
Smart Contracts Verification (89400)

Yoni Zohar – Bar Ilan University

Seminar

Smart Contracts Verification

Outline

1 Seminar Plan

2 Blockchain and Smart Contracts

3 Verification

4 Seminar Overview

5 Reading a Paper

6 Presenting a Paper

Smart Contracts Verification

Outline

1 Seminar Plan

2 Blockchain and Smart Contracts

3 Verification

4 Seminar Overview

5 Reading a Paper

6 Presenting a Paper

Smart Contracts Verification

Schedule

Schedule
Seminar web-page:

https://u.cs.biu.ac.il/˜zoharyo1/sc-seminar/2024-2025/
index.html

Please send me your paper/date requests in order of preference
The more options given, the more likely you get one of them
Until next meeting
Speaking of next meeting: who wants to present?

Smart Contracts Verification

https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/2024-2025/index.html
https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/2024-2025/index.html

Requirements

Presenting (80%)
Slides in English, talk in English
IN ENGLISH
Presentation in pairs, ∼ 75 minutes excluding questions
No GPTs.

Participating (20%)
Attend (physically/virtually), ask questions, get involved
Send me an email after each lecture with:

Your name and ID
A paragraph about the lecture that you’ve heard (∼ 100) words.
No GPTs.

Smart Contracts Verification

Presentation criteria

complete: includes all the main material from the paper
engaging: interesting, makes me want to listen
knowledgable: show that you understood the paper in a deep manner
clear:

everything is explained properly
no knowledge assumed (beyond being a 3rd year CS student)
no skipping key definitions

past reference: refer to previous relevant talks
IKAR vs. TAFEL: focus on what’s important
coordination: one presentation by two students ̸= two presentations
demo: very important, engaging and interesting

Smart Contracts Verification

Seminar Goals

Learn how to read a paper in CS
Focus on the important results
Cover necessary background

Learn how to present
Who are you presenting to
What is the important message
Keep audience engaged

Discover interesting research and tools
Active field of research
Many new techniques and tools

And many more institutions and startups
Smart Contracts Verification

Outline

1 Seminar Plan

2 Blockchain and Smart Contracts

3 Verification

4 Seminar Overview

5 Reading a Paper

6 Presenting a Paper

Smart Contracts Verification

Motivation

Transfer money between parties directly
Not going through a bank
Retain security without a trusted verifying third-party

Smart Contracts Verification

Blockchain
What is a blockchain?

Linked list
Elements are called blocks
Each block has:

ID
data (set of transactions)
Pointer to previous block
Hash of previous block

Allowed operations: append

Main Property
Data remains forever
Blocks are cryptographically
immutable
If A changes a block, B can
(easily) notice it

Hash function
Remember the pointer and
hash to the head

Smart Contracts Verification

Bitcoin
Bitcoin

Bitcoin is a currency
Distributed
Operated through the bitcoin p2p network
Uses the bitcoin blockchain

The Bitcoin Blockchain
Decentralized
Public
Used as a ledger
The blocks data consists of transactions

Optimization: Several transactions in each block

Smart Contracts Verification

Bitcoin Transactions

What does it mean?
I own a coin

=
I am able to spend a coin

=
When I submit a transaction with this coin

the transaction will be added to the blockchain

Smart Contracts Verification

Bitcoin Transactions

What does it mean?
I own a coin

=
I am able to spend a coin

=
When I submit a transaction with this coin

the transaction will be added to the longest valid branch in the blockchain

Smart Contracts Verification

Pizza

Example
I broadcast a transaction where I transfer money to Amici’s Pizza
My transaction is added to the longest valid branch
Should Amici’s start preparing my pizza?

Will this transaction stay on the longest valid branch?
The more Amici’s wait, the better
6 blocks should be enough (≈ 1 hour)

Smart Contracts Verification

Achieving Randomness: Mining

You Gotta Work For It!
Nodes compete for the right to create blocks
They need to prove that they worked for it

Look for a number x such that hash(x#txs) < ϵ and put it in the block
Assumption: the hash function is secure
No way other than exhaust the search space
Ensures randomness of block creator

Searching for x = mining
A node that searches for x : miner

Smart Contracts Verification

The Need for Altcoins

“Script”: The Language of Transactions
Transactions are written in “Script”
limited scripting language
Stack-based, no loops
Allows for limited variants of the above two transaction types

These are not “Smart Contracts” yet
“Turing-complete”-blockchain

Smart Contracts Verification

Ethereum

Ethereum
Like bitcoin, but with a Turing-complete scripting language
Also has a blockchain
Scripts = smart contracts

Code = meaning of contract
Execution = enforcement of contract

Contracts are added to the blockchain via transactions
Contracts are assigned with an address and a balance

Ether and Beyond
Ether = The Ethereum currency
General-purpose blockchain
Other currencies
Other purposes

