Politeness and Stable Infiniteness: Stronger Together

Ying Sheng ${ }^{1} \quad$ Yoni Zohar ${ }^{1} \quad$ Christophe Ringeissen ${ }^{2}$
Andrew Reynolds ${ }^{3}$ Clark Barrett ${ }^{1}$ Cesare Tinelli ${ }^{3}$
Stanford University
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
The University of lowa

What is This About?

Theory Combination

- specialized theory solvers
- how to split the problem?
- how to combine the results?


```
(set-logic (UFDTNIA)
(declare-sort T@$TypeName 0)
(declare-sort l T@[Int]$TypeValue| 0)
(declare-datatypes ((T@$TypeValue 0)(T@$TypeValueArray 0)) (c($BooleanType ) ($IntegerType ) ($Ad
(declare-sort IT@[Int]$Valuel 0)
(declare-datatypes e(T@$Value 0)(T@$ValueArray 0)) (C($Boolean (Ib#$Boolean|Bool) ) ($Integer (।
(declare-sort IT@[$TypeValueArray,Int]Bool| 0)
(declare-sort IT@[$TypeValueArray,Int]$Valuel 0)
(declare-datatypes ((T@$Memory 0)) ((($Memory (Idomain#$Memory| |T@[$TypeValueArray,Int]Bool|) (।
(declare-datatypes ((T@$Location 0)) (C($Global (Its#$Global| T@$TypeValueArray) (Ia#$Global| Int
(declare-sort IT@[Int]Int| 0)
(declare-datatypes ((T@$Path 0)) (c($Path (Ip#$Path| IT@[Int]Int|) (Isize#$Path\Int) ) ))
```


The Move Prover

[Zhong et al. 2020]

- Formal verification tool for Move smart contracts in the Diem blockchain
- Inspires many current projects in CVC4:
- sequences
- (nested) datatypes
- quantifiers
- theory combination

The Move Prover

[Zhong et al. 2020]

- Formal verification tool for Move smart contracts in the Diem blockchain
- Inspires many current projects in CVC4:
- sequences
- (nested) datatypes
- quantifiers
- theory combination

Overview

Background:
Theory Combination

Motivation:

Smart Contracts Verification

Result 2:
Politeness \oplus Stable-infiniteness

Overview

Overview

Example: Lists with A Single Element

$\left.\begin{array}{|c|ccc|}\hline a_{0}, a_{1}, a_{2} \neq \text { nil } & & \\ a_{0} \neq a_{1}, a_{1} \neq a_{2}, a_{0} \neq a_{2} & \square & \square & \square \\ \text { tail }\left(a_{0}\right)=\operatorname{tail}\left(a_{1}\right)=\operatorname{tail}\left(a_{2}\right)=\text { nil } & & a_{0} & a_{1} \\ a_{2}\end{array}\right]$

Example: Lists with A Single Element

$\left.\begin{array}{|c|ccc|}\hline a_{0}, a_{1}, a_{2} \neq \text { nil } & & & \\ a_{0} \neq a_{1}, a_{1} \neq a_{2}, a_{0} \neq a_{2} & \square & \square & \square \\ \operatorname{tail}\left(a_{0}\right)=\operatorname{tail}\left(a_{1}\right)=\operatorname{tail}\left(a_{2}\right)=\text { nil } & & a_{0} & a_{1} \\ a_{2}\end{array}\right]$

Combination Methods

Naive Method

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right) \text {-SAT } \\
\Leftrightarrow \\
A \text { is } T_{1}-\mathrm{SAT} \text { and } B \text { is } T_{2} \text {-SAT. }
\end{gathered}
$$

DT Solver	Arith Solver
$a_{0}, a_{1}, a_{2} \neq$ nil	$0 \leq x, y, z \leq 1$
$a_{0} \neq a_{1}, a_{1} \neq a_{2}, a_{0} \neq a_{2}$	
$\operatorname{tail}\left(a_{0}\right)=\operatorname{tail}\left(a_{1}\right)=\operatorname{tail}\left(a_{2}\right)=\operatorname{nil}$	
$x=\operatorname{head}\left(a_{0}\right), y=\operatorname{head}\left(a_{1}\right), z=\operatorname{head}\left(a_{2}\right)$	
SAT	SAT

