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Abstract. We identify two wide families of propositional sequent calculi
for which cut-admissibility is a corollary of the subformula property.
While the subformula property is often a simple consequence of cut-
admissibility, our results shed light on the converse direction, and may be
used to simplify cut-admissibility proofs in various propositional sequent
calculi. In particular, the results of this paper may be used in conjunction
with existing methods that establish the subformula property, to obtain
that cut-admissibility holds as well.

1 Introduction

One of the major consequences of Gentzen’s cut-elimination theorem for LK
and LJ [16] is the subformula property: when deriving a sequent s from a set
S of sequents, it suffices to consider the subformulas that occur in S ∪ {s}.
Other formulas may sometimes shorten derivations, but can be safely ignored
when checking whether a derivation exists. Since the introduction of LK and LJ,
various cut-free sequent calculi were found for important non-classical logics –
e.g., modal logics [30,25], many-valued and fuzzy logics [6,22], and paraconsistent
logics [9]. In all these cases, the subformula property (or some generalization of
it) trivially follows from the admissibility of the cut rule.

In this paper we are interested in the converse direction: can cut-admissibility
be obtained as a corollary of the subformula property?

Clearly, one cannot expect an affirmative answer to this question in the gen-
eral case, as there are well-known calculi admitting the subformula property
but not cut-admissibility. These include, e.g., calculi for the modal logics S5
and B [30,25], bi-intuitionistic logic [24], and several calculi for paraconsistent
logics [8].

The main contribution of this paper is an affirmative answer to the question
above for two wide families of sequent calculi. The first is a family of pure
calculi [4] whose derivation rules, like those of LK, do not impose any restrictions
on context formulas. The second is a family of calculi, which we call intuitionistic
calculi, in which premises of the form Γ ⇒ ∆ with Γ 6= ∅ in right introduction
rules forbid context formulas on the right-hand side. This family includes, for
example, the well-known multiple-conclusion calculus for intuitionistic logic [28],



as well as the calculi for Nelson’s logics N3 and N4 [29]. In both families, we
further require a certain “directed” structure from their rules (precisely defined
below), and show that it suffices to ensure that cut-admissibility follows from
the subformula property.

Our result is obtained by providing two different semantics for each given
calculus: one for derivations that include only subformulas of the premises and
the end sequent, and another for cut-free derivations. The latter provides a suf-
ficient semantic criterion for cut-admissibility. Then, we show that this criterion
is met when the calculus enjoys the subformula property.

In order to utilize the full strength of sequent calculi, the subformula property
is not enough. For example, various sequent calculi for paraconsistent logics [9]
do not enjoy the subformula property, but do admit a simple generalization of it,
namely: if a sequent s is derivable, then there exists a derivation of s that uses
only subformulas of s and their negations. For this reason, we do not restrict
ourselves to the strict subformula property, but consider a more general notion,
which is based on an arbitrary “well-behaved” (precisely defined below) ordering
of propositional formulas.

Besides its theoretical interest, we believe that our result can be useful in
future investigation and development of sequent calculi. Proving the subformula
property tends to be an easier task than proving full cut-admissibility, as it
typically follows from the admissibility of non-analytic cuts (cuts on formulas
that are not subformulas of the end sequent). In addition, our recent paper [20]
provides a sufficient criterion for the subformula property for a wide family of
pure calculi for sub-classical logics, without relying on cut-admissibility. Using
the results of the current paper, we obtain the admissibility of cut in all these
calculi.

The rest of this paper is organized as follows. After the definitions of pure
calculi and their associated cut-admissibility property in Section 2, we introduce
our generalized notion of the subformula property in Section 3. In Section 4,
semantic characterizations of the different kinds of derivability in pure sequent
calculi are given, and are used in Section 5 where our theorem for pure calculi
is described. Finally, Section 6 provides our result for intuitionistic calculi.

Related Work

Avron and Lev [10] introduced the family of canonical calculi, a very restricted
sub-family of pure calculi, and proved the equivalence of the subformula prop-
erty and cut-admissibility in them. The proof was based on the framework of
Nmatrices (see also [11]), a simple generalization of usual logical matrices. The
present paper goes beyond canonical calculi, and Nmatrices do not suffice. Thus,
our proof utilizes a more general semantic framework of Lahav and Avron [19]. In
this framework, which can be seen as a generalization of Béziau’s bivaluation se-
mantics [13], sufficient semantic criteria for cut-admissibility and the subformula
property were given. The former amounts to the ability to refine three-valued
valuations into two-valued ones, while the latter amounts to the ability to ex-
tend partial two-valued valuations into full valuations. Later, [21] showed that for



pure calculi, the criterion for the subformula property is also necessary. For the
present paper, however, the mere ability to extend partial two-valued valuations
is not enough, and a constructive extension method is introduced. Finally, in a
previous work [20], we studied general conditions for the subformula property in
pure calculi, while cut-admissibility was not considered at all.

