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MOTIVATION

32 First Order Logic (FOL) 2.1 Syntax

  

 



THE CALCULUS OF COMPUTATION

Part I

provides the mathematical foundations 
for precise engineering.

Part II 

ivestigate algorithmic aspects of 
applying these foundations.
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PROPOSITIONAL 
LOGIC (PL)



INTRODUCTION

WHAT IS A CALCULUS?

Calculus = A Formal System

• A set of symbols and rules for 
manipulating those symbols.

• A meaningful calculus applies to 
a real-world domain.

1 Propositional Logic (PL)

C.S NEEDS A DIFFERENT CALCULUS

• Domain: Computation.
• Based on state — assignment of 

values to variables.

• Computation = Sequence of 
transitions between states.

• A program defines:
• State structure
• Allowed transitions
• All possible computations

8



PURPOSE OF A LOGICAL CALCULUS IN CS

We want to check how programs behave:

• Does the program sort the array?

• Does it use memorysafely?

• Does it always halt?
Key Concepts

• State: Assignment of values (Booleans, integers, etc.) to variables.

• Transitions: Pairs of states in computation.

• Computation: Sequence of states.

• A program’s set of computations defines it as precisely as its source code.

Goal: Develop a logical calculus that lets us reason formally about correctness, 

just like differential calculus lets us reason about physical quantities.
1 Propositional Logic (PL) 9



PROPOSITIONAL LOGIC (PL)

SYNTAX SEMANTICS SATISFIABILITY AND 
VALIDITY 

How formulas are built What formulas mean When formulas are true
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SYNTAX

1 Propositional Logic (PL) 1.1 Syntax 12

• Truth symbols: ⊤ (true), ⊥ (false)
• Propositional variables: 

P, Q, R, P₁, P₂, …

The syntax of a logical language = its symbols + rules for combining them.

SYMBOLS (⊤, ⊥, P, Q, ETC.) LOGICAL CONNECTIVES



1 Propositional Logic (PL) 1.1 Syntax 13
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SUBFORMULAS

1 Propositional Logic (PL) 1.1 Syntax 14

• Formula G is a subformula of F if it occurs within F.
• Rules:

• Subformula of P is P
• Subformulae of ¬F: ¬F and subformulae of F
• Subformulae of F₁ ◦ F₂ (◦ = logical connectives): the full formula and the 

subformulae of F₁ and F₂

• Strict subformulae: all subformulae except the formula itself



SUBFORMULAS - EXAMPLE

1 Propositional Logic (PL) 1.1 Syntax 15



PRECEDENCE & ASSOCIATIVITY

1 Propositional Logic (PL) 1.1 Syntax 16

 



QUIZ!
GROUPING WITHOUT 

PARENTHESES
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Which of the following is logically equivalent to:
 P₁ ∧ ¬P₂ ∧ ⊤ ∨ ¬P₁ ∧ P₂

   (P₁ ∧ (¬P₂ ∧ ⊤)) ∨ (¬P₁ ∧ 
P₂)a    ((P₁ ∧ ¬P₂) ∧ ⊤) ∨ ¬(P₁ ∧ 

P₂)c

   P₁ ∧ ¬(P₂ ∧ (⊤ ∨ ¬P₁)) ∧ 
P₂b    ((P₁ ∧ ¬P₂ ∧ ⊤ ∨ ¬P₁) ∧ 

P₂)d



1 Propositional Logic (PL) 1.1 Syntax 19

Which of the following is logically equivalent to:
 P₁ ∧ ¬P₂ ∧ ⊤ ∨ ¬P₁ ∧ P₂

   (P₁ ∧ (¬P₂ ∧ ⊤)) ∨ (¬P₁ ∧ 
P₂)a    ((P₁ ∧ ¬P₂) ∧ ⊤) ∨ ¬(P₁ ∧ 

P₂)c

   P₁ ∧ ¬(P₂ ∧ (⊤ ∨ ¬P₁)) ∧ 
P₂b    ((P₁ ∧ ¬P₂ ∧ ⊤ ∨ ¬P₁) ∧ 

P₂)d
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SYNTAX SEMANTICS SATISFIABILITY AND 
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SEMANTICS

221 Propositional Logic (PL) 1.2 Semantics

What is Semantics?
• Semantics defines the meaning of 

logical formulas.

