next up previous contents
Next: Other inequalities due to Up: A sixty second introduction Previous: Stable norm and stable   Contents


Gromov's inequality for complex projective space

We now discuss systolic inequalities on projective spaces.

Theorem 5.1 (M. Gromov)   Let  $ {\mathcal G}$ be a Riemannian metric on complex projective space $ {\mathbb{C}\mathbb{P}}^n$. Then

$\displaystyle \stsys _2({\mathcal G})^n \leq n! \vol _{2n}({\mathcal G});
$

equality holds for the Fubini-Study metric on  $ {\mathbb{C}\mathbb{P}}^n$.

Proof. Following Gromov's notation in [Gro99, Theorem 4.36], we let

$\displaystyle \alpha\in H_2({\mathbb{C}\mathbb{P}}^n;{\mathbb{Z}})={\mathbb{Z}}$ (5.1)

be the positive generator in homology, and let

$\displaystyle \omega\in H^{2}({\mathbb{C}\mathbb{P}}^n;{\mathbb{Z}})={\mathbb{Z}}
$

be the dual generator in cohomology. Then the cup power $ \omega^n$ is a generator of  $ H^{2n}({\mathbb{C}\mathbb{P}}^n;{\mathbb{Z}})={\mathbb{Z}}$. Let  $ \eta \in \omega$ be a closed differential 2-form. Since wedge product $ \wedge$ in  $ \Omega^*(X)$ descends to cup product in $ H^*(X)$, we have

$\displaystyle 1= \int_{{\mathbb{C}\mathbb{P}}^{n}} \eta^{\wedge n} .$ (5.2)

Now let  $ {\mathcal G}$ be a metric on  $ {\mathbb{C}\mathbb{P}}^n$. Recall that the pointwise comass norm for a simple $ k$-form coincides with the natural Euclidean norm on $ k$-forms associated with  $ {\mathcal G}$. In general, the comass is defined as follows.

Definition 5.2   The comass of an exterior $ k$-form is its maximal value on a $ k$-tuple of unit vectors.

The comass norm of a differential $ k$-form is, by definition, the supremum of the pointwise comass norms. Then by the Wirtinger inequality we obtain

\begin{equation*}\begin{aligned}1 & \leq \int_{{\mathbb{C}\mathbb{P}}^n} \Vert \...
...n \vol _{2n}({\mathbb{C}\mathbb{P}}^n,{\mathcal G}) \end{aligned}\end{equation*}

where  $ \Vert \; \Vert _\infty$ is the comass norm on forms. See [Gro99, Remark 4.37] for a discussion of the constant in the context of the Wirtinger inequality. A more detailed discussion appears in [Ka07, Section 13.1].

The infimum of (5.3) over all  $ \eta \in \omega$ gives

$\displaystyle 1 \leq n! \left( \Vert \omega \Vert^* \right)^n \vol _{2n} \left( {\mathbb{C}\mathbb{P}}^n, {\mathcal G}\right),$ (5.4)

where $ \Vert\;\Vert^*$ is the comass norm in cohomology. Denote by $ \Vert\;\Vert$ the stable norm in homology. Recall that the normed lattices  $ (H_2(M;{\mathbb{Z}}), \Vert\;\Vert)$ and  $ (H^2(M;{\mathbb{Z}}), \Vert\;\Vert^*)$ are dual to each other [Fed69]. Therefore the class $ \alpha$ of (5.1) satisfies

$\displaystyle \Vert\alpha \Vert = \frac{1}{\Vert\omega \Vert^*},
$

and hence

$\displaystyle \stsys _2({\mathcal G})^n = \Vert \alpha \Vert^n \leq n! \vol _{2n}({\mathcal G}) .$ (5.5)

Equality is attained by the two-point homogeneous Fubini-Study metric, since the standard line  $ {\mathbb{C}\mathbb{P}}^1 \subset {\mathbb{C}\mathbb{P}}^n$ is calibrated by the Fubini-Study Kahler $ 2$-form, which satisfies equality in the Wirtinger inequality at every point. $ \qedsymbol$

Example 5.3   Every metric  $ {\mathcal G}$ on the complex projective plane satisfies the optimal inequality

$\displaystyle \stsys _2({\mathbb{C}\mathbb{P}}^2,{\mathcal G})^2 \leq 2 \vol _{4}({\mathbb{C}\mathbb{P}}^2,{\mathcal G}).
$


next up previous contents
Next: Other inequalities due to Up: A sixty second introduction Previous: Stable norm and stable   Contents
Mikhail Katz 2007-09-19