## Towards Bit-Width-Independent Proofs in SMT Solvers

Aina Niemetz ${ }^{1}$<br>Mathias Preiner ${ }^{1}$ Clark Barrett ${ }^{1} \quad$ Cesare Tinelli ${ }^{2}$<br>1. Stanford University, Stanford, USA<br>2. The University of lowa, lowa City, USA

## Why Bit-width Independence?



Alive [Lopes et al. 2015]
Language + tool for:

- Writing optimizations
- Verifying them
- Generating code

```
1 Name: AndOrXor:1733
% cmp1 = icmp ne %A, 0
3 %cmp2 = icmp ne %B, 0
%r = or %cmp1, %cmp2
    =>
    %C= or %A, %B
7 %r = icmp ne %C, O
```

$$
(A \neq 0 \vee B \neq 0) \Leftrightarrow(A \mid B \neq 0)
$$

Alive proves validity up to a certain bit-width

## Why Bit-width Independence?



Alive [Lopes et al. 2015]
Language + tool for:

- Writing optimizations
- Verifying them
- Generating code

```
1 Name: AndOrXor:1733
% cmp1 = icmp ne %A, 0
3 %cmp2 = icmp ne %B, 0
%r = or %cmp1, %cmp2
    =>
    %C= or %A, %B
7 %r = icmp ne %C, 0
```

$$
(A \neq 0 \vee B \neq 0) \Leftrightarrow(A \mid B \neq 0)
$$

Our Goal: proving validity for every bit-width

## Goal: <br> proving validity for every bit-width

## Express

Solve
Examples


## Goal: <br> proving validity for every bit-width

## Express

Solve
Examples


## Bit-vectors Representations

## Fixed-width Bit-vectors

- Many-sorted First-order Logic
- Sorts: BV [1] , BV [2] , ...
- Sorted equality, functions, predicates
- Used in SMT-LIB 2

$$
(x \neq 3000 \vee y \neq 3000) \Leftrightarrow\left(\left.x\right|_{3} y \neq 3000\right)
$$

## Arbitrary-width Bit-vectors

- Variables range over bit-vectors of arbitrary width
- Bit-width can be quantified
- Many-sorted first-order logic does not seem like a natural fit

$$
\forall k \cdot(x \neq k 0 \ldots 0 \vee y \not \neq k 0 \ldots 0) \Leftrightarrow\left(\left.x\right|_{k} y \not \neq k 0 \ldots 0\right)
$$

## Language for Bit-vectors of Parametric Width

## Language

- Unsorted functions \& predicates

$$
\left(x_{1} \neq c_{0} \vee x_{2} \neq c_{0}\right) \Leftrightarrow\left(x_{1} \mid x_{2} \neq c_{0}\right)
$$

- Bit-vector variables: $X=\left\{x_{0}, x_{1}, \ldots\right\}$
- Bit-vector constants: $C=\left\{c_{0}, c_{1}, \ldots\right\}$


## Auxiliary Maps

$t(N)=\{0, n+m, \ldots\}$

- $\omega^{\mathrm{b}}: X \cup C \rightarrow t(N)$ symbolic bit-width
- $\omega^{\mathrm{N}}: C \rightarrow t(N)$ symbolic value
- Validity: always w.r.t. a given $\omega$
- considering all integer interpretations
- Variant of [Pichora 2003]


## Language for Bit-vectors of Parametric Width

## Language

- Unsorted functions \& predicates

$$
\begin{gathered}
\left(x_{1} \neq c_{0} \vee x_{2} \neq c_{0}\right) \Leftrightarrow\left(x_{1} \mid x_{2} \neq c_{0}\right) \\
\text { with } \\
\omega^{\mathrm{b}}\left(x_{1}\right)=\omega^{\mathrm{b}}\left(x_{2}\right)=\omega^{\mathrm{b}}\left(c_{0}\right)=k \\
\omega^{\mathrm{N}}\left(c_{0}\right)=0
\end{gathered}
$$

## Auxiliary Maps

$t(N)=\{0, n+m, \ldots\}$

- $\omega^{\mathrm{b}}: X \cup C \rightarrow t(N)$ symbolic bit-width
- $\omega^{\mathrm{N}}: C \rightarrow t(N)$ symbolic value
- Validity: always w.r.t. a given $\omega$
- considering all integer interpretations
- Variant of [Pichora 2003]