2 Pure Sequent Calculi

In this section, we define the family of pure sequent calculi [4] and the notion
of cut-admissibility. Several examples of well-known calculi that belong to this
family are provided as well.

2.1 Preliminaries

Let At = {p1, p2, . . .} denote a fixed infinite set of propositional variables. A
propositional language L is given by a set 3L of connectives. L-formulas are
defined as usual, where atomic L-formulas are the elements of At. We usually
identify a propositional language with its set of formulas (e.g., when writing
expressions like ϕ ∈ L). For a set F ⊆ L, by F-formula we mean a formula ϕ
satisfying ϕ ∈ F .

An L-substitution is a function σ : At → L, naturally extended to apply on
all L-formulas and on sets of L-formulas.

An L-sequent is a pair of finite sets Γ and ∆ of L-formulas, denoted Γ ⇒ ∆.
We employ the standard sequent notations, e.g., when writing expressions like
Γ, ϕ ⇒ ∆ or ⇒ ϕ. The union of two sequents (Γ1 ⇒ ∆1) ∪ (Γ2 ⇒ ∆2) is the
sequent Γ1, Γ2 ⇒ ∆1, ∆2. We denote by frm[Γ ⇒ ∆] the set Γ∪∆, and naturally
extend this notation to sets of sequents. L-substitutions are extended to apply
on L-sequents and sets of L-sequents (by setting σ(Γ ⇒ ∆) = σ(Γ ) ⇒ σ(∆)
and σ(S) = {σ(Γ ⇒ ∆) | Γ ⇒ ∆ ∈ S}).

In what follows, L denotes an arbitrary propositional language. When L can
be inferred from the context, we omit the prefix “L−” from the notions above
(as well as from the ones introduced below).

2.2 Pure Sequent Calculi

Following [10], we find it technically convenient to use the object propositional
language for specifying derivation rules. (One could use meta-variables and rule
schemes instead.)

Definition 1. A pure L-rule is a pair 〈S, s〉, denoted S / s, where S is a finite set
of L-sequents and s is an L-sequent. The elements of S are called the premises
of the rule and s is called the conclusion of the rule. We sometimes omit set
braces around the premises, and separate them by semi-colons (e.g., when writing
expressions like ⇒ p1 ; ⇒ p2 / ⇒ p1 ∧ p2).



An L-application of a pure L-rule {s1, . . . , sn} / s is a pair of the form
〈{σ(s1) ∪ c1, . . . , σ(sn) ∪ cn} , σ(s) ∪ c1 ∪ . . . ∪ cn〉 where σ is an L-substitution,
and c1, . . . , cn are L-sequents (called the context sequents of the application). The
sequents σ(si) ∪ ci are called the premises of the application, and the sequent
σ(s) ∪ c1 ∪ . . . cn is called the conclusion of the application.

For example, the pure rules for introducing implication in classical logic are:

p1 ⇒ p2 / ⇒ p1 ⊃ p2 ⇒ p1 ; p2 ⇒ / p1 ⊃ p2 ⇒

Their applications take the form (respectively):

Γ, ϕ⇒ ψ,∆

Γ ⇒ ϕ ⊃ ψ,∆
Γ1 ⇒ ϕ,∆1 Γ2, ψ ⇒ ∆2

Γ1, Γ2, ϕ ⊃ ψ ⇒ ∆1, ∆2

Examples for derivation rules that cannot be formulated as pure rules include
the following rule schemes, that are employed in intuitionistic and modal logic:

Γ, ϕ⇒ ψ

Γ ⇒ ϕ ⊃ ψ
Γ ⇒ ϕ

2Γ ⇒ 2ϕ

In turn, pure calculi are simply finite sets of pure rules.

Definition 2. A pure L-calculus is a finite set of pure L-rules. A derivation of a
sequent s from a set S of sequents (a.k.a. “assumptions” or “non-logical axioms”)
in a pure L-calculus G is a finite sequence of sequents, where each sequent in the
sequence is either one of the following: (i) an element of S; (ii) the conclusion
of an application of a rule of G, all premises of which are preceding elements
of the sequence; (iii) the conclusion of one of the following standard structural
rules,1 again where all premises are preceding elements of the sequence:

(id)

ϕ⇒ ϕ

(cut)

Γ1 ⇒ ϕ,∆1 Γ2, ϕ⇒ ∆2

Γ1, Γ2 ⇒ ∆1, ∆2

(weak)

Γ ⇒ ∆

Γ ′, Γ ⇒ ∆,∆′

In (cut), ϕ is called the cut formula. We write S `G s if there is a derivation
of a sequent s from a set S of sequents in G.

