii)). Here we will prove that if the spectral measure ρ_{f} has no atoms, then the horizontal mean zero-counting measure ν_{f} is not random, which is half of statement (ii). We then compute the limit ν_{f}, which is statement (iii).

Assume the spectral measure ρ is continuous. By Theorem 4 (Fomin-Maruyama-Grenander) we get that f is ergodic, and by corollary 5.1 so is Z_{f}. Using the notation introduced in the proof of statement (i), we get that for any smooth test function h, the stationary sequence of random variables $X_{k}(h)$ introduced in (14) is ergodic. In this case the Birkhoff ergodic theorem asserts that, a.s.,

$$
\lim _{N \rightarrow \infty} \nu_{N}(h)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} X_{k}(h)=\mathbb{E} X_{0}(h) .
$$

Therefore, the horizontal mean zero-counting measure is non-random, and equals

$$
\mathbb{E} X_{0}(h)=\mathbb{E} \int \mathbb{1}_{[0,1)}(x) h(y) d n_{f}(x, y)=\int \mathbb{1}_{[0,1)}(x) h(y) \mathbb{E} d n_{f}(x, y),
$$

where $\mathbb{E} d n_{f}(x, y)$ is the mean zero-counting measure. For a GAF, we compute it directly by Edelman-Kostlan formula (7); while for a symmetric GAF we use
the formula (8) (in Theorem 3. As before, denote $\psi(y)=\int_{-\infty}^{\infty} e^{-4 \pi y \lambda} d \rho(\lambda)$. Note that

$$
\begin{aligned}
& K(z, z)=\int e^{2 \pi i \cdot 2 y t} d \rho(t)=\psi(y), \text { and } \\
& K(z, \bar{z})=\int e^{2 \pi i(z-\bar{z}) t} d \rho(t)=\int d \rho(t)=\psi(0)
\end{aligned}
$$

where $z=x+i y$. Putting this into (8), we get the first intensity of zeroes:

$$
\mathbb{E} n_{f}=\frac{1}{4 \pi} \frac{d^{2}}{d y^{2}} \log \left(\psi(y)+\sqrt{\psi(y)^{2}-\psi(0)^{2}}\right)=\frac{1}{4 \pi} \frac{d}{d y} \frac{\psi^{\prime}(y)}{\sqrt{\psi(y)^{2}-\psi(0)^{2}}}
$$

For any $y \neq 0$, this is a derivative in the functional sense, which equals $S(y)$. At $y=0$, the function is not defined; but the limits

$$
\lim _{y \rightarrow 0+} \frac{\psi^{\prime}(y)}{4 \pi \sqrt{\psi(y)^{2}-\psi(0)^{2}}}=-\lim _{y \rightarrow 0-} \frac{\psi^{\prime}(y)}{4 \pi \sqrt{\psi(y)^{2}-\psi(0)^{2}}}=A
$$

exist. This follows from $\frac{\psi^{\prime}(y)}{\sqrt{\psi(y)^{2}-\psi(0)^{2}}}$ being an odd function, increasing in $y \in(0, \Delta)$. So, in order to compute $\mathbb{E} n_{f}$ we take the required derivative in the distribution sense, which yields the continuous point-wise derivative $S(y)$ (for $y \neq 0)$ plus an atom of size $2 A$ at $y=0$.

In order to compute A let us write this limit again, and apply L'Hôpital's rule:

$$
4 \pi A=\lim _{y \rightarrow 0+} \frac{\psi^{\prime}(y)}{\sqrt{\psi(y)^{2}-\psi(0)^{2}}}=\lim _{y \rightarrow 0+} \frac{\psi^{\prime \prime}(y) \cdot \sqrt{\psi(y)^{2}-\psi(0)^{2}}}{\psi(y) \cdot \psi^{\prime}(y)}=(4 \pi)^{2} \mathcal{E}_{2} \frac{1}{4 \pi A}
$$

where $\mathcal{E}_{2}=\frac{\int_{-\infty}^{\infty} \lambda^{2} d \rho(\lambda)}{\int_{-\infty}^{\infty} d \rho(\lambda)}$ is the ratio between the second and the zero moments of the spectral measure. We conclude that $A=\sqrt{\mathcal{E}_{2}}$, and therefore the atom has twice this size.
5.4. Random limiting measure (statement (iib)). In this section we prove the second half of (ii). We present the proof for symmetric GAFs, since it is slightly more involved. We assume that the spectral measure has the form

$$
\rho_{f}=c \delta_{q}+c \delta_{-q}+\mu,
$$

where μ is a non-trivial measure. Our goal is to show that the horizontal mean zero-counting measure of some segment $\nu_{f}(a, b)$ is a non-constant random variable. We may assume that $c=1$ and $q=1$ (if $q=0$ the analysis is easier).

