THE CALCULUS OF COMPUTATION

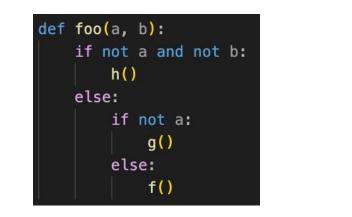
Sharon Tartakovsky

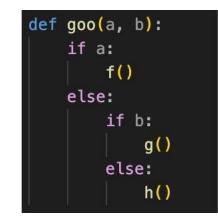
Nadav Mor

The Calculus of Computation

by Aaron R. Bradley and Zohar Manna, 2007 From Stanford University, USA Sections: 1.1–1.3, 2.1–2.3, 3.1–3.3

MOTIVATION





 $\varphi_{foo}: (\neg a \land \neg b \land h) \lor (\neg (\neg a \land \neg b) \land ((\neg a \land g) \lor (\neg (\neg a) \land f)$

$$\varphi_{goo}: (a \wedge f) \vee (\neg a \wedge ((b \wedge g) \vee (\neg b \wedge h)))$$

$$\varphi_{goo} \leftrightarrow \varphi_{foo}$$

THE CALCULUS OF COMPUTATION

Part I

provides the mathematical foundations for precise engineering.

Part II

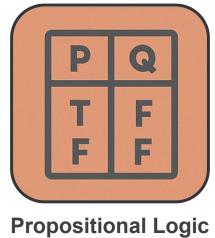
ivestigate algorithmic aspects of applying these foundations.

Aaron R. Bradley Zohar Manna

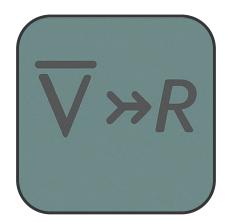
The Calculus of Computation

Decision Procedures with Applications to Verification

LECTURE OUTLINE



The logic of statements that are either true or false.

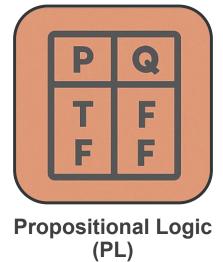


First Order Logic (FOL) Logic with predicates, functions, and quantifiers.

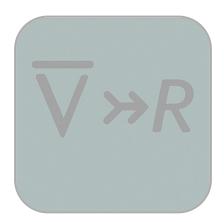
First Order Theories

Logical frameworks for reasoning about numbers, arrays, and data.

LECTURE OUTLINE



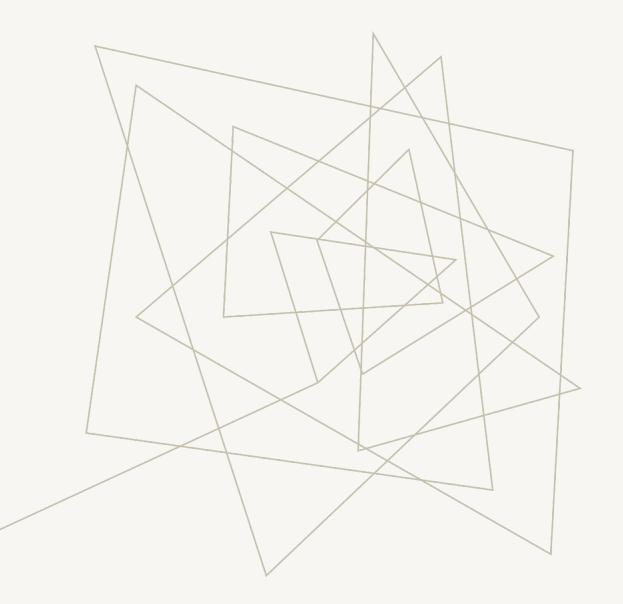
The logic of statements that are either true or false.



First Order Logic (FOL) Logic with predicates, functions, and quantifiers.

First Order Theories

Logical frameworks for reasoning about numbers, arrays, and data.



PROPOSITIONAL LOGIC (PL)

INTRODUCTION

WHAT IS A CALCULUS?

Calculus = A Formal System

- A set of symbols and rules for manipulating those symbols.
- A meaningful calculus applies to a real-world domain.

C.S NEEDS A DIFFERENT CALCULUS

- Domain: Computation.
- Based on state assignment of values to variables.
- **Computation** = Sequence of transitions between states.
- A program defines:
 - State structure
 - Allowed transitions
 - All possible computations

PURPOSE OF A LOGICAL CALCULUS IN CS

We want to **check how programs behave**:

- Does the program **sort** the array?
- Does it **use memorysafely**?
- Does it always halt?

Key Concepts

- State: Assignment of values (Booleans, integers, etc.) to variables.
- **Transitions**: Pairs of states in computation.
- Computation: Sequence of states.
- A program's **set of computations** defines it as precisely as its source code.

Goal: Develop a logical calculus that lets us reason formally about correctness,

just like differential calculus lets us reason about physical quantities.

PROPOSITIONAL LOGIC (PL)



SYNTAX

How formulas are built

SEMANTICS

What formulas mean

SATISFIABILITY AND VALIDITY

When formulas are true

PROPOSITIONAL LOGIC (PL)

SYNTAX

How formulas are built

SEMANTICS

What formulas mean

SATISFIABILITY AND VALIDITY When formulas are true

SYNTAX

The **syntax** of a logical language = its **symbols** + **rules** for combining them.

SYMBOLS ([⊤], ⊥, P, Q, ETC.)

- Truth symbols: \top (true), \perp (false)
- Propositional variables:
 - $P, Q, R, P_1, P_2, ...$

LOGICAL CONNECTIVES

Connective	Meaning	
$\neg F$	negation ("not)	
$F_1 \wedge F_2$	conjunction ("and)	
$F_1 \lor F_2$	disjunction ("or)	
$F_1 \rightarrow F_2$	implication ("impplies")	
$F_1 \leftrightarrow F_2$	biconditional (^{if and}	

SYNTAX

- Atom: truth symbol (\top, \bot) or propositional variable (P).
- Literal: An atom or its negation (e.g., P or ¬P).
- Formula: literal or An application of a <u>logical connective</u> to other formulas

¬F	"not" (negation)
F1 ^ F2	"and" (conjunction)
F1 V F2	"or" (disjunction)
$F1 \rightarrow F2$	"implies" (implication)
$F1 \leftrightarrow F2$	"if and only if" (iff)

$$(P \land Q) \rightarrow R$$

 $\neg (P \land Q) \leftrightarrow (\neg P \lor \neg Q)$
 $(\neg P \lor Q) \leftrightarrow (P \rightarrow Q)$

SUBFORMULAS

- Formula **G** is a **subformula** of **F** if it occurs within **F**.
- Rules:
 - Subformula of P is P
 - Subformulae of ¬F: ¬F and subformulae of F
 - Subformulae of F₁ ° F₂ (° = logical connectives): the full formula and the subformulae of F₁ and F₂
- Strict subformulae: all subformulae except the formula itself

 $F: (P \land Q) \to (P \lor \neg Q)$

PRECEDENCE & ASSOCIATIVITY

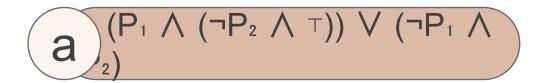
- Formula **G** is a **subformula** of **F** if it occurs within **F**.
- Precedence Order (Highest to Lowest):
 - ¬ (not)

 - V (or)
 - \rightarrow (implies)
 - \leftrightarrow (if and only if)
- Associativity Rules:
 - \rightarrow and \leftrightarrow are right-associative.
 - Example: $P \rightarrow Q \rightarrow R$ is interpreted as $P \rightarrow (Q \rightarrow R)$.

Parentheses are cumbersome. We define the relative precedence of the logical connectives from highest to vest as follows: \neg , \land , \lor , \rightarrow , \leftarrow . ditionally, let \rightarrow and \leftarrow associate to the right, so hat $P \rightarrow Q \rightarrow R$ is the same formulation $(Q \rightarrow R)$.

GROUPING WITHOUT PARENTHESES

Which of the following is logically equivalent to: $P_1 \land \neg P_2 \land \neg \lor \lor \neg P_1 \land P_2$



 $((\mathsf{P}_1 \land \neg \mathsf{P}_2) \land \top) \lor \neg (\mathsf{P}_1 \land \neg \mathsf{P}_2)$ С

 $\mathsf{P}_1 \land \neg(\mathsf{P}_2 \land (\top \lor \neg \mathsf{P}_1)) \land$ b

 $((P_1 \land \neg P_2 \land \top \lor \neg P_1) \land$ d

Which of the following is logically equivalent to: $P_1 \land \neg P_2 \land \neg \lor \lor \neg P_1 \land P_2$

 $((\mathsf{P}_1 \land \neg \mathsf{P}_2) \land \top) \lor$ ¬(P₁ ∧ С

 $(P_1 \land \neg (P_2 \land (\top \lor \neg P_1)) \land$ b

 $((P_1 \land \neg P_2 \land \top \lor \neg P_1) \land$

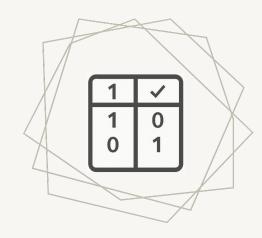
SYNTAX - EXAMPLE

- Formula: $F : (P \land Q) \rightarrow (T \lor \neg Q)$
- **atoms:** *P* , Q , T
- literal: $\neg Q$
- subformulas: $P \land Q$, $T \lor \neg Q$

subformula atom literal

$$F: (\overrightarrow{P \land Q}) \rightarrow (\overrightarrow{T} \lor \neg \overrightarrow{Q})$$

PROPOSITIONAL LOGIC (PL)



SYNTAX

How formulas are built

SEMANTICS

What formulas mean

SATISFIABILITY AND VALIDITY

When formulas are true

SEMANTICS

What is Semantics?