## Language for Bit-vectors of Parametric Width

## Language

- Unsorted functions \& predicates

$$
\begin{gathered}
\left(x_{1} \neq c_{0} \vee x_{2} \neq c_{0}\right) \Leftrightarrow\left(x_{1} \mid x_{2} \neq c_{0}\right) \\
\text { with } \\
\omega^{\mathrm{b}}\left(x_{1}\right)=\omega^{\mathrm{b}}\left(x_{2}\right)=\omega^{\mathrm{b}}\left(c_{0}\right)=k \\
\omega^{\mathrm{N}}\left(c_{0}\right)=0
\end{gathered}
$$

## Auxiliary Maps

$t(N)=\{0, n+m, \ldots\}$

- $\omega^{\mathrm{b}}: X \cup C \rightarrow t(N)$ symbolic bit-width
- $\omega^{\mathrm{N}}: C \rightarrow t(N)$ symbolic value

Bad $\omega$

$$
\omega^{\mathrm{b}}\left(x_{1}\right)=k, \omega^{\mathrm{b}}\left(x_{2}\right)=k+1
$$

- Validity: always w.r.t. a given $\omega$
- considering all integer interpretations
- Variant of [Pichora 2003]


## Goal: <br> proving validity for every bit-width

## Express

Solve
Examples


## Solving Bit-vector Formulas with Parametric Width

## Possibilities

- Bit-blasting (infinite SAT-instance)
- Specialized solver
- Translation to strings
- Translation to integers


## From Bit-vectors to Integers

- Semantics for many operators is already built-in (exceptions: \& , |, ...)
- Benefit from advancements in integer-solving


## Solving Bit-vector Formulas with Parametric Width

## Possibilities

- Bit-blasting (infinite SAT-instance)
- Specialized solver
- Translation to strings
- Translation to integers


## From Bit-vectors to Integers

- Semantics for many operators is already built-in (exceptions: \& , |, ...)
- Benefit from advancements in integer-solving


## Translation

$$
\begin{array}{llllll} 
& & \text { Tr: } & B V & \mapsto & \text { VIA } \\
& & & & & \\
x & \mapsto & x & & & \\
c & \mapsto & \omega^{\mathrm{N}}(c) & \bmod 2^{k} & x<_{u} y & \mapsto \\
k= & & & \\
k=\omega^{\mathrm{b}}(x) & & x<_{s} y & \mapsto & \text { toss }(k, x)<\text { to_s }(k, y)
\end{array}
$$

$$
\begin{array}{lll}
x+y & \mapsto & (x+y) \bmod 2^{k} \\
x \ll y & \mapsto & \left(x \cdot 2^{y}\right) \bmod 2^{k}
\end{array}
$$

$\cdot$, div $, \bmod , \sim,-, \gg, \circ$ are handled similarly

$$
\begin{array}{lll}
x \& y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot \min (x[i], y[i]) \\
x \mid y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot \max (x[i], y[i]) \\
x \oplus y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot|x[i]-y[i]|
\end{array}
$$

$$
\varphi \quad \mapsto \quad \operatorname{Tr}(\varphi)
$$

## Translation

$$
\begin{array}{llllll} 
& & \text { Tr: } & B V & \mapsto & \text { VIA } \\
& & & & & \\
x & \mapsto & x & & & \mapsto \\
c & \mapsto & \omega^{\mathrm{N}}(c) & \bmod 2^{k} & x<_{u} y & \mapsto \\
x=y \\
k=\omega^{\mathrm{b}}(x) & & x<_{s} y & \mapsto & \text { toss }(k, x)<\text { to_s }(k, y)
\end{array}
$$

$$
\begin{array}{lll}
x+y & \mapsto & (x+y) \bmod 2^{k} \\
x \ll y & \mapsto & \left(x \cdot 2^{y}\right) \bmod 2^{k}
\end{array}
$$

$\cdot$, div $, \bmod , \sim,-, \gg, \circ$ are handled similarly

$$
\begin{array}{lll}
x \& y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot \min (x[i], y[i]) \\
x \mid y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot \max (x[i], y[i]) \\
x \oplus y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot|x[i]-y[i]| \\
\varphi & \mapsto & \operatorname{Tr}(\varphi) \wedge \wedge\left(0 \leq x<2^{k}\right)
\end{array}
$$