Since $L_{\rho}^{2}(\mathbb{R})$ is the direct sum of $L_{\delta_{1}+\delta_{-1}}^{2}(\mathbb{R})$ and $L_{\mu}^{2}(\mathbb{R})$, a union of any orthonormal bases in these subspaces is an orthonormal basis in $L_{\rho}^{2}(\mathbb{R})$. By the remark at the end of section 1.2, after applying Fourier transform on this
union we get a basis $\phi_{n}(z)$ from which a GAF with spectral measure ρ can be constructed. This gives the representation

$$
f(z)=g(z)+\alpha \cos (2 \pi z)+\beta \sin (2 \pi z)
$$

where $g(z)$ is a symmetric GAF with spectral measure μ and $\alpha, \beta \sim \mathcal{N}_{\mathbb{R}}(0,1)$ are real Gaussians, independent of each other and of g. We write for short $\eta(z)=\eta_{\alpha, \beta}(z)=\alpha \cos (2 \pi z)+\beta \sin (2 \pi z)$.

Fix $a, b \in(-\Delta, \Delta)$. Denote the number of zeroes of f in $[0, T] \times[a, b)$ by $N_{T}(g, \alpha, \beta)=\#\left\{z \in[0, T] \times[a, b): g(z)=-\eta_{\alpha, \beta}(z)\right\}$.

Assume to the contrary that there is some constant C (depending on a and b) such that

$$
\begin{equation*}
\text { a.s. in } \alpha, \beta, \exists \lim _{T \rightarrow \infty} \frac{N_{T}(g, \alpha, \beta)}{T}=C \text {. } \tag{15}
\end{equation*}
$$

Here we denote by \mathbb{P}_{g} and \mathbb{E}_{g} the probability and expectation (respectively) conditioned on α, β. We claim that:

$$
\begin{equation*}
\mathbb{E}_{g} \lim _{T \rightarrow \infty} \frac{N_{T}(g, \alpha, \beta)}{T}=\lim _{T \rightarrow \infty} \frac{\mathbb{E}_{g} N_{T}(g, \alpha, \beta)}{T} \tag{16}
\end{equation*}
$$

This exchange is justified by the dominated convergence principle, as seen by the following Offord-type estimate:
Proposition 5.1. Let g be a symmetric stationary GAF on a horizontal strip, α and β are fixed complex numbers. There exist positive constants C and c such that:

$$
\sup _{T \geq 1} \mathbb{P}_{g}\left(\frac{N_{T}(g, \alpha, \beta)}{T}>s\right)<C e^{-c s}
$$

This fact is proved in appendix B below.
Next we claim that the right-hand side of 16) is just $\mathbb{E}_{g} N_{1}(g, \alpha, \beta)$. To see this, notice that for integer $T, N_{T}(g, \alpha, \beta)$ is the sum of T identically distributed random variables, all distributed like $N_{1}(g, \alpha, \beta)$. This follows immediately from the stationarity of g and 1-periodicity of $\eta_{\alpha, \beta}(z)$. Therefore, for integer T,

$$
\frac{1}{T} \mathbb{E}_{g} N_{T}(g, \alpha, \beta)=\mathbb{E}_{g} N_{1}(g, \alpha, \beta)
$$

For non-integer T, denote $M=\lfloor T\rfloor$. Since $\mathbb{E}_{g} N_{[M, T]}:=\mathbb{E} \#\{z \in[M, T] \times[a, b)$: $\left.g(z)=-\eta_{\alpha, \beta}(z)\right\} \leq \mathbb{E}_{g} N_{1}<\infty$, it follows that for non-integer T,

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\mathbb{E}_{g} N_{T}(g, \alpha, \beta)}{T}=\lim _{T \rightarrow \infty}\left(\frac{\mathbb{E}_{g} N_{M}}{M} \cdot \frac{M}{T}+\frac{\mathbb{E}_{g} N_{[M, T]}}{T}\right)=\mathbb{E}_{g} N_{1}(g, \alpha, \beta) . \tag{17}
\end{equation*}
$$

Combining (15), (16) and (17) we have:

$$
\begin{equation*}
\text { a.s. in } \alpha, \beta, \mathbb{E}_{g} N_{1}(g, \alpha, \beta)=C \text {. } \tag{18}
\end{equation*}
$$

We divide the rest of our argument into three claims.
Claim 5.1. $\mathbb{E}_{g} N_{1}(g, \alpha, \beta)$ is continuous in $(\alpha, \beta) \in \mathbb{R}^{2}$.