- Semantics defines the meaning of logical formulas.
- In PL, the meaning is based on **truth values**: true or false

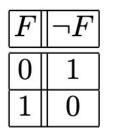
INTERPRETATION

Interpretation (I) assigns a truth value to each propositional variable.

• Example: $I: \{P \mapsto \mathsf{true}, Q \mapsto \mathsf{false}, \ldots\}$

TRUTH TABLES

Negation (¬):



Connectives Table:

F_1	$ F_2 $	$F_1 \wedge F_2$	$F_1 \lor F_2$	$F_1 \rightarrow F_2$	$F_1 \leftrightarrow F_2$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

TRUTH TABLES - EXAMPLE

Formula: $F: P \land Q \rightarrow P \lor \neg Q$ Interpretation: $I: \{P \mapsto \text{true}, Q \mapsto \text{false}\}$

Step-by-step Table:

P	Q	$\neg Q$	$P \wedge Q$	$P \vee \neg Q$	F
1	0	1	0	1	1

F evaluates to true under interpretation **I**.



INDUCTIVE DEFINITION OF PL'S SEMANTICS

/ ⊨	F if F eva	aluates to	true	under <i>I</i>
/ ⊭	F		false	
Base Case:				
/ ⊨	Т			
/ ⊭	\bot			
/ ⊨	P iff /[[P] = true		
/ ⊭	P iff /	P] = false		
Inductive C	Case:			
		iff $I \not\models I$	Ξ	
/ ⊨	$F_1 \wedge F_2$	iff $I \models I$	F_1 and	$I \models F_2$
/ ⊨	$F_1 \lor F_2$	iff $I \models I$	F_1 or I	$\models F_2$
	$F_1 \rightarrow F_2$			
/ ⊨	$F_1 \leftrightarrow F_2$	1201 - 22		
		or I 🚽	\neq F_1 a	nd $I \not\models F_2$
<u>Note</u> :				
/ ⊭	$F_1 \rightarrow F_2$	iff /⊨	$= F_1$ ar	nd $I \not\models F_2$
1 Propositional Log	gic (PL)	1.2 Semantics		27

INDUCTIVE DEFINITION - EXAMPLE

Formula: $F: P \land Q \rightarrow P \lor \neg Q$ Interpretation: $I: \{P \mapsto \mathsf{true}, \ Q \mapsto \mathsf{false}\}$

1. $I \models P$ 2. $I \not\models Q$ 6. $I \models F$

since I[P] =true since $I[Q] = \mathsf{false}$ 3. $I \models \neg Q$ by 2 and semantics of \neg $4. \quad I \not\models P \land Q \qquad \text{ by 2 and semantics of } \land$ 5. $I \models P \lor \neg Q$ by 1 and semantics of \lor ?Why by 4 and semantics of \rightarrow

1 Propositional Logic (PL)

1. $I \models P$ 2. $I \not\models Q$ since I[Q] = false3. $I \models \neg Q$ by 2 and semantics of \neg 4. $I \not\models P \land Q$ by 2 and semantics of \land 5. $I \models P \lor \neg Q$ by 1 and semantics of \lor by 4 and semantics of \rightarrow **?Why** 6. $I \models F$

INDUCTIVE DEFINITION - EXAMPLE

since I[P] =true

 $I \models F_1 \rightarrow F_2$ iff, if $I \models F_1$ then $I \models F_2$

 $F: P \land Q \rightarrow P \lor \neg Q$ $I: \{P \mapsto \mathsf{true}, \ Q \mapsto \mathsf{false}\}$

PROPOSITIONAL LOGIC (PL)

SYNTAX

How formulas are built

SEMANTICS

What formulas mean

SATISFIABILITY AND VALIDITY

When formulas are true

SATISFIABILITY AND VALIDITY

F satisfiable \leftrightarrow there exists an interpretation I such that $I \vDash F$. *F* valid \leftrightarrow for all interpretations I, $I \vDash F$.

F is valid $\leftrightarrow \neg F$ is unsatisfiable

Why it works?

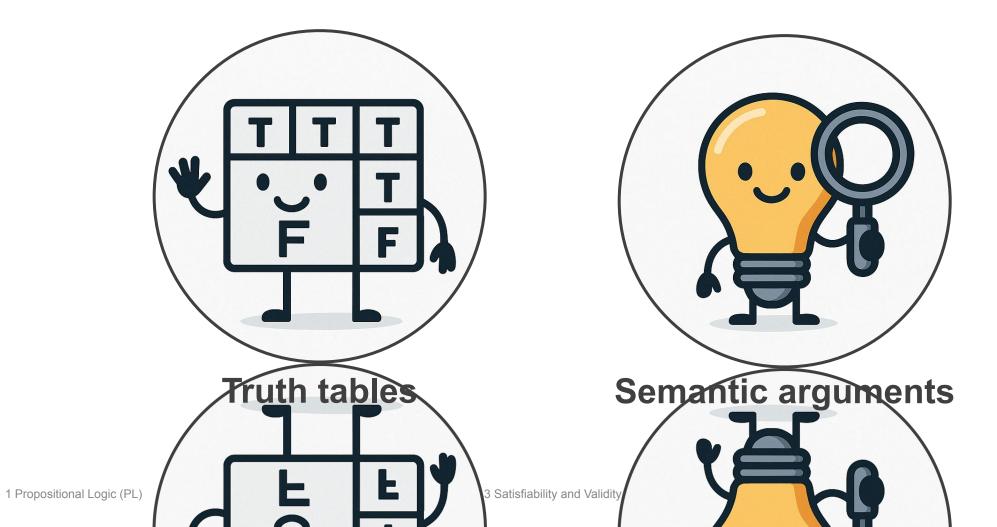
If F is valid,

then for every I, I $\vDash F \rightarrow$

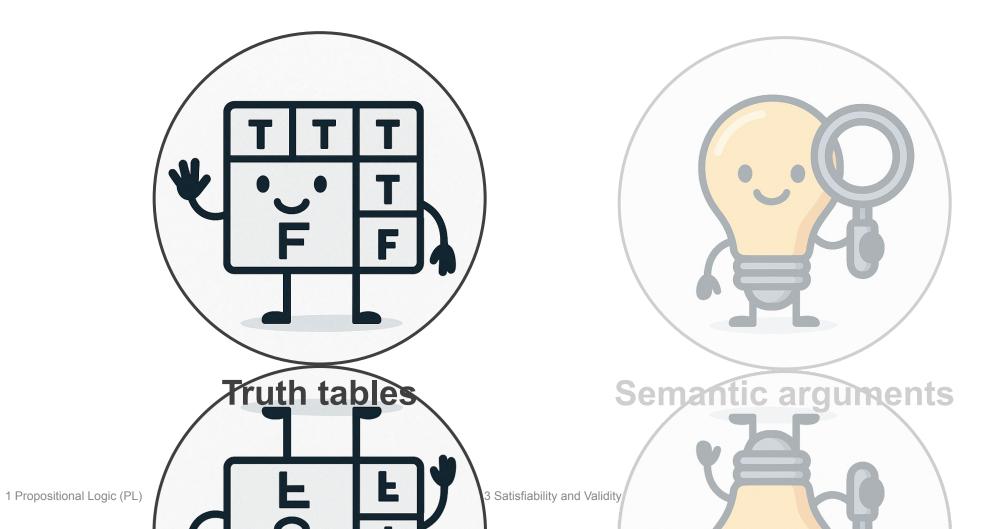
so I $\nvDash \neg F \rightarrow$

 $\neg F$ is unsatisfiable

METHODS FOR VALIDITY & SATISFIABILITY



METHODS FOR VALIDITY & SATISFIABILITY



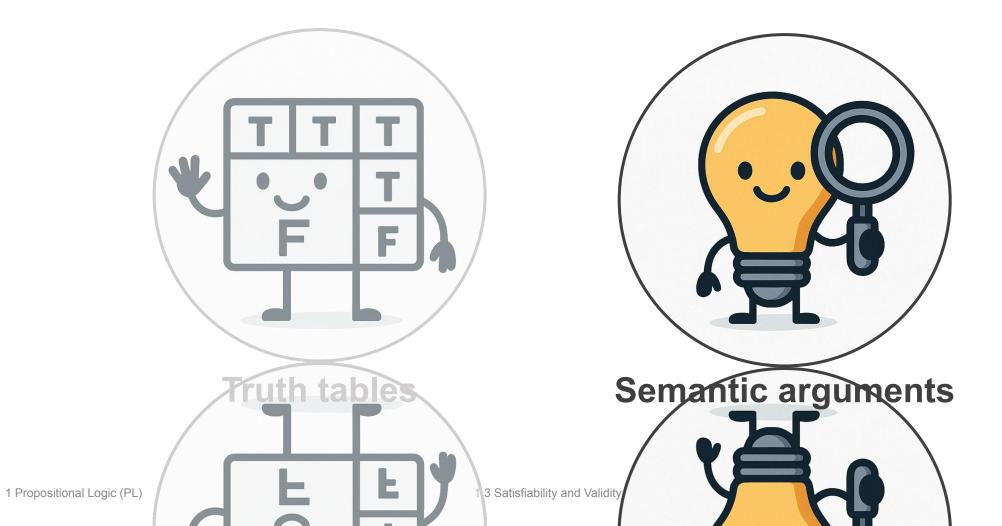
33

METHOD 1: TRUTH TABLES

Example: $F: P \wedge Q \rightarrow P \vee \neg Q$.

P	Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

METHODS FOR VALIDITY & SATISFIABILITY



METHOD 2: SEMANTIC ARGUMENTS

Semantic Arguments provide an alternative to truth tables for proving validity.

