Ori Lahav

Yoni Zohar

Tel Aviv University

WoLLIC 2014

- A propositional logic is called sub-classical if:
 - Its language is contained in the language of classical logic.
 - It is weaker than classical logic.
- A classical rule is considered too strong, and is replaced by weaker rules.
- Examples:
 - Intuitionistic logic
 - Relevance logics
 - Many-valued logics
 - Paraconsistent logics

• Our goal: Construct effective proof systems for sub-classical logics.

- Sequent calculi are a prominent proof-theoretic framework, suitable for a variety of logics.
- Sequents are objects of the form Γ ⇒ Δ, where Γ and Δ are finite sets of formulas.

$$A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m \quad \iff \quad A_1 \land \ldots \land A_n \supset B_1 \lor \ldots \lor B_m$$

- Special instance: $\Gamma \Rightarrow A$ (Δ has one element)
- *Pure sequent calculi* are propositional sequent calculi that include all usual structural rules, and a finite set of pure logical rules.
- Pure logical rules are logical rules that allow any context [Avron '91].

$$\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta} \qquad \text{but not} \qquad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \supset B}$$

The Propositional Fragment of LK [Gentzen 1934]

Structural Rules:

$$\begin{array}{ccc} (id) & \overline{\Gamma, A \Rightarrow A, \Delta} & (cut) & \overline{\Gamma, A \Rightarrow \Delta} & \Gamma \Rightarrow A, \Delta \\ (W \Rightarrow) & \overline{\Gamma, A \Rightarrow \Delta} & (\Rightarrow W) & \overline{\Gamma \Rightarrow \Delta} \\ \end{array}$$

Logical Rules:

$$\begin{array}{c} (\neg \Rightarrow) & \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} & (\Rightarrow \neg) & \frac{\Gamma, A}{\Gamma \Rightarrow} \\ (\land \Rightarrow) & \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} & (\Rightarrow \land) & \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow} \\ (\lor \Rightarrow) & \frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \lor B \Rightarrow \Delta} & (\Rightarrow \lor) & \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow} \\ (\supset \Rightarrow) & \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta} & (\Rightarrow \supset) & \frac{\Gamma, A}{\Gamma \Rightarrow} \end{array}$$

$$\begin{array}{l} (\Rightarrow \neg) & \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta} \\ (\Rightarrow \wedge) & \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta} \\ (\Rightarrow \vee) & \frac{\Gamma \Rightarrow A, B, \Delta}{\Gamma \Rightarrow A \lor B, \Delta} \\ (\Rightarrow \supset) & \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta} \end{array}$$

Definition

A calculus is *analytic* if $\vdash \Gamma \Rightarrow \Delta$ implies that there is a derivation of $\Gamma \Rightarrow \Delta$ using only subformulas of $\Gamma \cup \Delta$.

- If a pure calculus is analytic then it is decidable.
- Proof search can be focused on a finite space of proofs.
- LK is analytic (traditionally follows from *cut*-elimination).
- Sequent Calculi provide a natural way to define many sub-classical logics:
 - Begin with **LK**.
 - Discard some of its (logical) rules.
 - Add other (logical) rules, that are derivable in LK.

What general conditions guarantee the analyticity of the obtained calculus?

• Consider the following applications of $\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$:

$A \Rightarrow A$	$A, A \land B \Rightarrow A, B$	$B \lor C, A \Rightarrow B$
$\Rightarrow A \supset A$	$A \Rightarrow (A \land B) \supset A, B$	$B \lor C \Rightarrow A \supset B$
• These applications c		
$\Gamma, A \Rightarrow A, \Delta$	$\Gamma, A, A \wedge B \Rightarrow A, B, \Delta$	$\Gamma, B \lor C, A \Rightarrow B, \Delta$

 $\Gamma \Rightarrow A \supset A, \Delta \qquad \Gamma, A \Rightarrow (A \land B) \supset A, B, \Delta \qquad \Gamma, B \lor C \Rightarrow A \supset B, \Delta$

Definition (Safe Application)

An application of an **LK** rule is *safe* if all its context formulas are subformulas of the principal formula.

Theorem

A calculus whose rules are all safe applications of LK-rules is analytic.