• In PL, the meaning is based on truth 
values: true or false



INTERPRETATION

231 Propositional Logic (PL) 1.2 Semantics

Interpretation (I) assigns a truth value to each propositional 
variable.
• Example:



TRUTH TABLES

241 Propositional Logic (PL) 1.2 Semantics

Negation (¬): Connectives Table:



TRUTH TABLES - EXAMPLE

251 Propositional Logic (PL) 1.2 Semantics

Formula:

Interpretation:

Step-by-step Table:

F evaluates to true under interpretation I.



TRUTH TABLES

261 Propositional Logic (PL) 1.2 Semantics

Is truth table a efficient method
 to evalute formulas in PL?



1 Propositional Logic (PL) 1.2 Semantics 27

INDUCTIVE 
DEFINITION OF 
PL’S SEMANTICS



281 Propositional Logic (PL) 1.2 Semantics

Formula:

Interpretation:

?Why

INDUCTIVE DEFINITION - EXAMPLE



INDUCTIVE DEFINITION - EXAMPLE

291 Propositional Logic (PL) 1.2 Semantics

?Why



PROPOSITIONAL LOGIC (PL)

SYNTAX SEMANTICS SATISFIABILITY AND 
VALIDITY 

How formulas are built What formulas mean When formulas are true
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SATISFIABILITY AND VALIDITY 

311 Propositional Logic (PL) 1.3 Satisfiability and Validity 

 

 

Why it works?
 



METHODS FOR VALIDITY & SATISFIABILITY

321 Propositional Logic (PL) 1.3 Satisfiability and Validity 

Truth tables Semantic arguments



METHODS FOR VALIDITY & SATISFIABILITY

331 Propositional Logic (PL) 1.3 Satisfiability and Validity 

Truth tables Semantic arguments



METHOD 1: TRUTH TABLES 

341 Propositional Logic (PL) 1.3 Satisfiability and Validity 

Example:



METHODS FOR VALIDITY & SATISFIABILITY

351 Propositional Logic (PL) 1.3 Satisfiability and Validity 

Truth tables Semantic arguments



METHOD 2: SEMANTIC ARGUMENTS

361 Propositional Logic (PL) 1.3 Satisfiability and Validity 

Semantic Arguments provide an alternative to truth tables for 
proving validity.
Approach:
• Assume the formula F is invalid (i.e., there is a falsifying 

interpretation I such that I ⊭ F)
• Apply semantic definitions to deduce consequences
• Derive a contradiction → proves F is valid



METHOD 2: SEMANTIC ARGUMENTS - EXAMPLE

371 Propositional Logic (PL) 1.3 Satisfiability and Validity 

Found a contradiction, so F is valid



1 Propositional Logic (PL) 1.3 Satisfiability and Validity 38

SEMANTIC 
ARGUMENT

PROOF RULES

NEGATION (¬)

CONJUNCTION (∧)

DISJUNCTION (∨)

IMPLICATION (→)

 

CONTRADICTION RULE
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SYNTAX SEMANTICS SATISFIABILITY AND 
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SYNTAX

442 First Order Logic (FOL) 2.1 Syntax

 FOL extends PL with:

• Terms – the basic ones are variables and constants.  More complex terms 

are functions which takes n terms as arguments.

• Predicates – generalization of propositional variables of PL. An n-ary 

predicate takes n terms as arguments and return truth value.

• Quantifiers - existential quantifier ∃x. F[x], universal quantifier ∀x. F[x].



SYNTAX

452 First Order Logic (FOL) 2.1 Syntax

 



SYNTAX

462 First Order Logic (FOL) 2.1 Syntax

• atoms – ⊤, ⊥, or an n-ary predicate applied to n terms.

• literals - An atom or its negation.