Approach:

- Assume the formula F is invalid (i.e., there is a falsifying interpretation I such that I ⊭ F)
- Apply semantic definitions to deduce consequences
- Derive a contradiction \rightarrow proves F is valid

METHOD 2: SEMANTIC ARGUMENTS - EXAMPLE

$$F: P \land Q \to P \lor \neg Q$$

1	$I \not\models F$	(assum.)
2	$\boxed{I} \models P \land Q$	(1 and \rightarrow)
3	$I \not\models P \vee \neg Q$	(1 and \rightarrow)
4	$I \models P$	(2 and ∧)
5	$I \not\models P$	(3 and ∨)
6	⊥	(4 and 5)

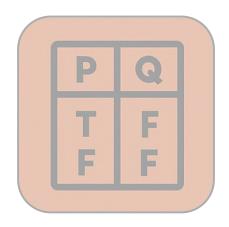
$\frac{I \models \neg F}{I \not\models F}$	$\frac{I \not\models \neg F}{I \models F}$. <u> </u>	$F \wedge G$ $I \models G$		
$\frac{I \not\models F / I}{I \not\models F \mid I}$	$\land G$ $I \not\models G$	$ \frac{I \models F}{I \models F} $	$F \lor G$ $I \models G$		
$\frac{I \not\models F \lor}{I \not\models F}$		$\frac{I \models F - I}{I \not\models F - I}$	$\rightarrow G$ $I \models G$		
$\frac{I \not\models F \to G}{I \models F \qquad I \not\models G}$					

Found a contradiction, so F is valid

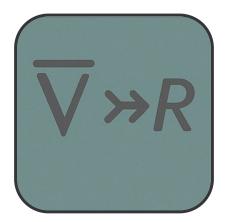
SEMANTIC ARGUMENT	NEGATION (¬) $\begin{array}{c} I \models \neg F \\ I \not\models F \end{array}$ CONJUNCTION (\land) $\begin{array}{c} I \models F \land G \\ I \models F \\ I \models G \end{array}$ \leftarrow and	$ \frac{I \not\models \neg F}{I \not\models F} $ $ \frac{I \not\models F \land G}{I \not\models F \mid I \not\models G} $ $ \stackrel{\land \text{or}}{} \qquad \qquad$
PROOF RULES	DISJUNCTION (V) $\frac{I \models F \lor G}{I \models F \mid I \models G}$	$ \frac{I \not\models F \lor G}{I \not\models F} $ $ I \not\models G $
	$IMPLICATION (\rightarrow) \qquad \frac{I \models F \rightarrow G}{I \not\models F \mid I \models G}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	BICONDITIONAL (\leftrightarrow) $I \models F \leftrightarrow G$ $I \models F \wedge G \mid I \not\models F \lor G$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	I \models FCONTRADICTION RULE $I \not\models F$ I \models I	

G

LECTURE OUTLINE



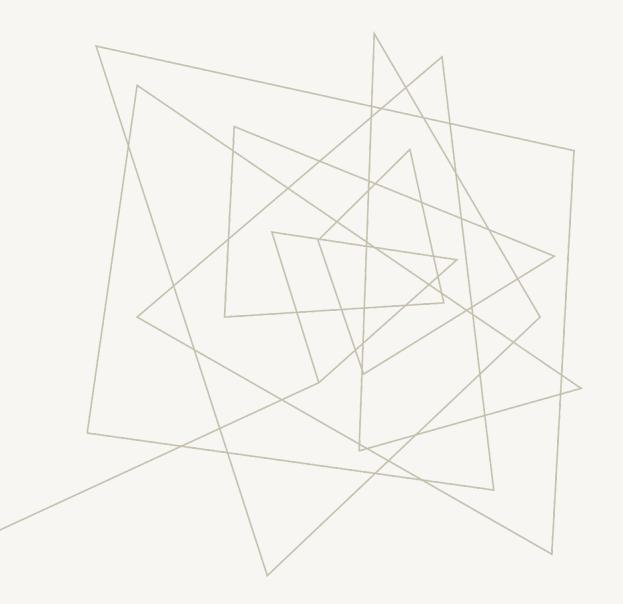
Propositional Logic (PL) The logic of statements that are either true or false.



First Order Logic (FOL) Logic with predicates, functions, and quantifiers.

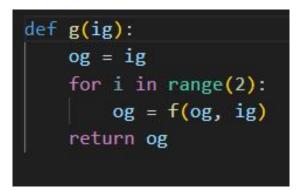
First Order Theories

Logical frameworks for reasoning about numbers, arrays, and data.



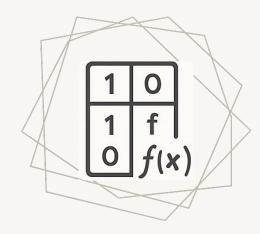
FIRST ORDER LOGIC (FOL)

MOTIVATION



def h(ih): oh = f(f(ih,ih),ih) return oh

FIRST ORDER LOGIC (FOL)



SYNTAX

How formulas are built

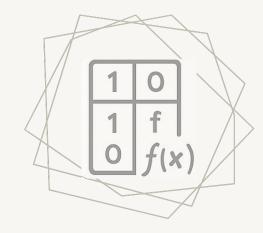
SEMANTICS

What formulas mean

SATISFIABILITY AND VALIDITY

When formulas are true

FIRST ORDER LOGIC (FOL)



SYNTAX

How formulas are built

SEMANTICS

What formulas mean

SATISFIABILITY AND VALIDITY When formulas are true

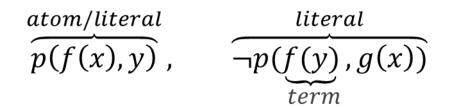
FOL extends PL with:

- **Terms** the basic ones are **variables** and **constants**. More complex terms are **functions** which takes n terms as arguments.
- **Predicates** generalization of propositional variables of PL. An n-ary predicate takes n terms as arguments and return truth value.
- Quantifiers existential quantifier $\exists x. F[x]$, universal quantifier $\forall x. F[x]$.

The following are all terms:

- *x*, *a* variable;
- f(a), a unary function f applied to a constant;
- g(x,b), a binary function g applied to a variable x and a constant b;
- f(g(x,f(b)))

- **atoms** \top , \perp , or an n-ary predicate applied to n terms.
- literals An atom or its negation.



The most simple and basic FOL formula is just one literal

p(x,y)

But we can create complex FOL formulae using logical connectives, like $\Lambda, V, \rightarrow, \neg$ or \leftrightarrow .

$$\underbrace{\overbrace{p(f(x), y)}^{atom/literal} \land r(g(y), x) \rightarrow \overbrace{\neg p(f(y), g(x))}^{literal}}_{term}$$

There are two FOL quantifiers:

- the **existential** quantifier $\exists x. F[x]$, read "there exists an x such that F[x]";
- and the **universal** quantifier $\forall x$. F[x], read "for all x, F[x]".

$$\forall x. \ p(f(x), x) \rightarrow \left(\exists y. p\left(f(g(x, y)), g(x, y)\right) \right) \land q(x, f(x))$$

A variable is **free** in formula F[x] if there is an occurrence of x that is not bound by any quantifier. Denote by free(F) the set of free variables of a formula F.

A variable is **bound** in formula F[x] if there is an occurrence of x in the scope of a binding quantifier $\forall x$ or $\exists x$. Denote by bound(F) the set of bound variables of a formula F.

A formula F is **closed** if it does not contain any free variables.

For example, consider the following FOL formula:

$$F: \forall x. \ p(f(x), y) \rightarrow \forall y. \ p(f(x), y)$$

x only occurs bound, while y appears both free (in the antecedent) and bound (in the consequent). Thus, free(F) = {y} and bound(F) = {x,y}.

So in this case we have: $free(F) \cap bound(F) \neq \phi$

The **subformulae** of a FOL formula are defined according to an extension of the PL definition of subformula:

- the only subformula of $p(t_1, ..., t_n)$, where the t_1 are terms, is $p(t_1, ..., t_n)$;
- the subformulae of $\neg F$ are $\neg F$ and the subformulae of F;
- the subformulae of $F_1 \wedge F_2$, $F_1 \vee F_2$, $F_1 \rightarrow F_2$, $F_1 \leftrightarrow F_2$ are the formula itself and the subformulae of F_1 and F_2 ;
- the subformulae of ∃x. F and ∀x. F are the formula itself and the subformulae of F.

The **subterms** of a FOL term are defined as follows:

- the only subterm of constant a or variable x is a or x itself.
- and the subterms of $f(t_1, ..., t_n)$ are the term itself and the subterms of $t_1, ..., t_n$.

SYNTAX : SUBFORMULAS - EXAMPLE

 $F: \forall x. \ p(f(x), y) \rightarrow \forall y. \ p(f(x), y)$

The subformulae of F are:

F

 $p(f(x), y) \rightarrow \forall y. p(f(x), y)$

 $\forall y. p(f(x), y)$

p(f(x), y)

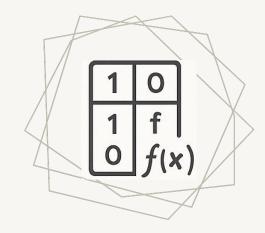
SYNTAX : SUBFORMULAS - EXAMPLE

T: g(f(x), f(h(f(x))))

The subterm of F are:

f(h(f(x)))h(f(x))f(x)T

FIRST ORDER LOGIC (FOL)



SYNTAX

How formulas are built

SEMANTICS

What formulas mean

SATISFIABILITY AND VALIDITY

When formulas are true

We must remember that both PL and FOL formulas are evaluated to the truth values true and false. However, **terms** of FOL formulae evaluate to values from a specified domain.

That lead us to definition of FOL interpretation.

An **interpretation I** is a pair (D_I, α_I) which consist of a domain and an assignment.

The domain D_I of an interpretation I is a nonempty set of values or objects, such as integers, real numbers, dogs, people, or merely abstract objects.

 $|D_I|$ denotes the cardinality, or size, of D_I .

