Scalable Bit-Blasting with Abstractions

Aina Niemetz¹, Mathias Preiner¹ and Yoni Zohar²

- ¹ Stanford University
- ² Bar-Ilan University

BIU, March 17, 2025

Background

Structure of This Talk

- ▷ Pre-talk: General introduction to the field
- ▷ (Skip technical background will fill in along the way)
- ▷ Assignment: short google form you can do in class

Pre-talk

Why Formal Verification?

What Does This Code Do?

```
int b(int* a, int size, int key)
  int low = 0;
  int high = size - 1;
 while (low <= high)</pre>
    int mid = (low + high) / 2;
    int midVal = a[mid];
    if (midVal < key)
      low=mid+1;
     else if (midVal > key)
      high=mid-1;
    else {
      return mid;
    return -(low + 1);
  return -1;
```

Why Formal Verification?

Where is The Bug in This Code?

```
int b(int* a, int size, int key)
 int low = 0:
  int high = size - 1;
 while (low <= high)</pre>
    int mid = (low + high) / 2;
    int midVal = a[mid];
    if (midVal < key)
      low=mid+1;
     else if (midVal > key)
      high=mid-1;
    else {
      return mid;
    return -(low + 1);
  return -1;
```

Why Formal Verification?

Where is The Bug in This Code?

```
int b(int* a, int size, int kev)
  int low = 0:
  int high = size -1:
  while (low <= high)
   int mid = (low + high) / 2;
   int midVal = a[mid];
    if (midVal < kev)
      low=mid+1:
    } else if (midVal > key)
     hiah=mid-1:
    else {
      return mid;
    return -(low + 1):
  return -1:
```

- ▷ Overflow
- \triangleright int mid = (low + high) / 2;
- \triangleright Fix: int mid = low + (high low) / 2;

Bugs in Software

- ▷ Writing code is a complicated intellectual activity
- ▷ Our code has mistakes

Bugs in Software

- ▷ Writing code is a complicated intellectual activity
- Our code has mistakes
- ▷ Disclaimer: of course you do not have bugs. You are special.

Formal Verification: The Turning Point

- ▷ 1994: Pentium Processors
- ightharpoonup Bug in division operation
- Cost: \$475M

Result: Massive Progress in Formal Verification

Formal Verification: More Recent Motivation

Blockchain Horror Stories

- ▷ Blockchain is a new technology for distributed finance
- ▷ In the beginning (Bitcoin): simple operations
- ▷ Nowadays (Ethereum): arbitrary complex smart contracts
- riangle 2016: The DAO Bug \$40M worth of crypto was stolen
- ightharpoonup Many similar bugs caused other losses

Formal Verification: More Recent Motivation

Boeing 737

Boeing says it has a software fix ready for its 737 Max airplanes that will be unveiled to airline officials, pilots and aviation authorities from around the world Wednesday, as the aircraft manufacturer works to rebuild trust among its customers and the flying public following two fatal crashes of the planes in recent months.

Formal Verification

- ▷ Software is everywhere
- $\, \rhd \,$ If we know of a bug: stop everything until fixed
- ▶ Dangerous: Unaware of bugs

How can we find bugs?

The Traditional Approach: Testing

- ▷ Run your code on a range of inputs
- ightharpoonup QA teams or programmers
- ▷ Partial Automation
- ightharpoonup Would we ever have found the overflow bug? ...

We will never cover all cases

An Alternative Approach: Math

- ▷ In math: we want to prove that a theorem always holds
- ▷ In SW: we want to prove that a program always satisfies something
- - Is Pythagoras Theorem true becuase we tried some examples?

Idea:

Formulate a math theorem that specifies the correctness of a program.

Then, prove it.

Proving

- ▷ Analogy to math only goes so far
- ▷ programs are huge compared to theorems
- ▷ programs change rapidly, theorems are static

Proofs should be done Automatically

Formal Verification Tools

- ▷ CBMC, JBMC (Oxford)
- Pono (Stanford)
- ▷ Boogie (Microsoft Research)
- ▷ Zelkova (Amazon Web Services)
- ▷ Move-prover (Stanford, Facebook)

- ▷ SeaHorn (University of Waterloo)

```
void s(int* x, int* y) {
  int tmp = *x;
  *x = y;
  *y = tmp;
}
```

Example

```
void s(int* x, int* y) {
  int tmp = *x;
  *x = y;
  *y = tmp;
}
```

Example

▷ swaps

```
void s(int* x, int* y) {
  int tmp = *x;
  *x = y;
  *y = tmp;
}
```

Example

- ▷ swaps
- \triangleright But it has a bug: where?

