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1. Introduction

In this study, we prove the completeness and cut-elimination theorems for
a first-order extension F4CC of Arieli, Avron, and Zamansky’s ideal para-
consistent four-valued logic known as 4CC [4, 5, 6]. These theorems are
proved using Schütte’s method [22, 19], which is used to simultaneously
prove the completeness and cut-elimination theorems for Gentzen’s sequent
calculus LK [11] for first-order classical logic. To prove these theorems,
we introduce an alternative Gentzen-type sequent calculus SF4CC that is
theorem-equivalent to a first-order extension GF4CC of the original Gentzen-
type sequent calculus G4CC introduced by Arieli and Avron in [4, 5]. The
proposed calculus SF4CC is an extension of a Gentzen-type sequent calculus
EPL, which was introduced by Kamide and Zohar in [12, 13].

The logic 4CC is an extension of Belnap–Dunn logic (also called first-
degree entailment logic or useful four-valued logic) [7, 8, 10], and is also
regarded as a variant of the logic of logical bilattices [2, 3]. It is also regarded
as a specific type of paraconsistent logic [18], which has multiple names:
it is called paradefinite logic by Arieli and Avron [4, 5], non-alethic logic
by da Costa, and paranormal logic by Béziau [9]. Regardless of its name,
paradefinite logic incorporates the properties of both paraconsistency, which
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rejects the principle (α ∧ ∼α)→β of explosion, and paracompleteness, which
rejects the law α ∨ ∼α of excluded middle.

The logic 4CC is one of the most important ideal paradefinite logics that
have natural many-valued semantics. 4CC is maximal relative to classical
logic. This means, intuitively, that any attempt to add to it a tautology
of classical logic, which is not provable in 4CC, should necessarily end-up
with classical logic. For the exact definition and motivation of this prop-
erty, see [6]. 4CC is also related to connexive logics [1, 16, 24], as it has a
common characteristic Hilbert-style axiom scheme. For more information on
the relationship between 4CC and connexive logics, see [13]. Below are the
four-valued truth tables of 4CC, where t and f serve as the classical values
true and false, while ⊤ and ⊥ are two additional truth values:

∧ t f ⊤ ⊥
t t f ⊤ ⊥
f f f f f
⊤ ⊤ f ⊤ f
⊥ ⊥ f f ⊥

∨ t f ⊤ ⊥
t t t t t
f t f ⊤ ⊥
⊤ t ⊤ ⊤ t
⊥ t ⊥ t ⊥

→ t f ⊤ ⊥
t t f ⊤ ⊥
f t t t t
⊤ t f ⊤ ⊥
⊥ t t t t

∼
t f
f t
⊤ ⊤
⊥ ⊥

−
t t
f f
⊤ ⊥
⊥ ⊤

As mentioned above, 4CC is an important ideal paradefinite logic. How-
ever, the first-order version F4CC of 4CC, which would be much more suit-
able for actual applications, has not yet been studied. A possible reason why
F4CC was not considered is that elevating its propositional semantics to the
first-order level is not trivial. The completeness theorem with respect to a
valuation semantics for 4CC can be proved smoothly as shown in [12, 13]
by using Lahav and Avron’s unified semantic proof method [14], which was
used to prove completeness and cut-elimination for a wide class of non-
classical logics. However, the method by Lahav and Avron does not work
for F4CC, as it is limited to propositional languages. The embedding-based
proof method used in [12, 13] for proving the completeness theorem for other
propositional paradefinite logics seems insufficient for F4CC, because it is
not clear how a translation function can be defined for F4CC. To overcome
these difficulties, in this study, we use Schütte’s method for simultaneously
proving the completeness and cut-elimination theorems for a Gentzen-type
sequent calculus for F4CC. To use Schütte’s method, we introduce a new
Gentzen-type sequent calculus SF4CC, as the original system GF4CC does
not fit this method (see Remark 4.7). As a corollary of cut-elimination, we
obtain a first-order variant of the negative symmetry property, introduced in
[12].

The structure of this paper is summarized as follows. In Section 2, we
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introduce SF4CC and GF4CC, and prove the equivalence between them. In
Section 3, we introduce a valuation semantics for SF4CC, and show the sound-
ness theorem with respect to this semantics. In Section 4, we prove the com-
pleteness and cut-elimination theorems for SF4CC by using Schütte’s method,
and obtain the characteristic property of negative symmetry as a corollary of
the cut-elimination theorem. In Section 5, we conclude and consider future
work.

2. Sequent calculus

For the sake of simplicity of the discussion, a first-order language without
individual constants and function symbols is considered. Formulas of the
first-order ideal paraconsistent four-valued logic F4CC are constructed from
countably many predicate symbols p, q, ... and countably many individual
variables x, y, ... by the logical connectives ∧ (conjunction), ∨ (disjunction),
→ (implication), ∼ (paraconsistent negation), − (conflation), ∀ (universal
quantifier), and ∃ (existential quantifier). We use an expression α[y/x] to
represent the formula which is obtained from the formula α by replacing all
free occurrences of the individual variable x in α by the individual variable y,
but avoiding a clash of variables by a suitable renaming of bound variables.
A 0-ary predicate is regarded as a propositional variable. We use small letters
p, q, ... to denote not only predicate symbols but also atomic formulas, Greek
small letters α, β, ... to denote formulas, and Greek capital letters Γ,∆, ... to
represent finite (possibly empty) sets of formulas. We use the expressions
∼Γ and −Γ to denote the sets {∼γ | γ ∈ Γ} and {−γ | γ ∈ Γ}, respectively.
We use the symbol = to denote the equality of symbols.

A sequent is an expression of the form Γ ⇒ ∆. We use an expression
α ⇔ β as the abbreviation of the sequents α ⇒ β and β ⇒ α. An expression
L ⊢ S means that a sequent S is provable in a sequent calculus L. If L of
L ⊢ S is clear from the context, we omit L in it. Two sequent calculi L1

and L2 are said to be theorem-equivalent if {S | L1 ⊢ S} = {S | L2 ⊢ S}.
A rule R of inference is said to be admissible in a sequent calculus L if the
following condition is satisfied: For any instance

S1 · · ·Sn

S

of R, if L ⊢ Si for all i, then L ⊢ S. Moreover, R is said to be derivable
in L if there is a derivation from S1, · · · , Sn to S in L. Note that a rule R
of inference is admissible in a sequent calculus L if and only if the sequent
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calculi L and L + R (i.e., the calculus obtained from L by the addition of
R) are theorem-equivalent.

A Gentzen-type sequent calculus SF4CC for F4CC is defined as follows.

Definition 2.1 (SF4CC). In the following definition, y represents an arbi-
trary individual variable, and z represents an individual variable which has
the eigenvariable condition, i.e., z does not occur as a free individual variable
in the lower sequent of the rule.

The initial sequents of SF4CC are of the following form, for any atomic
formula p,

p ⇒ p ∼p ⇒ ∼p −p ⇒ −p ∼p,−p ⇒ ⇒ ∼p,−p.

The structural inference rules of SF4CC are of the form:

Γ ⇒ ∆, α α,Σ ⇒ Π

Γ,Σ ⇒ ∆,Π
(cut)

Γ ⇒ ∆
α,Γ ⇒ ∆

(we-left) Γ ⇒ ∆
Γ ⇒ ∆, α

(we-right).