The assignment α_I of interpretation I maps constant, function, and predicate symbols to elements, functions, and predicates over D_I .

It also maps variables to elements of D_I :

- each variable symbol x is assigned a value x_i from D_I ;
- each n ary function symbol f is assigned an n ary function $f_i : D_I^n \rightarrow D_I$ that maps n elements of D_I to an element of D_I ;
- each n ary predicate symbol p is assigned an n ary predicate p_i : $D_I^n \rightarrow \{\text{true, false}\}$ that maps n elements of D_I to a truth value.

let's clarify these ideas with the following example:

$$F: x + y > z \rightarrow y > z - x$$

$F': p(f(x,y),z) \rightarrow p(y,g(z,x)).$

$$F: x + y > z \rightarrow y > z - x$$

now let's construct a "standard" interpretation:

- The domain is the integers, $D_I = \mathbb{Z}$.
- $\alpha_I \coloneqq \{+ \mapsto +_{\mathbb{Z}}, \mapsto -_{\mathbb{Z}}, > \mapsto >_{\mathbb{Z}}, x \mapsto 13, y \mapsto 42, z \mapsto 13\}$

Given a FOL formula F and interpretation, I : (D_I, α_I) , we want to compute if F evaluates to true under interpretation I, $I \models F$, or if F evaluates to false under interpretation I, $I \not\models F$.

We define the semantics inductively, we saw the assignment α_I gives meaning α_I [x], α_I [c], and α_I [f] to variables x, constants c, and functions f.

Evaluate arbitrary terms recursively: $\alpha_I[f(t_1, ..., t_n)] = \alpha_I[f](\alpha_I[t_1], ..., \alpha_I[t_n])$, for terms $t_1, ..., t_n$.

That is, define the value of $f(t_1, ..., t_n)$ under α_I by evaluating the function α_I $\alpha_I[f]$ over the terms $\alpha_I[t_1], ..., \alpha_I[t_n]$.

Similarly, evaluate arbitrary atoms recursively:

 $\alpha_I[p(t_1,\ldots,t_n)] = \alpha_I[p](\alpha_I[t_1],\ldots,\alpha_I[t_n])$

Then $I \vDash p(t_1, \dots, t_n) \leftrightarrow \alpha_I[p](\alpha_I[t_1], \dots, \alpha_I[t_n]) = true$

after covering the base case of the inductive semantics, we can turn to the inductive step.

$$I \models \neg F \qquad \text{iff } I \not\models F \\I \models F_1 \land F_2 \qquad \text{iff } I \models F_1 \text{ and } I \models F_2 \\I \models F_1 \lor F_2 \qquad \text{iff } I \models F_1 \text{ or } I \models F_2 \\I \models F_1 \rightarrow F_2 \qquad \text{iff, if } I \models F_1 \text{ then } I \models F_2 \\I \models F_1 \leftrightarrow F_2 \qquad \text{iff, if } I \models F_1 \text{ and } I \models F_2, \text{ or } I \not\models F_1 \text{ and } I \not\models F_2$$

 $F: x+y > z \rightarrow y > z-x$

of Example 2.7 and the interpretation $I : (\mathbb{Z}, \alpha_I)$, where

$$\alpha_I: \{+\mapsto +_{\mathbb{Z}}, -\mapsto -_{\mathbb{Z}}, >\mapsto >_{\mathbb{Z}}, x\mapsto 13_{\mathbb{Z}}, y\mapsto 42_{\mathbb{Z}}, z\mapsto 1_{\mathbb{Z}}\}.$$

Compute the truth value of F under I as follows:

1. $I \models x + y > z$ since $\alpha_I [x + y > z] = 13_{\mathbb{Z}} + \mathbb{Z} 42 >_{\mathbb{Z}} 1_{\mathbb{Z}}$ 2. $I \models y > z - x$ since $\alpha_I [y > z - x] = 42_{\mathbb{Z}} >_{\mathbb{Z}} 1_{\mathbb{Z}} - \mathbb{Z} 13_{\mathbb{Z}}$ 3. $I \models F$ by 1, 2, and the semantics of \rightarrow

For the quantifiers, let x be a variable. Define an x-variant of an interpretation $I = (D_I, \alpha_I)$ as an interpretation $J = (D_I, \alpha_I)$ such that:

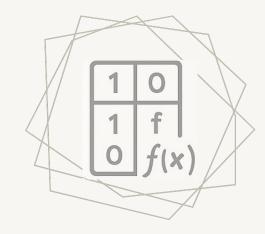
- $D_I = D_J$
- And $\alpha_I[y] = \alpha_J[y]$ for all constants, free variable, function and predicate symbols y, except possibly x.

That is, *I* and *J* agree on everything except possibly the value of variable x.

Denote by $J: I \leftarrow \{x \mapsto v\}$ the x-variant of I in which $\alpha_J[x] = v$ for some $v \in D_I$. Then:

- $I \models \forall x. F$ iff for all $v \in D_I$, $I \leftarrow \{x \mapsto v\} \mid = F$
- $I \models \exists x. F$ iff there exist $v \in D_I$, such that $I \leftarrow \{x \mapsto v\} \mid = F$

FIRST ORDER LOGIC (FOL)



SYNTAX

How formulas are built

SEMANTICS

What formulas mean

SATISFIABILITY AND VALIDITY

When formulas are true

- A formula F is said to be satisfiable ↔ there exists an interpretation I such that I ⊨ F.
- A formula F is said to be **valid** \leftrightarrow for all interpretations I, $I \models F$.
- Determining satisfiability and validity of formulae are important tasks in FOL.
- Recall that satisfiability and validity are dual:
 - F is valid $\leftrightarrow \neg F$ is unsatisfiable.

According to the semantics of universal quantification, from $I \vDash \forall x. F$, deduce $I \leftarrow \{x \mapsto v\} \vDash F$ for any $v \in D_I$.

•
$$\frac{I \models \forall x.F}{I \leftarrow \{x \mapsto v\} \mid = F} \text{ for any } v \in D_I \qquad \qquad \frac{I \not\in \exists x.F}{I \leftarrow \{x \mapsto v\} \not\in F} \text{ for any } v \in D_I$$

•
$$\frac{I \vDash \exists x.F}{I \leftarrow \{x \mapsto v\} \mid = F}$$
 for some $v \in D_I$

$$\frac{I \not\models \forall x.F}{I \leftarrow \{x \mapsto v\} \not\models F} \quad \text{for a some } v \in D_I$$

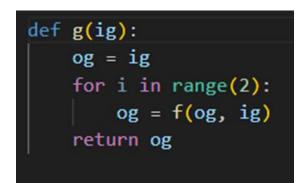
We add another rule which helps us determine a contradiction.

• A contradiction exists if two variants of the original interpretation *I* disagree on the truth value of an *n*-ary predicate *p* for a given tuple of domain values.

$$\frac{J: I \triangleleft \cdots \models p(s_1, \dots, s_n)}{K: I \triangleleft \cdots \not\models p(t_1, \dots, t_n)} \quad \text{for } i \in \{1, \dots, n\}, \, \alpha_J[s_i] = \alpha_K[t_i]$$

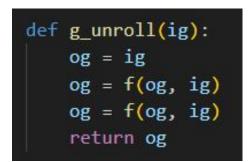
We want to prove that $(\forall x. p(x)) \rightarrow (\forall y. p(y))$ is valid. Suppose not, then there is an interpretation I such that $I \not\models F$:

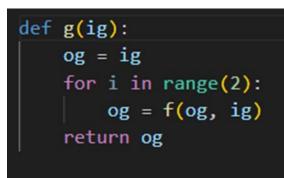
- 1. $I \models \forall x. p(x)$ assumption and semantics of \rightarrow
- 2. $I \not\models \forall y. p(y)$ assumption and semantics of \rightarrow
- 3. $I \leftarrow \{y \mapsto v\} \not\models p(y)$ 2 and semantics of \forall , for some $v \in D_I$
- 4. $I \leftarrow \{x \mapsto v\} \models p(x)$ 1 and semantics of \forall
- 5. Under I, p(v) is false by 3 and true by 4.

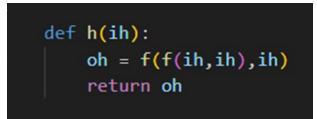


def h(ih): oh = f(f(ih,ih),ih) return oh

SATISFIABILITY AND VALIDITY







 ψ_g : $og1 = ig \land og2 = f(og1, ig) \land og3 = f(og2, ig)$

 ψ_h : oh1 = f(f(ih, ih), ih)

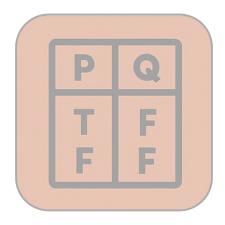
SATISFIABILITY AND VALIDITY

Two functions are equivalent if and only if for every two equal inputs the outputs are the same, that lead us to the formula:

$$\psi \coloneqq (ih = ig \land \psi_h \land \psi_g) \longrightarrow og3 = oh1$$

Finally: g and h are equivalent $\leftrightarrow \psi$ is valid

LECTURE OUTLINE

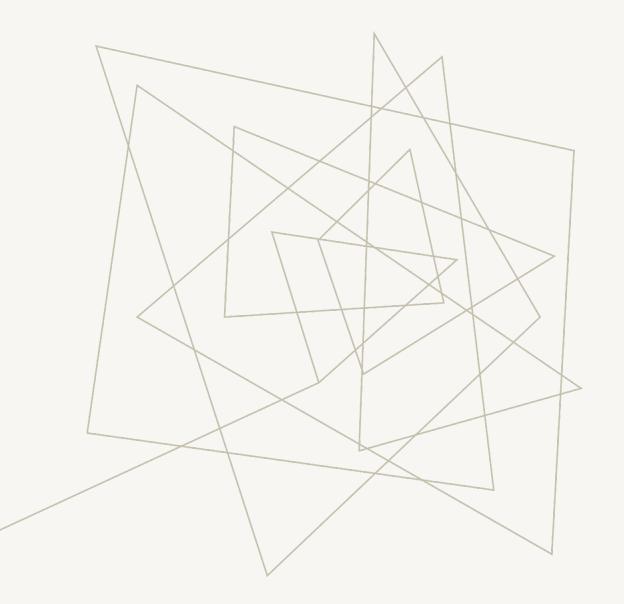


Propositional Logic (PL) The logic of statements that are either true or false.

