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Motivation
C1 [Avron, Konikowska, Zamansky ’12]
Positive rules of LK + the following rules:

Γ,A⇒ ∆
Γ⇒ ¬A,∆

Γ,A⇒ ∆
Γ,¬¬A⇒ ∆

Γ⇒ A,∆ Γ⇒ ¬A,∆
Γ,¬(A ∧ ¬A)⇒ ∆

Γ,¬A⇒ ∆ Γ,¬B ⇒ ∆
Γ,¬(A ∧ B)⇒ ∆

Γ,¬A⇒ ∆ Γ,B,¬B ⇒ ∆
Γ,¬(A ∨ B)⇒ ∆

Γ,A,¬A⇒ ∆ Γ,¬B ⇒ ∆
Γ,¬(A ∨ B)⇒ ∆

Γ,A⇒ ∆ Γ,B,¬B ⇒ ∆
Γ,¬(A ⊃ B)⇒ ∆

Γ,A,¬A⇒ ∆ Γ,¬B ⇒ ∆
Γ,¬(A ⊃ B)⇒ ∆
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Motivation
C1 [Avron, Konikowska, Zamansky ’12] with necessity
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(K) Γ⇒ A
�Γ⇒ �A
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(S5) : (B4)
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+ (T)
Γ,A⇒ ∆
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Analytic Pure Sequent Calculi

Analyticity
A calculus is analytic if ` Γ⇒ ∆ implies that there is a derivation of
Γ⇒ ∆ using only subformulas of Γ ∪∆.
May be based on “liberal” definitions of subformulas (e.g. usual
subformulas and their negations).
If a pure calculus is analytic then it is decidable.

Pure Sequent Calculi Calculi
Sequents: objects of the form Γ⇒ ∆, where Γ and ∆ are finite sets.
Pure sequent calculi: propositional sequent calculi that include all
usual structural rules, and a finite set of pure logical rules.
Pure logical rules: allow any context [Avron ’91].

Γ,A⇒ B,∆
Γ⇒ A ⊃ B,∆ but not

Γ,A⇒ B
Γ⇒ A ⊃ B
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Analytic Pure Sequent Calculi

Prominent proof theoretic framework.
Suitable for many logics.
For example:

Classical Logic
Three-valued logics
Four-valued logics
Paraconsistent logics (e.g. C1)
Primal infon logic
Dolev-Yao Intruder model
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Our Question
Given an arbitrary analytic pure calculus, will it stay analytic after adding:
Modal Rules

(K)
Γ⇒ A
�Γ⇒ �A (4)

�Γ1, Γ2 ⇒ A
�Γ1,�Γ2 ⇒ �A (45)

�Γ1, Γ2 ⇒ A,�∆
�Γ1,�Γ2 ⇒ �A,�∆

(B)
Γ⇒ A,�∆
�Γ⇒ �A, ∆ (B4)

�Γ1, Γ2 ⇒ A,�∆1,�∆2

�Γ1,�Γ2 ⇒ �A,�∆1, ∆2
(alt1)

Γ⇒ A, ∆
�Γ⇒ �A,�∆

T Rule

(T) Γ, A⇒ ∆
Γ,�A⇒ ∆ S4 = K + 4 + T S5 = K + B4 + T

D Rules

(DK)
Γ⇒
�Γ⇒ (D4)

�Γ1, Γ2 ⇒
�Γ1,�Γ2 ⇒

(D45)
�Γ1, Γ2 ⇒ �∆
�Γ1,�Γ2 ⇒ �∆

(DB)
Γ⇒ �∆
�Γ⇒ ∆ (DB4)

�Γ1, Γ2 ⇒ �∆1,�∆2

�Γ1,�Γ2 ⇒ �∆1, ∆2
(Dalt1)

Γ⇒ ∆
�Γ⇒ �∆
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General Notations

In what follows:

L is an arbitrary propositional language, not containing �.
L� = L ∪ {�}.
For every pure calculus G for L and every modal rule X from above,
GX denotes the addition of X to G .
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Analyticity Survives

Main Theorem
Let G be a pure calculus. If G is analytic, then so is GX .

Holds for the generalized notions of analyticity (e.g. C1)
Valid for multi-modal logics (e.g. Primal infon logic)
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Analyticity Survives

Main Theorem
Let G be a pure calculus. If G is analytic, then so is GX .

Example: Classical modal logics
This theorem provides a new and short proof for the analyticity of the
classical modal logics above, by deriving it from the analyticity of LK.
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Analyticity Survives

Main Theorem
Let G be a pure calculus. If G is analytic, then so is GX .

Example: Primal Infon Logic with quotations
“said” operators are indispensable for applications.
Each principle q has an operator ”q said”.

(∧ ⇒)
Γ, A, B ⇒ ∆

Γ, A ∧ B ⇒ ∆ (⇒ ∧)
Γ⇒ A, ∆ Γ⇒ B, ∆

Γ⇒ A ∧ B, ∆

(∨ ⇒) none (⇒ ∨)
Γ⇒ A, B, ∆

Γ⇒ A ∨ B, ∆

(⊃ ⇒)
Γ⇒ A, ∆ Γ, B ⇒ ∆

Γ, A ⊃ B ⇒ ∆ (⇒⊃)
Γ⇒ B, ∆

Γ⇒ A ⊃ B, ∆

Γ⇒ ∆
q said Γ⇒ q said ∆ for every principal q
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Proof

Main Theorem
Let G be a pure calculus. If G is analytic, then so is GX .