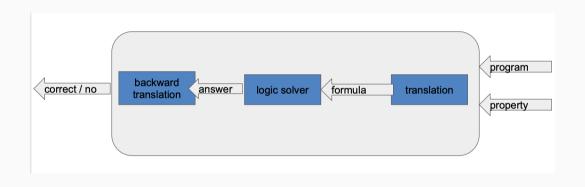
```
void s(int* x, int* y) {
  int tmp = *x;
  *x = y;
  *y = tmp;
}
```

Example

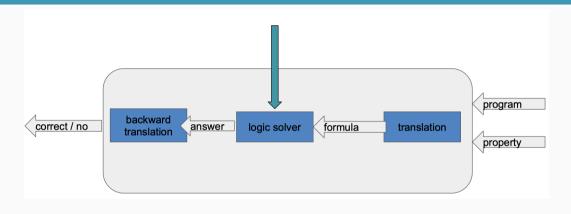
- ▷ swaps
- ▷ But it has a bug: where?
- \triangleright y is missing a *

- ▷ sat means there is a bug
- □ unsat means there is no bug

How Does This Work?



How Does This Work?



▷ Our focus: solvers

 $\, \triangleright \,$ In particular: SMT solvers

Tradeoff

- ▷ Rice's Theorem says that our alternative approach must fail
- Still, it works in many interesting and important cases
- ▷ But often, they loop forever or return unknown

Talk

Satisfiability Modulo Theories (SMT)

What

- ▷ Boolans, QBFs
- ▷ UFs, arrays, numbers
- ▷ cvc5.github.io

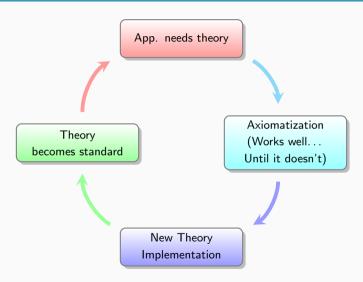
How

- ▷ Interactive
- ▷ APIs: C++ / Python / Java

Why

- ▷ Mainly: Verification (HW / SW)
- □ General Problem Solving

The SMT Cycle



Linear Arithmetic

- ▷ Axioms [Persburger'29]
 - $\forall x.0 \neq x+1$
 - $\forall x \forall y.x + 1 = y + 1 \Rightarrow x = y$
 - $\forall x.x + 0 = 0$
 - $\forall x \forall y.x + (y+1) = (x+y) + 1$
- ▷ Implementation: Simplex

Non-linear Arithmetic

- - Persburger + Multiplication Axioms
- ▷ Implementation:
 - Simplex + Heuristics
 - Counterexample Abstraction Refinement (CEGAR)

(Formally, the implementation does not really correspond to the axiomatization...)

Arrays

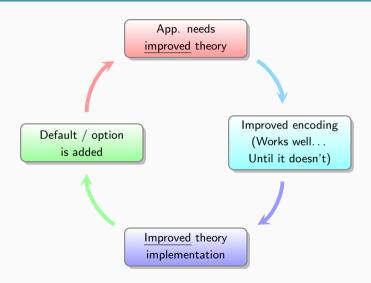
- ▷ Axioms [McCarthy'62]
 - $\forall a, i, k.read(write(a, i, k), i) = k$
 - $\forall a, i, j, k.read(write(a, i, k), j) = read(a, j)$
 - $\forall a, b.a \neq b \Rightarrow \exists i.read(a, i) \neq read(b, i)$
- ▷ Implementation:
 - "Weakly Equivalent Arrays" [Christ, Hoenicke' 15]

Unicode Strings

- Axioms
 - Concatenation and length
 - Elimination of other operators (sub-string, replace, regex, and more...)
- ▷ Implementation:
 - Automata-based
 - Simplification and search

More Examples

The Second SMT Cycle



The Second SMT Cycle

Examples:

- ▷ Bools: Many applications work in the SAT level
- ▷ Algebraic Datatypes: eager / lazy approaches
- ▷ Strings: AWS continuosly produce hard string benchmarks
- □ Quantifiers: Many applications require quantifiers, and so new patterns emerge
- ▷ Combination: Some bottlenecks arise from theory combination
- ▷ ...