## Translation

$$
\begin{array}{llllll} 
& & \text { Tr: } & B V & \mapsto & \text { VIA } \\
& & & & & \\
x & \mapsto & x & & & \\
c & \mapsto & \omega^{\mathrm{N}}(c) & \bmod 2^{k} & x<_{u} y & \mapsto \\
k= & & & \\
k=\omega^{\mathrm{b}}(x) & & & x<_{s} y & \mapsto & \text { toss }(k, x)<\text { to_s }(k, y)
\end{array}
$$

$$
\begin{array}{lll}
x+y & \mapsto & (x+y) \bmod 2^{k} \\
x \ll y & \mapsto & \left(x \cdot 2^{y}\right) \bmod 2^{k}
\end{array}
$$

$\cdot$, div $, \bmod , \sim,-, \gg, \circ$ are handled similarly

$$
\begin{array}{lll}
x \& y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot \min (x[i], y[i]) \\
x \mid y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot \max (x[i], y[i]) \\
x \oplus y & \mapsto & \sum_{i=0}^{k} 2^{i} \cdot|x[i]-y[i]| \\
\varphi & \mapsto & \operatorname{Tr}(\varphi) \wedge \wedge\left(0 \leq x<2^{k}\right)
\end{array}
$$

## Translation

\[

\]

$$
\begin{array}{lll}
x+y & \mapsto & (x+y) \bmod p 2(k) \\
x \ll y & \mapsto & (x \cdot p 2(y)) \bmod p 2(k)
\end{array}
$$

$\cdot$, div, $\bmod , \sim,-, \gg, \circ$ are handled similarly

$$
\begin{array}{lll}
x \& y & \mapsto & \&^{\mathbb{N}}(k, x, y) \\
x \mid y & \mapsto & \left.\right|^{\mathbb{N}}(k, x, y) \\
x \oplus y & \mapsto & \oplus^{\mathbb{N}}(k, x, y)
\end{array}
$$

$$
\varphi \quad \mapsto \quad \operatorname{Tr}(\varphi) \wedge \wedge(0 \leq x<p 2(k)) \wedge \text { Axioms }
$$

## Axiomatizations

$$
\varphi \quad \mapsto \quad \operatorname{Tr}(\varphi) \wedge \wedge(0 \leq x<p 2(k)) \wedge \operatorname{Axioms}\left(p 2, \&^{\mathbb{N}},\left.\right|^{\mathbb{N}}, \oplus^{\mathbb{N}}\right)
$$

## Axiomatization Modes

- full
- partial
- combined
- ff


## Axiomatizations

$\varphi \quad \mapsto \quad \operatorname{Tr}(\varphi) \wedge \wedge(0 \leq x<p 2(k)) \wedge \operatorname{Axioms}\left(p 2, \&^{\mathbb{N}},\left.\right|^{\mathbb{N}}, \oplus^{\mathbb{N}}\right)$

## Axiomatization Mode: full

$$
\begin{array}{l|l}
\text { power of two } & p 2(0)=1 \wedge \forall k \cdot k>0 \Rightarrow p 2(k)=2 \cdot p 2(k-1)
\end{array}
$$

bit-wise and $\quad \forall k, x, y$.

$$
\begin{aligned}
k=1 \Rightarrow \quad \&^{\mathbb{N}}(k, x, y)= & \min (x[0], y[0]) \wedge \\
k>1 \Rightarrow \quad \&^{\mathbb{N}}(k, x, y)= & \&^{\mathbb{N}}(k-1, x[k-2: 0], y[k-2: 0])+ \\
& p 2(k-1) \cdot \min (x[k-1], y[k-1])
\end{aligned}
$$

$$
\text { bit-extraction } \begin{array}{lll}
x[k-2: 0] & :=x \bmod p 2(k-1) \\
x[k-1] & :=(x \div p 2(k-1)) \bmod 2 \\
x[0] & :=x \bmod 2
\end{array}
$$

## Axiomatizations

$\varphi \quad \mapsto \quad \operatorname{Tr}(\varphi) \wedge \wedge(0 \leq x<p 2(k)) \wedge \operatorname{Axioms}\left(p 2, \&^{\mathbb{N}},\left.\right|^{\mathbb{N}}, \oplus^{\mathbb{N}}\right)$
Axiomatization Mode: partial
base cases
weak monotonicity
strong monotonicity modularity
never even
always positive
div 0
$p 2(0)=1 \wedge p 2(1)=2 \wedge p 2(2)=4 \wedge p 2(3)=8$
$\forall i \forall j . i \leq j \Rightarrow p 2(i) \leq p 2(j)$
$\forall i \forall j . i<j \Rightarrow p 2(i)<p 2(j)$
$\forall i \forall j \forall x \cdot(x \cdot p 2(i)) \bmod p 2(j) \neq 0 \Rightarrow i<j$
$\forall i \forall x \cdot p 2(i)-1 \neq 2 \cdot x$
$\forall i . p 2(i) \geq 1$
$\forall i . i \div p 2(i)=0$