First Order Logic (FOL) Logic with predicates, functions, and quantifiers.

First Order Theories

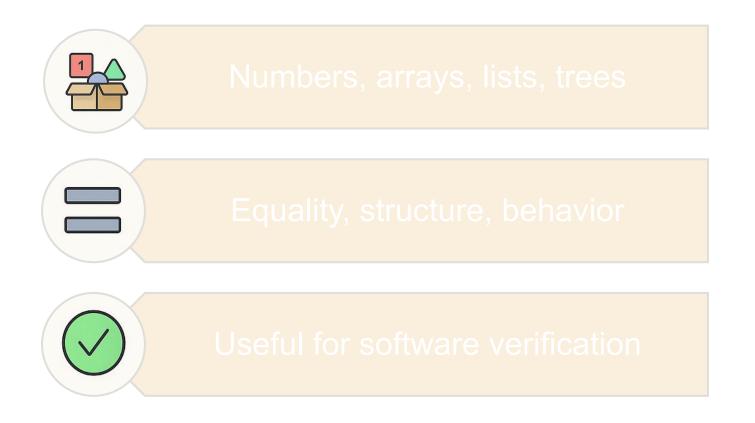
Logical frameworks for reasoning about numbers, arrays, and data.



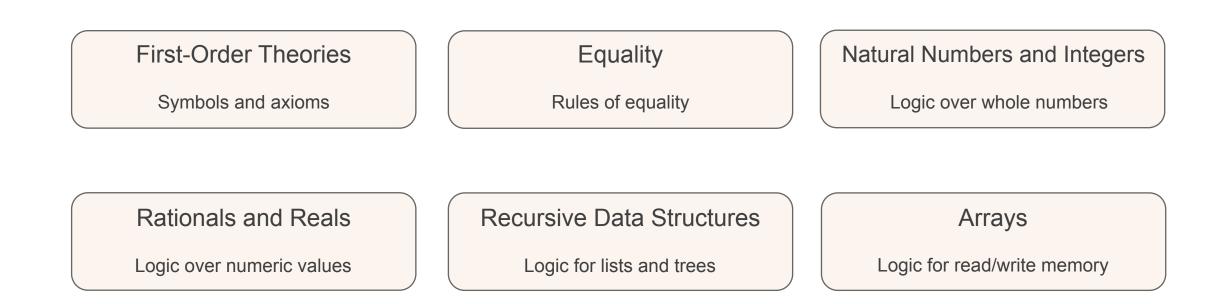
FIRST ORDER THEORIES

FIRST-ORDER THEORIES

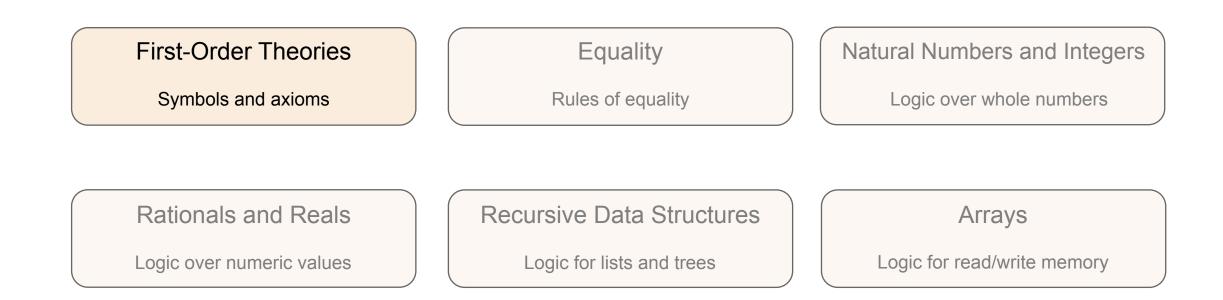
How logic meets real data:



FIRST ORDER THEORIES



FIRST ORDER THEORIES



FIRST-ORDER THEORIES

Definition: A first-order theory **T** is defined by:

- Signature (Σ): A set of constant, function, and predicate symbols.
- Axioms (A): A set of closed FOL formulas using only symbols from Σ .

Σ-formulas are built from these symbols, variables, connectives, and quantifiers.

- The symbols themselves have no built-in meaning.
- Their meaning comes from the axioms A.

$$\Sigma = \{a, b, f, P\}$$
$$A = \{P(a), \forall x. P(x) \rightarrow P(f(x))\}$$

SATISFIABILITY AND VALIDITY

T-validity (T \models F): A formula F is **valid** in theory T if every interpretation I that satisfies all axioms A also satisfies F.

T-satisfiability: A formula F is **satisfiable** in T if there is some interpretation

I (a **T-interpretation**) such that $I \models F$.

Example: Let T contain axiom: $\forall x. P(x) \rightarrow Q(x)$ Then the formula: $P(a) \rightarrow Q(a)$ is T-valid if P(a) holds under T.

SATISFIABILITY AND VALIDITY

- **Complete theory:** For every formula F: either $T \models F$ or $T \models \neg F$.
- Consistent theory: There exists at least one interpretation satisfying all axioms.
 - This means we cannot have both $T \vDash F$ and $T \vDash \neg F$.
 - Otherwise, $T \vDash F \land \neg F \rightarrow T \vDash \bot$ (contradiction).

Equivalence: Formulas F_1 and F_2 are **T-equivalent** if $T \models F_1 \leftrightarrow F_2$.

FRAGMENTS AND DECIDABILITY

Fragment: A syntactically restricted subset of formulas.

• e.g., The quantifier-free fragment contains formulas with no quantifiers.

Decidability:

- A theory T is decidable if there exists an algorithm that can decide for every Σ-formula F whether T ⊨ F.
- A fragment is decidable if this holds within the fragment's restrictions.

COMBINING THEORIES

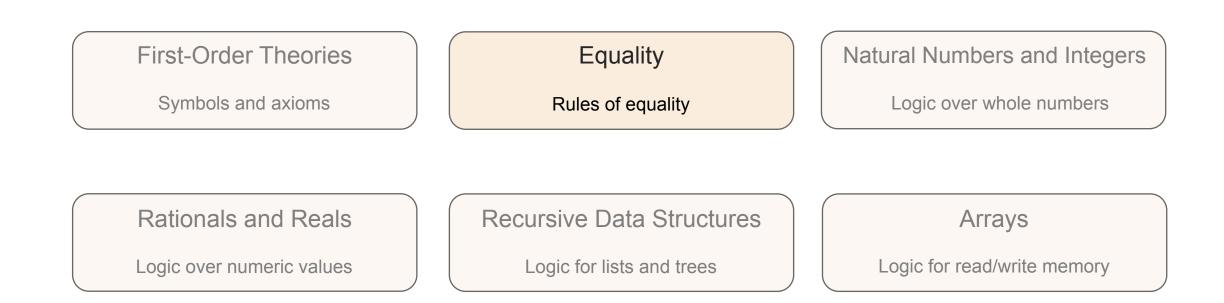
Union of Theories:

- $T_1 \cup T_2$ has signature $\Sigma_1 \cup \Sigma_2$ and axioms $A_1 \cup A_2$.
- An interpretation of $T_1 \cup T_2$ satisfies both theories.

Implications:

- If a formula is valid in T_1 or $T_2 \rightarrow$ valid in $T_1 \cup T_2$.
- If a formula is satisfiable in $T_1 \cup T_2 \rightarrow$ satisfiable in both T_1 and T_2 . Why we care:
- First-Order Logic (FOL) itself is undecidable.
- Many theories and fragments are decidable.
- These are central to automated reasoning and verification.

FIRST ORDER THEORIES



EQUALITY

 $T_{\rm E}$ is the simplest first-order theory.

- Signature Σ_E :
 - = (equality) binary predicate, interpreted via axioms
 - All other symbols (constants, functions, predicates) are uninterpreted except as they relate to equality

EQUALITY

Axioms of $T_{\rm E}$:

- **1.** Reflexivity: $\forall x. \ x = x$
- **2.** Symmetry: $\forall x, y. \ x = y \rightarrow y = x$
- **3.** Transitivity: $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$
- **4.** Function congruence: $\forall \bar{x}, \bar{y}. (\bigwedge_{i=1}^{n} x_i = y_i) \rightarrow f(\bar{x}) = f(\bar{y})$
- 5. Predicate congruence: $\forall \bar{x}, \bar{y}. (\bigwedge_{i=1}^{n} x_i = y_i) \rightarrow (p(\bar{x}) \leftrightarrow p(\bar{y}))$

$T_{\rm E}$ is undecidable

- *T*_E includes **all** constant, function, and predicate symbols.
- So, any FOL formula can be rephrased as a $T_{\rm E}$ formula.
- That makes $T_{\rm E}$ undecidable, just like FOL.

But the quantifier-free fragment is decidable — and very useful.

VALIDITY AND SATISFIABILITY IN $T_{\rm E}$

Although $T_{\rm E}$ as a whole is undecidable, Its **quantifier-free fragment** is both interesting and **efficiently decidable**.