• Consider the following applications of $\frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}$:

$$\textcircled{O} \frac{A \Rightarrow A}{\Rightarrow A \supset A} \qquad \textcircled{O} \frac{A, A \land B \Rightarrow A, B}{A \Rightarrow (A \land B) \supset A, B} \qquad \textcircled{O} \frac{B \lor C, A \Rightarrow B}{B \lor C \Rightarrow A \supset B}$$

• These applications constitute new (weaker) rules:

$$\begin{array}{c} \hline \Gamma, A \Rightarrow A, \Delta \\ \hline \Gamma \Rightarrow A \supset A, \Delta \end{array} \quad \begin{array}{c} \hline \Gamma, A, A \land B \Rightarrow A, B, \Delta \\ \hline \Gamma, A \Rightarrow (A \land B) \supset A, B, \Delta \end{array} \quad \begin{array}{c} \hline \Gamma, B \lor C, A \Rightarrow B, \Delta \\ \hline \Gamma, B \lor C \Rightarrow A \supset B, \Delta \end{array}$$

Definition (Safe Application)

An application of an **LK** rule is *safe* if all its context formulas are subformulas of the principal formula.

Theorem

A calculus whose rules are all safe applications of **LK**-rules is analytic.

The Propositional Fragment of LK [Gentzen 1934]

$$\begin{array}{ll} (\neg \Rightarrow) & \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} & (\Rightarrow \neg) & \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta} \\ (\land \Rightarrow) & \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta} & (\Rightarrow \wedge) & \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta} \\ (\lor \Rightarrow) & \frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \lor B \Rightarrow \Delta} & (\Rightarrow \vee) & \frac{\Gamma \Rightarrow A, B, \Delta}{\Gamma \Rightarrow A \lor B, \Delta} \\ (\supset \Rightarrow) & \frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \lor B \Rightarrow \Delta} & (\Rightarrow \supset) & \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \lor B, \Delta} \end{array}$$

Every rule is a trivial safe application of itself.

The Atomic Paraconsistent Logic P₁ [Sette '73, Avron '14]

$\Gamma \Rightarrow eg A, \Delta$	$\Gamma \Rightarrow A \wedge B, \Delta$
$\Gamma, \neg \neg A \Rightarrow \Delta$	$\Gamma, \neg (A \land B) \Rightarrow \Delta$
$\Gamma \Rightarrow A \lor B, \Delta$	$\Gamma \Rightarrow A \supset B, \Delta$
$\Gamma, \neg (A \lor B) \Rightarrow \Delta$	$\Gamma, \neg(A \supset B) \Rightarrow \Delta$

• Paraconsistency applies only in the atomic level.

- $\not\vdash_{P_1} p, \neg p \Rightarrow \varphi.$
- $\vdash_{P_1} \psi, \neg \psi \Rightarrow \varphi$ whenever ψ is compund.

- An extremely efficient propositional logic.
- One of the main logical engines behind DKAL (Distributed Knowledge Authorization Language).
- Provides a balance between expressivity and efficiency.

- An extremely efficient propositional logic.
- One of the main logical engines behind DKAL (Distributed Knowledge Authorization Language).
- Provides a balance between expressivity and efficiency.

Extended Primal Infon Logic

$(\land \Rightarrow) \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \land B \Rightarrow \Delta}$	$(\Rightarrow \land) \frac{\Gamma \Rightarrow A, \Delta \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \land B, \Delta}$	
$(\lor \Rightarrow) \overbrace{\Gamma, A \Rightarrow \Delta \Gamma, B \Rightarrow \Delta}^{T, A \Rightarrow \Delta \Gamma, B \Rightarrow \Delta}$	$(\Rightarrow \lor) \frac{\Gamma \Rightarrow A, B, \Delta}{\Gamma \Rightarrow A \lor B, \Delta}$	
$(\supset \Rightarrow) \frac{\Gamma \Rightarrow A, \Delta \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}$	$(\Rightarrow\supset) \qquad \overline{\Gamma, B \Rightarrow A \supset B, \Delta}$	
$\Gamma \Rightarrow A \supset A, \Delta \qquad \Gamma \Rightarrow B \supset (A \supset B), \Delta$	$\Gamma \Rightarrow (A \land B) \supset A, \Delta \qquad \Gamma \Rightarrow (A \land B) \supset B, \Delta$	
$\hline \Gamma, A \lor A \Rightarrow A, \Delta \qquad \hline \Gamma, A \lor (A \land B) \Rightarrow A, \Delta \qquad \hline \Gamma, (A \land B) \lor A \Rightarrow A, \Delta$		
${}{\Gamma,\bot\Rightarrow\Delta} \qquad {}{\Gamma\Rightarrow\bot\supset A,\Delta}$	$\hline \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Analytic	No cut-elimination	

Semantics for Pure Calculi

- Pure calculi correspond to *two-valued valuations* [Béziau '01].
- Each pure rule is read as a semantic condition.
- G-legal valuations: satisfy all semantic conditions.