This Time

1. Application: Smart Contracts Verification

2. Theory: Bit-blasting

3. Improvement: 256-bits machine integers

Theory of Fixed-Size Bit-Vectors

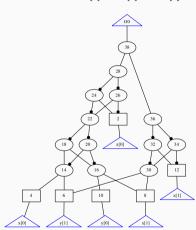
$$(x \ll 001) \ge_s 000 \land x <_u 100 \land (x \cdot 010) \mod 011 = x + 001$$

sat:
$$x = 001$$

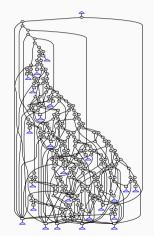
- \triangleright constants, variables: 010, $2_{[3]}$, $x_{[3]}$
- \triangleright **bit-vector** operators: $<_u$, $>_s$, \sim , &, \gg , \gg , \circ , [:], +, \cdot , \div , . . .
- \triangleright arithmetic operators modulo 2^n (overflow semantics!)

- current state-of-the-art
- ▷ BV terms » CNF
- efficient in practice
- > significant increase in formula size

- current state-of-the-art
- ▷ BV terms » AIG circuit » CNF
- efficient in practice
- > significant increase in formula size

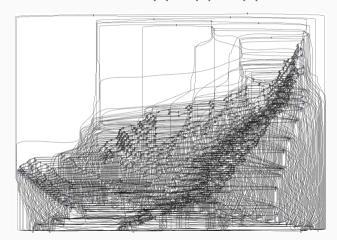


- current state-of-the-art
- rewriting eager reduction to SAT
- ▷ BV terms » AIG circuit » CNF
- efficient in practice
- ▷ significant increase in formula size



- current state-of-the-art
- rewriting eager reduction to SAT
- ▷ BV terms » AIG circuit » CNF
- efficient in practice
- > significant increase in formula size

Example $x_{[32]} * y_{[32]} = z_{[32]}$



Limitations of Bit-Blasting

Scalability

- □ does not generally scale well with increasing bit-width
- \triangleright smart contracts: 256 bits, heavy use of $\{\cdot, \div, mod\}$
- ▶ lemma.smt2

Intuition (debatable)

- ▷ Semantics via integers (not bits)
- ▷ Information is "lost"

Alternatives to Bit-blasting

- ▷ Int-blasting [Bozzano et al. 2006, Zohar et al. 2022]
 - Reduction to integer arithmetic
- □ Layering [Bruttomesso et al. 2007, Hadarean et al. 2014]
 - Cheap checks + bit-blasting
- ▷ MC-SAT [Zeljic et al. 2016]
 - Word-level explanations + bit-blasting
- - Fast procedures for SAT isntances
- ▷ PolySAT [Rath et al. 2024]
 - Aimed for non-linear BV polynomials

Every Technique Has Scalability Issues

1,500 benchmarks instantiated with bit-widths 16,...,8192, \sim 85 sat, \sim 1415 unsat

Solved Benchmarks

bw	Bit-Blast Bitwuzla	Lazy+Layered CVC4	MCSAT Yices2	Int-Blast cvc5	PolySAT Z3	Bit-Blast+Abstr Bitwuzla
16	1,495	1,458	1,394	1,116	696	
32	1,459	1,390	1,194	1,102	672	
64	1,440	1,368	1,112	1,077	668	
128	1,433	1,308	1,076	1,017	648	
256	1,388	1,232	987	916	637	
512	1,277	1,162	916	788	620	
1,024	1,065	774	794	613	608	
2,048	844	401	668	528	576	
4,096	816	300	572	428	562	
8,192	744	202	492	389	552	
	99% o 49%	$97\% \rightarrow 13\%$	$93\% \rightarrow 33\%$	$74\% \rightarrow 26\%$	$46\% \rightarrow 37\%$	

Limits: 1,200 seconds, 8GB memory

 $^{^1}$ 500 term and formula equivalence checks enumerated with cvc5's SyGuS solver using SyGuS grammar $\{0,1,x,s,t,\approx,\not\approx,<_u,<_u,<_u,<_,<,>,<,>,\diamond\}$ for $\diamond\in\{\cdot,\div,\mathsf{mod}\}.$

Every Technique Has Scalability Issues

1,500 benchmarks instantiated with bit-widths 16,...,8192, \sim 85 sat, \sim 1415 unsat

Solved I	Benchma	arks
----------	---------	------

bw	Bit-Blast Bitwuzla	Lazy+Layered CVC4	MCSAT Yices2	Int-Blast cvc5	PolySAT Z3	Bit-Blast+Abstr Bitwuzla
16	1,495	1,458	1,394	1,116	696	1,495
32	1,459	1,390	1,194	1,102	672	1,459
64	1,440	1,368	1,112	1,077	668	1,454
128	1,433	1,308	1,076	1,017	648	1,458
256	1,388	1,232	987	916	637	1,456
512	1,277	1,162	916	788	620	1,449
1,024	1,065	774	794	613	608	1,434
2,048	844	401	668	528	576	1,365
4,096	816	300	572	428	562	1,300
8,192	744	202	492	389	552	1,274
	$99\% \rightarrow 49\%$	$97\% \rightarrow 13\%$	$93\% \rightarrow 33\%$	$74\% \rightarrow 26\%$	$46\% \rightarrow 37\%$	$99\% \rightarrow 85\%$

Limits: 1,200 seconds, 8GB memory

How this performance was achieved?

u really 'bout to do it?