The positive logical inference rules of SF4CC are of the form:

α, β,Γ ⇒ ∆

α ∧ β,Γ ⇒ ∆
(∧left) Γ ⇒ ∆, α Γ ⇒ ∆, β

Γ ⇒ ∆, α ∧ β
(∧right)

α,Γ ⇒ ∆ β,Γ ⇒ ∆

α ∨ β,Γ ⇒ ∆
(∨left) Γ ⇒ ∆, α, β

Γ ⇒ ∆, α ∨ β
(∨right)

Γ ⇒ ∆, α β,Σ ⇒ Π

α→β,Γ,Σ ⇒ ∆,Π
(→left)

α,Γ ⇒ ∆, β

Γ ⇒ ∆, α→β
(→right)

α[y/x],Γ ⇒ ∆

∀xα,Γ ⇒ ∆
(∀left)

Γ ⇒ ∆, α[z/x]

Γ ⇒ ∆, ∀xα (∀right)

α[z/x],Γ ⇒ ∆

∃xα,Γ ⇒ ∆
(∃left)

Γ ⇒ ∆, α[y/x]

Γ ⇒ ∆,∃xα (∃right).

The negated logical inference rules of SF4CC are of the form:

α,Γ ⇒ ∆

∼∼α,Γ ⇒ ∆
(∼∼left)

Γ ⇒ ∆, α

Γ ⇒ ∆,∼∼α
(∼∼right)

Γ ⇒ ∆, α

∼−α,Γ ⇒ ∆
(∼−left)

α,Γ ⇒ ∆

Γ ⇒ ∆,∼−α
(∼−right)

∼α,Γ ⇒ ∆ ∼β,Γ ⇒ ∆

∼(α ∧ β),Γ ⇒ ∆
(∼∧left) Γ ⇒ ∆,∼α,∼β

Γ ⇒ ∆,∼(α ∧ β)
(∼∧right)
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∼α,∼β,Γ ⇒ ∆

∼(α ∨ β),Γ ⇒ ∆
(∼∨left) Γ ⇒ ∆,∼α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α ∨ β)
(∼∨right)

α,∼β,Γ ⇒ ∆

∼(α→β),Γ ⇒ ∆
(∼→left)

Γ ⇒ ∆, α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α→β)
(∼→right)

∼α[z/x],Γ ⇒ ∆

∼∀xα,Γ ⇒ ∆
(∼∀left)

Γ ⇒ ∆,∼α[y/x]

Γ ⇒ ∆,∼∀xα (∼∀right)

∼α[y/x],Γ ⇒ ∆

∼∃xα,Γ ⇒ ∆
(∼∃left)

Γ ⇒ ∆,∼α[z/x]

Γ ⇒ ∆,∼∃xα (∼∃right).

The conflated logical inference rules of SF4CC are of the form:

α,Γ ⇒ ∆

−−α,Γ ⇒ ∆
(−−left)

Γ ⇒ ∆, α

Γ ⇒ ∆,−−α
(−−right)

Γ ⇒ ∆, α

−∼α,Γ ⇒ ∆
(−∼left)

α,Γ ⇒ ∆

Γ ⇒ ∆,−∼α
(−∼right)

−α,−β,Γ ⇒ ∆

−(α ∧ β),Γ ⇒ ∆
(−∧left) Γ ⇒ ∆,−α Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α ∧ β)
(−∧right)

−α,Γ ⇒ ∆ −β,Γ ⇒ ∆

−(α ∨ β),Γ ⇒ ∆
(−∨left) Γ ⇒ ∆,−α,−β

Γ ⇒ ∆,−(α ∨ β)
(−∨right)

Γ ⇒ ∆, α −β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left)

α,Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α→β)
(−→right)

−α[y/x],Γ ⇒ ∆

−∀xα,Γ ⇒ ∆
(−∀left)

Γ ⇒ ∆,−α[z/x]

Γ ⇒ ∆,−∀xα (−∀right)

−α[z/x],Γ ⇒ ∆

−∃xα,Γ ⇒ ∆
(−∃left)

Γ ⇒ ∆,−α[y/x]

Γ ⇒ ∆,−∃xα (−∃right).

Remark 2.2. (−→left) and (−→right) correspond to the Hilbert-style axiom
scheme −(α→β) ↔ α→−β, which is a characteristic axiom scheme for
some connexive logics [1, 16, 23] if − is replaced by ∼. See [17, 24] for a
comprehensive introduction to connexive logics.

Proposition 2.3. The following sequents are provable in cut-free SF4CC:
For any formula α,

1. α ⇒ α,

2. ∼α,−α ⇒,

3. ⇒ ∼α,−α.
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Proof. By induction on α.

Proposition 2.4. The following sequents are provable in cut-free SF4CC:
For any formulas α and β,

1. ∼∼α ⇔ α,

2. ∼−α ⇔ −∼α,

3. ∼(α ∧ β) ⇔ ∼α ∨ ∼β,

4. ∼(α ∨ β) ⇔ ∼α ∧ ∼β,

5. ∼(α→β) ⇔ α ∧ ∼β,

6. ∼∀xα ⇔ ∃x∼α,

7. ∼∃xα ⇔ ∀x∼α,

8. −−α ⇔ α,

9. −(α ∧ β) ⇔ −α ∧ −β,

10. −(α ∨ β) ⇔ −α ∨ −β,

11. −(α→β) ⇔ α→−β,

12. −∀xα ⇔ ∀x−α,

13. −∃xα ⇔ ∃x−α.

Proof. Straightforward.

Proposition 2.5. The following rules are derivable in SF4CC:

Γ ⇒ ∆,−α

∼α,Γ ⇒ ∆
(∼left)

−α,Γ ⇒ ∆

Γ ⇒ ∆,∼α
(∼right)

Γ ⇒ ∆,∼α

−α,Γ ⇒ ∆
(−left)

∼α,Γ ⇒ ∆

Γ ⇒ ∆,−α
(−right).

Proof. We show only the case for (∼left) as follows.

Γ ⇒ ∆,−α

.... Prop.2.3
−α,∼α ⇒

∼α,Γ ⇒ ∆
(cut).

A first-order extension GF4CC of Arieli-Avron’s sequent calculus G4CC

[4, 5] for 4CC is defined as follows.
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Definition 2.6 (GF4CC). A sequent calculus GF4CC is obtained from SF4CC

by replacing {(p ⇒ p), (∼p ⇒ ∼p), (−p ⇒ −p), (∼p,−p ⇒), (⇒ ∼p,−p),
(−−left), (−−right), (−∼left), (−∼right), (−∧left), (−∧right), (−∨left),
(−∨right), (−→left), (−→right), (−∀left), (−∀right), (−∃left), (−∃right)}
with {(α ⇒ α), (−left), (−right)}.

Proposition 2.7. The following sequents are provable in cut-free GF4CC:
For any formula α,

1. ∼α,−α ⇒,

2. ⇒ ∼α,−α.

Proof. By using (−left) and (−right).

Theorem 2.8 (Equivalence between SF4CC and GF4CC). The systems SF4CC

and GF4CC are theorem-equivalent.

Proof. • We show that for any sequent Γ ⇒ ∆, if GF4CC ⊢ Γ ⇒ ∆, then
SF4CC ⊢ Γ ⇒ ∆. This is shown by induction on the proofs P of Γ ⇒ ∆ in
GF4CC. We distinguish the cases according to the last inference of P . It is
sufficient to consider the cases for (α ⇒ α for any formula α), (−left), and
(−right). The case for (α ⇒ α for any formula α) holds by Proposition 2.3.
The cases for (−left) and (−right) hold by Proposition 2.5.