Claim 5.2. For any compact set $K \subset D$, let $N(g, \alpha, \beta ; K)$ be the number of solutions to $g(z)=-\eta_{\alpha, \beta}(z)$ with $z \in K$. Then

$$
\mathbb{E}_{g} N(g, \alpha, \beta ; K) \rightarrow n_{\cos (2 \pi z)}(K) \quad \text { as } \quad|\alpha| \rightarrow \infty
$$

Here $n_{\cos (2 \pi z)}$ is the zero-counting measure of $\cos (2 \pi z)$.
Relying on the last claim and (18), we get that

$$
\begin{equation*}
\mathbb{E}_{g} N_{1}(g, \alpha, \beta)=2 \delta_{0}([a, b)) \tag{19}
\end{equation*}
$$

for almost all α, β. Since $\mathbb{E}_{g} N_{1}(g, \alpha, \beta)$ is continuous in $\left.\alpha, \beta, 19\right)$ is true for all α, β, and in particular for $(\alpha, \beta)=(0,0)$. The following claim asserts this happens only for one family of symmetric GAFs:

Claim 5.3. If for $-\Delta<a<0<b<\Delta$,

$$
\mathbb{E}_{g} N_{1}(g, 0,0)=\mathbb{E} n_{g}([0,1) \times[a, b))=2 \delta_{0}([a, b)),
$$

then the spectral measure of g is $\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)$, up to a constant multiplier.
From this last claim it follows that the spectral measure of f consists only of symmetric atoms at ± 1, which contradicts our assumption.

It remains now to prove the claims. In the course of their proof, we justify the exchange of limits and expectations by the following

Proposition 5.2 (Offord-type estimate for sine-like levels). Let g be a symmetric $G A F$ on a domain D, and let α and β be fixed complex numbers. Then for any compact $K \subset D$, the number $N(g, \alpha, \beta ; K)$ of solutions to $g(z)=-\eta_{\alpha, \beta}(z)$ with $z \in K$ has exponential tail: There exist positive constants C and c such that

$$
\mathbb{P}(N(g, \alpha, \beta ; K)>s) \leq C e^{-c s}
$$

The proof of the last proposition is similar to that of Proposition 5.1, and we omit it.

Proof of Claim 5.1. Fix $-\Delta<\alpha_{0}<\beta_{0}<\Delta$. It is clear that almost surely in $g, N_{1}\left(g, \alpha, \beta_{0}\right)$ approaches $N_{1}\left(g, \alpha_{0}, \beta_{0}\right)$ as α approaches α_{0} (the event of having a solution to $g(z)=-\eta_{\alpha_{0}, \beta_{0}}$ on the boundary of $[0,1] \times[a, b]$ is negligible).

By Proposition 5.2, we may pass to the limit:

$$
\begin{aligned}
& \lim _{\alpha \rightarrow \alpha_{0}} \mathbb{E}_{g} N_{1}\left(g, \alpha, \beta_{0}\right)=\lim _{\alpha \rightarrow \alpha_{0}} \int \mathbb{P}_{g}\left(N_{1}\left(g, \alpha, \beta_{0}\right)>s\right) d s= \\
& =\int \lim _{\alpha \rightarrow \alpha_{0}} \mathbb{P}_{g}\left(N_{1}\left(g, \alpha, \beta_{0}\right)>s\right) d s=\int \mathbb{P}_{g}\left(N_{1}\left(g, \alpha_{0}, \beta_{0}\right)>s\right) d s=\mathbb{E}_{g}\left(N_{1}\left(g, \zeta_{0}\right)\right)
\end{aligned}
$$

Proof of Claim 5.2. Fix β and g. For any $\alpha \neq 0$, the zeroes of

$$
h_{\alpha}(z)=\frac{g(z)+\beta \sin (2 \pi z)}{\alpha}+\cos (2 \pi z)
$$

and of $f(z)=g(z)+\eta_{\alpha, \beta}(z)$ are identical. Now notice that $h_{\alpha}(z)$ converges locally uniformly to $\cos (2 \pi z)$ as $\alpha \rightarrow \infty$ (i.e., uniformly on any compact set). By Hurwitz's Theorem, this implies that the zero-counting measures also converge locally uniformly, in the sense that for any compact $K \subset D$,

$$
\lim _{\alpha \rightarrow \infty} n_{h_{\alpha}}(K)=n_{\cos (2 \pi z)}(K) .
$$

By the bound in Proposition 5.2, this almost sure convergence in g yields moment convergence:

$$
\mathbb{E}_{g} n_{h_{\alpha}}(K) \rightarrow n_{\cos (2 \pi z)}(K), \text { as } \alpha \rightarrow \infty
$$

Proof of Claim 5.3. Suppose the spectral measure is normalized, so that $\psi(0)=$ $\int_{\mathbb{R}} d \rho(\lambda)=1$ (else, multiply it by a constant). The premise and Theorem 1 give two conditions on $\psi(y)=K(i y, i y)$:

$$
\frac{\psi^{\prime}(y)}{\sqrt{\psi(y)^{2}-1}}=c, \quad R=2 \sqrt{\int_{\mathbb{R}} \lambda^{2} d \rho(\lambda)}=2,
$$

for some constant $c \in \mathbb{R}$. Solving the left-hand side ordinary differential equation, and using $\psi(0)=1$, we get $\psi(y)=\cosh (c y)$. Since ψ is a Laplace transform of ρ, we get $\rho=\frac{1}{2}\left(\delta_{c / 2 \pi}+\delta_{-c / 2 \pi}\right)$. But the right-hand side equation is satisfied only if $c=2 \pi$.