Contributions

Approach

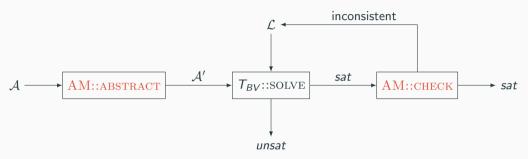
- ▷ Algorithm that builds on and falls back to bit-blasting

Techniques

- ightharpoonup Abstraction of $\{\cdot, \div, mod\}$
- ▷ Synthesized lemmas (offline)
- ▷ Implementation and evaluation in Bitwuzla

Results

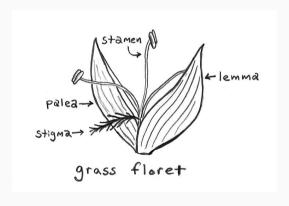
Abstraction-Refinement Loop



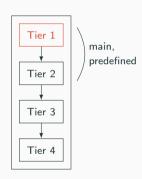
- over-approximation
- abstract ·, ÷, mod

- check consistency
 - » consistent: √
 - » inconsistent: refine abstraction

The Big Question: Which Lemmas?



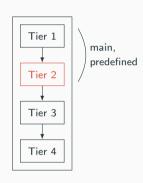
- ► Tier 1 Hand-Crafted Lemmas
 - ▷ basic properties of the abstracted operator



processed in order

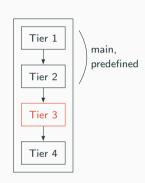
► Tier 2 Synthesized Lemmas

- > synthesized via syntax-restricted abduction with cvc5
- ▷ offline



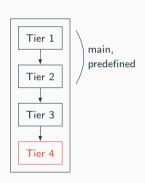
processed in order

- ► Tier 3 Value Instantiation Lemmas
 - > rule out current inconsistent model value



processed in order

► Tier 4 bit-blasting lemmas



processed in order

Main Lemmas (Tiers 1+2)

Tier 1 (hand-crafted) have * Tier 2 (abduction) don't

Main Lemmas (Tiers 1+2)

(hand-crafted) have * (abduction) don't	

byudiy 1^* $s \approx 2^i \Rightarrow t \approx x \gg i$ $(x \gg t) \not\approx (s \mid t)$ 2^* $(s \approx x \land s \not\approx 0) \Rightarrow t \approx 1$ $s \approx \sim (s \gg (t \gg 1))$ 3^* $s \approx 0 \Rightarrow t \approx \sim 0$ $x \approx \sim (x \& (t \ll 1))$ $4^* \quad (x \approx 0 \land s \approx 0) \Rightarrow t \approx 0$ $22 \quad t >_{u} ((x \ll 1) \gg s)$ 5^* $(s \approx \sim 0 \land x \not\approx \sim 0) \Rightarrow t \approx 0$ $x \ge_u (s \ll \sim (x \mid t))$ 6^* $s \not\approx 0 \Rightarrow t < x$ $x >_{\mu} (t \ll \sim (x \mid s))$ $x >_{u} (t \oplus (t >> (s >> 1)))$ $x >_{u} - (-s \& -t)$ $8 -(s \mid 1) >_{u} t$ $x >_{u} (s \oplus (s >> (t >> 1)))$ $t \approx -(s \& \sim x)$ $x >_{\mu} (s \ll \sim (x \oplus t))$ $(s \mid t) \approx (x \& \sim 1)$ $x >_{\mu} (t \ll \sim (x \oplus s))$ $(s \mid 1) \approx (x \& \sim t)$ $\times \not\approx (t + (s \mid (x+s)))$ $(x \& -t) >_{u} (s \& t)$ $x \approx (t + (1 + (1 \ll x)))$ $s >_{u} (x >> t)$ $s >_{u} ((x+t) >> t)$ $\times \not\approx (t + (t + (x \mid s)))$ $x \ge_u ((s >> (s << t)) << 1)$ $(s \oplus (x \mid t)) \geq_{u} (t \oplus 1)$ $x >_{u} ((t \ll 1) \gg (t \ll s))$ $t >_{u} (x >> (s-1))$ $t >_{u} ((x \gg s) \ll 1)$ $x >_{u} ((x \mid t) \& (s << 1))$ $(s-1) >_{u} (x >> t)$ $x \approx (1 - (x \ll (x - t)))$ $x >_{tt} ((x \mid s) \& (t << 1))$