## Axiomatizations

$\varphi \quad \mapsto \quad \operatorname{Tr}(\varphi) \wedge \wedge(0 \leq x<p 2(k)) \wedge \operatorname{Axioms}\left(p 2, \&^{\mathbb{N}},\left.\right|^{\mathbb{N}}, \oplus^{\mathbb{N}}\right)$

## Axiomatization Mode: partial

```
base case
    max
    min
    idempotence
    contradiction
    symmetry
    difference
    range
```

```
\(\forall x \forall y \cdot \& \mathbb{N}^{\mathbb{N}}(1, x, y)=\min (x[0], y[0])\)
```

$\forall x \forall y \cdot \& \mathbb{N}^{\mathbb{N}}(1, x, y)=\min (x[0], y[0])$
$\forall k \forall x \cdot \&^{\mathbb{N}}(k, x, p 2(k)-1)=x$
$\forall k \forall x \cdot \&^{\mathbb{N}}(k, x, p 2(k)-1)=x$
$\forall k \forall x \cdot \&^{\mathbb{N}}(k, x, 0)=0$
$\forall k \forall x \cdot \&^{\mathbb{N}}(k, x, 0)=0$
$\forall k \forall x \cdot \&^{\mathbb{N}}(k, x, x)=x$
$\forall k \forall x \cdot \&^{\mathbb{N}}(k, x, x)=x$
$\forall k \forall x \cdot \&^{\mathbb{N}}(k, x, p 2(k)-1-x)=0$
$\forall k \forall x \cdot \&^{\mathbb{N}}(k, x, p 2(k)-1-x)=0$
$\forall k \forall x \forall y \cdot \&^{\mathbb{N}}(k, x, y)=\&^{\mathbb{N}}(k, y, x)$
$\forall k \forall x \forall y \cdot \&^{\mathbb{N}}(k, x, y)=\&^{\mathbb{N}}(k, y, x)$
$\forall k \forall x \forall y \forall z . x \neq y \Rightarrow \&^{\mathbb{N}}(k, x, z) \neq y \vee \&^{\mathbb{N}}(k, y, z) \neq x$
$\forall k \forall x \forall y \forall z . x \neq y \Rightarrow \&^{\mathbb{N}}(k, x, z) \neq y \vee \&^{\mathbb{N}}(k, y, z) \neq x$
$\forall k \forall x \forall y .0 \leq \&^{\mathbb{N}}(k, x, y) \leq \min (x, y)$

```
\(\forall k \forall x \forall y .0 \leq \&^{\mathbb{N}}(k, x, y) \leq \min (x, y)\)
```


## Axiomatizations

$\varphi \quad \mapsto \quad \operatorname{Tr}(\varphi) \wedge \wedge(0 \leq x<p 2(k)) \wedge \operatorname{Axioms}\left(p 2, \&^{\mathbb{N}},\left.\right|^{\mathbb{N}}, \oplus^{\mathbb{N}}\right)$

Axiomatization Mode: combined
combined $=$ full + partial

Axiomatization Mode: qf
$\mathrm{qf}=$ some base cases (quantifier free)

## Axiomatizations

$\varphi \quad \mapsto \quad \operatorname{Tr}(\varphi) \wedge \wedge(0 \leq x<p 2(k)) \wedge \operatorname{Axioms}\left(p 2, \&^{\mathbb{N}},\left.\right|^{\mathbb{N}}, \oplus^{\mathbb{N}}\right)$

## Correctness

- full and combined translations are sound and complete.
- partial and qf translations are sound


## Effectiveness

- combined $>$ partial $>$ full $>q f$
- combined and full can be used for a SAT result
- qi can be used with more solvers


## Goal: <br> proving validity for every bit-width

## Express

Solve
Examples


## Case Studies

## 3 Application Domains

Term Rewriting
and All That
Franz Baader
Tobias Nipkow

Rewriting Rules


Compiler Optimizations

## Case Studies

## 3 Application Domains

## Google <br> Invertibility Conditions ๑ \& Q

Invertibility Conditions

## Term Rewriting and All That <br> Franz Baader Tobias Nipkow

Rewriting Rules


Compiler Optimizations

## Benchmarks Generation

- Abstracted each set of problems to a parametric bit-width problem
- Translated to integers using the four approaches
- Submitted translations to SMT-LIB