 

 



SYNTAX

472 First Order Logic (FOL) 2.1 Syntax

 

 

 



SYNTAX

482 First Order Logic (FOL) 2.1 Syntax

 There are two FOL quantifiers:

• the existential quantifier ∃x. F[x], read “there exists an x such that F[x]”; 

• and the universal quantifier ∀x. F[x], read “for all x, F[x]”.

 



SYNTAX

492 First Order Logic (FOL) 2.1 Syntax

A variable is free in formula F[x] if there is an occurrence of x that is not bound 
by any quantifier. Denote by free(F) the set of free variables of a formula F.

A variable is bound in formula F[x] if there is an occurrence of x in the scope of 
a binding quantifier ∀x or ∃x. Denote by bound(F) the set of bound variables 
of a formula F.

A formula F is closed if it does not contain any free variables.



SYNTAX

502 First Order Logic (FOL) 2.1 Syntax

 



SYNTAX
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SYNTAX

522 First Order Logic (FOL) 2.1 Syntax

 



SYNTAX :SUBFORMULAS - EXAMPLE

532 First Order Logic (FOL) 2.1 Syntax

 

The subformulae of F are:

    



SYNTAX :SUBFORMULAS - EXAMPLE

542 First Order Logic (FOL) 2.1 Syntax

 

The subterm of F are:
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SEMANTICS

562 First Order Logic (FOL) 2.2 Semantics

 



SEMANTICS

572 First Order Logic (FOL) 2.2 Semantics

 



SEMANTICS

582 First Order Logic (FOL) 2.2 Semantics

 



SEMANTICS

592 First Order Logic (FOL) 2.2 Semantics

 



SEMANTICS

602 First Order Logic (FOL) 2.2 Semantics

 



SEMANTICS

612 First Order Logic (FOL) 2.2 Semantics

 



SEMANTICS

622 First Order Logic (FOL) 2.2 Semantics

 



SEMANTICS

632 First Order Logic (FOL) 2.2 Semantics

after covering the base case of the inductive semantics, we can 
turn to the inductive step.



SEMANTICS

642 First Order Logic (FOL) 2.2 Semantics



SEMANTICS

652 First Order Logic (FOL) 2.2 Semantics

 



SEMANTICS

662 First Order Logic (FOL) 2.2 Semantics

 



FIRST ORDER LOGIC (FOL)

SYNTAX SEMANTICS SATISFIABILITY AND 
VALIDITY 

How formulas are built What formulas mean When formulas are true

672 First Order Logic (FOL)



SATISFIABILITY AND VALIDITY 

682 First Order Logic (FOL) 2.3 Satisfiability and Validity 

 



SATISFIABILITY AND VALIDITY 

692 First Order Logic (FOL) 2.3 Satisfiability and Validity 

 



SATISFIABILITY AND VALIDITY 

702 First Order Logic (FOL) 2.3 Satisfiability and Validity 

We add another rule which helps us determine a contradiction.



SATISFIABILITY AND VALIDITY 

712 First Order Logic (FOL) 2.3 Satisfiability and Validity 

 



SATISFIABILITY AND VALIDITY 

722 First Order Logic (FOL) 2.3 Satisfiability and Validity 



SATISFIABILITY AND VALIDITY 

732 First Order Logic (FOL) 2.3 Satisfiability and Validity 

 



SATISFIABILITY AND VALIDITY 

742 First Order Logic (FOL) 2.3 Satisfiability and Validity 
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FIRST-ORDER THEORIES

773 First Order Theories 3.1 First-Order Theories

How logic meets real data:

Numbers, arrays, lists, trees

Equality, structure, behavior

Useful for software verification



FIRST ORDER THEORIES 

783 First Order Theories

Natural Numbers and Integers

Logic over whole numbers

First-Order Theories

Symbols and axioms

Equality

Rules of equality

Arrays

Logic for read/write memory

Rationals and Reals

Logic over numeric values

Recursive Data Structures

Logic for lists and trees



FIRST ORDER THEORIES 

793 First Order Theories

Natural Numbers and Integers

Logic over whole numbers

First-Order Theories

Symbols and axioms

Equality

Rules of equality

Arrays

Logic for read/write memory

Rationals and Reals

Logic over numeric values

Recursive Data Structures

Logic for lists and trees



FIRST-ORDER THEORIES

803 First Order Theories 3.1 First-Order Theories

Definition: A first-order theory T is defined by:
• Signature (Σ): A set of constant, function, and predicate symbols.
• Axioms (A): A set of closed FOL formulas using only symbols from Σ.