Example:

F:
$$a = b \land b = b \rightarrow g(f(a), b) = g(f(c), a)$$
 // constants
F': $x = y \land y = z \rightarrow g(f(x), y) = g(f(z), x)$ // free variables

F is $T_{\rm E}$ -valid \Leftrightarrow F' is $T_{\rm E}$ -valid

F is $T_{\rm E}$ -satisfiable \Leftrightarrow F' is $T_{\rm E}$ -satisfiable

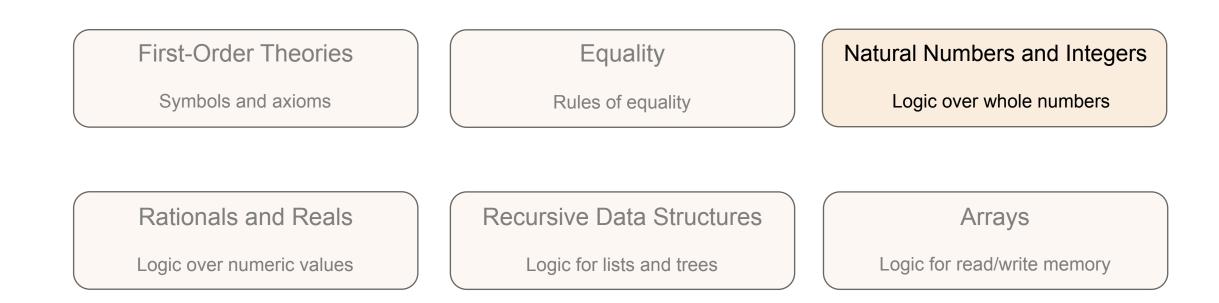
SEMANTIC ARGUMENT — PROVING VALIDITY IN $T_{\rm E}$

We can use a semantic argument to prove that a formula is valid in $T_{\rm E}$.

Example: Prove that: $F: a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)$ is T_E -valid Assume it's false.

1.
$$I \not\models F$$
assumption2. $I \models a = b \land b = c$ $1, \rightarrow$ 3. $I \not\models g(f(a), b) = g(f(c), a)$ $1, \rightarrow$ 4. $I \models a = b$ $2, \land$ 5. $I \models b = c$ $2, \land$ 6. $I \models a = c$ $4, 5, (\text{transitivity})$ 7. $I \models f(a) = f(c)$ $6, (\text{function congruence})$ 8. $I \models b = a$ $4, (\text{symmetry})$ 9. $I \models g(f(a), b) = g(f(c), a)$ $7, 8 (\text{function congruence})$ 10. $I \models \bot$ $3, 9$

FIRST ORDER THEORIES



NATURAL NUMBERS AND INTEGERS

We explore three foundational arithmetic theories:

- **Peano Arithmetic (** T_{PA} **):** supports addition and multiplication over \mathbb{N} .
- **Presburger Arithmetic (TN)**: only supports addition.
- Theory of Integers (TZ): simplifies reasoning over \mathbb{Z} .

PEANO ARITHMETIC (T_{PA})

Signature Σ_{PA} : $\{0, 1, +, \cdot, =\}$

- 0, 1: constants
- +, ·: binary functions (addition, multiplication)
- =: equality predicate

Axioms:

- 1. Zero: $\forall x. \neg (x + 1 = 0)$
- 2. Successor: $\forall x, y. x + 1 = y + 1 \rightarrow x = y$
- 3. Induction: F [0] \land ($\forall x$. F [x] \rightarrow F [x + 1]) \rightarrow $\forall x$. F [x]
- 4. plus zero: $\forall x. x + 0 = x$
- 5. plus successor: $\forall x, y. x + (y + 1) = (x + y) + 1$
- 6. times zero: $\forall x. x \cdot 0 = 0$
- 7. times successor: $\forall x, y. x \cdot (y + 1) = x \cdot y + x$

INTENDED INTERPRETATION OF T_{PA}

The standard model of Peano Arithmetic assumes:

- **Domain**: ℕ (natural numbers)
- $I[0], I[1]: 0_{\mathbb{N}}, 1_{\mathbb{N}} \in \mathbb{N}$
- $I[+]: +_{\mathbb{N}}$,addition over \mathbb{N}
- $I[\times]: \times_{\mathbb{N}}$,multiplication over \mathbb{N}
- $I[=]: =_{\mathbb{N}}$,numeric equality over \mathbb{N}

LIMITS OF PEANO ARITHMETIC

- Satisfiability and validity in $T_{\rm PA}$ are undecidable
- Even quantifier-free T_{PA} is undecidable!
- Moreover, T_{PA} is incomplete (Gödel, 1930)
- Upshot: there are valid arithmetic propositions that are $T_{\rm PA}$ -invalid

Lesson: Multiplication is hard! Let's try something easier.

PRESBURGER ARITHMETIC (T_N)

Signature: $\Sigma_{\mathbb{N}}$: $\{0, 1, +, =\}$

Axioms: Subset of T_{PA}

- 1. All of the equality axioms: reflexivity, symmetry, transitivity, and congruence
- **2.** Zero: $\forall x.\neg(x + 1 = 0)$
- **3.** Additive identity: $\forall x.x + 0 = x$
- 4. Successor: $\forall x, y.(x + 1 = y + 1) \rightarrow x = y$
- **5.** Plus successor: $\forall x, y.x + (y + 1) = (x + y) + 1$
- 6. Induction: $F[0] \land (\forall x. F[x] \rightarrow F[x + 1]) \rightarrow \forall x. F[x]$

PRESBURGER ARITHMETIC (T_N)

The intended interpretation is over \mathbb{N} , like with T_{PA}

But, unlike T_{PA} , it has nice properties:

- Validity is **decidable**!
- But complexity is high: $O(2^{2^n})$
- **Complete**: For every $T_{\mathbb{N}}$ -formula F, either \models F or $\models \neg$ F
- Admits **quantifier elimination**: For any T_N -formula F, there is an equivalent quantifier-free F'
- Validity in quantifier-free fragment is **coNP-complete**

THEORY OF INTEGERS $(T_{\mathbb{Z}})$

Signature: $\Sigma_{\mathbb{Z}}$: {..., -2, -1, 0, 1, 2, ..., -3, -2, 2, 3, ..., +, -, =, >}

- Constants: ..., -2, -1, 0, 1, 2, ...
- Coefficient functions: ..., -2·, 2·, ...
- Binary functions: +, -
- Predicates: =, >

Claim: $T_{\mathbb{Z}}$ is reducible to $T_{\mathbb{N}}$

- Their expressive power is the same, so we won't bother axiomitizing
- $T_{\mathbb{Z}}$ is more convenient, and thus more commonly-used, than $T_{\mathbb{N}}$

EXAMPLE – REDUCING INTEGER LOGIC TO NATURALS

Goal: Rewrite a formula over \mathbb{Z} using only \mathbb{N} .

Original:

$$F_0: \ \forall w, x. \ \exists y, z. \ x + 2y - z - 13 > -3w + 5$$

Idea: Represent each integer v using two naturals: v_p , v_n , such that $v = v_p - v_n$.

Step 1 – Encode subtraction:

$$F_1: \quad \frac{\forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n.}{(x_p - x_n) + 2(y_p - y_n) - (z_p - z_n) - 13} > -3(w_p - w_n) + 5$$

EXAMPLE – REDUCING INTEGER LOGIC TO NATURALS

$$F_1: \begin{array}{c} \forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n. \\ (x_p - x_n) + 2(y_p - y_n) - (z_p - z_n) - 13 > -3(w_p - w_n) + 5 \end{array}$$

Step 2 – Eliminate – by rearranging:

$$F_2: \quad \frac{\forall w_p, w_n, x_p, x_n. \ \exists y_p, y_n, z_p, z_n.}{x_p + 2y_p + z_n + 3w_p > x_n + 2y_n + z_p + 13 + 3w_n + 5}.$$

Step 3 – Remove constants and > using extra variable $u \neq 0$:

THEORY OF INTEGERS $(T_{\mathbb{Z}})$

Examples in $T_{\mathbb{Z}}$:

- **Example 1:** $\forall x$. $\exists y$. $x = y + 1 \rightarrow \forall x \ge 0 \rightarrow \exists y \ge 0$. x = y + 1
- **Example 2:** $\forall x,y,z. x > z \land y \ge 0 \rightarrow x + y > z$
- Example 3: $\forall x, y. x > 0 \land (x = 2y \lor x = 2y + 1) \rightarrow x y > 0$

All are $T_{\mathbb{Z}}$ -valid and show how to reason semantically over integers.

ARITHMETIC THEORY SUMMARY

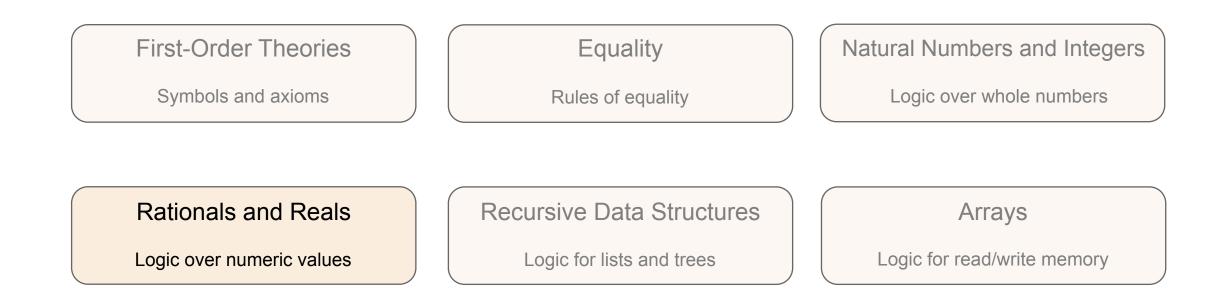
Theory	Domain	Ops	Decidable?
	\mathbb{N}	+, ·	No
	\mathbb{N}	+	Yes
	Z	+, -	Yes