## Evaluation

- Participants of SMT-COMP 2018 UFNIA division: CVC4, Z3, Vampire
- Limits: 5 minutes run-time, 4GB memory
- Original problems are UNSAT


## Invertibility Conditions for Bit-vectors [Niemetz et. al 2018]

## Invertibility Conditions \& a Google

An invertibility condition for a literal $\mathrm{A}(\mathrm{x})$ provides the exact conditions under which $A(x)$ is solvable for $x$.

## Example

- true $\Leftrightarrow \exists x \cdot x+s=t$
- $(t \neq 0 \vee s \neq 0) \Leftrightarrow \exists x . x \& s \neq t$
- We translated 160 Invertibility conditions from [Niemetz et. al 2018]
- Excluded conditions that involve $\circ$
- All were already verified up to 65 bits
- They are used for arbitrary bit-width in CVC4 for quantifier instantiation


## Verifying Invertibility Conditions

Goal: Prove Validity of $I C \Leftrightarrow \exists x . \ell[x]$ for every bit-width.
$\Leftarrow: \quad$ Prove that $\exists x \cdot \ell[x] \wedge \neg / C$ is UNSAT QF (modulo axioms)
$\Rightarrow$ : Quantifier cannot be eliminated in the general case.

## Conditional Inverses

- We used SyGuS to synthesize conditional inverses.
- A conditional inverse for $\ell[x]$ is a term $\alpha$ such that $\exists x . \ell[x] \Leftrightarrow \ell[\alpha]$
- $\left(\Rightarrow^{\prime}\right)$ : IC $\Rightarrow \ell[\alpha]$ Quantifier Eliminated.
- We found 131 Conditional inverses.


## Example

| true | $\Leftrightarrow \exists x \cdot x+s=t$ |
| :--- | :--- |
| $(t \neq 0 \vee s \neq 0)$ | $\Leftrightarrow \quad \exists x \cdot x \& s \neq t$ |

## Verifying Invertibility Conditions

Goal: Prove Validity of $I C \Leftrightarrow \exists x . \ell[x]$ for every bit-width.
$\Leftarrow: \quad$ Prove that $\exists x \cdot \ell[x] \wedge \neg / C$ is UNSAT QF (modulo axioms)
$\Rightarrow$ : Quantifier cannot be eliminated in the general case.

## Conditional Inverses

- We used SyGuS to synthesize conditional inverses.
- A conditional inverse for $\ell[x]$ is a term $\alpha$ such that $\exists x . \ell[x] \Leftrightarrow \ell[\alpha]$
- $\left(\Rightarrow^{\prime}\right)$ : IC $\Rightarrow \ell[\alpha]$ Quantifier Eliminated.
- We found 131 Conditional inverses.


## Example

$$
\begin{array}{lll}
(t-s)+s=t & \Leftrightarrow & \exists x \cdot x+s=t \\
\sim t \& s \neq t & \Leftrightarrow & \exists x \cdot x \& s \neq t
\end{array}
$$

