Politeness and Stable Infiniteness: Stronger Together

Ying Sheng¹ Yoni Zohar¹ Christophe Ringeissen² Andrew Reynolds³ Clark Barrett¹ Cesare Tinelli³

Stanford University

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

The University of Iowa

What is This About?

Theory Combination

- specialized theory solvers
- how to split the problem?
- how to combine the results?

(set-logic (UFDTNIA) (declare-sort T@\$TypeName 0) (declare-sort T@\$TypeValue 0) (declare-sort T@[Int]\$TypeValue 0)(T@\$TypeValueArray 0)) (((\$BooleanType) (\$IntegerType) (\$Ad (declare-datatypes ((T@\$Value 0)(T@\$ValueArray 0)) (((\$Boolean (Ib#\$Boolean[Bool)) (\$Integer (I (declare-sort IT@[\$TypeValueArray,Int]Bool 0) (declare-sort IT@[\$TypeValueArray,Int]\$Value 0) (declare-datatypes ((T@\$Memory 0)) (((\$Memory (Idomain#\$Memory| IT@[\$TypeValueArray,Int]Bool)) (I (declare-sort IT@[\$TypeValueArray,Int]\$Value 0) (declare-datatypes ((T@\$Memory 0)) (((\$Global (Its#\$Global1 T@\$TypeValueArray) (Ia#\$Global1 Int (declare-sort IT@[Int]Int| 0) (declare-datatypes ((T@\$Path 0)) (((\$Path (Ip#\$Path| IT@[Int]Int|) (Isize#\$Path Int))))

Motivation

The Move Prover

[Zhong et al. 2020]

- Formal verification tool for Move smart contracts in the Diem blockchain
- Inspires many current projects in CVC4:
 - sequences
 - (nested) datatypes
 - quantifiers
 - theory combination

Motivation

The Move Prover

[Zhong et al. 2020]

- Formal verification tool for Move smart contracts in the Diem blockchain
- Inspires many current projects in CVC4:
 - sequences
 - (nested) datatypes
 - quantifiers
 - theory combination

Background:

Theory Combination

Motivation:

Smart Contracts Verification

Result 1:

 $Politeness \neq Strong Politeness$

Result 2:

 $\mathsf{Politeness} \oplus \mathsf{Stable-infiniteness}$

Definitions

Example: Lists with A Single Element

Example: Lists with A Single Element

$a_0, a_1, a_2 \neq nil$	
$a_0 eq a_1, a_1 eq a_2, a_0 eq a_2$	$\begin{array}{c c} \square & \square \\ a_0 & a_1 & a_2 \end{array}$
$tail(a_0) = tail(a_1) = tail(a_2) = nil$	
$0 \le x, y, z \le 1$	
$x = head(a_0), y = head(a_1), z = head(a_2)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Combination Methods

Naive Method

 $A \wedge B$ is $(T_1 \oplus T_2)$ -SAT \Leftrightarrow A is T_1 -SAT and B is T_2 -SAT.

DT Solver	Arith Solver	
$a_0, a_1, a_2 eq nil$	$0 \le x, y, z \le 1$	
$a_0 eq a_1, a_1 eq a_2, a_0 eq a_2$		
$tail(a_0) = tail(a_1) = tail(a_2) = nil$		
$x = head(a_0), y = head(a_1), z = head(a_2)$		
SAT	SAT	

The formlua is **UNSAT** Method says **SAT** \bigcirc Missing **arrangement** δ : = / \neq between variables Politeness and Stable Infiniteness: Stronger Together Nelson-Oppen Method

[Nelson& Oppen 1979]

$A \wedge B$ is $(T_1 \oplus T_2)$ -SAT

\Leftrightarrow

 $\exists \delta$ over $FV(A) \cap FV(B)$ s.t. $A \land \delta$ is T_1 -SAT and $B \land \delta$ is T_2 -SAT.