In what follows, unless stated otherwise, we may refer to pure rules and pure
calculi simply as rules and calculi.

The most well-studied property of sequent calculi is the admissibility of
the cut rule. When cut is admissible the calculus is generally considered well-
behaved, and reasoning about the calculus becomes much easier. Moreover,
proof-search algorithms have no need to “guess” the cut formulas. Next, we
precisely define cut-admissibility.

1 Note that by defining sequents to be pairs of sets we implicitly include other standard
structural rules, such as exchange and contraction.



Definition 3. A derivation of s from S in a calculus G is called cut-limited if
in every application of (cut), the cut formula is in frm[S]. We write S`cfGs if
such a derivation exists. A calculus G enjoys cut-admissibility if `G= `cfG.

What we call here cut-admissibility is actually known as strong cut-
admissibility, in which cuts are allowed, but they are confined to apply only
on formulas that appear in the set of assumptions [5]. Usual cut-admissibility
only requires that `G s iff `cfGs for every sequent s. For pure calculi, however,
the two notions are equivalent [5]. Note that this is not the case for intuitionistic
calculi, studied in Section 6.

Next, we present several examples of pure calculi (they all enjoy cut-
admissibility).

Example 1 (Classical Logic). The propositional language CL consists of three
binary connectives ∧, ∨, ⊃, and one unary connective ¬. The propositional
fragment of Gentzen’s fundamental sequent calculus for classical logic [16] can
be directly presented as a pure CL-calculus, denoted LK, that consists of the
following CL-rules:

⇒ p1 /¬p1 ⇒ p1 ⇒ / ⇒ ¬p1
p1, p2 ⇒ / p1 ∧ p2 ⇒ ⇒ p1; ⇒ p2 / ⇒ p1 ∧ p2

p1 ⇒ ; p2 ⇒ / p1 ∨ p2 ⇒ ⇒ p1, p2 / ⇒ p1 ∨ p2
⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒ p1 ⇒ p2 / ⇒ p1 ⊃ p2

Example 2 (Paraconsistent Logics). The paper [9] provides sequent calculi for
many paraconsistent logics. For example, a pure calculus for da Costa’s historical
paraconsistent logic C1, which we call GC1

, consists of the rules of LK except
for the left-introduction rule of negation, that is replaced by the following pure
CL-rules:

p1 ⇒ /¬¬p1 ⇒
⇒ p1; ⇒ ¬p1 /¬(p1 ∧ ¬p1)⇒ ¬p1 ⇒ ;¬p2 ⇒ /¬(p1 ∧ p2)⇒

¬p1 ⇒ ; p2,¬p2 ⇒ /¬(p1 ∨ p2)⇒ p1,¬p1 ⇒ ;¬p2 ⇒ /¬(p1 ∨ p2)⇒
p1 ⇒ ; p2,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ p1,¬p1 ⇒ ;¬p2 ⇒ /¬(p1 ⊃ p2)⇒

Similarly, a pure calculus GP1
for the atomic paraconsistent logic P1 was

given in [3]. It is obtained by replacing the left-introduction rule of negation in
LK with the following alternative rules:

⇒ p1; ⇒ p2 /¬(p1 ∧ p2)⇒ ⇒ p1, p2 /¬(p1 ∨ p2)⇒
p1 ⇒ p2 /¬(p1 ⊃ p2)⇒ ⇒ ¬p1 /¬¬p1 ⇒

Example 3 (Many-valued Logics). The paper [6] provides pure sequent calculi for
well-known many-valued logics. For example, a calculus for  Lukasiewicz three-
valued logic, which we call G3, has the following rules for implication:

¬p1 ⇒ ; p2 ⇒ ; ⇒ p1,¬p2 / p1 ⊃ p2 ⇒ p1 ⇒ p2;¬p2 ⇒ ¬p1 / ⇒ p1 ⊃ p2
p1,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ ⇒ p1; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)



A pure calculus for the CL-fragment of the logic of bilattices [2] (whose
implication-free fragment coincides with the logic of first-degree entailments [1]),
which we call G4, is obtained in a similar manner, by augmenting the positive
fragment of LK with the following rules:

p1,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ ⇒ p1; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

¬p1 ⇒ ;¬p2 ⇒ /¬(p1 ∧ p2)⇒ ⇒ ¬p1,¬p2 / ⇒ ¬(p1 ∧ p2)