Smart Contracts Verification

Smart Contracts

Smart Contracts
Deployed as bytecode
Run by Ethereum Virtual Machine (EVM)
Usually written in a high-level language: Solidity
Stateful
Other high-level languages are considered

pragma solidity 0.4.8;
contract ControlStructure {

address public a;
function ControlStructure(uint input1) {

while(input1 >= 0){
if(input1 == 5)

input1 = input1 - 1;
a++;

}
}

}

Smart Contracts Verification

Gas

Preventing contracts from running forever: Gas
Each VM instruction has a fixed cost in gas units
When publishing a transaction to the network, the sender specifies:

how much (s)he will pay per gas unit
gas limit

If gas limit is hit, the execution is reverted
The miner gets the gas value

Smart Contracts Verification

Outline

1 Seminar Plan

2 Blockchain and Smart Contracts

3 Verification

4 Seminar Overview

5 Reading a Paper

6 Presenting a Paper

Smart Contracts Verification

Challenges

Blockchain Technology, and in particular the Ethereum blockchain are
(relatively) new fields
A lot of research subjects naturally arise
To name a few:

Cryptographic protocols
Consensus Protocols
Incentives
...
Estimation of gas costs

Decide whether to submit a transaction
Decide what gas limit to put

Verification of smart contracts
Find bugs
Know what the contract does

Smart Contracts Verification

Reasoning about Smart Contracts

Solidity is a programming language
We would like to verify some properties of smart contracts
Examples:

Safety w.r.t. particular attacks
Termination
Not running out of gas
Specification by examples

Challenges:
Non-standard control flow

Contracts are called by other contracts whose code is unknown
Need for modularity

Need to reason about second-order concepts
Sum, count,. . .
Is gas an internal or external notion to the contract?

Smart Contracts Verification

Example 1: Tokens

Tokens
The Ethereum blockchain is used not only for Ether
It is a general-purpose blockchain
Many currencies are created within it, they are called tokens
Tokens may differ in their logic / rules / functionality.

ERC20 Standard
A standard for tokens
Tokens should include several functions, e.g.:

totalSupply()
balanceOf(address)
transfer(to, tokens)
...

Smart Contracts Verification

Example 1: Tokens

contract SimpleToken {
def ts : uint //total supply
def b : address -> uint //balances
method burn(a : uint, s : address) { //amount, sender

ts = ts - a
if (b[s] >= a) {

b[s] = b[s] - a
}

}
}

We would like to prove an invariant: Sum(balances) = totalSupply

(Σb = ts ⇒ (ts ′ = ts − a ∧ (b[s] ≥ a⇒ b′ = b[s ← [s]− a]) ∧
(b[s] < a⇒ b′ = b))) ⇒ Σb′ = ts ′

Not Valid!
Smart Contracts Verification

Example 1: Tokens

contract SimpleToken {
def ts : uint //total supply
def b : address -> uint //balances
method burn(a : uint, s : address) { //amount, sender

if (b[s] >= a) {
b[s] = b[s] - a
ts = ts - a

}
}

}

We would like to prove an invariant: Sum(balances) = totalSupply

(Σb = ts ⇒ ((b[s] ≥ a⇒ (b′ = b[s ← [s]− a] ∧ ts ′ = ts − a)) ∧
(b[s] < a⇒ (b′ = b∧ ts ′ = ts)))) ⇒ Σb′ = ts ′

Valid!
Smart Contracts Verification

Example 2: Wallets

Multi-signature Wallets
In some cases, it makes sense to have a shared wallet
n owners, at least m must sign for each transaction
Examples:

Spouse joint account
Company board of directors
Buyer, seller, trustee

Smart Contracts Verification

Example 2: Wallets

contract Wallet {
def req : uint //number of required signatures
def os : address -> bool //owners
method removeOwner(o: address) {

os[o] = false
}

}

We would like to prove an invariant: Count(os) ≥ req

CountTrue(os) ≥ req ⇒ (os ′ = os[o ← false] ⇒ Count(os ′) ≥ req)

Not Valid!

Smart Contracts Verification

Example 2: Wallets

contract Wallet {
def req : uint //number of required signatures
def n: uint //number of owners
def os : address -> bool //owners
method removeOwner(o: address) {

if n > req {
os[o] = false
n = n-1

}
}

}

We would like to prove an invariant: n ≥ req ∧ n = Count(os)

(n ≥ req ∧ n = Count(os)) ⇒ ((n > req ⇒ (os ′ = os[o ← false] ∧
n′ = n − 1)) ⇒ (n′ ≥ req ∧ n′ = Count(os ′)))

Valid!
Smart Contracts Verification

Outline

1 Seminar Plan

2 Blockchain and Smart Contracts

3 Verification

4 Seminar Overview

5 Reading a Paper

6 Presenting a Paper

Smart Contracts Verification

Topics

High Level Topic
Verification of Smart Contracts

Sub-topics
Smart Contract Languages and their vulnerability
General-purpose Verification Techniques
Specific Verification Techniques for Smart Contracts

Let’s look at the papers

Smart Contracts Verification

Smart Contract Languages and Vulnerabilities

Languages
Script
Solidity and Ethereum Bytecode
Move
Michelson (Tezos)
. . .