The formlua is UNSAT
Method says SAT
\bigodot
Missing arrangement $\delta:=/ \neq$ between variables

Combination Methods

Nelson-Oppen Method
[Nelson\& Oppen 1979]

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right) \text {-SAT } \\
\Leftrightarrow
\end{gathered}
$$

$\exists \delta$ over $F V(A) \cap F V(B)$ s.t. $A \wedge \delta$ is T_{1}-SAT and $B \wedge \delta$ is T_{2}-SAT.

DT Solver	Arith Solver
$a_{0}, a_{1}, a_{2} \neq$ nil	$0 \leq x, y, z \leq 1$
$a_{0} \neq a_{1}, a_{1} \neq a_{2}, a_{0} \neq a_{2}$	
$\operatorname{tail}\left(a_{0}\right)=\operatorname{tail}\left(a_{1}\right)=\operatorname{tail}\left(a_{2}\right)=$ nil	
$x=\operatorname{head}\left(a_{0}\right), y=\operatorname{head}\left(a_{1}\right), z=$ head $\left(a_{2}\right)$	
$\delta: x \neq y \neq \boldsymbol{z}$	$\delta: \neg(x \neq y \neq z)$

The formlua is UNSAT
Method says UNSAT

Combination Methods

Nelson-Oppen Method

[Nelson\& Oppen 1979]

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right) \text {-SAT } \\
\qquad \Leftrightarrow \\
\exists \delta \text { over } F V(A) \cap F V(B) \text { s.t. } A \wedge \delta \text { is } T_{1} \text {-SAT and } B \wedge \delta \text { is } T_{2} \text {-SAT. }
\end{gathered}
$$

- Nelson-Oppen works for lists of integers
- What about lists of bit-vectors?

Combination Methods

Nelson-Oppen Method
[Nelson\& Oppen 1979]

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right) \text {-SAT } \\
\Leftrightarrow \\
\exists \delta \text { over } F V(A) \cap F V(B) \text { s.t. } A \wedge \delta \text { is } T_{1} \text {-SAT and } B \wedge \delta \text { is } T_{2} \text {-SAT. }
\end{gathered}
$$

DT Solver	BV[1] Solver
$a_{0}, a_{1}, a_{2} \neq$ nil	TRUE
$a_{0} \neq a_{1}, a_{1} \neq a_{2}, a_{0} \neq a_{2}$	
tail $\left(a_{0}\right)=$ tail $\left(a_{1}\right)=$ tail $\left(a_{2}\right)=$ nil	
SAT	SAT

The formlua is UNSAT
Method says SAT
\bigodot

Combination Methods

Polite Combination
 [Ranise et al. 2005]

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right) \text {-SAT } \\
\Leftrightarrow \\
\exists \delta \text { over } F V(B) \text { of shared sorts s.t. } \\
A \wedge \delta \text { is } T_{1}-\text { SAT and wit }(B) \wedge \delta \text { is } T_{2} \text {-SAT. }
\end{gathered}
$$

DT Solver	BV[1] Solver
$\operatorname{wit}\left(a_{0}, a_{1}, a_{2} \neq\right.$ nil $)$	TRUE
$\operatorname{wit}\left(a_{0} \neq a_{1}, a_{1} \neq a_{2}, a_{0} \neq a_{2}\right)$	
$\operatorname{wit}\left(\right.$ tail $\left(a_{0}\right)=\operatorname{tail}\left(a_{1}\right)=\operatorname{tail}\left(a_{2}\right)=$ nil $)$	

Combination Methods

Polite Combination
[Ranise et al. 2005]
$A \wedge B$ is $\left(T_{1} \oplus T_{2}\right)$-SAT
\Leftrightarrow
$\exists \delta$ over $F V(B)$ of shared sorts s.t.
$A \wedge \delta$ is $T_{1}-$ SAT and wit $(\mathrm{B}) \wedge \delta$ is T_{2}-SAT.