¬p1,¬p2 ⇒ /¬(p1 ∨ p2)⇒ ⇒ ¬p1; ⇒ ¬p2 / ⇒ ¬(p1 ∨ p2)

p1 ⇒ /¬¬p1 ⇒ ⇒ p1 / ⇒ ¬¬p1

Example 4 (Logics for access control). Primal infon logic [15] was designed to
efficiently reason about access control policies. The quotations-free fragment of
its sequent calculus [12] can be presented as a pure calculus, which we denote
by P. It is obtained from the positive fragment of LK by adding the axiomatic
rules ⇒ > and ⊥ ⇒ , dismissing the left introduction rule of disjunction, and
replacing the right introduction rule of implication with the following weaker
rule:

⇒ p2 / ⇒ p1 ⊃ p2
Another security-oriented formalism that can be described as a pure calculus
is the Dolev-Yao intruder deductions model from [14], where it was given as a
natural deduction calculus. It is equivalent to the following pure calculus, which
we denote by DY. Its language consists of two binary connectives: pairing and
encryption. The intended meaning of 〈p1, p2〉 is the ordered pair of p1 and p2.
The intended meaning of [p1]p2 is the encryption of the message p1 using the key
p2. Accordingly, the following rules correspond to pairing, unpairing, encryption
and decryption:

⇒ p1; ⇒ p2 / ⇒ 〈p1, p2〉 p1 ⇒ / 〈p1, p2〉 ⇒ p2 ⇒ / 〈p1, p2〉 ⇒

⇒ p1; ⇒ p2 / ⇒ [p1]p2 ⇒ p2; p1 ⇒ / [p1]p2 ⇒

3 Analyticity: a Generalized Subformula Property

Roughly speaking, analyticity of a propositional calculus provides a computable
bound on the formulas that may appear in derivations of a sequent s from a set
S of sequents. The special case of the subformula property is obtained when the
set of subformulas of formulas of S ∪ {s} provides such a bound. Many useful
calculi, however, do not admit this strict property, while still allowing some other
effective bound. Here, we generalize the subformula property, by assuming a
given ordering of L-formulas, denoted ≺, which has to satisfy certain properties,
as defined next.

Notation 1. Given a binary relation R on L, we denote by R [ϕ]
the set {ψ ∈ L | 〈ψ,ϕ〉 ∈ R}. This notation is naturally extended to sets
(R [Γ ] =

⋃
ϕ∈Γ R [ϕ]), sequents (R [Γ ⇒ ∆] = R [Γ ] ∪ R [∆]), and sets of se-

quents (R [S] =
⋃
s∈S R [s]).



Definition 4. An order relation (i.e., irreflexive and transitive relation) ≺ is
called:

– safe if it is prefinite (≺ [ϕ] is finite for every ϕ ∈ L), and the function
λϕ ∈ L.≺ [ϕ] is computable.

– structural if ϕ ≺ ψ implies σ(ϕ) ≺ σ(ψ) for every substitution σ.

Example 5. The usual subformula relation over CL, which we denote by ≺0, is a
structural safe order relation. Another useful structural and safe order relation
on CL, denoted ≺1, is given by ϕ ≺1 ψ iff ϕ ≺0 ψ or ϕ 6= ψ and ϕ = ¬ψ′ for
some ψ′ ≺0 ψ.

In what follows, ≺ denotes an arbitrary safe and structural order relation
over L.

The above definition allows us to present a generalization of the subformula
property, which we call ≺-analyticity.

Definition 5. We call a derivation of a sequent s from a set S of sequents in a
calculus G ≺-analytic if it consists solely of � [S ∪ {s}]-formulas (� denotes the
reflexive closure of ≺), and write S`≺Gs if there exists a ≺-analytic derivation of
s from S in G. A calculus G is called ≺-analytic if `G= `≺G.

This generalization of the subformula property inherits its most important
consequence, which is decidability. Clearly, if ≺ is safe and S is finite, it is
decidable whether S`≺Gs. When G is ≺-analytic, the same holds for `G.

Considering the examples above, LK, GP1 , P, and DY are ≺0-analytic;
while GC1

, G3 and G4 are not ≺0-analytic, but are ≺1-analytic. These facts
can be derived from cut-admissibility, and also directly by the method of [20].
The infinite family of calculi for weak double negations from [17], presented in
the next example, goes beyond ≺0 and ≺1.

Example 6. In [17], Kamide provides a way of constructing sequent calculi for
paraconsistent logics that admit the double negation principle as well as its
weaker forms (e.g. ¬¬¬ψ ↔ ¬ψ). For this purpose, the paper investigates a hi-
erarchy of weak double negations, by presenting an infinite set

{
L2n+2 | n ∈ N

}
of pure calculi, all of which admit cut-admissibility. For example, L4 is the cal-
culus G4 from Example 3, which is ≺1-analytic. Furthermore, for every n, let ≺n
be the transitive closure of the relation /n, defined by: ϕ /n ψ iff either ψ = ¬ϕ,
or ψ = ϕ1]ϕ2 and ϕ = ¬mϕi for some ϕ1, ϕ2, ] ∈ {∧,∨,⊃}, 0 ≤ m ≤ n, and
i ∈ {1, 2}. Each L2n+2 is ≺n+1-analytic. Clearly, the previous definitions of ≺0

and ≺1 coincide with the new ones.