Appendix A. Convergence on all intervals (proof of Proposition 2.1)

In this section we prove Proposition 2.1. We use the notations developed in section 5.1. For any point in the probability space $\omega \in \Omega$, let ν_{N}^{ω} be the sequence of measures introduced in (13), for integer $T=N$ (the non-integer case follows just as in the proof of part (i) of Theorem 1, and will not be discussed).

Define the set

$$
C=\left\{\omega \in \Omega:\left(\nu_{N}^{\omega}\right)_{N} \text { converges weakly }\right\}
$$

Notice that by part (i) of Theorem $1, \mathbb{P}(C)=1$. For convenience of notation we denote the limit $\nu_{f}=\nu^{\omega}$. From general measure theory, one can deduce that almost surely, $\nu_{N}([a, b))$ converges to $\nu^{\omega}([a, b))$ for all a, b out of a countable exceptional set. This exceptional set is the set of atoms of ν_{f} (which might be random). We thus turn to define

$$
A=\left\{\omega \in \Omega: \lim _{N \rightarrow \infty} \nu_{N}^{\omega}\{a\}=\nu^{\omega}\{a\}, \text { for each atom } a \text { of } \nu^{\omega}\right\} \subset C
$$

Claim A.1. A is measurable with respect to \mathcal{F}_{f}.
The proof of this claim will be presented in the end of this section. Our next goal would be to prove:

Claim A.2. $\mathbb{P}(A)=1$.
Our main tool will be the Ergodic Decomposition Theorem (proved, for instance, in [1, chapter 2.2.8]):

Theorem 6 (Ergodic Decomposition). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a standard Borelspace, equipped with a measure preserving transformation $S: \Omega \rightarrow \Omega$. Then the set $E^{S}(\Omega)$ of ergodic probability measures on Ω is not empty, and there exists a map $\beta: \Omega \rightarrow E^{S}(\Omega)$ such that for any measurable set $A \in \mathcal{F}$ the following holds:
(1) the $\operatorname{map}\left\{\begin{array}{c}\Omega \rightarrow[0,1] \\ \omega \mapsto \beta_{\omega}(A)\end{array}\right.$ is measurable.
(2) $\mathbb{P}(A)=\int_{\Omega} \beta_{\omega}(A) d$ Pro(ω).

Proof of Claim A.2. The stationary system $\left(\Omega, \mathcal{F}_{Z_{f}}, \mathbb{P}, S\right)$ defined in section 5.1 and the set A defined above meet the requirements of the Ergodic Decomposition Theorem. Therefore, in order to prove our claim it is enough to show that

$$
\forall \gamma \in E^{S}(\Omega), \gamma(A)=1
$$

Fix an S-ergodic measure γ. Since A is an S-invariant set, we get $\gamma(A) \in$ $\{0,1\}$. Moreover, the event $\left\{\nu^{\omega}\right.$ has an atom in the interval $\left.I\right\}$ is also invariant, for any interval $I \subset(-\Delta, \Delta)$. Therefore, γ-a.s. the limiting measure ν^{ω} has atoms at some known points $\left(a_{n}\right)_{n \in \mathbb{N}} \subset(-\Delta, \Delta)$.

For a certain atom $a=a_{n}$, define the stationary sequence:

$$
X_{k}(a)=n_{f}([k, k+1) \times\{a\})
$$

and notice that

$$
\nu_{N}\{a\}=\frac{1}{N} \sum_{k=0}^{N-1} X_{k}(a)
$$

As γ is ergodic, we have by Birkohff's ergodic Theorem:

$$
\gamma \text {-a.s. } \nu_{N}^{\omega}\{a\} \text { converges to } \mathbb{E}_{\gamma} n_{f}([0,1) \times\{a\})=\nu^{\omega}\{a\}, \text { as } N \rightarrow \infty
$$

Since there are at most countably many atoms, we get $\gamma(A)=1$.
We now know that \mathbb{P}-a.s., the sequence ν_{N} is weak convergent and converges on any atom of the limiting measure (to the desired limit). A general claim from measure theory will assure us that in this case, ν_{N} converge on any interval:

Claim A.3. Suppose $\left(\nu_{N}\right)_{N}$ is a weak-converging sequence of measures on some interval I, and let ν be the limiting measure. If $\lim _{N \rightarrow \infty} \nu_{N}\{a\}=\nu\{a\}$ for every atom a of ν, then $\lim _{N \rightarrow \infty} \nu_{N}(J)=\nu(J)$ for every interval $J \subset I$.

Proof. We demonstrate the case $J=[a, b)$, where ν has no atom at b (other cases are similar).