• We show that for any sequent Γ ⇒ ∆, if SF4CC ⊢ Γ ⇒ ∆, then GF4CC

⊢ Γ ⇒ ∆. This is shown by induction on the proofs Q of Γ ⇒ ∆ in SF4CC.
We distinguish the cases according to the last inference of P . We must
consider the cases for (∼p,−p ⇒), (⇒ ∼p,−p), (∼left), (∼right), (−−left),
(−−right), (−∼left), (−∼right), (−∧left), (−∧right), (−∨left), (−∨right),
(−→left), (−→right), (−∀left), (−∀right), (−∃left), and (−∃right). We show
some of the cases below. The rest are shown similarly.

1. Case (∼right): The last inference of Q is of the form:

−α,Γ ⇒ ∆

Γ ⇒ ∆,∼α
(∼right).

We obtain the required fact:

.... Prop.2.7
⇒ ∼α,−α −α,Γ ⇒ ∆

Γ ⇒ ∆,∼α
(cut).
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2. Case (∼left): The last inference of Q is of the form:

Γ ⇒ ∆,−α

∼α,Γ ⇒ ∆
(∼left).

We obtain the required fact:

Γ ⇒ ∆,−α

.... Prop.2.7
∼α,−α ⇒

∼α,Γ ⇒ ∆
(cut).

3. Case (−−left): The last inference of Q is of the form:

α,Γ ⇒ ∆

−−α,Γ ⇒ ∆
(−−left).

We obtain the required fact:

α,Γ ⇒ ∆

Γ ⇒ ∆,∼−α
(∼−right)

.... Prop.2.7
∼−α,−−α ⇒

−−α,Γ ⇒ ∆
(cut).

4. Case (−→left): The last inference of Q is of the form:

Γ ⇒ ∆, α −β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left).

We obtain the required fact:

Γ ⇒ ∆, α.... (we-left), (we-right)
Γ,Σ ⇒ ∆,Π, α

.... Prop.2.7
⇒ ∼β,−β −β,Σ ⇒ Π

Σ ⇒ Π,∼β
(cut)

.... (we-left), (we-right)
Γ,Σ ⇒ ∆,Π,∼β

Γ,Σ ⇒ ∆,Π,∼(α→β)
(∼→right)

−(α→β),Γ,Σ ⇒ ∆,Π
(−left).

5. Case (−∀right): The last inference of Q is of the form:

Γ ⇒ ∆,−α[z/x]

Γ ⇒ ∆,−∀xα (−∀right).
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We obtain the required fact:

Γ ⇒ ∆,−α[z/x]

.... Prop.2.7

−α[z/x],∼α[z/x] ⇒
∼α[z/x],Γ ⇒ ∆

(cut)

∼∀xα,Γ ⇒ ∆
(∼∀left)

Γ ⇒ ∆,−∀xα (−right).

3. Semantics

Prior to introduce a semantics for SF4CC, we introduce some notations. Let
Γ be a non-empty finite set {α1, α2, ..., αn} of formulas. Then, we use the
expressions Γ∗ and Γ∗ as abbreviations of α1 ∧ α2 ∧ · · · ∧ αn and α1 ∨ α2 ∨
· · · ∨ αn, respectively. If Γ = ∅, then we respectively use Γ∗ and Γ∗ as
abbreviations of q→q and ∼−(q→q) where q is a fixed atomic formula.

We follow the substitutional approach for first-order logic (see, e.g., [15,
20]).

Definition 3.1. A structure A := ⟨U, I∗⟩ is called a paraconsistent model
if the following conditions hold:

1. U is a non-empty set,

2. I∗ is a mapping such that

(a) pI
∗
, (∼p)I

∗
, (−p)I

∗ ⊆ Un for an n-ary predicate symbol p,

(b) for any predicate symbol p,

i. x ∈ (∼p)I
∗
iff x /∈ (−p)I

∗
,

ii. x ∈ (−p)I
∗
iff x /∈ (∼p)I

∗
.

We introduce the notation u
¯

as the name of u ∈ U , and we denote L[A] as
the language obtained from the language L of F4CC by adding the names
of all the elements of U . A formula α is called a closed formula if α has
no free individual variable. A formula of the form ∀x1 · · · ∀xmα is called the
universal closure of α if the free variables of α are x1, ..., xm. We write cl(α)
for the universal closure of α.

Definition 3.2 (Semantics for SF4CC). Let A := ⟨U, I∗⟩ be a paraconsis-
tent model. The paraconsistent satisfaction relation A |=∗ α for any closed
formula α of L[A] are defined inductively by:
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1. [A |=∗ p(u
¯ 1, ..., u¯ n) iff (u1, ..., un) ∈ pI

∗
] for any n-ary atomic formula

p(u
¯ 1, ..., u¯ n),

2. [A |=∗ ∼p(u
¯ 1, ..., u¯ n) iff (u1, ..., un) ∈ (∼p)I

∗
] for any n-ary negated

atomic formula ∼p(u
¯ 1, ..., u¯ n),

3. [A |=∗ −p(u
¯ 1, ..., u¯ n) iff (u1, ..., un) ∈ (−p)I

∗
] for any n-ary conflated

atomic formula −p(u
¯ 1, ..., u¯ n),

4. A |=∗ α ∧ β iff A |=∗ α and A |=∗ β,

5. A |=∗ α ∨ β iff A |=∗ α or A |=∗ β,

6. A |=∗ α→β iff A ̸|=∗ α or A |=∗ β,

7. A |=∗ ∀xα iff A |=∗ α[u
¯
/x] for all u ∈ U ,

8. A |=∗ ∃xα iff A |=∗ α[u
¯
/x] for some u ∈ U ,

9. A |=∗ ∼∼α iff A |=∗ α,

10. A |=∗ ∼−α iff A ̸|=∗ α,

11. A |=∗ ∼(α ∧ β) iff A |=∗ ∼α or A |=∗ ∼β,

12. A |=∗ ∼(α ∨ β) iff A |=∗ ∼α and A |=∗ ∼β,

13. A |=∗ ∼(α→β) iff A |=∗ α and A |=∗ ∼β,

14. A |=∗ ∼∀xα iff A |=∗ ∼α[u
¯
/x] for some u ∈ U ,

15. A |=∗ ∼∃xα iff A |=∗ ∼α[u
¯
/x] for all u ∈ U ,

16. A |=∗ −−α iff A |=∗ α,

17. A |=∗ −∼α iff A ̸|=∗ α.

18. A |=∗ −(α ∧ β) iff A |=∗ −α and A |=∗ −β,

19. A |=∗ −(α ∨ β) iff A |=∗ −α or A |=∗ −β,

20. A |=∗ −(α→β) iff A ̸|=∗ α or A |=∗ −β,

21. A |=∗ −∀xα iff A |=∗ −α[u
¯
/x] for all u ∈ U ,

22. A |=∗ −∃xα iff A |=∗ −α[u
¯
/x] for some u ∈ U .

The paraconsistent satisfaction relation A |=∗ α for any formula α of L
are defined by (A |=∗ α iff A |=∗ cl(α)). A formula α of L is called F4CC-
valid iff A |=∗ α holds for any paraconsistent model A. A sequent Γ ⇒ ∆ of
L is called F4CC-valid (denoted by SF4CC |= Γ ⇒ ∆) iff the formula Γ∗→∆∗

of L is F4CC-valid.

The following theorem provides an alternative definition of the above
semantics:
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Theorem 3.3. Requirement 2.b in Definition 3.1 and requirements 16–22
in Definition 3.2 can be replaced by the following requirement:

A |=∗ −α iff A ̸|=∗ ∼α (I)

and the resulting class of structures stays the same.