4 Semantics of Pure Sequent Calculi

Cut-admissibility is traditionally proved syntactically, by some form of induction
on derivations. In this case, what is actually shown is cut-elimination: a method
to eliminate cuts from derivations. However, going back at least to [26], semantic



methods have also shown to be useful to prove cut-admissibility. We follow the
semantic approach, and generalize the framework of bivaluations [13] to obtain
semantic counterparts of ≺-analytic derivations and cut-limited derivations. The
latter allows us to define a semantic sufficient condition for cut-admissibility,
that is essential for our result. The soundness and completeness theorems of this
section follow from the general result of [19].

We start by defining trivaluations – functions that employ three truth values:
1, −1, and 0, that intuitively correspond to “true”, “false” and “undetermined”,
respectively.

Definition 6. An L-trivaluation is a function v from L to {−1, 0, 1}. We say
that v satisfies a sequent Γ ⇒ ∆, denoted v |= Γ ⇒ ∆, if either v(ϕ) < 1 for
some ϕ ∈ Γ or v(ψ) > −1 for some ψ ∈ ∆. We say that v satisfies a set S of
sequents, denoted v |= S, if v |= s for every s ∈ S.

In order to associate a set of trivaluations to a given calculus, the following
semantic reading of derivation rules is employed:

Definition 7. A trivaluation v respects a rule S / s if v |= σ(s) whenever
v |= σ(S) for every substitution σ. v is called G-legal for a calculus G if it
respects all rules of G.

Depending on G, this semantics may not be truth-functional, that is, the
value of a compound formula is not always uniquely determined by the values
of its immediate subformulas. For this reason trivaluations are defined over the
entire language rather than only over atomic formulas.

If one is interested in all possible derivations in a pure calculus (without any
restrictions on formulas that may appear in the derivation or serve as cut formu-
las), the third value 0 is redundant, and an equivalent semantics could be defined
using only {1,−1}. For the cases of ≺-analytic and cut-limited derivations, some
restrictions apply for when this value can and cannot be used. These restrictions
are defined using the following notion of the support of trivaluations.

Definition 8. The support of a trivaluation v, denoted supp(v), is the set
{ϕ ∈ L | v(ϕ) 6= 0}. v is called:

– F-determined (for F ⊆ L) if F ⊆ supp(v); and
– fully determined if it is L-determined.

The semantic reading of rules as constraints on trivaluations, together with
different restrictions on the usage of 0 as a truth value, provide an equivalent
semantic view of derivations:

Theorem 1 (Soundness and Completeness).

1. S `G s iff v |= S implies v |= s for every fully determined G-legal trivalua-
tion v.

2. S`≺Gs iff v |= S implies v |= s for every � [S ∪ {s}]-determined G-legal
trivaluation v.



3. S`cfGs iff v |= S implies v |= s for every frm[S]-determined G-legal trivalua-
tion v.

Roughly speaking, in the case of ≺-analytic derivations, the values −1 and
1 are associated with the formulas that are allowed to be used in derivations.
Thus, when semantically describing the existence of a ≺-analytic derivation of a
sequent s from a set S of sequents in a calculus G, all formulas that are allowed
to appear in such a derivation must be assigned either 1 or −1. These are exactly
the formulas in � [S ∪ {s}]. Similarly, in the case of cut-limited derivations, cut
formulas must be assigned either 1 or −1, and thus cut-limited derivations of
s from S are tied to trivaluations in which frm[S]-formulas are never assigned
0. Intuitively, if ϕ cannot serve as a cut formula, we may need a trivaluation v
that satisfies ⇒ ϕ and ϕ ⇒ , which is possible iff v(ϕ) = 0. Obviously, when
allowing all formulas to serve as cut formulas, or when there is no restriction
on the formulas that may be used in derivations, all formulas must be assigned
either 1 or −1.

Example 7 (Semantics of Classical Logic). It is easy to see that a fully deter-
mined CL-trivaluation v is LK-legal iff it respects the classical truth tables. For
example, the first line of the truth table for conjunction is obtained as follows:
Suppose v(p1) = v(p2) = 1. Then v |= { ⇒ p1, ⇒ p2}, and since v is LK-legal,
v |= ⇒ p1∧p2, and so v(p1∧p2) = 1. In addition, the three valued semantics for
the cut-limited fragment of LK that is obtained from Theorem 1 is equivalent
to the Nmatrix semantics in [18].