*T*_{PA}: powerful but undecidable

 $\pmb{T}_{\mathbb{N}}$: limited but decidable and complete

 $\pmb{T}_{\mathbb{Z}}$: useful, intuitive, and reducible to $T_{\mathbb{N}}$

FIRST ORDER THEORIES



REAL & RATIONAL ARITHMETIC THEORIES

We study two important arithmetic theories:

Theory	Domain	Ops Supported	Notes
	\mathbb{R}	+, -, ·, =, ≥	Field with roots, ordered, supports multiplication
	\mathbb{Q}	+, -, =, ≥	

THEORY OF REALS $(T_{\mathbb{R}})$

Signature $\Sigma_{\mathbb{R}}$: {0, 1, +, -, \cdot , =, ≥} Includes addition, multiplication, and ordering over \mathbb{R}

Abelian Group Axioms (Addition):

1.
$$\forall x, y, z. (x + y) + z = x + (y + z)$$

2. $\forall x. x + 0 = x$
3. $\forall x. x + (-x) = 0$
4. $\forall x, y. x + y = y + x$

THEORY OF REALS $(T_{\mathbb{R}})$

Ring Axioms (Multiplication & Distributivity):

1.
$$\forall x, y, z. (xy)z = x(yz)$$

2. $\forall x. x1 = x$
3. $\forall x. 1x = x$
4. $\forall x, y, z. x(y+z) = xy + xz$
5. $\forall x, y, z. (x+y)z = xz + yz$

(· associativity)
 (· left identity)
 (· right identity)
 (left distributivity)
 (right distributivity)

Field Axioms:

1.
$$\forall x, y. xy = yx$$

2. $0 \neq 1$
3. $\forall x. x \neq 0 \rightarrow \exists y. xy = 1$

(· commutativity) (separate identities) (· inverse)

THEORY OF REALS $(T_{\mathbb{R}})$

Order Axioms (≥):

1.
$$\forall x, y. \ x \ge y \land y \ge x \rightarrow x = y$$

2. $\forall x, y, z. \ x \ge y \land y \ge z \rightarrow x \ge z$
3. $\forall x, y. \ x \ge y \lor y \ge x$

(antisymmetry) (transitivity) (totality)

Real Closure Axioms:

1.
$$\forall x, y, z. x \ge y \rightarrow x + z \ge y + z$$
(+ ordered2. $\forall x, y. x \ge 0 \land y \ge 0 \rightarrow xy \ge 0$ (· ordered3. $\forall x. \exists y. x = y^2 \lor x = -y^2$ (square-root)4. for each odd integer n,(square-root)

 $\forall \overline{x}. \exists y. y^n + x_1 y^{n-1} + \dots + x_{n-1} y + x_n = 0 \qquad \text{(at least one root)}$

THEORY OF REALS:

```
COMPLETE
AXIOMATIZATION
```

3.4 Rationals and Reals

108

- 4. $\forall x, y, z. (x + y) + z = x + (y + z)$ 5. $\forall x. x + 0 = x$ 6. $\forall x. x + (-x) = 0$ 7. $\forall x, y. x + y = y + x$ 8. $\forall x, y, z. x \ge y \rightarrow x + z \ge y + z$
- 9. $\forall x, y, z. (xy)z = x(yz)$ 10. $\forall x. \ 1x = x$ 11. $\forall x. \ x \neq 0 \rightarrow \exists y. \ xy = 1$ 12. $\forall x, y. \ xy = yx$ 13. $\forall x, y. \ x \geq 0 \land y \geq 0 \rightarrow xy \geq 0$

14. $\forall x, y, z. \ x(y+z) = xy + xz$ 15. $0 \neq 1$

16. $\forall x. \exists y. x = y^2 \lor -x = y^2$ 17. for each odd integer n,

 $\forall \overline{x}. \exists y. y^n + x_1 y^{n-1} + \dots + x_{n-1} y + x_n = 0$

(at least one root)

(∙ commutativity) (∙ ordered) (distributivity)

(antisymmetry)

(+ associativity)

(+ commutativity)

(transitivity)

(+ identity)

(+ inverse)

(+ ordered)

 $(\cdot \text{ associativity})$

(totality)

(distributivity) (separate identities)

(square-root)

(· identity) (· inverse) mutativity) (· ordered)

EXAMPLE – $T_{\mathbb{R}}$ QUANTIFIER ELIMINATION

Given: $F: \exists x. ax^2 + bx + c = 0$

Transformed to: $F': b^2 - 4ac \geq 0$

 $\rightarrow T_{\mathbb{R}}$ supports quantifier elimination for algebraic reasoning

THEORY OF RATIONALS (T_{\bigcirc})

Signature $\Sigma_{\mathbb{Q}}$: {0, 1, +, -, =, \geq }

Axioms:

(antisymmetry) 1. $\forall x, y, x \geq y \land y \geq x \rightarrow x = y$ (transitivity) 2. $\forall x, y, z. \ x \geq y \land y \geq z \rightarrow x \geq z$ (totality) 3. $\forall x, y, x > y \lor y > x$ 4. $\forall x, y, z$. (x + y) + z = x + (y + z)(+ associativity)5. $\forall x, x+0=x$ (+ identity)6. $\forall x. \ x + (-x) = 0$ (+ inverse)(+ commutativity) 7. $\forall x, y. \ x + y = y + x$ 8. $\forall x, y, z. \ x \ge y \rightarrow x + z \ge y + z$ (+ ordered)(torsion-free) 9. for each positive integer n, $\forall x. nx = 0 \rightarrow x = 0$ (divisible) 10. for each positive integer n, $\forall x. \exists y. x = ny$

RATIONAL ≈ REAL (FOR LINEAR FORMULAS)

- Every $\Sigma_{{\mathbb O}}$ -formula behaves the same in ${\mathbb Q}$ and ${\mathbb R}$
- No formula can distinguish rational from real domain
- \rightarrow For linear logic, $\mathbb{R} \equiv \mathbb{Q}$ under $T_{\mathbb{Q}}$

Example:
$$\forall x, y. \exists z. x + y > z$$

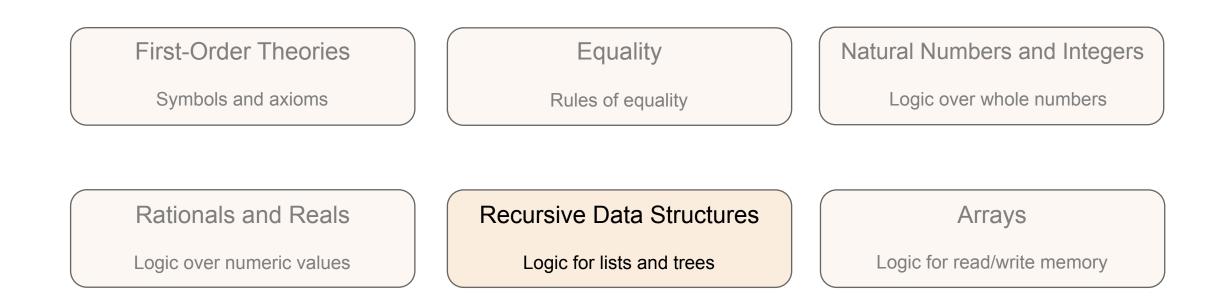
 $\rightarrow \quad \forall x, y. \; \exists z. \; \neg (x+y=z) \; \land \; x+y \geq z \; .$

 $T_{\mathbb{R}}$ VS $T_{\mathbb{Q}}$ – COMPARISON

Feature		
Supports multiplication	\checkmark	×
Handles square roots	\checkmark	×
Odd-degree polynomial roots	\checkmark	×
Quantifier elimination	\checkmark	\checkmark
Decidable?	Yes (complex)	Yes (simpler)

- Use $T_{\mathbb{Q}}$ for linear rational problems
- Use $T_{\mathbb{R}}$ when full algebraic expressiveness is needed

FIRST ORDER THEORIES



RECURSIVE DATA STRUCTURES (RDS)

- Describe data structures common in programming
- Examples: lists, stacks, binary trees

Non-Recursive vs Recursive

- **Non-recursive**: Like C's struct a variable with multiple fields
- **Recursive**: A structure that refers to itself (e.g., a list containing another list)

The Theory TRDS

- **TRDS** = Theory of Recursive Data Structures
- Builds on $T_{\rm E}$ (Theory of Equality)
- Helps reason formally about recursive structures

THEORY OF LISTS (T_{CONS})

Focus: LISP-style lists

- Tcons is the theory of lists
- Signature: $\Sigma_{cons} = \{cons, car, cdr, atom, =\}$, Where:

cons(a, b) – list constructed by concatenating a and b **car(x)** – left projector of x: car(cons(a, b)) = a **cdr(x)** – right projector of x: car(cons(a, b)) = b**atom(x)** – true $\leftrightarrow x$ is a single-element list

= - equality predicate

THEORY OF LISTS (T_{CONS})

Example:

- cons(a, cons(b, c)) = list of three elements
- car(cons(a, cons(b, c))) = a
- cdr(cons(a, cons(b, c))) = cons(b, c)

AXIOMS OF T_{CONS}

Based on $T_{\rm E}$ (Theory of Equality)

- Reflexivity, Symmetry, Transitivity (from $T_{\rm E}$)
- Function congruence:

 $\begin{aligned} \forall x_1, x_2, y_1, y_2. \ x_1 &= x_2 \ \land \ y_1 &= y_2 \ \rightarrow \ \operatorname{cons}(x_1, y_1) = \operatorname{cons}(x_2, y_2) \\ \forall x, y. \ x &= y \ \rightarrow \ \operatorname{car}(x) = \operatorname{car}(y) \\ \forall x, y. \ x &= y \ \rightarrow \ \operatorname{cdr}(x) = \operatorname{cdr}(y) \end{aligned}$

- predicate congruence: $\forall x, y. \ x = y \rightarrow (\operatorname{atom}(x) \leftrightarrow \operatorname{atom}(y))$
- left projection $\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$
- right projection $\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$
- Construction $\forall x. \neg \operatorname{atom}(x) \rightarrow \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) = x$
- atom $\forall x, y. \neg \operatorname{atom}(\operatorname{cons}(x, y))$

PROPERTIES OF T_{CONS}

- Equality of lists depends on parts (extensionality)
- Forward: equal lists \rightarrow equal parts
- Backward: equal parts \rightarrow equal lists
- Seen also in arrays

GENERAL THEORY OF RDS

- T_{cons} is one example of T_{RDS} .
- Each recursive structure (*RDS*) has:
 - An n ary constructor C
 - Projections: π_1^C, \ldots, π_n^C .
 - Predicate: atom_C.