Proof.

• Suppose the condition in (I) is met. We prove that requirements 2.b,
and 16-22 are met. 2.b is implied by the combination of (I), 2 and 3. We
show that 16, 17, 18 and 21 are met. The rest are shown similarly. For
16: By (I), A |=∗ −−α iff A ̸|=∗ ∼−α, which by 10 holds iff A |=∗ α.
For 17: By (I), A |=∗ −∼α iff A ̸|=∗ ∼∼α, which by 9 holds iff A ̸|=∗ α.
For 18: By (I), A |=∗ −(α ∧ β) iff A ̸|=∗ ∼(α ∧ β), which by 11 holds
iff A ̸|=∗ ∼α and A ̸|=∗ ∼β. This, again by (I) holds iff A |=∗ −α and
A |=∗ −β For 21: By (I), A |=∗ −∀xα iff A ̸|=∗ ∼∀xα, which by 14 holds
iff A ̸|=∗ ∼α[u

¯
/x] for every u ∈ U . Again using (I), the latter holds iff

A |=∗ −α[u
¯
/x] for every u ∈ U .

• We prove that A |=∗ −α iff A ̸|=∗ ∼α for every formula α and paracon-
sistent model A. We do so by induction on α, explicitly covering most
of the cases, leaving the rest for the reader. For the base case where α
is atomic, this holds by 2.b of Definition 3.1. If α = ∼β, then we have
by 17 that A |=∗ −α iff A ̸|=∗ β, which by 9 holds iff A ̸|=∗ ∼α. If
α = −β, then we have by 16 that A |=∗ −α iff A |=∗ β, which by 10
holds iff A ̸|=∗ ∼α. If α = β1 ∧ β2, then we have by 18 that A |=∗ −α iff
A |=∗ −β1 and A |=∗ −β2, which by the induction hypothesis holds iff
A ̸|=∗ ∼β1 and A ̸|=∗ ∼β2. By 11, this holds iff A ̸|=∗ ∼α. If α = ∀xβ,
then by 21 we have that A |=∗ −α iff A |=∗ −β[u

¯
/x] for all u ∈ U . By the

induction hypothesis, this holds iff A ̸|=∗ ∼β[u
¯
/x] for all u ∈ U , which

by 14 holds iff A ̸|=∗ ∼α.

In particular, we have the following property, that will be used in the
completeness proof below:

Corollary 3.4. For any paraconsistent model A and any formula α, we
have the following clauses:

1. A |=∗ ∼α iff A ̸|=∗ −α,

2. A |=∗ −α iff A ̸|=∗ ∼α.
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To conclude this section, we prove the soundness of the above semantics
w.r.t. SF4CC.

Theorem 3.5 (Soundness for SF4CC). For any sequent S,

if SF4CC ⊢ S, then SF4CC |= S.

Proof. By induction on the proof P of S. We distinguish the cases accord-
ing to the last inference of P . We show some of the cases. The others are
proved similarly.

1. Case (∼p(u
¯1

, ..., u
¯n

),−p(u
¯1

, ..., u
¯n

) ⇒): The last inference of P
is of the form: ∼p(u

¯1
, ..., u

¯n
),−p(u

¯1
, ..., u

¯n
) ⇒. We show that

“∼p(u
¯1

, ..., u
¯n

),−p(u
¯1

, ..., u
¯n

) ⇒ is F4CC-valid (i.e., ∼p(u
¯1

, ..., u
¯n

) ∧
−p(u

¯1
, ..., u

¯n
)→∼−(q→q) is F4CC-valid).” It is thus sufficient to show

that for any paraconsistent model A = ⟨U, I∗⟩, A |=∗ ∼p(u
¯1

, ..., u
¯n

) ∧
−p(u

¯1
, ..., u

¯n
)→∼−(q

¯
→q

¯
) where q

¯
is obtained from q by replacing all

the free individual variables occurring in it with the names of some el-
ements of U . We thus show A ̸|=∗ ∼p(u

¯1
, ..., u

¯n
) ∧ −p(u

¯1
, ..., u

¯n
) or

A |=∗ ∼−(q
¯
→q

¯
). On the other hand, we have (*): A ̸|=∗ ∼−(q

¯
→q

¯
)

(i.e., A |=∗ q
¯
→q

¯
). Thus, we now show (**): A ̸|=∗ ∼p(u

¯1
, ..., u

¯n
) ∧

−p(u
¯1

, ..., u
¯n

) (i.e., A ̸|=∗ −p(u
¯1

, ..., u
¯n

) or A ̸|=∗ ∼p(u
¯1

, ..., u
¯n

)). By
Corollary 3.4, if A |=∗ −p(u

¯1
, ..., u

¯n
), then A ̸|=∗ ∼p(u

¯1
, ..., u

¯n
), and

if A |=∗ ∼p(u
¯1

, ..., u
¯n

), then A ̸|=∗ −p(u
¯1

, ..., u
¯n

). Thus, we have
A ̸|=∗ −p(u

¯1
, ..., u

¯n
) or A ̸|=∗ ∼p(u

¯1
, ..., u

¯n
), and hence obtain (**).

Thus, by (*) and (**), we obtain the required fact.

2. Case (⇒ ∼p(u
¯1

, ..., u
¯n

),−p(u
¯1

, ..., u
¯n

)): The last inference
of P is of the form: ⇒ ∼p(u

¯1
, ..., u

¯n
),−p(u

¯1
, ..., u

¯n
). We

show that “⇒ ∼p(u
¯1

, ..., u
¯n

),−p(u
¯1

, ..., u
¯n

) is F4CC-valid (i.e.,
(q→q)→∼p(u

¯1
, ..., u

¯n
) ∨ −p(u

¯1
, ..., u

¯n
) is F4CC-valid).” It is thus

sufficient to show that for any paraconsistent model A = ⟨U, I∗⟩,
A |=∗ (q

¯
→q

¯
)→∼p(u

¯1
, ..., u

¯n
) ∨ −p(u

¯1
, ..., u

¯n
) where q

¯
is obtained from

q by replacing all the free individual variables occurring in it with
the names of some elements of U . We thus show A ̸|=∗ (q

¯
→q

¯
) or

A |=∗ ∼p(u
¯1

, ..., u
¯n

) ∨ −p(u
¯1

, ..., u
¯n

). On the other hand, we have
(*): A |=∗ q

¯
→q

¯
(i.e., we have no A ̸|=∗ q

¯
→q

¯
). Thus, we now show

(**): A |=∗ ∼p(u
¯1

, ..., u
¯n

) ∨ −p(u
¯1

, ..., u
¯n

) (i.e., A |=∗ ∼p(u
¯1

, ..., u
¯n

) or
A |=∗ −p(u

¯1
, ..., u

¯n
)). By Corollary 3.4, if A ̸|=∗ ∼p(u

¯1
, ..., u

¯n
),

then A |=∗ −p(u
¯1

, ..., u
¯n

), and if A ̸|=∗ −p(u
¯1

, ..., u
¯n

), then
A |=∗ ∼p(u

¯1
, ..., u

¯n
). Thus, we have: A |=∗ −p(u

¯1
, ..., u

¯n
) or

A |=∗ ∼p(u
¯1

, ..., u
¯n

), and hence obtain (**). Thus, by (*) and (**), we
obtain the required fact.
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3. Case (∼∃right): The last inference of P is of the form:

Γ ⇒ ∆,∼α[z/x]

Γ ⇒ ∆,∼∃xα (∼∃right).