Example

$$\begin{array}{c} A \Rightarrow \\ \Rightarrow \neg A \end{array} \quad \begin{array}{c} A \Rightarrow \\ \neg \neg A \Rightarrow \end{array} \quad \begin{array}{c} \Rightarrow A \Rightarrow \neg A \\ \neg (A \land \neg A) \Rightarrow \end{array} \quad \begin{array}{c} \neg A \Rightarrow \\ \neg (A \land B) \Rightarrow \end{array}$$

Corresponding semantic conditions:

1 If
$$v(A) = F$$
 then $v(\neg A) = T$
2 If $v(A) = F$ then $v(\neg \neg A) = F$
3 If $v(A) = T$ and $v(\neg A) = T$ then $v(\neg (A \land \neg A)) = F$
4 If $v(\neg A) = F$ and $v(\neg B) = F$ then $v(\neg (A \land B)) = F$
This semantics is non-deterministic.

Soundness and Completeness

Theorem

The sequent $\Gamma\Rightarrow\Delta$ is provable in ${\bm G}$ iff every ${\bm G}\text{-legal}$ valuation is a model of $\Gamma\Rightarrow\Delta.$

Soundness and Completeness

Theorem

The sequent $\Gamma \Rightarrow \Delta$ is provable in **G** using only formulas of \mathcal{F} iff every **G**-legal valuation whose domain is \mathcal{F} is a model of $\Gamma \Rightarrow \Delta$.

Soundness and Completeness

Theorem

The sequent $\Gamma \Rightarrow \Delta$ is provable in **G** using only formulas of \mathcal{F} iff every **G**-legal valuation whose domain is \mathcal{F} is a model of $\Gamma \Rightarrow \Delta$.

Definition

G is semantically analytic if every **G**-legal **partial** valuation whose domain is closed under subformulas can be extended to a **full G**-legal valuation.

Example

Consider the rules
$$\frac{\Rightarrow A}{\neg A \Rightarrow}$$
 and $\frac{\Rightarrow A}{\Rightarrow \neg A}$.

The partial valuation $\lambda x \in \{p\}$. T cannot be extended.

Theorem

A calculus is analytic iff it is semantically analytic.

Extending Partial Valuations

- Classical logic enjoys a simple extension method: enumeration + step-by-step extension
- Does this work for other logics?

Example

$$\begin{array}{c} \textcircled{\bigcirc} \quad A \Rightarrow A \\ \hline \Rightarrow A \supset A \end{array} \qquad \textcircled{\bigcirc} \quad \begin{array}{c} A, A \land B \Rightarrow A, B \\ \hline A \Rightarrow (A \land B) \supset A, B \end{array} \\ \hline \hline \end{array} \\ \hline \begin{array}{c} \textcircled{\bigcirc} \quad A \Rightarrow A \\ \hline \Rightarrow \neg A \end{array} \qquad \textcircled{\bigcirc} \quad \begin{array}{c} \textcircled{\bigcirc} \quad B \lor C, A \Rightarrow B \\ \hline B \lor C \Rightarrow A \supset B \end{array} \end{array}$$

The classical extension method works for calculi that consist of safe applications of rules of **LK**.

Liberal Analyticity

Definition (*k*-subformulas)

• A is a k-subformula of $\neg A$.

• $\neg^k A_i$ is a *k*-subformula of $A_1 \diamond A_2$.

Example

 $\neg \neg A$ is a 2-subformula of $A \land B$.

Liberal Analyticity

Definition (*k*-subformulas)

- A is a k-subformula of $\neg A$.
- $\neg^k A_i$ is a k-subformula of $A_1 \diamond A_2$.

Example

 $\neg \neg A$ is a 2-subformula of $A \land B$.