## Invertibility Conditions: Results

| $\ell[x]$ | = | \# | <u | $>\mathrm{u}$ | $\leq u$ | $\geq \mathrm{u}$ | <s | $>_{\text {s }}$ | $\leq{ }_{\text {s }}$ | $\geq_{\text {s }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-x \bowtie t$ | $\checkmark$ |
| $\sim x \bowtie t$ | $\checkmark$ |
| $\times \& s \bowtie t$ | $\rightarrow$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\rightarrow$ | $\rightarrow$ | $\times$ | $\rightarrow$ |
| $x \mid s \bowtie t$ | $\rightarrow$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\rightarrow$ | $\times$ | $\rightarrow$ | $\times$ |
| $x \ll s \bowtie t$ | $\rightarrow$ | $\leftarrow$ | $\checkmark$ | $\rightarrow$ | $\checkmark$ | $\rightarrow$ | $\rightarrow$ | $\times$ | $\leftarrow$ | $\times$ |
| $s \ll x \bowtie t$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\leftarrow$ | $\checkmark$ | $\leftarrow$ | $\checkmark$ |
| $x \gg s \bowtie t$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\rightarrow$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\rightarrow$ | $\checkmark$ | $\rightarrow$ |
| $s \gg x \bowtie t$ | $\checkmark$ |
| $x \gg{ }_{a} s \bowtie t$ | $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\rightarrow$ | $\checkmark$ | $\rightarrow$ | $\checkmark$ |
| $s \gg{ }_{a} \times \bowtie t$ | $\checkmark$ | $\checkmark$ | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ | $\leftarrow$ | $\times$ | $\leftarrow$ | $\checkmark$ |
| $x+s \bowtie t$ | $\checkmark$ |
| $x \cdot s \bowtie t$ | $\times$ | $\leftarrow$ | $\checkmark$ | $\times$ | $\checkmark$ | $\times$ | $\times$ | $\times$ | $\leftarrow$ | $\times$ |
| $x \operatorname{div} s \bowtie t$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\leftarrow$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $s \operatorname{div} x \bowtie t$ | $\checkmark$ | $\leftarrow$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\leftarrow$ | $\checkmark$ | $\leftarrow$ |
| $x \bmod s \bowtie t$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\times$ | $\checkmark$ | $\leftarrow$ | $\checkmark$ |
| $s \bmod \times \bowtie t$ | $\rightarrow$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\leftarrow$ | $\checkmark$ | $\leftarrow$ |

- 110 out of 160 invertibility conditions verified for any bit-width
- $\rightarrow$ : 8 were proved only when using conditional inverses
- qf mode proved 40

11 more conditions were proven in Coq [Ekici et al. 2019]

## Rewriting Rules for Fixed-width Bit-vectors

## Rewriting in Bit-vector Solvers

- Bit-vector formulas are rewritten before bit-blasting
- Rewrites are Implemented for arbitrary bit-width
- Their verification is crucial for soundness

Term Rewriting and All That

Franz Baader Tobias Nipkow

## Evaluation

- We synthesized ~ 2000 "Rewrite Candidates"
- pairs $\langle A, B\rangle$ of bit-vector formulas/terms that are equivalent for bit-width 4
- Proven rewrites were added as axioms
- Fixpoint was reached after 1 round for formulas and 2 rounds for terms

|  | Generated | Proved |
| :---: | :---: | :---: |
| Formula | 435 | 409 |
| Term | 1575 | $878(935)$ |

## Compiler Optimizations with Alive

```
1 Name: AndOrXor:1733
2 %cmp1 = icmp ne %A, 0
3%cmp2 = icmp ne %B, 0
4 %r = or %cmp1, %cmp2
    =>
6 %C = or %A, %B
7 %r = icmp ne %C, 0
```

$$
(A \neq 0 \vee B \neq 0) \Leftrightarrow(A \mid B \neq 0)
$$

- We translated 160 correctness conditions to UFNIA
- Verified 88 of them for arbitrary bit-width
- combined mode was best, qf mode was very good


## Required axioms

$$
\left.\forall k \forall x \cdot\right|^{\mathbb{N}}(k, 0, x)=x \quad \forall k \forall x \forall y \cdot \max (x, y) \leq\left.\right|^{\mathbb{N}}(k, x, y)
$$

## Conclusion

## We Have Seen

- Proving parametric bit-vector formulas is useful, and possible!
- Translation to integers + UF + quantifiers


## Why Is This Possible?

- Advances in non-linear arithmetic and quantifier solving
- Features of case studies: Real \& Rely on basic properties


## Future Work

- Satisfiable Benchmarks
- Stronger axioms


## Conclusion

## We Have Seen

- Proving parametric bit-vector formulas is useful, and possible!
- Translation to integers + UF + quantifiers


## Why Is This Possible?

- Advances in non-linear arithmetic and quantifier solving
- Features of case studies: Real \& Rely on basic properties


## Future Work

- Satisfiable Benchmarks
- Stronger axioms

Thank You!

## Many-sorted Logic for Parametric Bit-vectors

## Many-sorted First-order Logic?

- Option 1: One sort for all bit-widths $0010+111=$ ? $000 \circ 00 \stackrel{?}{=} 0$
- No type-checking $\Rightarrow$ more errors
- Option 2.0: A sort for every integer term: BV [1] , ..., BV [(2 $k+3)], \ldots$
- Variables of sort BV [2 $k$ ] and BV $[k+k]$ are not comparable
- Option 2: A sort for every normalized integer term: BV [1],$\ldots$, BV [(2 $\cdot k+3), \ldots]$
- BV [5] and BV [[k]] have disjoint domains in all interpretations