We show that “Γ ⇒ ∆,∼α[z/x] is F4CC-valid” implies “Γ ⇒ ∆,∼∃xα
is F4CC-valid.” By the hypothesis, (*): ∀z1 · · · ∀zn∀z(Γ∗→(∆∗ ∨
(∼α[z/x]))) (where z1, ..., zn are the free individual variables occurring in
Γ ⇒ ∆,∼∃xα) is F4CC-valid. We show that A |=∗ ∀z1 · · · ∀zn(Γ∗→(∆∗∨
(∼∃xα))) for any paraconsistent model A := ⟨U, I∗⟩, i.e., we show that
for any u1, ..., un ∈ U , A |=∗ Γ

¯∗
→(∆

¯
∗ ∨ (∼∃xα

¯
)), where Γ

¯∗
,∆
¯
∗, and

α
¯

are respectively obtained from Γ∗,∆
∗ and α by replacing z1, ..., zn

by u
¯1
, ..., u

¯n
. Here, we note that (∼∃xα)[u

¯1
/z1, ..., u

¯n
/zn] (the result of

the simultaneous substitution of zi by u
¯i

(1 ≤ i ≤ n)) is equivalent
to ∼∃x(α[u

¯1
/z1, ..., u

¯n
/zn]), i.e., ∼∃xα

¯
. By (*), we have A |=∗ (Γ

¯∗
→

(∆
¯
∗ ∨ (∼α

¯
[z/x])))[w

¯
/z] for any w ∈ U . By the eigenvariable condition,

z is not occurring freely in Γ
¯∗
,∆
¯
∗, and α

¯
. Thus, Γ

¯∗
[w
¯
/z] and ∆

¯
∗[w
¯
/z]

are equivalent to Γ
¯∗
and ∆

¯
∗, respectively, and α

¯
[z/x][w

¯
/z] is equivalent

to α
¯
[w
¯
/z][w

¯
/x], i.e., α

¯
[w
¯
/x]. Therefore, for any w ∈ U , we have that (a):

A |=∗ Γ
¯∗
→(∆

¯
∗ ∨ ∼α

¯
[w
¯
/x]). Suppose that (b): [A |=∗ Γ

¯∗
and A ̸|=∗ ∆

¯
∗].

Then, by (a), we have that for any w ∈ U , A |=∗ ∼α
¯
[w
¯
/x]. Therefore, we

obtain (c): A |=∗ ∼∃xα
¯
. This means that (b) implies (c), i.e., A |=∗ Γ

¯∗
implies (A |=∗ ∆

¯
∗ or A |=∗ ∼∃xα

¯
). Therefore, we have the required fact

that A |=∗ Γ
¯∗
→(∆

¯
∗ ∨ (∼∃xα

¯
)) for any u1, ...un ∈ U .

4. Completeness and cut-elimination

In the following, we prove the (strong) completeness and cut-elimination
theorems for SF4CC by using Schütte’s method [22].

Definition 4.1. A sequent Γ ⇒ ∆ is called saturated if for any formulas α
and β,

1. α ∧ β ∈ Γ implies (α ∈ Γ and β ∈ Γ),

2. α ∧ β ∈ ∆ implies (α ∈ ∆ or β ∈ ∆),

3. α ∨ β ∈ Γ implies (α ∈ Γ or β ∈ Γ),

4. α ∨ β ∈ ∆ implies (α ∈ ∆ and β ∈ ∆),

5. α→β ∈ Γ implies (α ∈ ∆ or β ∈ Γ),
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6. α→β ∈ ∆ implies (α ∈ Γ and β ∈ ∆),

7. ∀xα ∈ Γ implies (α[y/x] ∈ Γ for any individual variable y),

8. ∀xα ∈ ∆ implies (α[z/x] ∈ ∆ for some individual variable z),

9. ∃xα ∈ Γ implies (α[z/x] ∈ Γ for some individual variable z),

10. ∃xα ∈ ∆ implies (α[y/x] ∈ ∆ for any individual variable y),

11. ∼∼α ∈ Γ implies α ∈ Γ,

12. ∼∼α ∈ ∆ implies α ∈ ∆,

13. ∼−α ∈ Γ implies α ∈ ∆,

14. ∼−α ∈ ∆ implies α ∈ Γ,

15. ∼(α ∧ β) ∈ Γ implies (∼α ∈ Γ or ∼β ∈ Γ),

16. ∼(α ∧ β) ∈ ∆ implies (∼α ∈ ∆ and ∼β ∈ ∆),

17. ∼(α ∨ β) ∈ Γ implies (∼α ∈ Γ and ∼β ∈ Γ),

18. ∼(α ∨ β) ∈ ∆ implies (∼α ∈ ∆ or ∼β ∈ ∆),

19. ∼(α→β) ∈ Γ implies (α ∈ Γ and ∼β ∈ Γ),

20. ∼(α→β) ∈ ∆ implies (α ∈ ∆ or ∼β ∈ ∆),

21. ∼∀xα ∈ Γ implies (∼α[z/x] ∈ Γ for some individual variable z),

22. ∼∀xα ∈ ∆ implies (∼α[y/x] ∈ ∆ for any individual variable y),

23. ∼∃xα ∈ Γ implies (∼α[y/x] ∈ Γ for any individual variable y),

24. ∼∃xα ∈ ∆ implies (∼α[z/x] ∈ ∆ for some individual variable z),

25. −−α ∈ Γ implies α ∈ Γ,

26. −−α ∈ ∆ implies α ∈ ∆,

27. −∼α ∈ Γ implies α ∈ ∆,

28. −∼α ∈ ∆ implies α ∈ Γ,

29. −(α ∧ β) ∈ Γ implies (−α ∈ Γ and −β ∈ Γ),

30. −(α ∧ β) ∈ ∆ implies (−α ∈ ∆ or −β ∈ ∆),

31. −(α ∨ β) ∈ Γ implies (−α ∈ Γ or −β ∈ Γ),

32. −(α ∨ β) ∈ ∆ implies (−α ∈ ∆ and −β ∈ ∆),

33. −(α→β) ∈ Γ implies (α ∈ ∆ or −β ∈ Γ),

34. −(α→β) ∈ ∆ implies (α ∈ Γ and −β ∈ ∆),

35. −∀xα ∈ Γ implies (−α[y/x] ∈ Γ for any individual variable y),

36. −∀xα ∈ ∆ implies (−α[z/x] ∈ ∆ for some individual variable z),
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37. −∃xα ∈ Γ implies (−α[z/x] ∈ Γ for some individual variable z),

38. −∃xα ∈ ∆ implies (−α[y/x] ∈ ∆ for any individual variable y).

We now introduce the notion of infinite sequent.

Definition 4.2. An expression Γ ⇒ ∆ is called an infinite sequent if Γ and
∆ are infinite (countable) sets of formulas. An infinite sequent Γ ⇒ ∆ is
called provable if a finite part Γ′ ⇒ ∆′ of the sequent is provable (i.e., Γ′ and
∆′ are finite subsets of Γ and ∆, respectively).