DT Solver	BV[1] Solver
$a_{0}, a_{1}, a_{2} \neq$ nil	TRUE
$a_{0} \neq a_{1}, a_{1} \neq a_{2}, a_{0} \neq a_{2}$	
$\bigwedge_{i=0}^{2} a_{i}=\operatorname{cons}(v i$, nil $)$	
$\delta: v_{0} \neq v_{1} \neq v_{2}$	$\delta: \neg\left(v_{0} \neq v_{1} \neq v_{2}\right)$

The formlua is UNSAT

Combination Methods - Summary

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right) \text {-SAT } \\
\Leftrightarrow
\end{gathered}
$$

Naive Combination
No shared variables
A is T_{1}-SAT and B is T_{2}-SAT

Nelson-Oppen Combination
$\exists \delta$ over $F V(A) \cap F V(B)$ s.t.
$A \wedge \delta$ is T_{1}-SAT and $B \wedge \delta$ is T_{2}-SAT

Polite Combination

T_{2} is strongly polite

$\exists \delta$ over $F V(B)$ s.t.
$A \wedge \delta$ is T_{1}-SAT and $w i t(B) \wedge \delta$ is T_{2}-SAT

Cardinalities of Models

$$
\text { Let } S \text { be a set of sorts. }
$$

Stable Infiniteness

T is stably infinite w.r.t. S if every T-SAT formula is T-SAT by a structure in which all domains of S are infinite.

Smoothness

T is smooth w.r.t. S if for every:

- T-SAT formula A and a T-model of it \mathcal{I}
- mapping κ from S to carinalities with $\kappa(\sigma) \geq\left|\sigma^{\mathcal{I}}\right|$

There is a T-model \mathcal{J} of A with $\left|\sigma^{\mathcal{J}}\right|=\kappa(\sigma)$

- Smoothness \Rightarrow Stable Infiniteness
- Lists are smooth w.r.t. element sort
- BV is not smooth w.r.t. $B V[4]$

Cardinalities of Models

Let S be a set of sorts.

Finite Witnessibility

T is finitely witnessable w.r.t. S if there exists a function wit such that:

- A is T-equivalent to $\exists \bar{w} \cdot w i t(A), w=F V(w i t(A)) \backslash F V(A)$;
- If $\operatorname{wit}(A)$ is T-SAT then it is T-SAT by a model \mathcal{I} with $\sigma^{\mathcal{I}}=F V_{\sigma}(w i t(A))^{\mathcal{I}}$ for every $\sigma \in S$.

A: head $\left(a_{0}\right) \neq$ head $\left(a_{1}\right)$
elem $^{\mathcal{I}}=\emptyset-$ - ©

$$
\begin{gathered}
\operatorname{wit}(A): a_{0}=\operatorname{cons}\left(e_{0}, a_{0}^{\prime}\right) \wedge \\
a_{1}=\operatorname{cons}\left(e_{0}, a_{1}^{\prime}\right) \wedge \\
e_{0} \neq e_{1}
\end{gathered}
$$

Politeness

Definition

A theory is polite if it is smooth + finitely witnessble.

Theorem?

[Ranise et al. 2005]
Polite combination is correct for polite theories.

Theorem!

[Jovanovic \& Barrett 2010]
Polite combination is correct for strongly polite theories.