Main Lemmas (Tiers 1+2)

Tier 1 (hand-crafted) have * Tier 2 (abduction) don't

Tier 1 Lemmas (hand-crafted): multiplication

Lemmas

(
$$t$$
 abstracts $x \cdot s$)

$$\triangleright 1^* s \approx 2^i \Rightarrow t \approx x \ll i$$

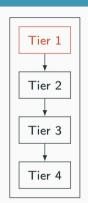
$$\triangleright 2^* s \approx -2^i \Rightarrow t \approx -x \ll i$$

$$hd \ \ \, > \ \ 3^* \ t[0] pprox (x[0] \& \ s[0])$$

$$hd 4^* ((-s \mid s) \& t) \approx t$$

Description

- \triangleright Lemmas 1 2: powers of two
 - Actually, classes of lemmas
- ▷ Third lemma: "evenness" (Isb)



Invertibility Conditions

On Invertibility Conditions [Niemetz et al. 2018]

 \triangleright For a literal $\ell(x,s,t)$, $IC_{\ell}(s,t)$ satisfies:

$$\exists x. \, \ell(x, s, t) \Leftrightarrow \mathit{IC}_{\ell}(s, t)$$

□ Used for quantifier-elimination / instantiation

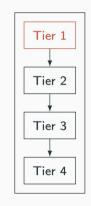
For our context

ightharpoonup ICs are lemmas: $\ell(x,s,t) \Rightarrow \exists x. \ell(x,s,t) \Rightarrow IC_{\ell}(s,t)$

Solving Quantified Bit-Vectors Using Invertibility Conditions

Aina Niemetz¹⁽²²⁾; Mathias Preiner¹; Andrew Reynolds²; Clark Barrett¹; and Cesare Tinelli²;

Stanford University, Stanford, USA niemetz@cs.stanford.edu
The University of Iowa Iowa City USA



Tier 1 Lemmas (hand-crafted): division

Lemmas

(
$$t$$
 abstracts $x \div s$)

$$\triangleright 1^* s \approx 2^i \Rightarrow t \approx x \gg i$$

$$ho$$
 2* $(s \approx x \land s \not\approx 0) \Rightarrow t \approx 1$

$$\triangleright$$
 3* $s \approx 0 \Rightarrow t \approx \sim 0$

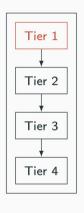
$$ho 4^* (x \approx 0 \land s \not\approx 0) \Rightarrow t \approx 0$$

$$ho$$
 5* $(s \approx \sim 0 \land x \not\approx \sim 0) \Rightarrow t \approx 0$

$$\triangleright$$
 6* $s \not\approx 0 \Rightarrow t \leq_u x$

Description

- ▷ First lemma: powers of 2
- \triangleright Lemma 6: division \le numerator
- ▷ Did not use invertibility conditions:
 - $(s \cdot t) \div s = t$ and $s \div (s \div t) = t$
 - introduce new abstracted terms
 - Compromises CEGAR termination



Tier 1 Lemmas (hand-crafted): remainder

Lemmas

(t abstracts x mod s)

$$ho$$
 1* $s \approx 2^i \Rightarrow t \approx (0_{[\kappa(x)-i]} \circ x[i-1:0])$

$$\triangleright \ 2^* \ x \approx 0 \ \Rightarrow \ t \approx 0$$

$$\triangleright$$
 3* $s \approx 0 \Rightarrow t \approx x$

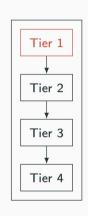
$$\triangleright \ 4^* \ s \approx x \Rightarrow \ t \approx 0$$

$$\triangleright$$
 5* $x <_u s \Rightarrow t \approx x$

$$\triangleright$$
 6* $s \not\approx 0 \Rightarrow t \leq_u s$

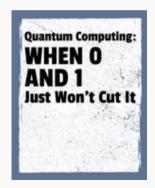
$$ho$$
 7* \sim $s \geq_u t$

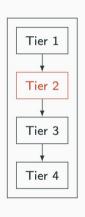
Description



Abduction-based Lemmas

- ▷ Initial experiments have shown that Tier 1 is not enough





Abduction-based Lemmas

Abduction

Assuming $A \not\Rightarrow B$, find C s.t.:

$$\triangleright A \land C \Rightarrow B$$

$$\triangleright A \land C \not\Rightarrow \bot$$

Example: abduction{1,2}.smt2

From abducts to lemmas

Assuming $\top \not\Rightarrow (x \cdot s \neq t)$, find C s.t.:

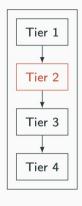
$$\rhd \ \top \land \ C \Rightarrow (x \cdot s \neq t)$$

In particular:

$$\triangleright x \cdot s = t \Rightarrow \neg C$$

 $\triangleright \neg C$ is not trivial

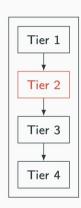
 $\neg C$ is a lemma!