Vulnerabilities
Real assets are transferred
No safety net
Private contract storage vs. shared blockchain storage
Callbacks and interactions between contracts
. . .

Smart Contracts Verification

Verification

Verification, Testing, Auditing
Verification: 100% correctness, non-terminating
Testing: Low coverage, terminating
Auditing: Mostly manual
Combinations: e.g., verification techniques for test generation

Rice’s Theorem
It is undecidable to determine whether a given program satisfies a
certain (semantic, non-trivial) property
Verification is impossible?
Heuristics, incompleteness, application-guided research

Smart Contracts Verification

Verification Despite Rice’s Theorem

Satisfiability Modulo Theories (SMT)
Core Technique: Translating programs into a logical formula
SMT-solvers: general-purpose logical solvers
Translation is straight-forward without (unbounded) loops
Loops require dedicated techniques

Smart Contracts Verification

Verification of Smart Contracts

Specific Challenges and Techniques
Gas
Special vulnerabilities
Basic SW verification techniques work to a certain extent
Specific techniques are developed for Smart Contracts

Tools
solc-verify (SRI)
Verisol (Microsoft Research)
The Move Prover (Facebook, Stanford)
Solidity’s internal checker (Ethereum Foundation)
. . .

Smart Contracts Verification

Outline

1 Seminar Plan

2 Blockchain and Smart Contracts

3 Verification

4 Seminar Overview

5 Reading a Paper

6 Presenting a Paper

Smart Contracts Verification

Reading Papers

Tips – 1
Start early
Read background material
Papers are rarely fully self-contained
Ask for help, via email or a meeting
Start early

Tips – 2
Look for references in the paper

for background material
Look for references of the paper

for a more general understanding
google scholar

Smart Contracts Verification

The Three Pass Approach

Read more than once
https://web.stanford.edu/class/ee384m/Handouts/
HowtoReadPaper.pdf

Reading once from start to finish often does not work
Ideas need to be absorbed
Understanding requires time

Smart Contracts Verification

https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf
https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf

Three Passes

Three Passes
First Pass:

title, abstract
section titles
references
contributions

Second Pass:
“normal” reading
write notes
mark notions, questions, important parts
ignore proofs / low level details
summarize

Third Pass:
critical thinking
trying to ”re-create” the details
deeper understanding
low-level details

Smart Contracts Verification

Outline

1 Seminar Plan

2 Blockchain and Smart Contracts

3 Verification

4 Seminar Overview

5 Reading a Paper

6 Presenting a Paper

Smart Contracts Verification

Presenting a Paper

Technicalities
Let me know by next class your preferences
Pairs
Partition your presentation equally
Not necessarilly equal grading
English

Smart Contracts Verification

Presenting a Paper

Tips 1
Start after or during the reading of the paper
What would you / your partner have asked?
What might be unclear?
Keep it simple (effects)
Go deep (content)

Tips 2
Many examples
Examples may come before definitions
presentation ̸= handout

Short bullets
Do not include long summaries
Graphs, plots, illustrations
Demos

Smart Contracts Verification

Preparing a Presentation

Preparing Slides
https://homes.cs.washington.edu/˜mernst/advice/
giving-talk.html

Know the paper well
Remember the audience
What are the key takeaways?
Rely on previous lectures

Copy / Screenshot
Don’t ignore
Acknowledge

Smart Contracts Verification

https://homes.cs.washington.edu/~mernst/advice/giving-talk.html
https://homes.cs.washington.edu/~mernst/advice/giving-talk.html

Structure Your Talk

Structure
Intro/Background:

What is the paper about?
Motivation
Terminology and notions from previous presentations
Main Contribution

Body
Main results
Significance
Methods / Tools / Techniques
Examples and Demos
Advanced material

Conclusion
Repeat the main message
What was done
What is left to do

Smart Contracts Verification

Presenting

Presenting Slides
Practice
Writing ̸= Speaking
Time yourself
Not too fast, not too slow
Engage

Smart Contracts Verification

Summary

Diverse and Interesting topic: Practical tools + deep theory
Please email me by next lecture your preferred papers
Seminar Website: https://u.cs.biu.ac.il/˜zoharyo1/
sc-seminar/2024-2025/index.html

Smart Contracts Verification

https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/2024-2025/index.html
https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/2024-2025/index.html

	Seminar Plan
	Blockchain and Smart Contracts
	Verification
	Seminar Overview
	Reading a Paper
	Presenting a Paper

