Smart Contracts Verification (89400)

Yoni Zohar — Bar Ilan University

Seminar

Smart Contracts Verification

@ Seminar Plan

© Blockchain and Smart Contracts
© Verification

@ Seminar Overview

e Reading a Paper

@ Presenting a Paper

Smart Contracts Verification

© Seminar Plan

Smart Contracts Verification

Schedule

Schedule

@ Seminar web-page:
e https://u.cs.biu.ac.il/~zoharyol/sc-seminar/2024-2025/
index.html

Please send me your paper/date requests in order of preference
The more options given, the more likely you get one of them
Until next meeting

Speaking of next meeting: who wants to present?

Smart Contracts Verification

https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/2024-2025/index.html
https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/2024-2025/index.html

Presenting (80%)
@ Slides in English, talk in English
o IN ENGLISH
@ Presentation in pairs, ~ 75 minutes excluding questions
@ No GPTs.

Participating (20%)
e Attend (physically/virtually), ask questions, get involved

@ Send me an email after each lecture with:

e Your name and ID
o A paragraph about the lecture that you've heard (~ 100) words.
o No GPTs.

Smart Contracts Verification

Presentation criteria

complete: includes all the main material from the paper
engaging: interesting, makes me want to listen

knowledgable: show that you understood the paper in a deep manner
clear:
e everything is explained properly
e no knowledge assumed (beyond being a 3rd year CS student)
e no skipping key definitions
past reference: refer to previous relevant talks
IKAR vs. TAFEL: focus on what's important
coordination: one presentation by two students # two presentations

demo: very important, engaging and interesting

Smart Contracts Verification

Seminar Goals

@ Learn how to read a paper in CS
e Focus on the important results
o Cover necessary background

@ Learn how to present

o Who are you presenting to
o What is the important message
o Keep audience engaged

@ Discover interesting research and tools

o Active field of research
e Many new techniques and tools

=0 2s

vmware

And many more institutions and startups

Smart Contracts Verification

© Blockchain and Smart Contracts

Smart Contracts Verification

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.

The netwarlk timectamne trancactione hv hachino them inta an anonino chain of

@ Transfer money between parties directly
o Not going through a bank
@ Retain security without a trusted verifying third-party

Smart Contracts Verification

Blockchain

What = = bockchar?

o Linked list @ Data remains forever
o Elements are called blocks @ Blocks are cryptographically
@ Each block has: immutable
e ID @ If A changes a block, B can
o data (set of transactions) (easily) notice it
e Pointer to previous block o Hash function
o Hash of previous block o Remember the pointer and
o Allowed operations: append hash to the head

o 23 unzh

Alice pays Bob 3 bitcoins

Chris pays Dorls 2 bitcoins
Ed pays Fred 2 bitcoins

Reward myself 25 bitcoins

B e
bitsonblocks.net

Smart Contracts Verification

Bitcoin
@ Bitcoin is a currency
@ Distributed
@ Operated through the bitcoin p2p network

@ Uses the bitcoin blockchain

The Bitcoin Blockchain
@ Decentralized
@ Public

@ Used as a ledger
@ The blocks data consists of transactions
e Optimization: Several transactions in each block

TR q

Smart Contracts Verification

Bitcoin Transactions

What does it mean?

| own a coin

| am able to spend a coin

When | submit a transaction with this coin
the transaction will be added to the blockchain

Smart Contracts Verification

Bitcoin Transactions

What does it mean?

| own a coin

| am able to spend a coin

When | submit a transaction with this coin
the transaction will be added to the longest valid branch in the blockchain

Smart Contracts Verification

Pizza

@ | broadcast a transaction where | transfer money to Amici’s Pizza

@ My transaction is added to the longest valid branch
@ Should Amici's start preparing my pizza?
o Will this transaction stay on the longest valid branch?

The more Amici's wait, the better

6 blocks should be enough (~ 1 hour)

1 confirmation 3 confirmations

G =06

A

C,—A

Smart Contracts Verification

Achieving Randomness: Mining

You Gotta Work For It!

@ Nodes compete for the right to create blocks
@ They need to prove that they worked for it

Look for a number x such that hash(x#ttxs) < e and put it in the block
Assumption: the hash function is secure

No way other than exhaust the search space

Ensures randomness of block creator

@ Searching for x = mining

@ A node that searches for x: miner

Smart Contracts Verification

The Need for Altcoins

“Script”: The Language of Transactions

@ Transactions are written in “Script”

@ limited scripting language
@ Stack-based, no loops

@ Allows for limited variants of the above two transaction types

These are not “Smart Contracts” yet

“Turing-complete”-blockchain

Smart Contracts Verification

@ Like bitcoin, but with a Turing-complete scripting language

@ Also has a blockchain
@ Scripts = smart contracts

o Code = meaning of contract
o Execution = enforcement of contract

Contracts are added to the blockchain via transactions

Contracts are assigned with an address and a balance

Ether and Beyond
@ Ether = The Ethereum currency
@ General-purpose blockchain
@ Other currencies
°