DT Solver	Arith Solver		
$a_0, a_1, a_2 eq nil$	$0 \le x, y, z \le 1$		
$a_0 eq a_1, a_1 eq a_2, a_0 eq a_2$			
$tail(a_0) = tail(a_1) = tail(a_2) = nil$			
$x = head(a_0), y = head(a_1), z = head(a_2)$			
$\delta: x \neq y \neq z$	$\delta:\neg(x\neq y\neq z)$		

The formlua is UNSAT

Method says UNSAT

Nelson-Oppen Method

[Nelson& Oppen 1979]

$$A \wedge B$$
 is $(T_1 \oplus T_2)$ -SAT

 $\exists \delta$ over $FV(A) \cap FV(B)$ s.t. $A \land \delta$ is T_1 -SAT and $B \land \delta$ is T_2 -SAT.

- Nelson-Oppen works for lists of integers
- What about lists of bit-vectors?

Nelson-Oppen Method

[Nelson& Oppen 1979]

$$A \wedge B$$
 is $(T_1 \oplus T_2)$ -SAT

 \Leftrightarrow

 $\exists \delta \text{ over } FV(A) \cap FV(B) \text{ s.t. } A \land \delta \text{ is } T_1\text{-SAT and } B \land \delta \text{ is } T_2\text{-SAT.}$

DT Solver	BV[1] Solver
$a_0, a_1, a_2 eq nil$	TRUE
$a_0 eq a_1,a_1 eq a_2,a_0 eq a_2$	
$tail(a_0) = tail(a_1) = tail(a_2) = nil$	
SAT	SAT

The formlua is UNSAT Method says SAT

Combination Methods

Polite Combination

[Ranise et al. 2005]

$$A \wedge B \text{ is } (T_1 \oplus T_2)\text{-SAT}$$

$$\Leftrightarrow$$

$$\exists \delta \text{ over } FV(B) \text{ of shared sorts s.t.}$$

$$A \wedge \delta \text{ is } T_1\text{-SAT and } wit(B) \wedge \delta \text{ is } T_2\text{-SAT.}$$

DT Solver	BV[1] Solver
$\textit{wit}(\textit{a}_0,\textit{a}_1,\textit{a}_2 eq \textit{nil})$	TRUE
$\mathit{wit}(\mathit{a}_0 eq \mathit{a}_1, \mathit{a}_1 eq \mathit{a}_2, \mathit{a}_0 eq \mathit{a}_2)$	
$wit(tail(a_0) = tail(a_1) = tail(a_2) = nil)$	

Combination Methods

Polite Combination

[Ranise et al. 2005]

$$A \wedge B \text{ is } (T_1 \oplus T_2)\text{-SAT}$$

$$\Leftrightarrow$$

$$\exists \delta \text{ over } FV(B) \text{ of shared sorts s.t.}$$

$$A \wedge \delta \text{ is } T_1\text{-SAT and } \text{ wit(B) } \wedge \delta \text{ is } T_2\text{-SAT.}$$

DT Solver	BV[1] Solver
$a_0, a_1, a_2 \neq \textit{nil}$	TRUE
$a_0 eq a_1, a_1 eq a_2, a_0 eq a_2$	
$\bigwedge_{i=0}^2 a_i = cons(vi, nil)$	
$\delta: v_0 \neq v_1 \neq v_2$	$\delta: \neg (v_0 \neq v_1 \neq v_2)$

The formlua is **UNSAT**

Method says UNSAT

Combination Methods – Summary

$A \wedge B$ is $(T_1 \oplus T_2)$ -SAT

 \Leftrightarrow

 $\frac{\text{Naive Combination}}{A \text{ is } T_1\text{-SAT and } B \text{ is } T_2\text{-SAT}}$

No shared variables

 $\frac{\text{Nelson-Oppen Combination}}{\exists \ \delta \ \text{over} \ FV(A) \cap FV(B) \ \text{s.t.}}$ $A \land \delta \ \text{is} \ T_1\text{-SAT} \ \text{and} \ B \land \delta \ \text{is} \ T_2\text{-SAT}$

 $\frac{\text{Polite Combination}}{\exists \ \delta \ \text{over} \ FV(B) \ \text{s.t.}}$ $A \land \delta \ \text{is} \ T_1\text{-}\text{SAT} \ \text{and} \ wit(B) \land \delta \ \text{is} \ T_2\text{-}\text{SAT}$

 T_1 and T_2 are stably infinite

 T_2 is strongly polite

Politeness and Stable Infiniteness: Stronger Together

Let S be a set of sorts.

Stable Infiniteness

T is **stably infinite** w.r.t. S if every T-SAT formula is T-SAT by a structure in which all domains of S are infinite.