Σ-formulas are built from these symbols, variables, connectives, and 
quantifiers.
• The symbols themselves have no built-in meaning.
• Their meaning comes from the axioms A.

 



SATISFIABILITY AND VALIDITY

813 First Order Theories 3.1 First-Order Theories

T-validity (T ⊨ F): A formula F is valid in theory T if every interpretation I 

that satisfies all axioms A also satisfies F.

T-satisfiability: A formula F is satisfiable in T if there is some interpretation 

I (a T-interpretation) such that I ⊨ F.

Example: Let T contain axiom: ∀x. P(x) → Q(x)
Then the formula: P(a) → Q(a) is T-valid if P(a) holds under T.



SATISFIABILITY AND VALIDITY

823 First Order Theories 3.1 First-Order Theories

 



FRAGMENTS AND DECIDABILITY

833 First Order Theories 3.1 First-Order Theories

Fragment: A syntactically restricted subset of formulas.
• e.g., The quantifier-free fragment contains formulas with no quantifiers.

Decidability:
• A theory T is decidable if there exists an algorithm that can decide for 

every Σ-formula F whether T ⊨ F.
• A fragment is decidable if this holds within the fragment's restrictions.



COMBINING THEORIES

843 First Order Theories 3.1 First-Order Theories

Union of Theories:
• T₁ ∪ T₂ has signature Σ₁ ∪ Σ₂ and axioms A₁ ∪ A₂.
• An interpretation of T₁ ∪ T₂ satisfies both theories.
Implications:
• If a formula is valid in T₁ or T₂ → valid in T₁ ∪ T₂.
• If a formula is satisfiable in T₁ ∪ T₂ → satisfiable in both T₁ and T₂.
Why we care:
• First-Order Logic (FOL) itself is undecidable.
• Many theories and fragments are decidable.
• These are central to automated reasoning and verification.



FIRST ORDER THEORIES 

853 First Order Theories

Natural Numbers and Integers

Logic over whole numbers

First-Order Theories

Symbols and axioms

Equality

Rules of equality

Arrays

Logic for read/write memory

Rationals and Reals

Logic over numeric values

Recursive Data Structures

Logic for lists and trees



EQUALITY
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EQUALITY

873 First Order Theories 3.2 Equality

 



 

883 First Order Theories 3.2 Equality

 

But the quantifier-free fragment is decidable — and very useful.
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3.3 Natural Numbers and Integers 933 First Order Theories

Signature
• 0, 1: constants
• +, ⋅: binary functions (addition, multiplication)
• =: equality predicate
Axioms:

1. Zero: ∀x. ¬(x + 1 = 0)
2. Successor: ∀x, y. x + 1 = y + 1 → x = y
3. Induction: F [0] ∧ (∀x. F [x] → F [x + 1]) → ∀x. F [x]
4. plus zero: ∀x. x + 0 = x
5. plus successor: ∀x, y. x + (y + 1) = (x + y) + 1
6. times zero: ∀x. x · 0 = 0
7. times successor: ∀x, y. x · (y + 1) = x · y + x



 

3.3 Natural Numbers and Integers 943 First Order Theories

 



LIMITS OF PEANO ARITHMETIC

3.3 Natural Numbers and Integers 953 First Order Theories

 



 

3.3 Natural Numbers and Integers 963 First Order Theories

 



 

3.3 Natural Numbers and Integers 973 First Order Theories

 



 

3.3 Natural Numbers and Integers 983 First Order Theories

 