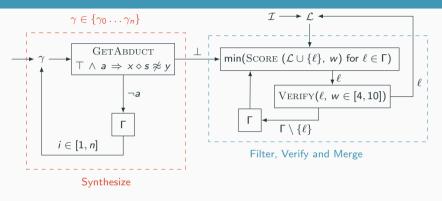
Grammars

- ▷ Mostly cheap operators (for bit-blasting)
- ▷ Several small grammars rather than one big grammar

$$\begin{split} \gamma_c &= \{x, s, t, \approx, \not\approx, <_u, \le_u, 0, 1\} \\ \gamma_0 &= \gamma_c \cup \{\sim, \&, |, \oplus\} \\ \gamma_1 &= \gamma_c \cup \{-, \sim, \&, |\} \\ \gamma_2 &= \gamma_1 \cup \{\oplus\} \\ \gamma_3 &= \gamma_1 \cup \{\ll, \gg\} \end{split} \qquad \begin{array}{l} \gamma_4 &= \gamma_3 \cup \{\oplus\} \\ \gamma_5 &= \gamma_4 \cup \{+\} \\ \gamma_6 &= \gamma_c \cup \{-, +, -_+, \ll, \gg\} \end{array}$$



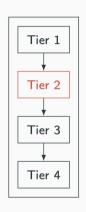
Lemma Synthesis



 \triangleright *n*: number of abducts per grammar

 $\, \rhd \, \, \mathcal{I} \colon \mathsf{hand\text{-}crafted} \, \, \mathsf{lemmas} \,$

 $\triangleright \mathcal{L}$: result



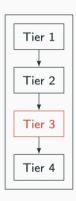
Tier 3 Lemmas (value instantiations)

- ▷ only added if none in tiers 1–2 are violated
- ightharpoonup Heuristically limited to #instantiations= 1/8 of the bit-width
- ▷ Example:

```
t abstracts x \cdot s

\mathcal{M} = \{x_{[32]} = 3, s_{[32]} = 6, t_{[32]} = 1\},

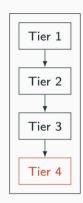
\longrightarrow add lemma (x = 3 \land s = 6) \Rightarrow t = 18
```



Tier 4 Lemmas (bit-blasting)

- ▶ last resort
- ightharpoonup add lemma to **enforce bit-blasting** of the abstracted term
- \triangleright Example: t abstracts $x \cdot s$

 \longrightarrow add lemma $t \approx x \cdot s$



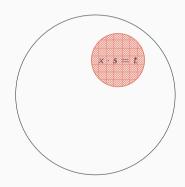
- Decided on a scoring mechanism, independent of benchmarks

Score
$$(\ell, w) := \# \text{ triplets } (v^x, v^s, v^t) \text{ where } \ell[v^x, v^s, v^t] = \top.$$

Example. multiplication with w = 4

ightharpoonup Worst score: $2^4 \times 2^4 \times 2^4 = 4096$

 \triangleright Best score: $2^4 \times 2^4 = 256$



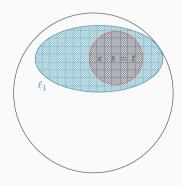
Score
$$(\ell, w) := \# \text{ triplets } (v^x, v^s, v^t) \text{ where } \ell[v^x, v^s, v^t] = \top.$$

Example. multiplication with w = 4

 \triangleright Worst score: $2^4 \times 2^4 \times 2^4 = 4096$

 \triangleright Best score: $2^4 \times 2^4 = 256$

Score for 1*: 2416



Score
$$(\ell, w) := \# \text{ triplets } (v^x, v^s, v^t) \text{ where } \ell[v^x, v^s, v^t] = \top.$$

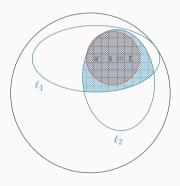
Example. multiplication with w = 4

 \triangleright Worst score: $2^4 \times 2^4 \times 2^4 = 4096$

ightharpoonup Best score: $2^4 \times 2^4 = 256$

Score for 1*: 2416

Score for 2*: 2791



Score
$$(\ell, w) := \# \text{ triplets } (v^x, v^s, v^t) \text{ where } \ell[v^x, v^s, v^t] = \top.$$