Example 8 (Alternative Semantics of  Lukasiewicz three-valued logic). G3-legal
fully determined trivaluations provide an alternative semantics to  Lukasiewicz
three-valued logic (Example 3). This semantics is two-valued (as only fully de-
termined trivaluations are considered), but not truth-functional. Another two-
valued semantics for this logic was presented in [27], and was then used to con-
struct a different calculus for it in [13].

Theorem 1 gives rise to a sufficient semantic criterion for cut-admissibility,
which is based on the following notion of determination:

Definition 9. We say that a trivaluation v′ is a determination of a trivaluation v
(alternatively, we say that v′ determines v) if v(ϕ) = v′(ϕ) for every ϕ ∈ supp(v).
v′ is called an F-determination of v if, in addition, it is F-determined. If v′ is
fully determined we call it a full determination of v.

It immediately follows from our definitions that:

Proposition 1. Suppose that v′ determines v. Then for every sequent s, if
v′ |= s then v |= s. The converse holds as well when v is frm[s]-determined.

A sufficient semantic criterion for cut-admissibility is given in the following
corollary:



Corollary 1. If every G-legal trivaluation has a G-legal full determination,
then G enjoys cut-admissibility.

Proof. Suppose S0cf
Gs. By Theorem 1, there exists some frm[S]-determined G-

legal trivaluation v such that v |= S and v 6|= s. Let v′ be a G-legal full determi-
nation of v. By Proposition 1, v′ |= S and v′ 6|= s, and by Theorem 1, we have
S 0G s. ut

Remark 1. We note that [19] connects ≺-analytic derivations to partial two-
valued valuations, that are defined over a subset of the language. This subset
corresponds to the support of the trivaluations that are used here. For the char-
acterization of cut-limited derivations in [19], three-valued valuations were em-
ployed. In the current paper, where the connection between ≺-analyticity and
cut-admissibility is the main subject, we find it more natural to use a three-
valued semantics both for ≺-analytic and cut-limited derivations.

5 From Analyticity to Cut-admissibility

For many calculi, including all calculi presented above, all rules except (cut) are
“≺-ordered”: in every application of the rule, every formula ϕ that appears in
the premises satisfies ϕ � ψ for some formula ψ that appears in the conclusion.
For such calculi, cut-admissibility immediately entails ≺-analyticity, as every
cut-limited derivation is ≺-analytic. Whether or not the converse holds is the
subject of this section.

First, note that (even for “≺-ordered” calculi), ≺-analyticity may not imply
cut-admissibility:

Example 9. Consider the calculus LKAX , that consists of the following ax-
iomatic rules:

∅ / p1, p2 ⇒ p1 ∧ p2 ∅ / p1 ∧ p2 ⇒ p1 ∅ / p1 ∧ p2 ⇒ p2

∅ / p1 ∨ p2 ⇒ p1, p2 ∅ / p1 ⇒ p1 ∨ p2 ∅ / p2 ⇒ p1 ∨ p2
∅ / p2 ⇒ p1 ⊃ p2 ∅ / ⇒ p1, p1 ⊃ p2 ∅ / p1, p1 ⊃ p2 ⇒ p2

∅ / ⇒ p1,¬p1 ∅ / p1,¬p1 ⇒

It can be easily shown that LKAX is ≺0-analytic (since LK is ≺0-analytic).
However, it does not admit cut-admissibility (for instance, the sequent
p1 ∧ p2 ⇒ p1 ∨ p2 has no derivation without cut).

Next, we identify a family of calculi in which analyticity does imply cut-
admissibility.

Definition 10. A rule S/s is called ≺-directed if frm[S] ⊆ ≺ [s], and s has the
form ⇒ ϕ or ϕ ⇒ for some formula ϕ. A calculus G is called ≺-directed if all
its rules are ≺-directed.



The calculi LK, GP1
, P, and DY are ≺0-directed, GC1

, G3 and G4 are
≺1-directed, and for every n, L2n+2 is ≺n+1-directed. In contrast, LKAX (Ex-
ample 9) is not ≺-directed for any ≺, as its conclusions include several formulas.

Our first main result is that ≺-analyticity guarantees cut-admissibility in the
family of ≺-directed pure calculi.

Theorem 2. Every ≺-analytic ≺-directed pure calculus enjoys cut-
admissibility.