EXAMPLE – REDUCING INTEGER LOGIC TO 
NATURALS

3.3 Natural Numbers and Integers 993 First Order Theories

 



EXAMPLE – REDUCING INTEGER LOGIC TO 
NATURALS

3.3 Natural Numbers and Integers 1003 First Order Theories

 



 

3.3 Natural Numbers and Integers 1013 First Order Theories

 



ARITHMETIC THEORY SUMMARY

3.3 Natural Numbers and Integers 1023 First Order Theories

Theory Domain Ops Decidable?
ℕ +, ⋅ No
ℕ + Yes
ℤ +, - Yes

 



FIRST ORDER THEORIES 

1033 First Order Theories

Natural Numbers and Integers

Logic over whole numbers

First-Order Theories

Symbols and axioms

Equality

Rules of equality

Arrays

Logic for read/write memory

Rationals and Reals

Logic over numeric values

Recursive Data Structures

Logic for lists and trees



REAL & RATIONAL ARITHMETIC THEORIES

3.4 Rationals and Reals 1043 First Order Theories

Theory Domain Ops Supported Notes

ℝ +, -, ⋅, =, ≥
Field with roots, ordered, 

supports multiplication

ℚ +, -, =, ≥

We study two important arithmetic theories:



 

3.4 Rationals and Reals 1053 First Order Theories

Signature
Includes addition, multiplication, and ordering over ℝ

Abelian Group Axioms (Addition):



 

3.4 Rationals and Reals 1063 First Order Theories

Ring Axioms (Multiplication & Distributivity):

Field Axioms:



 

3.4 Rationals and Reals 1073 First Order Theories

Order Axioms (≥):

Real Closure Axioms:



3 First Order Theories 3.4 Rationals and Reals 108

THEORY OF 
REALS:

COMPLETE 
AXIOMATIZATION



 

3.4 Rationals and Reals 1093 First Order Theories

 



 

3.4 Rationals and Reals 1103 First Order Theories

Signature
Axioms:



RATIONAL ≈ REAL (FOR LINEAR FORMULAS)

3.4 Rationals and Reals 1113 First Order Theories

 



 

3.4 Rationals and Reals 1123 First Order Theories

Feature

Supports multiplication ✔ ❌
Handles square roots ✔ ❌
Odd-degree polynomial roots ✔ ❌
Quantifier elimination ✔ ✔
Decidable? Yes (complex) Yes (simpler)
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RECURSIVE DATA STRUCTURES (RDS)
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3.5 Recursive Data Structures 1153 First Order Theories

 



 

3.5 Recursive Data Structures 1163 First Order Theories

 

list of three elements
 

 



 

3.5 Recursive Data Structures 1173 First Order Theories

 

• predicate congruence:
• left projection
• right projection
• Construction
• atom



 

3.5 Recursive Data Structures 1183 First Order Theories

• Equality of lists depends on parts (extensionality)
• Forward: equal lists → equal parts
• Backward: equal parts → equal lists
• Seen also in arrays



 

3.5 Recursive Data Structures 1193 First Order Theories

 



GENERAL THEORY OF RDS

3.5 Recursive Data Structures 1203 First Order Theories

 



ACYCLIC LISTS AND ATOMS

3.5 Recursive Data Structures 1213 First Order Theories

 



 

3.5 Recursive Data Structures 1223 First Order Theories
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3.6 Arrays 1243 First Order Theories

 



FUNCTIONAL ARRAYS

3.6 Arrays 1253 First Order Theories

 



 

3.6 Arrays 1263 First Order Theories

 



ARRAY EQUALITY ISSUE

3.6 Arrays 1273 First Order Theories

 

 



 

3.6 Arrays 1283 First Order Theories

 



DECIDABILITY TABLE

3.6 Arrays 1293 First Order Theories

* QFF = Quantifier-Free Fragment



COMPLEXITY TABLE

3.6 Arrays 1303 First Order Theories



FINAL RECAP EXAMPLE
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Back to Our Example
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SATISFIABILITY AND VALIDITY 
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SATISFIABILITY AND VALIDITY 



THANK YOU
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