next up previous contents
Next: Gromov's inequality for complex Up: A sixty second introduction Previous: Loewner's torus inequality   Contents

Stable norm and stable systoles

We recall the definition of the stable norm in the real homology of a polyhedron $ X$ with a piecewise Riemannian metric, following [BaK03,BaK04].

Definition 4.1   The stable norm $ \Vert h\Vert$ of  $ h\in H_k(X,{\mathbb{R}})$ is the infimum of the volumes

$\displaystyle \vol _k(c)=\Sigma_i \vert r_i\vert \vol _k(\sigma_i)$ (4.1)

over all real Lipschitz cycles  $ c=\Sigma_i r_i \sigma_i$ representing $ h$.

Note that $ \Vert\;\Vert$ is indeed a norm, cf.  [Fed74] and [Gro99, 4.C].

We denote by  $ H_k(X,{\mathbb{Z}})_{{\mathbb{R}}}$ the image of  $ H_k(X,{\mathbb{Z}})$ in $ H_k(X,{\mathbb{R}})$ and by  $ h_{{\mathbb{R}}}$ the image of  $ h\in H_k(X,{\mathbb{Z}})$ in $ H_k(X,{\mathbb{R}})$. Recall that  $ H_k(X,{\mathbb{Z}})_{{\mathbb{R}}}$ is a lattice in $ H_k(X,{\mathbb{R}})$. Obviously

$\displaystyle \Vert h_{\mathbb{R}}\Vert \le \vol _k(h)$ (4.2)

for all  $ h\in H_k(X,{\mathbb{Z}})$, where  $ \vol _k(h)$ is the infimum of volumes of all integral $ k$-cycles representing $ h$. Moreover, one has  $ \Vert h_{\mathbb{R}}\Vert = \vol _n(h)$ if  $ h\in H_n(X,{\mathbb{Z}})$. H. Federer [Fed74, 4.10, 5.8, 5.10] (see also [Gro99, 4.18 and 4.35]) investigated the relations between  $ \Vert h_{\mathbb{R}}\Vert$ and  $ \vol _k(h)$ and proved the following.

Proposition 4.2   If  $ h\in H_k(X,{\mathbb{Z}})$ $ 1\le k < n$, then

$\displaystyle \Vert h_{\mathbb{R}}\Vert = \lim\limits_{i\rightarrow\infty} \frac{1}{i} \vol _k (i h).$ (4.3)

Equation (4.3) is the origin of the term stable norm for $ \Vert\;\Vert$. The stable $ k$-systole of a metric  $ (X,{\mathcal G})$ is defined by setting

$\displaystyle \stsys _k({\mathcal G})=\lambda_1\left( H_k(X, {\mathbb{Z}})_{\mathbb{R}}^{\phantom{I}}, \Vert\;\Vert \right),$ (4.4)

where $ \lambda_1$ denotes the first successive minimum of the lattice $ \left( H_k(X, {\mathbb{Z}})_{\mathbb{R}}^{\phantom{I}}, \Vert\;\Vert \right)$, i.e. the least norm of a nonzero lattice element.


next up previous contents
Next: Gromov's inequality for complex Up: A sixty second introduction Previous: Loewner's torus inequality   Contents
Mikhail Katz 2007-09-19