The proof of Theorem 2 goes through Corollary 1: given a pure calculus G
that is ≺-analytic and ≺-directed, we show that every G-legal trivaluation has
a G-legal full determination. This is done by iteratively extending the support
of a given G-legal trivaluation v by a single formula ϕ that is not in supp(v),
but ≺ [ϕ] ⊆ supp(v). The value of ϕ is determined as follows:

v′(ϕ) =

{
1 0G Γv, ϕ⇒ ∆v

−1 otherwise

where Γv = {ψ ∈ ≺ [ϕ] | v(ψ) = 1} and ∆v = {ψ ∈ ≺ [ϕ] | v(ψ) = −1}. The
correctness of this construction follows from the fact that G is ≺-directed and
≺-analytic. By enumerating the formulas while respecting ≺, we inductively
determine all the formulas that are assigned 0 by v.

For all the calculi mentioned above (except LKAX), this theorem allows one
to obtain cut-admissibility as a consequence of ≺-analyticity for some (structural
and safe) order ≺.

6 Intuitionistic Calculi

For various important non-classical logics, there is no known cut-free pure cal-
culus. In particular, Gentzen’s original calculus for intuitionistic logic, LJ, is not
pure, as it manipulates single-conclusion sequents, in which the right-hand side
includes at most one formula. An equivalent cut-free sequent calculus, which
we call LJ′, was presented in [28]. This calculus employs multiple-conclusion
sequents, and restricts only the right introduction rules of implication and nega-
tion to apply on single-conclusion sequents. In other words, LJ′ is obtained from
LK by adding the requirement that applications of p1 ⇒ p2 / ⇒ p1 ⊃ p2 and
p1 ⇒ / ⇒ ¬p1 have the forms:

Γ, ϕ⇒ ψ

Γ ⇒ ϕ ⊃ ψ
Γ,ϕ⇒
Γ ⇒ ¬ϕ

Put differently, LJ′ is obtained from LK by forbidding right context formulas
in all premises of the form Γ ⇒ ∆ with Γ 6= ∅ of right-introduction rules (rules
that introduce some formula on the right-hand side).



Another well-known calculus that follows this pattern, which we call G′4, is
obtained by extending the positive fragment of LJ′ with the rules for negation
of G4 (see Example 3). G′4, investigated in [7,29], is sound and complete for
Nelson’s paraconsistent constructive logic N4 [23].

Next, we define a general family of calculi, which we call intuitionistic calculi,
of which LJ′ and G′4 are particular examples. For them, we show that cut-
admissibility is a consequence of ≺-analyticity.

Definition 11. A pure rule is called positive if its conclusion has the form
Γ ⇒ ∆ for some ∆ 6= ∅. A derivation in a pure calculus G is called intuitionis-
tic if in every application 〈{σ(s1) ∪ c1, . . . , σ(sn) ∪ cn} , σ(s0) ∪ c1 ∪ . . . ∪ cn〉 of
a positive rule s1, . . . , sn / s0, for every 1 ≤ i ≤ n we have that if si has the form
Γi ⇒ ∆i with Γi 6= ∅, then ci has the form Γ ′i ⇒ .

Derivability, cut-admissibility and ≺-analyticity are adopted to intuitionistic
derivations in the obvious way:

Definition 12. For a pure calculus G, we write S `GInt
s if there is an in-

tuitionistic derivation of a sequent s from a set S of sequents in G. We write
S`cfGInt

s if there is such a derivation which is also cut-limited, and S`≺GInt
s if

there is such a derivation which is ≺-analytic (see Definitions 3 and 5). We
say that G enjoys Int-cut-admissibility if `GInt

= `cfGInt
, and is Int-≺-analytic if

`GInt
= `≺GInt

.

The difference between pure and intuitionistic calculi is not in the rules, but
rather in applications that are allowed to appear in derivations. Thus, any pure
calculus has an intuitionistic counterpart, obtained by considering only intu-
itionistic derivations. In particular, derivations in LJ′ are exactly intuitionistic
derivations of LK. Indeed, for a finite set Γ of formulas and a formula ϕ, ϕ
follows from Γ in intuitionistic logic iff `LKInt

Γ ⇒ ϕ. In contrast, ϕ follows
from Γ in classical logic iff `LK Γ ⇒ ϕ.

Theorem 3. Every Int-≺-analytic ≺-directed pure calculus enjoys Int-cut-
admissibility.

The proof of Theorem 3 has a similar general structure to the proof for
pure calculi, but is more challenging, because simple valuation functions do not
suffice to characterize the calculi of this family. Instead, a more complex semantic
interpretation is employed, which is based on Kripke models. The description of
this extended semantics, as well as its role in the proof of Theorem 3, are left
for an extended version of this paper.

Theorem 3 allows one to derive the fact that cut is admissible in LJ′

from the fact that LJ′ enjoys the subformula property. More precisely, Int-cut-
admissibility of LK follows from its Int-≺0-analyticity. Such entailment also
holds for the pure calculi presented in the examples above, as well as for the
calculi of the next example.