Combining Data Structures with Nonstably Infinite Theories Using Many-Sorted Logic*

[^0]
Polite Theories Revisited ${ }^{\star}$

Dejan Jovanović and Clark Barrett
New York University
\{dejan, barrett\}@cs.nyu.edu

Strong Finite Witnessibility

T is strongly finitely witnessable w.r.t. a set S of sorts if there exists a function wit such that:

- A is T-equivalent to $\exists \bar{w} w i t(A), w=F V(w i t(A)) \backslash F V(A)$;
- If wit $(A) \wedge \delta$ is T-SAT then it is T-sat by a model with $\sigma^{\mathcal{I}}=F V_{\sigma}(\operatorname{wit}(A) \wedge \delta)^{\mathcal{I}}$ for every $\sigma \in S$, for all arrangements δ over S.

Definition

T is strongly polite w.r.t. S if it is smooth and strongly finitely witnessable w.r.t. S.

Question

Politeness $=$ Strong Politeness ?

Overview

Theorem

- Politeness \neq Strong Politeness
- In mono-sorted empty signatures:
- Politeness = Strong Politeness
- Finite Witnessability \neq Strong Finite Witnessability

The Theory $T_{2,3}$

- Two sorts σ_{1}, σ_{2}, no symbols except $=$
- \mathcal{I} is in $T_{2,3}$ iff at least one of the following holds:
- $\left|\sigma_{1}^{\mathcal{I}}\right|=2$ and $\left|\sigma_{2}^{\mathcal{I}}\right|=\infty$
- $\left|\sigma_{1}^{\mathcal{I}}\right|,\left|\sigma_{2}^{\mathcal{I}}\right| \geq 3$

lemma

- $T_{2,3}$ is polite.
- $\operatorname{wit}(A)=A \wedge \bigwedge_{i=1}^{3} x_{i}=x_{i} \wedge \bigwedge_{i=1}^{3} y_{i}=y_{i}$
- Every witness is not a strong witness.

Where Did We Find $T_{2,3}$?

Many-Sorted Equivalence of Shiny and Strongly Polite Theories

```
Filipe Casal 1,2 • João Rasga }\mp@subsup{}{}{1,2
As an example of a theory stably finite according to [14] (but not stably finite according to the notion proposed in Definition 6), with minimal models with infinite cardinalities, consider a two-sorted theory that accepts all models \(\mathcal{A}\) with cardinalities such that
\[
\text { either }\left|A_{1}\right| \geq 2 \text { and }\left|A_{2}\right|=\infty \text { or }\left|A_{1}\right| \geq 3 \text { and }\left|A_{2}\right| \geq 3
\]
```


Alternative Route

- Casal \& Rasga studied strong politeness and shininess
- Another proof can be obtained by [Casal \& Rasga] + [Ranise et al.]
- Such a proof would go through shiny theories
- Our proof is direct

Mono Sorted Empty Signatures

Theorem

For empty mono-sorted signatures: politeness $=$ strong politeness.

Proof

- smoothness + finite witnessability \rightarrow upward closure
- empty signatures can only describe sets of arrangements

Alternative Route

[Casal\&Rasga 2013,Ranise et al. 2005]

Revisiting the Equivalence of Shininess and Politeness

Filipe Casal ${ }^{1}$ and João Rasga ${ }^{2}$

Theorem

For empty mono-sorted signatures:
finite witnessability \neq strong finite witnessability

The theory $T_{\text {Even }}$

all structures with even or infinite number of elements.

Lemma

- $T_{\text {Even }}$ is finitely witnesssable
- There is no strong witness
- Notice: $T_{\text {Even }}$ is not smooth

Alternative Route?

- No alternative route through shiny theories
- Shiny theories are smooth

Overview

Why Bother With Polite Theories?