Definition 4.3. A decomposition of a sequent (or infinite sequent) S is
defined as having the form S′ or S′;S′′ by

1. α, β, α ∧ β,Γ ⇒ ∆ is a decomposition of α ∧ β,Γ ⇒ ∆,

2. Γ ⇒ ∆, α ∧ β, α ; Γ ⇒ ∆, α ∧ β, β is a decomposition of Γ ⇒ ∆, α ∧ β,

3. α, α ∨ β,Γ ⇒ ∆ ; β, α ∨ β,Γ ⇒ ∆ is a decomposition of α ∨ β,Γ ⇒ ∆,

4. Γ ⇒ ∆, α ∨ β, α, β is a decomposition of Γ ⇒ ∆, α ∨ β,

5. α→β,Γ ⇒ ∆, α ; β, α→β,Γ ⇒ ∆ is a decomposition of α→β,Γ ⇒ ∆,

6. α,Γ ⇒ ∆, α→β, β is a decomposition of Γ ⇒ ∆, α→β,

7. α[y1/x], ..., α[ym/x],∀xα,Γ ⇒ ∆ is a decomposition of ∀xα,Γ ⇒ ∆ where
y1, ..., ym are the free individual variables occurring in ∀xα,Γ ⇒ ∆ (if it
has no free individual variable, then we adopt an arbitrary free variable
in the language),

8. Γ ⇒ ∆,∀xα, α[z/x] is a decomposition of Γ ⇒ ∆,∀xα where z is a fresh
free individual variable (i.e., z is not occurring in it),

9. α[z/x],∃xα,Γ ⇒ ∆ is a decomposition of ∃xα,Γ ⇒ ∆ where z is a fresh
free individual variable, (i.e., z is not occurring in it),

10. Γ ⇒ ∆,∃xα, α[y1/x], ..., α[ym/x] is a decomposition of Γ ⇒ ∆, ∃xα where
y1, ..., ym are the free individual variables occurring in Γ ⇒ ∆,∃xα, (if it
has no free individual variable, then we adopt an arbitrary free variable
in the language),

11. α,∼∼α,Γ ⇒ ∆ is a decomposition of ∼∼α,Γ ⇒ ∆,

12. Γ ⇒ ∆,∼∼α, α is a decomposition of Γ ⇒ ∆,∼∼α,

13. ∼−α,Γ ⇒ ∆, α is a decomposition of ∼−α,Γ ⇒ ∆,

14. α,Γ ⇒ ∆,∼−α is a decomposition of Γ ⇒ ∆,∼−α,

15. ∼α,∼(α ∧ β),Γ ⇒ ∆ ; ∼β,∼(α ∧ β),Γ ⇒ ∆ is a decomposition of
∼(α ∧ β),Γ ⇒ ∆,
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16. Γ ⇒ ∆,∼(α ∧ β),∼α,∼β is a decomposition of Γ ⇒ ∆,∼(α ∧ β),

17. ∼α,∼β,∼(α ∨ β),Γ ⇒ ∆ is a decomposition of ∼(α ∨ β),Γ ⇒ ∆,

18. Γ ⇒ ∆,∼(α ∨ β),∼α ; Γ ⇒ ∆,∼(α ∨ β),∼β is a decomposition of
Γ ⇒ ∆,∼(α ∨ β),

19. α,∼β,∼(α→β),Γ ⇒ ∆ is a decomposition of ∼(α→β),Γ ⇒ ∆,

20. Γ ⇒ ∆,∼(α→β), α ; Γ ⇒ ∆,∼(α→β),∼β is a decomposition of
Γ ⇒ ∆,∼(α→β),

21. ∼α[z/x],∼∀xα,Γ ⇒ ∆ is a decomposition of ∼∀xα,Γ ⇒ ∆ where z is a
fresh free individual variable, (i.e., z is not occurring in it),

22. Γ ⇒ ∆,∼∀xα,∼α[y1/x], ...,∼α[ym/x] is a decomposition of
Γ ⇒ ∆,∼∀xα where y1, ..., ym are the free individual variables oc-
curring in Γ ⇒ ∆,∼∀xα, (if it has no free individual variable, then we
adopt an arbitrary free variable in the language),

23. ∼α[y1/x], ...,∼α[ym/x],∼∃xα,Γ ⇒ ∆ is a decomposition of
∼∃xα,Γ ⇒ ∆ where y1, ..., ym are the free individual variables oc-
curring in ∼∃xα,Γ ⇒ ∆ (if it has no free individual variable, then we
adopt an arbitrary free variable in the language),

24. Γ ⇒ ∆,∼∃xα,∼α[z/x] is a decomposition of Γ ⇒ ∆,∼∃xα where z is a
fresh free individual variable (i.e., z is not occurring in it),

25. α,−−α,Γ ⇒ ∆ is a decomposition of −−α,Γ ⇒ ∆,

26. Γ ⇒ ∆,−−α, α is a decomposition of Γ ⇒ ∆,−−α,

27. −∼α,Γ ⇒ ∆, α is a decomposition of −∼α,Γ ⇒ ∆,

28. α,Γ ⇒ ∆,−∼α is a decomposition of Γ ⇒ ∆,−∼α,

29. −α,−β,−(α ∧ β),Γ ⇒ ∆ is a decomposition of −(α ∧ β),Γ ⇒ ∆,

30. Γ ⇒ ∆,−(α ∧ β),−α ; Γ ⇒ ∆,−(α ∧ β),−β is a decomposition of
Γ ⇒ ∆,−(α ∧ β),

31. −α,−(α ∨ β),Γ ⇒ ∆ ; −β,−(α ∨ β),Γ ⇒ ∆ is a decomposition of
−(α ∨ β),Γ ⇒ ∆,

32. Γ ⇒ ∆,−(α ∨ β),−α,−β is a decomposition of Γ ⇒ ∆,−(α ∨ β),

33. −(α→β),Γ ⇒ ∆, α ; −β,−(α→β),Γ ⇒ ∆ is a decomposition of
−(α→β),Γ ⇒ ∆,

34. α,Γ ⇒ ∆,−(α→β),−β is a decomposition of Γ ⇒ ∆,−(α→β),
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35. −α[y1/x], ...,−α[ym/x],−∀xα,Γ ⇒ ∆ is a decomposition of
−∀xα,Γ ⇒ ∆ where y1, ..., ym are the free individual variables oc-
curring in −∀xα,Γ ⇒ ∆ (if it has no free individual variable, then we
adopt an arbitrary free variable in the language),

36. Γ ⇒ ∆,−∀xα,−α[z/x] is a decomposition of Γ ⇒ ∆,−∀xα where z is a
fresh free individual variable (i.e., z is not occurring in it),

37. −α[z/x],−∃xα,Γ ⇒ ∆ is a decomposition of −∃xα,Γ ⇒ ∆ where z is a
fresh free individual variable, (i.e., z is not occurring in it),

38. Γ ⇒ ∆,−∃xα,−α[y1/x], ...,−α[ym/x] is a decomposition of
Γ ⇒ ∆,−∃xα where y1, ..., ym are the free individual variables oc-
curring in Γ ⇒ ∆,−∃xα, (if it has no free individual variable, then we
adopt an arbitrary free variable in the language).

Definition 4.4. A decomposition tree of S is a tree which expresses a pro-
cess of some repeated decomposition of S.

Remark 4.5. Roughly speaking, a decomposition rule corresponds to a (mod-
ified) inference rule of SF4CC − (cut) (i.e., the right hand side of the decom-
position rule corresponds to the premise(s) of an inference rule, and the left
hand side corresponds to the conclusion of the inference rule). A decomposi-
tion tree corresponds to a bottom up proof search tree of SF4CC − (cut). In
every decomposition of S (i.e., S′ or S′;S′′), if S is unprovable in SF4CC −
(cut), then so is S′ or S′′.

Lemma 4.6. Let Γ ⇒ ∆ be a given unprovable sequent in SF4CC − (cut).
There exists an unprovable saturated (infinite) sequent Γω ⇒ ∆ω such that
Γ ⊆ Γω and ∆ ⊆ ∆ω.