GENERAL THEORY OF RDS

Axiom schema for each RDS:

- 1. $T_{\rm E}$ axioms
- 2. Function congruence for C, π_i^C
- 3. Predicate congruence for atom_C.
- 4. Projection: for each $i \in \{1, \ldots, n\}, \forall x_1, \ldots, x_n, \pi_i^{\mathsf{C}}(\mathsf{C}(x_1, \ldots, x_n)) = x_i$
- 5. Reconstruct: $\forall x. \neg \operatorname{atom}_{\mathsf{C}}(x) \rightarrow \mathsf{C}(\pi_1^{\mathsf{C}}(x), \ldots, \pi_n^{\mathsf{C}}(x)) = x$
- 6. Constructor not an atom: $\forall x_1, \ldots, x_n$. $\neg \operatorname{atom}_{\mathsf{C}}(\mathsf{C}(x_1, \ldots, x_n))$

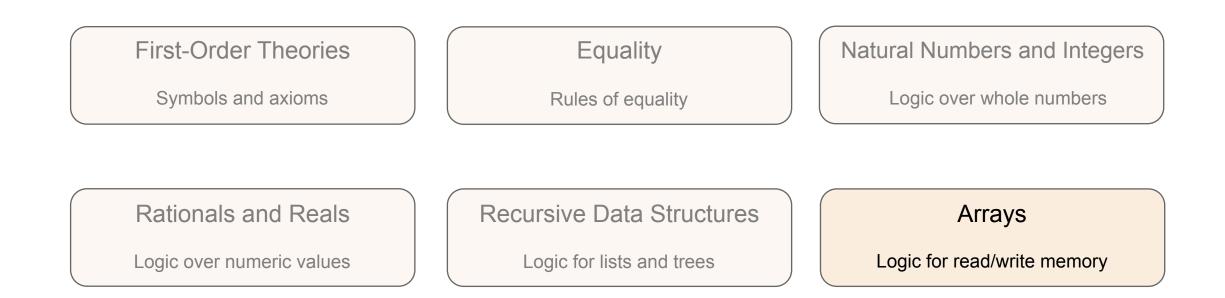
ACYCLIC LISTS AND ATOMS

- T_{cons}^+ = acyclic version of T_{cons} .
 - Adds axioms like: $car(x) \neq x$, $cdr(cdr(x)) \neq x$, etc.
- Decidable, unlike full T_{cons} .
- Specified atoms: *T*^{atom}_{cons}.
 - Adds: $\forall x. \operatorname{atom}(x) \rightarrow \operatorname{atom}(\operatorname{car}(x)) \land \operatorname{atom}(\operatorname{cdr}(x))$
 - Makes satisfiability NP-complete

LISTS WITH EQUALITY $(T_{CONS}^{=})$

- $T_{\text{cons}} + T_{\text{E}} = T_{\text{cons}}^{\text{=}}$ Combines T_{cons} with T_{E} .
- More expressive: allows uninterpreted symbols
- Example proof:
 - Assume: car(a) = car(b), cdr(a) = cdr(b)
 - Then: $a = b \rightarrow f(a) = f(b)$ by congruence
 - So: F is valid under $T_{cons}^{=}$

FIRST ORDER THEORIES



THEORY OF ARRAYS (T_A)

What are arrays?

- Common data structure in programming
- Similar to functions, but **can be updated**
- $T_{\rm A}$ = Theory of Arrays

Signature:

- *a*[*i*]: read value at position *i*
- $a\langle i \triangleleft v \rangle$: write value v to position i
- =: equality predicate

FUNCTIONAL ARRAYS

- Arrays are treated like functions
- Example:
 - $a\langle i \lhd v \rangle$ is the new array

•
$$a\langle i \lhd v \rangle[j] = \begin{cases} v, & j = i \\ a[j], & j \neq i \end{cases}$$

• Multiple writes:

•
$$a\langle i \lhd v \rangle \langle j \lhd w \rangle [k] = \begin{cases} w, & k = j \\ v, & k = i \land k \neq j \\ a[k], & otherwise \end{cases}$$

AXIOMS OF T_A

- From $T_{\rm E}$: reflexivity, symmetry, transitivity
- Array congruence: $orall a, i, j. \; i=j \; o \; a[i]=a[j]$
- Read-over-write 1: $orall a, v, i, j. \ i=j \ o \ a\langle i \triangleleft v
 angle[j]=v$
- Read-over-write 2: $\forall a, v, i, j. i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j]$

ARRAY EQUALITY ISSUE

Note: = is only defined for array elements

$$F:\ a[i]=e\ \rightarrow\ a\langle i\triangleleft e\rangle=a$$

not $T_{\rm A} - valid$, but

$$F': a[i] = e \rightarrow \forall j. \ a\langle i \triangleleft e \rangle[j] = a[j] ,$$

is $T_{\rm A} - valid$.

T_A is undecidable, Quantifier-free fragment of T_A is decidable

EXTENDED THEORY $T_A^{=}$

Adds extensionality axiom:

$$\forall a, b. \ (\forall i. \ a[i] = b[i]) \ \leftrightarrow \ a = b$$

Now array equality is well-defined

Example: $F: a[i] = e \rightarrow a \langle i \triangleleft e \rangle = a$ is $T_A - valid$.

DECIDABILITY TABLE

Theory	Description	Full	\mathbf{QFF}
T_{E}	equality	no	yes
T_{PA}	Peano arithmetic	no	no
$T_{\mathbb{N}}$	Presburger arithmetic	yes	yes
$T_{\mathbb{Z}}$	linear integers	yes	yes
$T_{\mathbb{R}}$	reals (with \cdot)	yes	yes
$T_{\mathbb{Q}}$	rationals (without \cdot)	yes	yes
T_{RDS}	recursive data structures	no	yes
T_{RDS}^+	acyclic recursive data structures	yes	yes
T_{A}	arrays	no	yes
$T_{A}^{=}$	arrays with extensionality	no	yes

* QFF = Quantifier-Free Fragment

COMPLEXITY TABLE

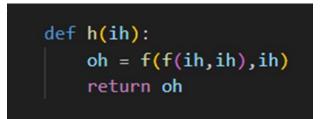
Theory	ory Complexity	
PL	NP-complete	
$T_{\mathbb{N}},T_{\mathbb{Z}}$	$\Omega\left(2^{2^n}\right), O\left(2^{2^{2^{kn}}}\right)$	
$T_{\mathbb{R}}$	$O\left(2^{2^{kn}}\right)$	
$T_{\mathbb{Q}}$	$\Omega\left(2^{n}\right), O\left(2^{2^{kn}}\right)$	
T_{RDS}^+	not elementary recursive	

FINAL RECAP EXAMPLE

Back to Our Example

Recall our example:

def g(ig): og = ig for i in range(2): og = f(og, ig) return og



$$\psi_g: \ og1 = ig \land og2 = f(og1, ig) \land og3 = f(og2, ig)$$

$$\psi_h: \ oh1 = f(f(ih, ih), ih)$$

$$\psi \coloneqq (ih = ig \land \psi_h \land \psi_g) \longrightarrow og3 = oh1$$

$$\psi \coloneqq (ih = ig \land \psi_h \land \psi_g) \longrightarrow og3 = oh1$$

For the equivalence of g and h, it's enough to show that ψ is T_E -valid Suppose not, then there is an interpretation I such that $I \not\models F$:

- 1. $I \vDash (ih = ig \land \psi_h \land \psi_g)$ as

 2. $I \nvDash og3 = oh1$

 3. $I \vDash (ih = ig)$

 4. $I \vDash (\psi_h)$

 5. $I \vDash (\psi_g)$
 - assumption and semantics of → assumption and semantics of → 1, and semantics of ∧ 1, and semantics of ∧
 - 1, and semantics of $\boldsymbol{\Lambda}$

$$\psi_g: og1 = ig \land og2 = f(og1, ig) \land og3 = f(og2, ig)$$

 ψ_h : oh1 = f(f(ih, ih), ih)

- 6. $I \models (og1 = ig)$ 5, and semantics of Λ
- 7. $I \models (og1 = ih)$

- *3, 6 and transitivity*
- 8. $I \models f(og1, ig) = f(ih, ih)$ 7, 3 and Function congruence
- 9. $I \models og2 = f(og1, ig)$ 5, and semantics of \land
- 10. $I \models og2 = f(ih, ih)$ 8, 9 and transitivity

11. $I \models f(og2, ig) = f(f(ih, ih), ih)$ 10, 3 and Function congruence

12. $I \models og3 = f(og2, ig)$ 5, and semantics of \land

$$\psi_g: og1 = ig \land og2 = f(og1, ig) \land og3 = f(og2, ig)$$

 ψ_h : oh1 = f(f(ih, ih), ih)

13. $I \models og3 = f(f(ih, ih), ih)$ 11, 12 and transitivity

14. $I \models og3 = oh1$ 13, 4 and transitivity

We found a contradiction between our result and our initial assumption, so we got that ψ is $T_{\rm E}$ -valid.

THANK YOU

The Calculus of Computation by Aaron B. Bradley and Zohar Manna, 2007 From Stanford University, USA

Sections: 1.1-1.3, 2.1-2.3, 3.1-3.3