- We plan to prove politeness for more theories
- Datatypes (done)
- Nested Datatypes
- Sequences

Negative Reason

- Proving strong politeness is harder
- Now we know that sometimes the additional effort is not for nothing

Positive Reason

- Politeness can be used to prove strong politeness
- For datatypes, we did as follows [Sheng et al. 2020]:
- Introduced a sufficient for equivalence of strong and ordinary politeness
- Proved politeness + sufficient condition
- Concluded strong politeness

Overview

From Smart Contracts to Theory Combination

Modify lemma vs fact policy for datatype equalities \#5115

```
fo Merged ajreynol merged 22 commits into cvC4:master from ajreynol:dtInstSimple \. \ on Sep 23, 2020
```


barrettcw commented on Sep 22, 2020

Member

Actually this is pretty interesting. I think you can be a bit smarter - I think instead of sending lemmas, you can just label the selectors as shared terms, but only if the type is finite. This actually raises an interesting theoretical question because in essence this means you are doing polite combination on some of the sorts and Nelson-Oppen on others! I will ask Yoni and Ying to think about this!

```
6
```

- Improving theory combination for Move Prover benchmarks
- Potential: reduce number of variables in arrangements
- Reasoning about arrangements is exponential

From Smart Contracts to Theory Combination

Modify lemma vs fact policy for datatype equalities \#5115

```
fo Merged ajreynol merged 22 commits into cvC4:master from ajreynol:dtInstSimple \. \ on Sep 23, 2020
```


barrettcw commented on Sep 22, 2020

Member

Actually this is pretty interesting. I think you can be a bit smarter - I think instead of sending lemmas, you can just label the selectors as shared terms, but only if the type is finite. This actually raises an interesting theoretical question because in essence this means you are doing polite combination on some of the sorts and Nelson-Oppen on others! I will ask Yoni and Ying to think about this!

```
|
```

- Improving theory combination for Move Prover benchmarks
- Potential: reduce number of variables in arrangements
- Reasoning about arrangements is exponential

Combination Methods - Summary

Let S be the set of shared sorts.

$$
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right) \text {-SAT }
$$

Nelson-Oppen Combination
T_{1} and T_{2} are stably infinite w.r.t. S
$\exists \delta$ over $F V(A) \cap F V(B)$ s.t. $A \wedge \delta$ is T_{1}-SAT and $B \wedge \delta$ is T_{2}-SAT

Polite Combination
T_{2} is strongly polite w.r.t. S
$\exists \delta$ over $F V(B)$ s.t.
$A \wedge \delta$ is T_{1}-SAT and $w i t(B) \wedge \delta$ is T_{2}-SAT
$\exists \delta$ over $F V_{S^{s i}} \frac{\text { Hybrid? }^{(A) \cap F V_{S^{s i}}}}{\text { s.t. } B), F V_{S^{n s i}}(B)}$
$A \wedge \delta$ is T_{1}-SAT and $\operatorname{wit}(B) \wedge \delta$ is T_{2}-SAT

$$
S=S^{n s i} \cup S^{s i}
$$

Suppose T_{1} is stably-infinite w.r.t. $S^{s i}$.

Theorem

If T_{2} is:

- strongly polite w.r.t. $S^{n s i}$
- stably-infinite w.r.t. $S^{\text {si }}$ without changing $S^{n s i}$

Then:

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right)-S A T \\
\Leftrightarrow
\end{gathered}
$$

There exists an arangement δ over $F V_{S^{s i}}(A) \cap F V_{S^{s i}}(B)$ and $F V_{S_{n s}}(B)$ s.t. $A \wedge \delta$ is T_{1}-SAT and wit $(B) \wedge \delta$ is $T_{2}-S A T$.

$$
S=S^{n s i} \cup S^{s i}
$$

Suppose T_{1} is stably-infinite w.r.t. $S^{\text {si }}$.

Theorem

If T_{2} is:

- smooth w.r.t. $S^{n s i}$ without changing infiniteness of $S^{s i}$
- strongly finitely witnessable w.r.t. $S^{n s i}$
- stably-infinite w.r.t. $S^{\text {si }}$ without increasing $S^{n s i}$

Then:

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right)-S A T \\
\Leftrightarrow
\end{gathered}
$$

There exists an arangement δ over $F V_{S^{s i}}(A) \cap F V_{S^{s i}}(B)$ and $F V_{S^{n s}}(B)$ s.t. $A \wedge \delta$ is $T_{1}-S A T$ and wit $(B) \wedge \delta$ is $T_{2}-S A T$.

$$
S=S^{n s i} \cup S^{s i}
$$

Suppose T_{1} is stably-infinite w.r.t. $S^{\text {si }}$.