Smoothness

- T is **smooth** w.r.t. S if for every:
- *T*-SAT formula *A* and a *T*-model of it *I*
- mapping κ from S to carinalities with $\kappa(\sigma) \geq |\sigma^{\mathcal{I}}|$

There is a *T*-model \mathcal{J} of *A* with $|\sigma^{\mathcal{J}}| = \kappa(\sigma)$

- Smoothness \Rightarrow Stable Infiniteness
- Lists are smooth w.r.t. element sort
- BV is not smooth w.r.t. BV[4]

Cardinalities of Models

Let S be a set of sorts.

Finite Witnessibility

T is **finitely witnessable** w.r.t. S if there exists a function wit such that:

- A is T-equivalent to $\exists \overline{w}.wit(A), w = FV(wit(A)) \setminus FV(A);$
- If wit(A) is *T*-SAT then it is *T*-SAT by a model \mathcal{I} with $\sigma^{\mathcal{I}} = FV_{\sigma}(wit(A))^{\mathcal{I}}$ for every $\sigma \in S$.

Formula	Model		
$A: \ head(a_0) \neq head(a_1)$	$\textit{elem}^{\mathcal{I}} = \emptyset - \odot$		
$wit(A): a_0 = cons(e_0, a'_0) \wedge$	$\textit{elem}^{\mathcal{I}} = \left\{ \textit{e}_{0}^{\mathcal{I}},\textit{e}_{1}^{\mathcal{I}} ight\} - \textcircled{\odot}$		
$egin{array}{lll} a_1=cons(e_0,a_1')\wedge\ e_0 eq e_1 \end{array}$			

Politeness

Definition

A theory is **polite** if it is smooth + finitely witnessble.

Theorem?

[Ranise et al. 2005]

Polite combination is correct for polite theories.

Theorem!

[Jovanovic & Barrett 2010]

Polite combination is correct for **strongly** polite theories.

Combining Data Structures with Nonstably Infinite Theories Using Many-Sorted Logic*

Silvio Ranise¹, Christophe Ringeissen¹, and Calogero G. Zarba²

¹ LORIA and INRIA-Lorraine ² University of New Mexico

Polite Theories Revisited*

Dejan Jovanović and Clark Barrett

New York University {dejan,barrett}@cs.nyu.edu

Politeness and Stable Infiniteness: Stronger Together

Strong Finite Witnessibility

T is strongly finitely witnessable w.r.t. a set S of sorts if there exists a function wit such that:

- A is T-equivalent to $\exists wwit(A), w = FV(wit(A)) \setminus FV(A);$
- If $wit(A) \wedge \delta$ is T-SAT then it is T-sat by a model with $\sigma^{\mathcal{I}} = FV_{\sigma}(wit(A) \wedge \delta)^{\mathcal{I}}$ for every $\sigma \in S$, for all arrangements δ over S.

Definition

T is **strongly polite** w.r.t. S if it is smooth and strongly finitely witnessable w.r.t. S.

Question

Politeness = Strong Politeness ?

Theorem

- Politeness ≠ Strong Politeness
- In mono-sorted empty signatures:
 - Politeness = Strong Politeness
 - Finite Witnessability \neq Strong Finite Witnessability

The Theory $T_{2,3}$

- Two sorts σ_1, σ_2 , no symbols except =
- \mathcal{I} is in $\mathcal{T}_{2,3}$ iff at least one of the following holds:

•
$$|\sigma_1^{\mathcal{I}}| = 2$$
 and $|\sigma_2^{\mathcal{I}}| = \infty$
• $|\sigma_1^{\mathcal{I}}| |\sigma_2^{\mathcal{I}}| > 3$

• $|\sigma_1^L|, |\sigma_2^L| \ge 3$

lemma

• T_{2,3} is polite.

• wit(A) =
$$A \land \bigwedge_{i=1}^3 x_i = x_i \land \bigwedge_{i=1}^3 y_i = y_i$$

• Every witness is not a strong witness.

First Contribution

Where Did We Find $T_{2,3}$?