Example 10 (Constructive Negations). The paper [7] includes sequent calculi for
logics that replace classical negation with several non-classical negations. One
of the families investigated there consists of calculi that are obtained from the
positive fragment of LJ′ by augmenting it with pure rules for negation. All
calculi of this family, except those described in Example 11 below, allow only
intuitionistic derivations, and are ≺1-directed and Int-≺1-analytic. From these
facts, Theorem 3 allows us to conclude that cut is admissible in them. These
calculi include a calculus for Nelson’s constructive logic N3 [23], as well as the
calculus G′4 presented above for its paraconsistent variant N4.

Intuitionistic derivations disallow right context formulas in premises of pos-
itive rules (Definition 11), in which the left-hand side is not empty. A natural
question that arises regarding Theorem 3 is: Does it still hold if we allow right
context formulas for certain premises of a right introduction rule with a non-
empty left-hand side, and forbid them in others? The answer is negative as the
next example demonstrates.

Example 11 (Beyond Intuitionistic Derivations). Following Example 10, we
note that [7,8] investigate also several calculi that include both the single-
conclusion right-introduction rule of implication and the multiple-conclusion
right-introduction rule of negation. The former conforms with the restriction
to intuitionistic derivations, as right context formulas are forbidden. The latter
allows for non-intuitionistic derivations, as it allows right context formulas in a
premise that has a non-empty left side. Such calculi are therefore left out from
the scope of Theorems 2 and 3. And indeed, as was shown in [8], all of them are
≺1-analytic, but none of them enjoys cut-admissibility.

7 Conclusion

We identified two general families of propositional sequent calculi, in which a
generalized subformula property is equivalent to cut-admissibility. The first is
the family of pure calculi that are ≺-directed for some safe and structural order
≺. The second is the family of “≺-directed intuitionistic calculi”, obtained by
considering intuitionistic derivations in ≺-directed pure calculi.

This result sheds light on the relation between these two fundamental prop-
erties. Furthermore, we believe that it may be useful in obtaining simpler cut-
admissibility proofs:

1. Theorems 2 and 3 reduce the burden in proving cut-admissibility to establish-
ing only analytic cut-admissibility. An application of (cut) in a derivation
of s from S is called a ≺-analytic cut if the cut formula is in ≺ [S ∪ {s}].
In turn, ≺-analytic cut-admissibility concerns only the admissibility of non-
≺-analytic cuts. Proving this property is often easier than showing full cut-
admissibility. For example, when ≺0-analytic cuts are allowed, it is straight-
forward to prove that LK is complete for the classical truth tables. Indeed,
assuming S 0LK Γ ⇒ ∆, one extends Γ ⇒ ∆ to a maximal underivable



sequent Γ ∗ ⇒ ∆∗ that consists solely of ≺0 [S ∪ {Γ ⇒ ∆}]-formulas. Then,
a countermodel v can be defined simply by setting v(ϕ) = 1 for every ϕ ∈ Γ ∗
and v(ψ) = −1 for every ψ ∈ ∆∗. Using ≺0-analytic cuts, it immediately
follows that Γ ∗ ∪∆∗ = ≺0 [S ∪ {Γ ∪∆}], which makes it easy to prove that
v respects the classical truth tables, and can therefore be extended to a full
classical assignment. By Theorem 2, we may conclude that LK enjoys (full)
cut-admissibility.

2. The results of this paper are useful in combination with our recent paper [20],
where we provided a general method for proving ≺n-analyticity (see Exam-
ple 6 for the definition of ≺n) in a wide family of pure calculi. Concretely, we
showed that the ≺n-analyticity of a ≺n-directed calculus G is guaranteed if
the following property holds:

For every two rules of G of the forms S1 / ⇒ ϕ1 and S2 /ϕ2 ⇒ , and
substitutions σ1, σ2 such that σ1(ϕ1) = σ2(ϕ2), the empty sequent
is derivable from σ(S1) ∪ σ(S2) using only (cut).

Then, Theorem 2 ensures that these calculi are not only ≺n-analytic, but
they also admit cut-admissibility.

We propose two particular directions for future research. First, our approach
should be further developed for more expressible languages, which include quan-
tifiers and modalities. For the former, the three-valued semantics should be el-
evated to three-valued first-order structures. For the latter, we prospect that
the Kripke semantics used here for intuitionistic calculi could be adapted for
calculi with modalities. We note, however, that such an approach is expected to
have certain limitations, as some analytic calculi for modal logics (e.g., S5 and
B [30,25]) do not admit cut-admissibility.

Second, the following questions regarding the relations between derivations
and intuitionistic derivations are currently left open: Does ≺-analyticity imply
Int-≺-analyticity? Does cut-admissibility imply Int-cut-admissibility? Do either
of the converses hold?
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