Given $\epsilon>0$, one can construct piecewise linear functions $\phi^{+}, \phi^{-} \in C(I)$ such that:

$$
\begin{equation*}
\forall x, \phi^{-}(x) \leq \mathbb{1}_{(a, b)} \leq \mathbb{1}_{[a, b)}(x) \leq \phi^{+}(x) \tag{20}
\end{equation*}
$$

and additionally

$$
0<\nu\left(\phi^{+}\right)-\left(\nu\left(\phi^{-}\right)+\nu\{a\}\right)<\epsilon .
$$

(For instance, for large enough parameter n, take ϕ^{+}supported on $\left[a-\frac{1}{n}, b\right]$, equals 1 on $\left[a, b-\frac{1}{n}\right]$ and linear otherwise; ϕ^{-}supported on $[a, b]$, equals 1 on $\left[a+\frac{1}{n}, b-\frac{1}{n}\right]$, and linear otherwise).

By applying the measure ν_{N} to relation (20), we get:

$$
\nu_{N}\left(\phi^{-}\right)+\nu_{N}\{a\} \leq \nu_{N}([a, b)) \leq \nu_{N}\left(\phi^{+}\right)
$$

But, from our assumptions, for large enough N we have

$$
\nu\left(\phi^{-}\right)+\nu\{a\}-\epsilon \leq \nu_{N}([a, b)) \leq \nu\left(\phi^{+}\right)+\epsilon
$$

As the difference between those bounds does not exceed 3ϵ, we see the limit $\lim _{N \rightarrow \infty} \nu_{N}([a, b))$ exists. Since $\nu\left(\phi^{+}\right)$is as close as we want to $\nu([a, b))$, we are done.

It remains only to prove the measurability of A.
Proof of Claim A.1. We first investigate some underlying objects. Denote by $P=P(-\Delta, \Delta)$ the space of all locally finite measures on $(-\Delta, \Delta)$ induced with the Lévy - Prokhorov metric (for which convergence in metric is equivalent to weak convergence):

$$
\pi(\mu, \nu):=\inf \left\{\epsilon>0 \mid \forall Y \in \mathcal{B} \mu(Y) \leq \nu\left(Y^{\epsilon}\right)+\epsilon \text { and } \nu(Y) \leq \mu\left(Y^{\epsilon}\right)+\epsilon\right\}
$$

where \mathcal{B} is the sigma-algebra of Borel subsets of $(-\Delta, \Delta)$, and $Y^{\epsilon}=\cup_{p \in Y} B(p, \epsilon)$ is an ϵ-neighborhood of Y.

We claim that the map

$$
\omega \mapsto \nu_{1}^{\omega}(\cdot)=n_{f_{\omega}}([0,1) \times \cdot) \in P
$$

is measurable; in fact, it is continuous (A small change of the coefficients $\omega=\left(a_{1}, a_{2}, \ldots\right)$ in l^{2} sense will yield a small change in the counting measure of zeroes ν_{1}^{ω} in Lévy - Prokhorov sense).

Now consider the space $X=P^{\mathbb{N}}$ of sequences of measures with the product topology. Notice that the map $\Omega \rightarrow X$ defined by $\omega \mapsto\left\{\nu_{N}^{\omega}\right\}$ is measurable, as each coordinate is measurable; Moreover, its image lies almost surely in the (measurable subset) of weak converging sequences. The map $C \rightarrow P$ which takes a weak converging sequence $\left(\nu_{N}\right) \in C$ to its limit $\nu \in P$ is also measurable. We arrive at

Observation 1. Any measurable set $M \in P$ induces a measurable set $\widetilde{M}=$ $\left\{\omega: \nu^{\omega} \in M\right\} \subset C \subset \Omega$.

Consider the event:
$B=\left\{\omega \in \Omega\right.$: the limiting measure ν^{ω} has at least one atom $\} \subset C \subset X$
By the last observation, B is measurable w.r.t. \mathcal{F}.
We construct a measurable function $h: B \rightarrow(-\Delta, \Delta)^{\mathbb{N}}$ which maps $\omega \in B$ to a list of all atoms of the limiting measure ν^{ω}, as follows. Let $h_{1}: B \rightarrow$ $(-\Delta, \Delta)$ be the map which maps some $\omega \in B$ to the largest atom among those of ν^{ω} (if some (finite) number of atoms share this property, return the left-most one). Again by observation 1, h_{1} is a measurable map. In a similar manner we construct h_{2}, which gives the second (left-most) largest atom; and so forth. Our list of atoms is simply $h=\left(h_{1}, h_{2}, \ldots\right)$. We notice that

$$
A=\cap_{i \in \mathbb{N}}\left\{\omega:\left(\nu_{N}^{\omega}\left\{h_{i} \omega\right\}\right)_{N} \text { is a convergent sequence of numbers }\right\}=: \cap_{i \in \mathbb{N}} E_{i}
$$

All that remains is to prove measurability of E_{1}.
Indeed, the map $H: X \times(-\Delta, \Delta) \rightarrow\{0,1\}$ which matches $\left(\left\{\nu_{N}\right\}, a\right)$ to the indicator of the event $\left\{\left(\nu_{N}\{a\}\right)_{N}\right.$ is a convergent sequence $\}$ is measurable; by composition of measurable maps $\mathbb{1}_{E_{1}}=H\left(\left(\nu_{N}^{\omega}\right), h_{1} \omega\right)$ is a measurable function, as anticipated.