Example. multiplication with w = 4

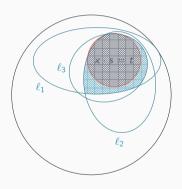
 \triangleright Worst score: $2^4 \times 2^4 \times 2^4 = 4096$

 \triangleright Best score: $2^4 \times 2^4 = 256$

Score for 1*: 2416

Score for 2*: 2791

Score for 3*: 2048



Score
$$(\ell, w) := \# \text{ triplets } (v^x, v^s, v^t) \text{ where } \ell[v^x, v^s, v^t] = \top.$$

Example. multiplication with w = 4

 \triangleright Worst score: $2^4 \times 2^4 \times 2^4 = 4096$

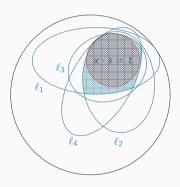
 \triangleright Best score: $2^4 \times 2^4 = 256$

Score for 1*: 2416

Score for 2*: 2791

Score for 3*: 2048

Score for 4*: 1961

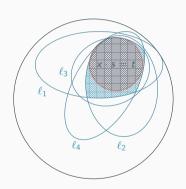


Lemma Score

Score
$$(\ell, w) := \#$$
 triplets (v^x, v^s, v^t) where $\ell[v^x, v^s, v^t] = \top$.

Example. multiplication with w = 4

- \triangleright Worst score: $2^4 \times 2^4 \times 2^4 = 4096$
- \triangleright Best score: $2^4 \times 2^4 = 256$
- Score for 1*: 2416
- Score for 2*: 2791
- Score for 3*: 2048
- Score for 4*: 1961
- \triangleright Score for $\{1^*, 2^*, 3^*, 4^*\}$: **704**
 - ► rules out 88% of incorrect triplets



Lemma Score

⊳ best possible: 256

Hand-crafted

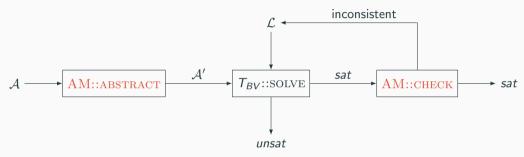
⊳ division: 1366

Adding Abducted Lemmas

Verification of Lemmas

- ▷ Abduction-based lemmas are correct-by-construction only for bit-width 4.
- □ verified lemmas for bit-widths [1, 512]
- ▷ Bitwuzla, cvc5, Yices, Z3
- ▷ 8 hours time limit, 8 GB memory limit
- ▷ 16,896 benchmark, 6348 CPU hours

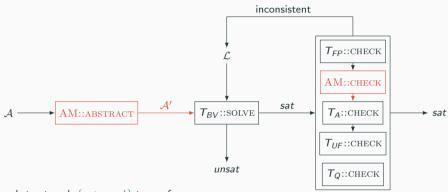
Implementation in Bitwuzla



- over-approximation
- abstract ·, ÷, mod

- check consistency
 - » consistent: √
 - » inconsistent: refine abstraction

Implementation in Bitwuzla



- abstract each {·, ÷, mod} term of size ≥ 32 with a fresh constant
- optional: assertion abstraction
 - » interleaved with term abstraction
 - $\hspace{-1.5pt}>\hspace{-1.5pt}>\hspace{-1.5pt}$ effective if unsat core very small

- order not arbitrary
 - \gg T_{FP} word-blasted to T_{BV}
 - » T_A , T_{UF} and T_Q require consistent T_{BV} abstraction

- ▷ Original goal: improve on benchmarks with hard arithmetic operators with large bit-widths
- ightharpoonup Dropped benchmarks and used an abstract grade
- ▷ But what about the original goal?
- ▶ Performed an extensive evaluation.

▶ Benchmarks

- smart contract verification
 - » certora₁, certora₂ (Certora Prover)
 - » ethereum (hevm, Ethereum Foundation)
 - 256 bit bit-vectors
 - heavy use of $\{\cdot, \div, mod\}$
- o crafted benchmarks
 - » syrew
 - controlled set to evaluate effectiveness
 - equivalence checks for each operator
 - enumerated by SyGuS (cvc5) for w = 4
 - instantiated for 2^k with $k \in [4, 13]$

o translation validation of ZK proofs

- » ff
- $T_{FF} \rightarrow T_{BV}$
- 510 bit bit-vectors

o SMT-LIB

» all supported quantifier-free and quantified logics (24 in total)

▶ Configurations

```
    Abstr-t (Bitwuzla + term abstraction)
    Abstr-a (Bitwuzla + assertion abstraction)
    Abstr-ta (Bitwuzla + term and assertion abstraction)
    Bitwuzla
    cvc5
    cvc5-ib (cvc5 with int-blasting)
    cvc5-ff (cvc5's finite field solver)
    Z3
```