Other purposes

Smart Contracts Verification

Smart Contracts

Smart Contracts
@ Deployed as bytecode
@ Run by Ethereum Virtual Machine (EVM)
@ Usually written in a high-level language: Solidity
o Stateful
@ Other high-level languages are considered

pragma solidity 0.4.8;
contract ControlStructure {
address public a;
function ControlStructure(uint inputl) {
while(inputl >= 0){
if (inputl == 5)
inputl = inputl - 1;
at+;

Smart Contracts Verification

Gas

@ Preventing contracts from running forever: Gas

@ Each VM instruction has a fixed cost in gas units

@ When publishing a transaction to the network, the sender specifies:
o how much (s)he will pay per gas unit
e gas limit

o If gas limit is hit, the execution is reverted

@ The miner gets the gas value

AgBA

THE MINER TAKES IT ALL

Smart Contracts Verification

© Verification

Smart Contracts Verification

Challenges

@ Blockchain Technology, and in particular the Ethereum blockchain are
(relatively) new fields

@ A lot of research subjects naturally arise

@ To name a few:

Cryptographic protocols
Consensus Protocols
Incentives

e Estimation of gas costs

@ Decide whether to submit a transaction
@ Decide what gas limit to put

e Verification of smart contracts

e Find bugs
o Know what the contract does

Smart Contracts Verification

Reasoning about Smart Contracts

@ Solidity is a programming language
@ We would like to verify some properties of smart contracts

o Examples:

o Safety w.r.t. particular attacks
Termination
Not running out of gas
Specification by examples

@ Challenges:
e Non-standard control flow
o Contracts are called by other contracts whose code is unknown
o Need for modularity

o Need to reason about second-order concepts

o Sum, count,. ..
e Is gas an internal or external notion to the contract?

Smart Contracts Verification

Example 1: Tokens

@ The Ethereum blockchain is used not only for Ether

@ It is a general-purpose blockchain

@ Many currencies are created within it, they are called tokens

@ Tokens may differ in their logic / rules / functionality.

ERC20 Standard
@ A standard for tokens

@ Tokens should include several functions, e.g.:
o totalSupply()
o balanceOf(address)
o transfer(to, tokens)

Smart Contracts Verification

Example 1: Tokens

contract SimpleToken {
def ts : uint //total supply
def b : address -> uint //balances
method burn(a : uint, s : address) { //amount, sender
ts = ts - a
if (b[s] >= a) {
bls] = bls] - a
}
}
+

We would like to prove an invariant: Sum(balances) = totalSupply

(Ib=ts= (ts =ts—a A (b[s]>a= b =b[s<«+[s]—a]) A
(b[s] <a= b =0b))) = b =ts

Not Valid!

Example 1: Tokens

contract SimpleToken {
def ts : uint //total supply
def b : address -> uint //balances
method burn(a : uint, s : address) { //amount, sender
if (bls] >= a) {
bls] = bls] - a
ts = ts - a
}
}
+

We would like to prove an invariant: Sum(balances) = totalSupply

(Ib=ts=((b[s]>a= (b =b[s+[s]—a]Ats’=ts—a)) A
(bls]<a= (b =bAts'=1ts))))=%Xb =ts

Valid!
Smart Contracts Verification

Example 2: Wallets

Multi-signature Wallets

@ In some cases, it makes sense to have a shared wallet

@ n owners, at least m must sign for each transaction
@ Examples:

e Spouse joint account
e Company board of directors
e Buyer, seller, trustee

PENDING PROPOSALS

PENDING
9 @ @ PROPOSALS
ME

GEORGE MARTIN m

Smart Contracts Verification

Example 2: Wallets

contract Wallet {
def req : uint //number of required signatures
def os : address -> bool //owners
method removeOwner(o: address) {
os[o] = false

}

We would like to prove an invariant: Count(os) > req
CountTrue(os) > req = (os' = os[o « false] = Count(os') > req)

Not Valid!