Appendix B. Exponential Decay of Some Tail Events -Offord-Type Estimates

In the course of the proof of the main theorem, we used several times exponential estimates on certain probabilities: Theorem 5 , Propositions 5.2 and 5.1, and similar propositions for GAFs (which were not stated explicitly). Such estimates are sometimes referred to as "Offord-type large deviations estimates". We demonstrate the proof of Proposition 5.1, as the rest are similar. We adopt the proof of Sodin [20], presented also in [5, chapter 7].

We first present our key-lemma, which deals with 2-dimensional Gaussian random variables.

Lemma B.1. If $\eta \sim \mathcal{N}_{\mathbb{R}^{2}}(\mu, \Sigma)$, and E is an event in the probability space with $\mathbb{P}(E)=p$, then:

$$
\left|\mathbb{E}\left(\chi_{E} \log |\eta|\right)\right| \leq p\left[-\left(1+\frac{1}{2 \lambda_{1}}\right) \log p+\frac{p}{4 \lambda_{1}}+\frac{1}{2} \log \left(\text { trace } \Sigma+|\mu|^{2}\right)\right],
$$

where λ_{1} is the biggest eigenvalue of Σ.
Proof. Upper bound: by Jensen's inequality,

$$
\frac{1}{p} \mathbb{E}\left(\chi_{E} \log |\eta|^{2}\right) \leq \log \left(\frac{\mathbb{E}\left(|\eta|^{2} \chi_{E}\right)}{p}\right) \leq \log \mathbb{E}|\eta|^{2}-\log p .
$$

If $\eta=u+i v$, then

$$
\mathbb{E}|\eta|^{2}=\mathbb{E} u^{2}+E v^{2}=\operatorname{var} u+(\mathbb{E} u)^{2}+\operatorname{var} \mathrm{v}+(\mathbb{E} v)^{2}=\operatorname{trace} \Sigma+|\mu|^{2}
$$

Putting this in the previous equation, we get:

$$
\begin{equation*}
\mathbb{E}\left(\chi_{E} \log |\eta|\right) \leq \frac{p}{2}\left[\log \left(\operatorname{trace} \Sigma+|\mu|^{2}\right)-\log p\right] . \tag{21}
\end{equation*}
$$

Lower bound:

$$
\begin{aligned}
\mathbb{E}\left(\chi_{E} \log |\eta|\right) & \geq-\mathbb{E}\left(\chi_{E} \log ^{-}|\eta|\right) \\
& =-\mathbb{E}\left(\log ^{-}|\eta| \chi_{E \cap\{|\eta|<p\}}\right)-\mathbb{E}\left(\log ^{-}|\eta| \chi_{E \cap\{|\eta|>p\}}\right)
\end{aligned}
$$

The second term may be bounded below by

$$
\begin{equation*}
-\mathbb{E}\left(\log ^{-}|\eta| \chi_{E \cap\{|\eta|>p\}}\right) \geq p \log p \tag{22}
\end{equation*}
$$

For the first term, we begin with some general manipulations:

$$
\begin{aligned}
-\mathbb{E}\left(\log ^{-}|\eta| \chi_{E \cap\{|\eta|<p\}}\right) & \geq-\mathbb{E}\left(\log ^{-}|\eta| \chi_{\{|\eta|<p\}}\right)=-\mathbb{E}\left[\chi_{|\eta| \leq p} \int_{0}^{1} \chi_{s>|\eta|} \frac{d s}{s}\right] \\
& =-\int_{0}^{1} \mathbb{P}[|\eta|<\min (p, s)] \frac{d s}{s}
\end{aligned}
$$

Let us therefore bound from above the probability $\mathbb{P}(|\eta|<R)$. Denote by λ_{1}, λ_{2} the eigenvalues of Σ, where $\lambda_{1} \geq \lambda_{2} \geq 0$.

$$
\begin{aligned}
\mathbb{P}(|\eta|<R) & =\frac{1}{2 \pi \sqrt{|\Sigma|}} \int_{|x|<R} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) d m_{2}(x) \\
& \leq \frac{1}{2 \pi \sqrt{|\Sigma|}} \int_{|x|<R} \exp \left(-\frac{1}{2} x^{T} \Sigma^{-1} x\right) d m_{2}(x) \\
& \leq \frac{1}{2 \pi} \int_{|y|<R} \exp \left(-\frac{1}{2}\left(\lambda_{1}^{-1} y_{1}+\lambda_{2}^{-1} y_{2}\right)\right) d m_{2}(y) \\
& \leq \int_{0}^{R / \sqrt{\lambda_{1}}} e^{-\frac{1}{2} r^{2}} r d r=1-e^{-\frac{R^{2}}{2 \lambda_{1}}}
\end{aligned}
$$

We have used the changes of variables $y=U x$ where U is the orthogonal matrix diagonalizing Σ, and later $y_{i}=\sqrt{\lambda_{i}} w_{i}$ for $i=1,2$.