Many-Sorted Equivalence of Shiny and Strongly Polite Theories

Filipe Casal^{1,2} · João Rasga^{1,2}

As an example of a theory stably finite according to [14] (but not stably finite according to the notion proposed in Definition 6), with minimal models with infinite cardinalities, consider a two-sorted theory that accepts all models A with cardinalities such that

either $|A_1| \ge 2$ and $|A_2| = \infty$ or $|A_1| \ge 3$ and $|A_2| \ge 3$.

Alternative Route

- Casal & Rasga studied strong politeness and shininess
- Another proof can be obtained by [Casal & Rasga] + [Ranise et al.]
- Such a proof would go through shiny theories
- Our proof is direct

Mono Sorted Empty Signatures

Theorem

For empty mono-sorted signatures: politeness = strong politeness.

Proof

- smoothness + finite witnessability \rightarrow upward closure
- empty signatures can only describe sets of arrangements

Alternative Route

[Casal&Rasga 2013,Ranise et al. 2005]

Revisiting the Equivalence of Shininess and Politeness

Filipe Casal¹ and João Rasga²

Politeness and Stable Infiniteness: Stronger Together

Theorem

For empty mono-sorted signatures: finite witnessability \neq strong finite witnessability

The theory T_{Even}

all structures with even or infinite number of elements.

Lemma

- *T_{Even}* is finitely witnesssable
- There is no strong witness
- Notice: *T_{Even}* is not smooth

Alternative Route?

- No alternative route through shiny theories
- Shiny theories are smooth

Importance

Why Bother With Polite Theories?

- We plan to prove politeness for more theories
 - Datatypes (done)
 - Nested Datatypes
 - Sequences

Negative Reason

- Proving strong politeness is harder
- Now we know that sometimes the additional effort is not for nothing

Positive Reason

- Politeness can be used to prove strong politeness
- For datatypes, we did as follows [Sheng et al. 2020]:
 - Introduced a sufficient for equivalence of strong and ordinary politeness
 - \bullet Proved politeness + sufficient condition
 - Concluded strong politeness

From Smart Contracts to Theory Combination

- Improving theory combination for Move Prover benchmarks
- Potential: reduce number of variables in arrangements
- Reasoning about arrangements is exponential

From Smart Contracts to Theory Combination

- Improving theory combination for Move Prover benchmarks
- Potential: reduce number of variables in arrangements
- Reasoning about arrangements is exponential

Combination Methods – Summary

Let S be the set of shared sorts.

Hybrid?

 $\exists \delta \text{ over } FV_{S^{si}}(A) \cap FV_{S^{si}}(B), FV_{S^{nsi}}(B)$ s.t. $A \wedge \delta \text{ is } T_1\text{-SAT and } wit(B) \wedge \delta \text{ is } T_2\text{-SAT}$ T_1 is stably-infinite w.r.t. S^{si} T_2 is strongly polite w.r.t. S $S = S^{si} \cup S^{nsi}$

Politeness and Stable Infiniteness: Stronger Together

First Attempts

 $S = S^{nsi} \cup S^{si}$ Suppose T_1 is stably-infinite w.r.t. $S^{si}.$

Theorem

If T_2 is:

- strongly polite w.r.t. S^{nsi}
- stably-infinite w.r.t. S^{si} without changing S^{nsi}

Then:

$$\begin{array}{l} A \wedge B \text{ is } (T_1 \oplus T_2)\text{-}SAT \\ \Leftrightarrow \\ \end{array}$$

There exists an arangement δ over $FV_{S^{si}}(A) \cap FV_{S^{si}}(B)$ and $FV_{S^{nsi}}(B)$ s.t. $A \wedge \delta$
is $T_1\text{-}SAT$ and $wit(B) \wedge \delta$ is $T_2\text{-}SAT$.

First Attempts

$$S = S^{nsi} \cup S^{si}$$
 Suppose \mathcal{T}_1 is stably-infinite w.r.t. $S^{si}.$

Theorem

If T_2 is:

- smooth w.r.t. S^{nsi} without changing infiniteness of S^{si}
- strongly finitely witnessable w.r.t. S^{nsi}
- stably-infinite w.r.t. S^{si} without increasing S^{nsi}

Then:

$$A \wedge B$$
 is $(T_1 \oplus T_2)$ -SAT

 \Leftrightarrow

There exists an arangement δ over $FV_{S^{si}}(A) \cap FV_{S^{si}}(B)$ and $FV_{S^{nsi}}(B)$ s.t. $A \wedge \delta$ is T_1 -SAT and wit $(B) \wedge \delta$ is T_2 -SAT.