► Setup

o Limits: 1200 seconds, 8GB memory

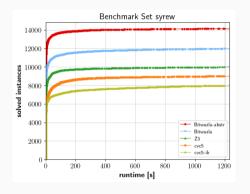
Results

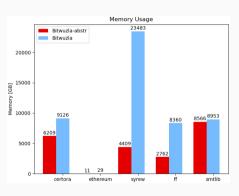
- ▷ New approach outperforms all other bit-blasting approaches
- ▷ Also outperforms bit-blasting
- Does not outperform the native finite fields solver of cvc5
- ▷ Reduces running time and memory in most cases

Benchmarks (common / total)	Solver	Solved	то	МО	T [s]	M [GB]	T _c [s]
	Abstr-ta	573	231	46	448k	2,492	234
	Abstr-a	386	140	324	681k	5,201	963
certora ₁	Abstr-t	258	155	437	760k	4,807	83
(10/850)	cvc5-ib	147	674	0	879k	667	52
	Bitwuzla	111	86	653	915k	6,182	192
	cvc5	90	113	610	923k	6,064	341
	Z3	30	447	373	989k	4,944	484
	ABSTR-TA	866	264	8	370k	1,024	11k
contono	Abstr-t	866	263	9	384k	1,402	17k
certora ₂ (227/1,138)	Abstr-A	844	269	25	433k	2,661	19k
(221/1,130)	Bitwuzla	843	266	29	439k	2,944	23k
	cvc5	705	223	210	603k	4,027	22k
	cvc5-ib	666	472	0	643k	106	15k
	Z3	612	492	34	679k	1,866	24k
	ABSTR-T	3,173	0	0	407	11	102
ethereum	Bitwuzla	3,173	0	0	720	29	228
	Z3	3,169	4	0	6k	107	679
(3,138/3,173)	cvc5	3,158	0	1	18k	36	377
	cvc5-ib	3,141	20	0	39k	21	128

Benchmarks (common / total)	Solver	Solved	то	МО	T [s]	M [GB]	T _c [s]
syrew (5,528/15,000)	Abstr-t	14,142	583	276	1,225k	4,409	2k
	Bitwuzla	11,961	744	2,296	3,955k	23,483	24k
	Z3	9,992	833	4,175	6,198k	39,506	78k
	cvc5	9,003	797	5,200	7,498k	48,421	109k
	cvc5-ib	7,974	5,137	1,632	8,836k	19,850	180k
ff (12/1,224)	cvc5-ff	973	129	122	313k	1,364	0
	Abstr-t	480	729	15	913k	2,762	0
	cvc5-ib	304	822	98	1,104k	1,074	0
	Bitwuzla	223	71	930	1,211k	8,360	277
	Z3	145	56	1,023	1,299k	8,893	3
	cvc5	40	0	1,184	1,422k	9,523	589
smtlib (125,037/155,269)	Abstr-t	148,554	1,944	152	8,770k	8,566	64k
	Bitwuzla	148,492	1,966	193	8,748k	8,953	64k
	Z3	145,121	4,846	565	13,528k	18,278	693k
	cvc5	144,829	3,775	285	13,513k	11,029	213k
	cvc5-ib	127,144	24,479	194	39,647k	15,233	5,666k

Cool Plots





Analysis

	Terms		Refinement Tier						
Operator	Abstracted	1	2	3	4	Total			
	367,101	579,369	67,221	650,086	134,525	1,431,201			
÷	55,461	126,223	109,137	73,019	7,024	315,403			
mod	62,328	161,270	5,614	30,350	1,326	198,560			

Refinements

- ▷ 80% of benchmarks solved without bit-blasting any abstracted terms
- ▷ All tiers were used overall
- Without abduction: lose 336 benchmarks, 23% slower, 61% more memory

Conclusion

Contributions:

- ▷ CEGAR
- ▷ Strong hand-crafted lemmas (including ICs)
- ▷ Novel abduction-based generation of lemmas
- ▷ Scoring scheme
- ▷ Significant Improvement, especially for blockchains

Future Work:

- Addition
- □ Undera-pproximations
- ▷ Integration to cvc5 / library

Conclusion

Contributions:

- ▷ CEGAR
- ▷ Strong hand-crafted lemmas (including ICs)
- ▷ Novel abduction-based generation of lemmas
- ▷ Scoring scheme
- ▷ Significant Improvement, especially for blockchains

Future Work:

- Addition
- Undera-pproximations
- ▷ Integration to cvc5 / library

Mandatory Quiz