Continuing, we have:

$$
\begin{aligned}
& -\mathbb{E}\left(\log ^{-}|\eta| \chi_{E \cap\{|\eta|<p\}}\right) \geq-\int_{0}^{p} \frac{1-e^{-s^{2} / 2 \lambda_{1}}}{s} d s-\int_{p}^{1} \frac{1-e^{-p^{2} / 2 \lambda_{1}}}{s} d s \\
& \quad=\frac{1}{2} \int_{0}^{p^{2} / 2 \lambda_{1}} e^{-t} \log \left(2 \lambda_{1} t\right) d t \\
& \quad \geq \frac{1}{2} \int_{0}^{p^{2} / 2 \lambda_{1}} \log (t) d t+\frac{p^{2}}{4 \lambda_{1}} \log \left(2 \lambda_{1}\right)=\frac{p^{2}}{2 \lambda_{1}}\left(\log p-\frac{1}{2}\right)
\end{aligned}
$$

Therefore our lower bound is

$$
\mathbb{E}\left(\chi_{E} \log |\eta|\right) \geq \frac{p^{2}}{2 \lambda_{1}}\left(\log p-\frac{1}{2}\right)-p \log p \geq-\frac{p^{2}}{4 \lambda_{1}}+\left(1-\frac{1}{2 \lambda_{1}}\right) p \log p
$$

Combining the two bounds we get the desired result.
We now turn to the proof of Proposition 5.1. Take $\phi(z)=\phi_{T}(z)$ a real C^{2} function, whose support is $\left[-\frac{1}{2}, T+\frac{1}{2}\right] \times\left[a^{\prime}, b^{\prime}\right]$ with $-\Delta<a^{\prime}<a<b<b^{\prime}<\Delta$, and which takes the value 1 on $[0, T] \times[a, b)$. We may build such $\phi_{T}(z)$ that
will obey also the bound $\|\Delta \phi\|_{L^{1}}<10(T+b-a)$. Assume α and β are fixed for now, and fix also $s>0$. We are interested in dominating the probability of the event $A_{T}=\left\{N_{T}>s T\right\}$. Write $p=p_{T}=\mathbb{P}\left(A_{T}\right)$.

We have

$$
N_{T}<\frac{1}{2 \pi} \int \Delta \phi_{T}(z) \log |f(z)| d m_{2}(z)
$$

and therefore,

$$
\begin{aligned}
s T \cdot p & \leq \mathbb{E}_{g}\left(\chi_{A_{T}} N_{T}\right) \leq \mathbb{E}_{g}\left(\chi_{A_{T}} \frac{1}{2 \pi} \int \Delta \phi(z) \log |f(z)| d m_{2}(z)\right) \\
& =\frac{1}{2 \pi} \int \Delta \phi \mathbb{E}_{g}\left(\chi_{A_{T}} \log |f(z)|\right) d m_{2}(z) \\
& \leq \frac{1}{2 \pi}\|\Delta \phi\|_{L^{1}} \sup _{z \in D} \mathbb{E}_{g}\left(\chi_{A_{T}} \log |f(z)|\right)
\end{aligned}
$$

Before we continue, let us justify the exchange of expectation and integral. Recall $f(z)=g(z)+\eta_{\alpha, \beta}(z)$; so in order to use Fubini's theorem we need

$$
\begin{equation*}
\int_{D} \mathbb{E}_{g}|\Delta \phi(z) \cdot \log | g(z)+\eta_{\alpha, \beta}(z) \| d m_{2}(z)=\int_{D}|\Delta \phi(z)| \mathbb{E}_{g}|\log | g(z)+\eta_{\alpha, \beta}(z)| |<\infty \tag{23}
\end{equation*}
$$

For each $z \in D, f(z)=g(z)+\eta_{\alpha, \beta}(z)$ is a 2 dimensional Gaussian random variable, with mean $\mu(z)=\eta_{\alpha, \beta}(z)$, and the same covariance matrix $\Sigma(z)$ as the 2 dimensional Gaussian r.v. $g(z)$. By lemma 4.1, we see that both $\mu(z)$ and $\Sigma(z)$ depend continuously on the paremeter z. So, the function $\mathbb{E}_{g}|\log | g(z)+\eta_{\alpha, \beta}(z) \mid$ is bounded above for $z \in \operatorname{support}(\phi)$, which ends this argument.