Proof. Let Γ ⇒ ∆ be an unprovable sequent in SF4CC − (cut). We con-
struct Γω ⇒ ∆ω from Γ ⇒ ∆ as follows.

1. We apply the decomposition instructions from Definition 4.3 to Γ ⇒ ∆,
in the following order, but without some decompositions, which are not
related to the formulas in Γ ⇒ ∆.

(1) −→ (2) −→ (3) −→ · · · −→ (38).

In such a decomposition process, one of the decomposed elements S′ and
S′′ of S is an unprovable sequent.

2. We repeat the same procedure as that of (1) infinitely often. Then, we
obtain an infinite finitely branching decomposition tree.
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3. By König’s lemma, we have an infinite path on this decomposition tree
as follows:

Γ0 ⇒ ∆0 | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | · · · ∞,

where Γ0 ⇒ ∆0 is Γ ⇒ ∆. In this sequence of the sequents on the infinite
path, we have that Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · and ∆0 ⊆ ∆1 ⊆ ∆2 ⊆ · · · .

4. We put Γω :=
∪∞

i=0 Γi and ∆ω :=
∪∞

i=0∆i. We note that Γω ∩∆ω = ∅.

Then, we have that Γ ⊆ Γω and ∆ ⊆ ∆ω, and can verify that Γω ⇒ ∆ω

is an unprovable saturated sequent.

Remark 4.7. Schütte’s method for proving completeness and cut-elimination
theorems cannot apply to GF4CC. The reason is explained as follows. If the
corresponding decomposition rules of GF4CC including (−left) and (−right)
are adopted, then it is not clear whether some repeated decomposition pro-
cesses develop or not a saturated sequent which is defined naturally in Defi-
nition 4.1, because the decomposition rules for (−left) and (−right) are not
related to the definition of saturated sequents. That is why we adopt SF4CC

as a base system for F4CC.

Lemma 4.8. Let Γ ⇒ ∆ be an unprovable sequent in SF4CC − (cut), and
Γω ⇒ ∆ω be an unprovable saturated sequent constructed from Γ ⇒ ∆ by
Lemma 4.6. We define a canonical paraconsistent model A := ⟨U, I∗⟩ for
Γ ⇒ ∆ as follows:

1. U := {z | z is a free individual variable occurring in Γω ⇒ ∆ω},

2. I∗ is a mapping such that

(a) pI
∗
:= {(z1, ..., zm) | p(z1, ..., zm) ∈ Γω},

(b) (∼p)I
∗
:= {(z1, ..., zm) | ∼p(z1, ..., zm) ∈ Γω},

(c) (−p)I
∗
:= {(z1, ..., zm) | −p(z1, ..., zm) ∈ Γω}.

Then, we have: for any formula α,

1. α ∈ Γω implies A |=∗ α
¯
,

2. α ∈ ∆ω implies A ̸|=∗ α
¯

where α
¯

is obtained form α by replacing every individual variable x occurring
in α by the name x

¯
.
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Proof. By induction on α.

• Base step: We show only the following case. The others can be shown
similarly.

Case α = −p(u
¯1

, ..., u
¯n

): First we have: −p(u1, ..., un) ∈ Γω iff (u1, ..., un)
∈ (−p)I

∗
(by the definitions of I∗) iff A |=∗ −p(u

¯1
, ..., u

¯n
). Second,

we have: −p(u1, ..., un) ∈ ∆ω iff −p(u1, ..., un) ̸∈ Γω (by the fact Γω ∩
∆ω = ∅) iff (u1, ..., un) ̸∈ (−p)I

∗
(by the definitions of I∗) iff A ̸|=∗

−p(u
¯1

, ..., u
¯n

).

• Induction step: We show some of cases. The others can be shown
similarly.

1. Case α = β ∧ γ: First, we show that β ∧ γ ∈ Γω implies A |=∗ β
¯
∧ γ
¯
.

Suppose β ∧ γ ∈ Γω. Then, we obtain [β ∈ Γω and γ ∈ Γω] by Definition
4.1. By the induction hypothesis, we obtain [A |=∗ β

¯
and A |=∗ γ

¯
]. This

means A |=∗ β
¯
∧γ
¯
. Second, we show that β∧γ ∈ ∆ω implies A ̸|=∗ β

¯
∧γ
¯
.

Suppose β ∧ γ ∈ ∆ω. Then, we obtain [β ∈ ∆ω or γ ∈ ∆ω] by Definition
4.1. By the induction hypothesis, we obtain [A ̸|=∗ β

¯
or A ̸|=∗ γ

¯
]. This

means A ̸|=∗ β
¯
∧ γ
¯
.

2. Case α = β→γ: First, we show that β→γ ∈ Γω implies A |=∗ β
¯
→γ

¯
.

Suppose β→γ ∈ Γω. Then, we obtain [β ∈ ∆ω or γ ∈ Γω] by Definition
4.1. By the induction hypothesis, we obtain [A ̸|=∗ β

¯
or A |=∗ γ

¯
]. This

meansA |=∗ β
¯
→γ

¯
. Second, we show that β→γ ∈ ∆ω impliesA ̸|=∗ β

¯
→γ

¯
.

Suppose β→γ ∈ ∆ω. Then, we obtain [β ∈ Γω and γ ∈ ∆ω] by Definition
4.1. By the induction hypothesis, we obtain [A |=∗ β

¯
and A ̸|=∗ γ

¯
]. This

means A ̸|=∗ β
¯
→γ

¯
.

3. Case α = ∼∼β: First, we show that ∼∼β ∈ Γω implies A |=∗ ∼∼β
¯
.

Suppose ∼∼β ∈ Γω. Then, we obtain β ∈ Γω by Definition 4.1. By
the induction hypothesis, we obtain A |=∗ β

¯
, and hence obtain A |=∗

∼∼β
¯
. Second, we show that ∼∼β ∈ ∆ω implies A ̸|=∗ ∼∼β

¯
. Suppose

∼∼β ∈ ∆ω. Then, we obtain β ∈ ∆ω by Definition 4.1. By the induction
hypothesis, we obtain A ̸|=∗ β

¯
, and hence obtain A ̸|=∗ ∼∼β

¯
).

4. Case α = ∼−β: First, we show that ∼−β ∈ Γω implies A |=∗ ∼−β
¯
.

Suppose ∼−β ∈ Γω. Then, we obtain β ∈ ∆ω by Definition 4.1. By
the induction hypothesis, we obtain A ̸|=∗ β

¯
, and hence obtain A |=∗

∼−β
¯
. Second, we show that ∼−β ∈ ∆ω implies A ̸|=∗ ∼−β

¯
. Suppose

∼−β ∈ ∆ω. Then, we obtain β ∈ Γω by Definition 4.1. By the induction
hypothesis, we obtain A |=∗ β

¯
, and hence obtain A ̸|=∗ ∼−β

¯
).
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5. Case α = ∼(β→γ): First, we show that ∼(β→γ) ∈ Γω implies A |=∗

∼(β
¯
→γ

¯
). Suppose ∼(β→γ) ∈ Γω. Then, we obtain [β ∈ Γω and ∼γ ∈

Γω] by Definition 4.1. By the induction hypothesis, we obtain [A |=∗ β
¯and A |=∗ ∼γ

¯
]. This means A |=∗ ∼(β

¯
→γ

¯
). Second, we show that

∼(β→γ) ∈ ∆ω implies A ̸|=∗ β
¯
→γ

¯
. Suppose ∼(β→γ) ∈ ∆ω. Then,

we obtain [β ∈ ∆ω or ∼γ ∈ ∆ω] by Definition 4.1. By the induction
hypothesis, we obtain [A ̸|=∗ β

¯
) or A ̸|=∗ ∼γ

¯
)]. This means A ̸|=∗

∼(β
¯
→γ

¯
)).