Theorem

If T_{2} is:

- strongly polite w.r.t. $S^{n s i}$ without changing infiniteness of $S^{\text {si }}$
- stably-infinite w.r.t. $S^{\text {si }}$

Then:

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right)-S A T \\
\Leftrightarrow
\end{gathered}
$$

There exists an arangement δ over $F V_{S^{s i}}(A) \cap F V_{S^{s i}}(B)$ and $F V_{S_{n s}}(B)$ s.t. $A \wedge \delta$ is T_{1}-SAT and wit $(B) \wedge \delta$ is $T_{2}-S A T$.

Optimized Combination

The original conjecture follows from the general variants.

Theorem

If:

- $S^{n s i} \cup S^{s i}$ is the set of shared sorts
- T_{2} is strongly polite w.r.t. $S^{n s i} \cup S^{s i}$
- T_{1} is stably-infinite w.r.t. $S^{s i}$

Then:

$$
\begin{gathered}
A \wedge B \text { is }\left(T_{1} \oplus T_{2}\right)-S A T \\
\Leftrightarrow
\end{gathered}
$$

There exists an arangement δ over $F V_{S^{s i}}(A) \cap F V_{S^{s i}}(B)$ and $F V_{S^{n s i}}(B)$ s.t. $A \wedge \delta$ is $T_{1}-S A T$ and $w i t(B) \wedge \delta$ is $T_{2}-S A T$.

Arith+BV	DT
$x=5$	$a_{0}=\operatorname{cons}(x, v, n i l)$
$v=0000$	$a_{1}=\operatorname{cons}\left(y_{1}, v, a_{0}\right)$
	\ldots
	$a_{n}=\operatorname{cons}\left(y_{n}, v, a_{n-1}\right)$

- Arith+BV is stably infinite w.r.t. Arith
- DT is strongly polite w.r.t. the elemnt sorts, denoted Arith and BV
- Polite combination: arrangments over $\left\{x, v, y_{1}, \ldots, y_{n}\right\}-n+2$ variables
- Optimized combination: arrangements over $\{x, v\}-2$ variables

Overview

A challenging Combination Benchmark

On most benchmarks from Move Prover:
$<10 \%$ and <10 s time spent on theory combination (300s timeout)

Except 1 benchmark:

- 81s solving
- 20s combination (24\%)

Theories

- Bool+UF+Arith: stably-infinite w.r.t. Arith
- Dataypes: strongly polite w.r.t. Bool+UF+Arith

	total (s)	comb (s)	DT	INT	UFB	shared
original	81.5	20.3	116.0	281.0	123.9	163.5
optimized	$\mathbf{3 4 . 9}$	$\mathbf{3 . 4}$	$\mathbf{2 3 6 . 1}$	$\mathbf{2 1 2 . 1}$	$\mathbf{7 8 . 4}$	$\mathbf{1 2 5 . 8}$

Running times (in seconds) and number of terms (in thousands)

Conclusion

We Have Seen

- Politeness \neq Strong Politeness
- Synergy of two combination methods

What's next?

- Sufficient conditions for equivalence
- Combination method based on Politeness
- Implementation: Optimize for other theories
- Evaluation: Collect and create more benchmarks

Conclusion

We Have Seen

- Politeness \neq Strong Politeness
- Synergy of two combination methods

What's next?

- Sufficient conditions for equivalence
- Combination method based on Politeness
- Implementation: Optimize for other theories
- Evaluation: Collect and create more benchmarks

Thank You!

[^0]: Silvio Ranise ${ }^{1}$, Christophe Ringeissen ${ }^{1}$, and Calogero G. Zarba ${ }^{2}$
 ${ }^{1}$ LORIA and INRIA-Lorraine
 ${ }^{2}$ University of New Mexico