Notice further, that in our stationary case $\lambda_{1}(z), \lambda_{2}(z)$, the eigenvalues of $\Sigma(z)$, depend on y only, where $z=x+i y$. Therefore they have lower and upper bounds on $\mathbb{R} \times\left[a^{\prime}, b^{\prime}\right]$. Notice that also $\mu(z)$, being a trigonometric function, has such bounds. By applying lemma B. 1 with $\eta(z)=g(z)+\eta_{\alpha, \beta}(z)$, we get:

$$
\sup _{z \in \mathbb{R} \times\left[a^{\prime}, b^{\prime}\right]} \mathbb{E}\left(\chi_{A_{T}} \log |g(z)+\zeta|\right)<p\left(c_{1}-c_{2} \log p\right) .
$$

where c_{1}, c_{2} are positive constants (c_{1} depending on α, β, the horizontal lines a, b, and the kernel of g). Putting all this together, we get:

$$
s T \cdot p \leq \frac{5}{\pi}(T+b-a) p\left(c_{1}-c_{2} \log p\right)
$$

which leads to the exponential bound we strived for:

$$
\exists c, C>0 \text { such that } p_{T}=\mathbb{P}_{g}\left(N_{T}>T s\right) \leq C e^{-c s}, \forall T \geq 1
$$

References

[1] J. Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs Vol. 50, American Mathematical Society, 1997. MR 1450400 (99d:28025)
[2] P. Bleher and D. Ridzal, $S U(1,1)$ Random Polynomials, Journal of Statistical Physics (2002), Vol 106, numbers 1-2, p.147-171.
[3] E. Bogomolny, O. Bohigas, and P.Leboeuf, Quantum Chaotic Dynamics and Random Polynomials, J. Statist. Phys. 85 (1996), 639-679. arXiv: chao-dyn/9604001
[4] H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes, Wiley series in Probability and Mathematical Statistics, 1967.
[5] J.Ben Hough, M. Krishnapur, Y. Peres and B. Virag, Zeroes of Gaussian Analytic Functions and Determinantal Processes, University Lecture Series, 51. American Mathematical Society, Providence, RI, 2009.
[6] A. Edelman and E. Kostlan, How many zeros of a random polynomial are real? Bull. Are. Math. Soc. (N.S), 32 (1995), 1-37.
[7] U. Grenander, Stochastic Processes and Statistical Inference, Arkiv for Matematik, 1 (1950), 195-277.
[8] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1, SpringerVerlag, 1983.
[9] I. Ibragimov and O. Zeitouni, On roots of random polynomials, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2427-2441.
[10] M. Kac, On the average number fo real roots of a random algebraic equation, Bull. Amer. Math. Soc. 18 (1943), 29-35.
[11] B.Ja. Levin, Zeros of Entire Functions, Amer. Math. Soc. 1964.
[12] Ju.V. Linnik and I.V. Ostrovskii, Decomposition of Random Variables and Vectors, Amer. Math. Soc. 1977.
[13] B. Macdonald, Density of Complex Zeros of a System of Real Random Polynomials, J. Stat. Phys. 136, no. 5 (2009), 807-833.
[14] F. Nazarov and M. Sodin, Random Complex Zeroes and Random Nodal Lines arXiv:1003.4237v1 (Proceedings ICM 2010, to appear)
[15] F. Nazarov and M. Sodin, What is a ... Gaussian entire function? Notices Amer. Math. Soc. 57 (2010), no. 3, 375-377.
[16] T. Prosen, Exact Statistics of complex zeros for Gaussian random polynomials with real coefficients, J. Phys. A 29 (1996), 4417-4423.
[17] R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, American Mathematical Society Colloquium Publications, vol. XIX (1967) 163-178.
[18] G. Schehr and S.N. Majumdar, Condensation of the Roots of Real Random Polynomials on the Real Axis, J. Stat. Phys. (2009), 135: 587-598.
[19] L.A. Shepp and R.J. Vanderbei, The complex zeros of random polynomials, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4365-4384.
[20] M. Sodin, Zeros of Gaussian analytic functions, Math. Res. Lett. 7 (2000), no. 4, 371?381. MR 2002d:32030
[21] M. Sodin, Zeroes of Gaussian analytic functions. Proceedings European Congress of Mathematics (Stockholm, 2004) 445-458, Eur. Math. Soc., Zürich, 2005.
[22] M. Sodin and B. Tsirelson, Random complex zeroes. I. Asymptotic normality. Israel J. Math. 144 (2004), 125-149.

[^0]: 2000 Mathematics Subject Classification. 91A43,91A46.
 School of Mathematical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel. Research supported by the Science Foundation of the Israel Academy of Sciences and Humanities, grant 171/07.