Definition (k-analyticity)

A calculus is *k*-analytic if $\vdash \Gamma \Rightarrow \Delta$ implies that there is a derivation of $\Gamma \Rightarrow \Delta$ using only *k*-subformulas of $\Gamma \cup \Delta$.

k-safe applications

 $\frac{A, A \land B \Rightarrow A, B}{A \Rightarrow (A \land B) \supset A, B}$

 $\neg \neg A, A \land B \Rightarrow A, \neg B$ $\neg \neg A \Rightarrow (A \land B) \supset A, \neg B$

Theorem

A calculus whose rules are k-safe applications of LK-rules is k-analytic.

Example: A 1-analytic Pure Calculus for da Costa's Paraconsistent Logic **C**₁ [Avron, Konikowska, Zamansky '12]

$$\begin{array}{c}
\overbrace{\Gamma, A \Rightarrow \Delta} & \overbrace{\Gamma, A \Rightarrow \Delta} & \overbrace{\Gamma, A \Rightarrow \Delta} \\
\overbrace{\Gamma, A \Rightarrow \Delta} & \overbrace{\Gamma, A \Rightarrow \Delta} & \overbrace{\Gamma, \neg A \Rightarrow \Delta} \\
\hline{\Gamma, \neg A \Rightarrow \Delta} & \overbrace{\Gamma, \neg A \Rightarrow \Delta} & \overbrace{\Gamma, \neg B \Rightarrow \Delta} \\
\hline{\Gamma, \neg (A \land \neg A) \Rightarrow \Delta} & \overbrace{\Gamma, \neg (A \land B) \Rightarrow \Delta} \\
\hline{\Gamma, \neg (A \land B) \Rightarrow \Delta} & \overbrace{\Gamma, \neg (A \land B) \Rightarrow \Delta} \\
\hline{\Gamma, \neg (A \lor B) \Rightarrow \Delta} & \overbrace{\Gamma, \neg (A \lor B) \Rightarrow \Delta} \\
\hline{\Gamma, \neg (A \lor B) \Rightarrow \Delta} & \overbrace{\Gamma, \neg (A \lor B) \Rightarrow \Delta} \\
\hline{\Gamma, \neg (A \lor B) \Rightarrow \Delta} & \overbrace{\Gamma, \neg (A \lor B) \Rightarrow \Delta} \\
\hline{\Gamma, \neg (A \lor B) \Rightarrow \Delta} & \overbrace{\Gamma, \neg (A \lor B) \Rightarrow \Delta} \\
\hline{\Gamma, \neg (A \lor B) \Rightarrow \Delta} & \overbrace{\Gamma, \neg (A \supset B) \Rightarrow \Delta} \\
\hline
\end{array}$$

 $\frac{\Gamma \Rightarrow A \land B, \neg A, \neg B, \Delta}{\Gamma, \neg (A \land B) \Rightarrow \neg A, \neg B, \Delta}$

What basic properties of the rules of LK were used?

- The conclusion has the form $\Gamma \Rightarrow A, \Delta$ or $\Gamma, A \Rightarrow \Delta$
- The rest of the formulas in the rule are *k*-subformulas of *A*
- Right and left rules "play well" together:

For any two contextless applications of the form

$$\begin{array}{cccc} \underline{s_1 & \dots & s_n} & \underline{s'_1 & \dots & s'_m} \\ \hline \Rightarrow A & & & A \Rightarrow \end{array}$$

we have $s_1,\ldots,s_n,s'_1,\ldots,s'_m \vdash^{(cut)} \Rightarrow$

Generalizes coherence (Avron, Lev '01,'05).

• Every such calculus has a valuation extension method.

Corollary

Every calculus that admits the basic properties is k-analytic.

A Sequent Calculus for First-Degree Entailment [Anderson,Belnap 75']

Corollary

Every calculus that admits the basic properties is k-analytic.

- Each conclusion has the form $\Rightarrow A$ or $A \Rightarrow$.
- All other formulas are 1-subformulas of A.
- The rules "play well" together.

Therefore, this calculus is 1-analytic.

Conclusions and Further Work

- We provided a general sufficient condition for analyticity in pure calculi.
- Useful for:
 - Verifying analyticity
 - Introducing new analytic calculi
 - Augmenting analytic calculi with more useful rules
- Further work:
 - Cut-elimination
 - Non-pure calculi (context restrictions)
 - First order logics

Conclusions and Further Work

- We provided a general sufficient condition for analyticity in pure calculi.
- Useful for:
 - Verifying analyticity
 - Introducing new analytic calculi
 - Augmenting analytic calculi with more useful rules
- Further work:
 - Cut-elimination
 - Non-pure calculi (context restrictions)
 - First order logics

Thank you!