The proof of the theorem does not constructively take a proof of a
sequent and transforms it to an analytic proof.
Instead, it goes through semantics.
This detour provides further insights.
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Semantics for Pure Calculi
The Semantic Framework

Pure calculi correspond to two-valued valuations [Béziau ‘01].
Each pure rule is read as a semantic condition.
By joining the semantic conditions of all rules in a calculus G , we
obtain the set of G-legal valuations.

Soundness and Completeness
The sequent Γ⇒ ∆ is provable in G iff every G-legal valuation is a model
of Γ⇒ ∆.

Example (Sequent Calculus for C1)

Corresponding semantic conditions for A⇒
⇒ ¬A

A⇒
¬¬A⇒

1 If v(A) = f then v(¬A) = t
2 If v(A) = f then v(¬¬A) = f

This semantics is non-deterministic.
Y. Zohar and O. Lahav Extensions of Analytic Pure Sequent Calculi with Modal Operators



Semantics for Pure Calculi
The Semantic Framework

Pure calculi correspond to two-valued valuations [Béziau ‘01].
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Semantic Meaning of Analyticity

Soundness and Completeness
The sequent Γ⇒ ∆ is provable in G using only formulas of F iff every
G-legal valuation whose domain is F is a model of Γ⇒ ∆.

Corollary
G is analytic iff every G-legal partial valuation whose domain is closed
under subformulas can be extended to a full G-legal valuation.

Example

Consider the rules ⇒ A
¬A⇒ and ⇒ A

⇒ ¬A .

The partial valuation given by v(p) = t cannot be extended.
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Semantics for Pure Calculi with Modal Operators

A Kripke model is a triple 〈W ,R,V〉:
W is a set of states (possible worlds).
R is a relation over W .
V assigns a valuation Vw : FrmL → {f,t} to every w ∈W , s.t.:

Vw (�A) = t iff Vw ′(A) = t for every wRw ′

A Kripke model is
“G-legal” if Vw is G-legal for every w ∈W .
“4” if R is transitive, “5” if R is euclidian, “B” if R is symmetric,
“alt1” if R is a partial function.

“T” if R is reflexive and “D” if R is serial.
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Extension of Completeness to Modal Logics

Soundness and Completeness
Let G be a pure sequent calculus and X one of the combinations of modal
rules discussed. The sequent Γ⇒ ∆ is provable in GX iff every G-legal
X -Kripke model satisfies Γ⇒ ∆.

Corollary
GX is analytic iff every partial G-legal X Kripke model whose domain is
closed under subformulas can be extended to a full G-legal X Kripke model.
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(Semantic) Analyticity

G is analytic

Every partial G-legal valuation can be extended

Every partial G-legal X Kripke model can be extended

GX is analytic
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Extending Kripke Models

Suppose every partial G-legal valuation can be extended.
Let W = 〈W ,R,V〉 be a partial G-legal Kripke model.
We extend W incrementally:

p, . . . , ϕ,�ϕ, . . . , ϕ1, . . . , ϕn, ](ϕ1, . . . , ϕn) . . .

• For atoms: add p to all worlds and assign t to it.
• For every ϕ in the domain, add �ϕ to all worlds, and assign it in each

world the only value it can get.
For an n-ary connective ] and ϕ1, . . . , ϕn in the domain, add
](ϕ1, . . . , ϕn) to all worlds.
With what value? Use analyticity of G .
But G is only for L, not for L�.
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Getting rid of the boxes

For every w ∈W :
Take some bijection α : At ∪ {�ϕ | ϕ ∈ L} → At.
Extend it to α : L� → L.
Define a partial valuation in L according to α and Vw .
Extend it (you can - G is analytic)!
Assign the value given for α(](ϕ1, . . . , ϕn)) to ](ϕ1, . . . , ϕn).
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Example

p1 = f p1 = t

...

p1 7→ p17

...

�p1 7→ p25

...
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Example

p1 = f
�p1 =?

p1 = t
�p1 =?

...

p1 7→ p17
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�p1 7→ p25

...
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Example

p1 = f
�p1 = t

p1 ∧�p1 =?

p1 = t
�p1 = f

...

p1 7→ p17

...

�p1 7→ p25

...
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Example
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Extension Method

The main point:
use the ability to extend valuations to extend Kripke models.

For generalized analyticity, things get more complicated:
If the subformula relation is not anti-symmetric, we cannot have an
enumeration ϕ1, ϕ2, . . . , such that:

ϕi is a subformula of ϕj −→ i ≤ j

Still, a similar method works.
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Conclusion

We have seen:
A theorem: analytic pure calculi + modal operators are analytic.
The proof is semantic: extending bivaluations −→ extending frames.
Valid for the usual modalities, and for general analyticity.

Future work:

Cut-elimination
First order
Reveal the essential properties of the modal rules that made this work.

Thank You, and Bon Appétit!
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