Smart Contracts Verification

Example 2: Wallets

contract Wallet {
def req : uint //number of required signatures
def n: uint //number of owners
def os : address -> bool //owners
method removeOwner (o: address) {
if n > req {
os[o] = false
n = n-1
}
}

3

We would like to prove an invariant: n > req A n = Count(os)

(n>req A n= Count(os))= ((n> req = (os' = os[o « false] A
n"=n—-1))= (n>req A n = Count(os’)))

Valid!
Smart Contracts Verification

@ Seminar Overview

Smart Contracts Verification

High Level Topic

Verification of Smart Contracts

@ Smart Contract Languages and their vulnerability

@ General-purpose Verification Techniques

@ Specific Verification Techniques for Smart Contracts

Let's look at the papers

Smart Contracts Verification

Smart Contract Languages and Vulnerabilities

@ Script

@ Solidity and Ethereum Bytecode
@ Move

@ Michelson (Tezos)

o ...
Vulnerabilities

@ Real assets are transferred

o No safety net
@ Private contract storage vs. shared blockchain storage
o Callbacks and interactions between contracts

Smart Contracts Verification

Verification, Testing, Auditing

@ Verification: 100% correctness, non-terminating

@ Testing: Low coverage, terminating
@ Auditing: Mostly manual

e Combinations: e.g., verification techniques for test generation

Rice's Theorem

@ It is undecidable to determine whether a given program satisfies a
certain (semantic, non-trivial) property

@ Verification is impossible?

@ Heuristics, incompleteness, application-guided research

Smart Contracts Verification

Verification Despite Rice’'s Theorem

Satisfiability Modulo Theories (SMT)
@ Core Technique: Translating programs into a logical formula
@ SMT-solvers: general-purpose logical solvers
@ Translation is straight-forward without (unbounded) loops

@ Loops require dedicated techniques

Smart Contracts Verification

Verification of Smart Contracts

Specific Challenges and Techniques

o Gas
@ Special vulnerabilities
@ Basic SW verification techniques work to a certain extent

@ Specific techniques are developed for Smart Contracts

Tools

@ solc-verify (SRI)

@ Verisol (Microsoft Research)
@ The Move Prover (Facebook, Stanford)
@ Solidity’s internal checker (Ethereum Foundation)

Smart Contracts Verification

e Reading a Paper

Smart Contracts Verification

Reading Papers

o Start early

@ Read background material

@ Papers are rarely fully self-contained
@ Ask for help, via email or a meeting
o Start early

Tips — 2
@ Look for references in the paper
o for background material
@ Look for references of the paper

o for a more general understanding
e google scholar

Smart Contracts Verification

The Three Pass Approach

Read more than once

@ https://web.stanford.edu/class/ee384m/Handouts/
HowtoReadPaper.pdf

@ Reading once from start to finish often does not work
@ ldeas need to be absorbed

@ Understanding requires time

Smart Contracts Verification

https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf
https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf

Three Passes

@ First Pass:

title, abstract
section titles
references
contributions

@ Second Pass:
e “normal” reading
e write notes
e mark notions, questions, important parts
o ignore proofs / low level details
@ summarize

@ Third Pass:

critical thinking

e trying to "re-create” the details
o deeper understanding

o low-level details

Smart Contracts Verification

@ Presenting a Paper

Smart Contracts Verification

Presenting a Paper

Technicalities

@ Let me know by next class your preferences

o Pairs

@ Partition your presentation equally
@ Not necessarilly equal grading

o English

Smart Contracts Verification

Presenting a Paper

@ Start after or during the reading of the paper

e What would you / your partner have asked?
@ What might be unclear?

o Keep it simple (effects)

@ Go deep (content)

Tips 2

@ Many examples

@ Examples may come before definitions
@ presentation # handout

e Short bullets

Do not include long summaries
Graphs, plots, illustrations
Demos

Smart Contracts Verification

Preparing a Presentation

Preparing Slides

@ https://homes.cs.washington.edu/~mernst/advice/
giving-talk.html

@ Know the paper well
@ Remember the audience
@ What are the key takeaways?

@ Rely on previous lectures

o Copy / Screenshot
e Don't ignore
o Acknowledge

Smart Contracts Verification

https://homes.cs.washington.edu/~mernst/advice/giving-talk.html
https://homes.cs.washington.edu/~mernst/advice/giving-talk.html

Structure Your Talk

e Intro/Background:

What is the paper about?

Motivation

Terminology and notions from previous presentations
e Main Contribution

o Body
e Main results
e Significance
e Methods / Tools / Techniques
e Examples and Demos
o Advanced material
@ Conclusion
o Repeat the main message
o What was done
e What is left to do

Smart Contracts Verification

Presenting

Presenting Slides

@ Practice
@ Writing # Speaking

o Time yourself
@ Not too fast, not too slow

o Engage

Smart Contracts Verification

@ Diverse and Interesting topic: Practical tools + deep theory
@ Please email me by next lecture your preferred papers

@ Seminar Website: https://u.cs.biu.ac.il/~zoharyol/
sc-seminar/2024-2025/index.html

Smart Contracts Verification

https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/2024-2025/index.html
https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/2024-2025/index.html

	Seminar Plan
	Blockchain and Smart Contracts
	Verification
	Seminar Overview
	Reading a Paper
	Presenting a Paper