6. Case α = ∼∀xβ: First, we show that ∼∀xβ ∈ Γω implies A |=∗ ∼∀xβ
¯
.

Suppose ∼∀xβ ∈ Γω. Then, we obtain ∼β[z/x] ∈ Γω for some z ∈ U ,
by Definition 4.1. By the induction hypothesis, we obtain that A |=∗

∼β
¯
[z
¯
/x] for some z ∈ U . This means A |=∗ ∼∀xβ

¯
. Second, we show

that ∼∀xβ ∈ ∆ω implies A ̸|=∗ ∼∀xβ
¯
. Suppose ∼∀xβ ∈ ∆ω. Then,

we obtain ∼β[yi/x] ∈ ∆ω for any yi ∈ U , by Definition 4.1. By the
induction hypothesis, we obtain A ̸|=∗ ∼β

¯
[yi
¯
/x]) for any yi ∈ U . This

means A ̸|=∗ ∼∀xβ
¯
.

7. Case α = ∼∃xβ: First, we show that ∼∃xβ ∈ Γω implies A |=∗ ∼∃xβ
¯
.

Suppose ∼∃xβ ∈ Γω. Then we obtain ∼β[yi/x] ∈ Γω for any yi ∈ U ,
by Definition 4.1. By the induction hypothesis, we obtain that A |=∗

∼β
¯
[yi
¯
/x] for any yi ∈ U . This means A |=∗ ∼∃xβ

¯
. Second, we show

that ∼∃xβ ∈ ∆ω implies A ̸|=∗ ∼∃xβ
¯
. Suppose ∼∃xβ ∈ ∆ω. Then,

we obtain ∼β[z/x] ∈ ∆ω for some z ∈ U by Definition 4.1. By the
induction hypothesis, we obtain A ̸|=∗ ∼β

¯
[z
¯
/x] for some z ∈ U . This

means A ̸|=∗ ∼∃xβ
¯
.

8. Case α = −(β→γ): First, we show that −(β→γ) ∈ Γω implies A |=∗

−(β
¯
→γ

¯
). Suppose −(β→γ) ∈ Γω. Then, we obtain [β ∈ ∆ω or −γ ∈ Γω]

by Definition 4.1. By the induction hypothesis, we obtain [A ̸|=∗ β
¯
or

A |=∗ −γ
¯
]. This means A |=∗ −(β

¯
→γ

¯
). Second, we show that −(β→γ) ∈

∆ω implies A ̸|=∗ −β
¯
→γ

¯
. Suppose −(β→γ) ∈ ∆ω. Then, we obtain

[β ∈ Γω and ∼γ ∈ ∆ω] by Definition 4.1. By the induction hypothesis,
we obtain [A |=∗ β

¯
) and A ̸|=∗ −γ

¯
)]. This means A ̸|=∗ −(β

¯
→γ

¯
)).

Theorem 4.9 (Strong completeness for SF4CC). For any sequent S, if S is
valid, then SF4CC − (cut) ⊢ S.

Proof. Let S be Γ ⇒ ∆. Then, we prove the following: if Γ ⇒ ∆ is un-
provable in SF4CC − (cut), then there exists a model A such that Γ ⇒ ∆ is
not F4CC-valid in A. Suppose that Γ ⇒ ∆ is unprovable in SF4CC − (cut).
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Then, by Lemma 4.8, we can construct a canonical model A satisfying the
conditions in this lemma. Thus, we have A |=∗ γ

¯
and A ̸|=∗ δ

¯
for any

γ ∈ Γ ⊆ Γω and any δ ∈ ∆ ⊆ ∆ω. Hence, we obtain “A ̸|=∗ Γ
¯∗
→∆

¯
∗,” and

hence “A ̸|=∗ cl(Γ∗→∆∗).” Therefore, Γ ⇒ ∆ is not F4CC-valid in A.

Theorem 4.10 (Cut-elimination for SF4CC). The rule (cut) is admissible in
cut-free SF4CC.

Proof. By combining Theorems 4.9 and 3.5.

By using Theorem 4.10, we can strengthen Proposition 2.5.

Proposition 4.11. The rules (∼left), (∼right), (−left), and (−right) are
admissible in cut-free SF4CC:

Proof. We show only the case for (∼left). Suppose SF4CC − (cut) ⊢
Γ ⇒ ∆,−α. Then, we can derive ∼α,Γ ⇒ ∆ from Γ ⇒ ∆,−α by Propo-
sition 2.5 using (cut). We thus obtain SF4CC − (cut) ⊢ ∼α,Γ ⇒ ∆ by
Theorem 4.10.

By using Proposition 4.11, we can obtain the following characteristic
property of SF4CC

Theorem 4.12 (Admissibilities of negative symmetry rules in SF4CC). The
following negative symmetry rules are admissible in cut-free SF4CC:

−∆ ⇒ −Γ
∼Γ ⇒ ∼∆

(∼⇑−) ∼∆ ⇒ ∼Γ
−Γ ⇒ −∆

(−⇑∼).

Proof. By Proposition 4.11.

5. Conclusion

In this paper, we have studied a first-order extension of the paradefinite logic
4CC. This extension, which relies on the Gentzen-type sequent calculus EPL
introduced in [12, 13] for 4CC, was obtained by augmenting the latter system
with natural rules for the quantifiers, as well as for their interaction with
the connectives ∼ and −. A cut-free proof system was presented, as well as
a two-valued first-order semantics, that served as the main tool for proving
cut-elimination.

In what follows, we clarify the connection between the results of this
paper and our previous papers [12, 13]. The paper [13] is an extension of the
conference paper [12], and hence the results of [12] are included in [13]. The
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propositional fragment of the sequent calculus SF4CC which was introduced
in this paper is equivalent to the sequent calculus EPL which was introduced
in [13] for 4CC. The sequent calculus EPL is theorem-equivalent to the
original sequent calculus G4CC [4, 5] for 4CC. Moreover, the sequent calculus
GF4CC which was introduced in this paper for F4CC is a straightforward first-
order extension of G4CC. Thus, as shown in this paper, GF4CC is theorem-
equivalent to SF4CC. Although the results of [13] for EPL were shown only for
the propositional case (i.e., the case for 4CC), the results of this paper were
shown for the first-order case (i.e., the case for F4CC). Thus, the proofs of the
main theorems including cut-elimination and completeness are completely
different in these papers (i.e., the present paper used Schütte’s method for
proving these theorems, but the paper [13] used Lahav and Avron’s semantic
method proposed in [14]). On the other hand, the proofs of the negative
symmetry property for SF4CC is the same as that for EPL. In addition, a
subsystem of EPL called PL, which is obtained from EPL by deleting the
initial sequents ∼α,−α ⇒ and ⇒ ∼α,−α, was introduced in [13] wherein
the cut-elimination and completeness theorems for PL were proved using an
embedding-based method. We can also show the same results for such a
first-order subsystem of SF4CC in a similar way as those for PL.

As Schütte’s method was also used for second-order logic [21], it would be
interesting to see whether the current work can be generalized for a second-
order extension of 4CC. A second question that is left for future research is
whether the methods used here and other methods can be applied to prove
completeness theorems with respect to natural many-valued and algebraic
semantics for F4CC.
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