First Attempts

$$S = S^{nsi} \cup S^{si}$$
 Suppose T_1 is stably-infinite w.r.t. S^{si} .

Theorem

If T_2 is:

- strongly polite w.r.t. S^{nsi} without changing infiniteness of S^{si}
- stably-infinite w.r.t. S^{si}

.

Then:

$$\begin{array}{l} A \wedge B \text{ is } (T_1 \oplus T_2)\text{-SAT} \\ \Leftrightarrow \\ \\ There \text{ exists an arangement } \delta \text{ over } FV_{S^{si}}(A) \cap FV_{S^{si}}(B) \text{ and } FV_{S^{nsi}}(B) \text{ s.t. } A \wedge \delta \\ \\ \text{ is } T_1\text{-SAT and } wit(B) \wedge \delta \text{ is } T_2\text{-SAT.} \end{array}$$

Optimized Combination

The original conjecture follows from the general variants.

Theorem

lf:

- $S^{nsi} \cup S^{si}$ is the set of shared sorts
- T_2 is strongly polite w.r.t. $S^{nsi} \cup S^{si}$
- T₁ is stably-infinite w.r.t. S^{si}

Then:

$$A \wedge B \text{ is } (T_1 \oplus T_2)\text{-SAT}$$

$$\Leftrightarrow$$
There exists an arangement δ over $FV_{S^{si}}(A) \cap FV_{S^{si}}(B)$ and $FV_{S^{nsi}}(B)$ s.t.
 $A \wedge \delta$ is $T_1\text{-SAT}$ and wit $(B) \wedge \delta$ is $T_2\text{-SAT}$.

Example

- Arith+BV is stably infinite w.r.t. Arith
- DT is strongly polite w.r.t. the elemnt sorts, denoted Arith and BV
- Polite combination: arrangements over $\{x, v, y_1, \dots, y_n\} n + 2$ variables
- Optimized combination: arrangements over $\{x, v\} 2$ variables

A challenging Combination Benchmark

- On most benchmarks from Move Prover:
- <10% and <10s time spent on theory combination (300s timeout)

E	xcept 1 benchmark:	(set-logic (UFDTNIA) (declare-sort T@StypeName 0)
•	81s solving	(declare-datatypes(TESTypeValue 0)(TESTypeValueArray 0)) (((\$BooleanType) (\$IntegerType) (\$Ad (declare-datatypes (TESTypeValue 0)(TESTypeValueArray 0)) (((\$Boolean(b#SBoolean(bool)))) (declare-datatypes(TESTValue 0)(TESTValueArray 0)) (((\$Boolean(b#SBoolean(bool)))))))))))))))))))))))))))))))))))
•	20s combination (24%)	<pre>(declare-sort !TE[STypeValueArroy`Int[SValue" a) (declare-datatypes ((TE\$Location 6)) (((Skemory (Idomain#Skemory ITE[STypeValueArroy,Int]Bool)) (I (declare-datatypes ((TE\$Location 6)) (((SGlobal (Its#SGlobal) TESTypeValueArroy) (Ia#SGlobal] Int (declare-datatypes ((TE\$Location 6)) (((SPath (Ip#SPath ITE[Int]Int)) (Isize#SPath Int)))))</pre>

Theories

- Bool+UF+Arith: stably-infinite w.r.t. Arith
- Dataypes: strongly polite w.r.t. Bool+UF+Arith

	total (s)	comb (s)	DT	INT	UFB	shared
original	81.5	20.3	116.0	281.0	123.9	163.5
optimized	34.9	3.4	236.1	212.1	78.4	125.8

Running times (in seconds) and number of terms (in thousands)

Conclusion

We Have Seen

- Politeness \neq Strong Politeness
- Synergy of two combination methods

What's next?

- Sufficient conditions for equivalence
- Combination method based on Politeness
- Implementation: Optimize for other theories
- Evaluation: Collect and create more benchmarks

Conclusion

We Have Seen

- Politeness \neq Strong Politeness
- Synergy of two combination methods

What's next?

- Sufficient conditions for equivalence
- Combination method based on Politeness
- Implementation: Optimize for other theories
- Evaluation: Collect and create more benchmarks

Thank You !