THE CALCULUS OF
COMPUTATION

Sharon Tartakovsky
Nadav Mor

The Calculus

by Aaron R. Bradley and
/ohar Manna, 2007

From Stanford University, USA

Sections: 1.1-1.3, 21-2.3, 3.1-3.3

MOTIVATION

def foo(a, b):
if not a and not b:
h()

else:

if not a:

Pfoo: (maA=bAh)V (—n(ﬂa A —=b) A ((nang)V (ﬁ(ﬂa) N\ f)

Pgoo: (@A f)V(maA((bAg)V(=bAh)))

(pgoo — §0f00

2 First Order Logic (FOL) 2.1 Syntax

THE CALCULUS OF COMPUTATION

Part | Part Il
provides the mathematical foundations ivestigate algorithmic aspects of
for precise engineering. applying these foundations.

The Calculus of Computation 4

Aaron R. Bradley
Zohar Manna

BRI | 0 N A
R T e e A N R R
- RN AR IR 10 1
I AR RN [| | (0 (L 1
_ AR R RN AR RN RN

The Calculus

of Computation

@ Springer

LECTURE OUTLINE

& 4

Propositional Logic First Order Logic First Order Theories
(PL) (FOL)
The logic of statements that are Logic with predicates, functions, and Logical frameworks for reasoning
either true or false. quantifiers. about numbers, arrays, and data.

The Calculus of Computation Lecture OUTLINE

LECTURE OUTLINE

& 4

Propositional Logic First Order Logic First Order Theories
(PL) (FOL)
The logic of statements that are Logic with predicates, functions, and Logical frameworks for reasoning
either true or false. quantifiers. about numbers, arrays, and data.

The Calculus of Computation Lecture OUTLINE

PROPOSITIONAL
LOGIC (PL)

INTRODUCTION

WHAT IS A CALCULUS? C.S NEEDS ADIFFERENT CALCULUS
Calculus = A Formal System Domain: Computation.
« A set of symbols and rules for « Based on state — assignment of
manipulating those symbols. values to variables.
* A meaningful calculus applies to « Computation = Sequence of
a real-world domain. transitions between states.

« A program defines:
« State structure
» Allowed transitions
» All possible computations

1 Propositional Logic (PL)

PURPOSE OF A LOGICAL CALCULUS IN CS

We want to check how programs behave:
* Does the program sort the array?

* Does it use memorysafely?

* Does it always halt?

Key Concepts

o State: Assignment of values (Booleans, integers, etc.) to variables.

* Transitions: Pairs of states in computation.

« Computation: Sequence of states.

* A program’s set of computations defines it as precisely as its source code.

Goal: Develop a logical calculus that lets us reason formally about correctness,

just like differential calculus lets us reason about physical quantities.

1 Propositional Logic (PL)

SYNTAX

How formulas are built

1 Propositional Logic (PL)

PROPOSITIONAL LOGIC (PL)

-—
_xog

SEMANTICS SATISFIABILITY AND
VALIDITY

What formulas mean When formulas are true

10

In —

SYNTAX

How formulas are built

1 Propositional Logic (PL)

PROPOSITIONAL LOGIC (PL)

11

SYNTAX

The syntax of a logical language = its symbols + rules for combining them.

SYMBOLS (T, L, P, Q, ETC.) LOGICAL CONNECTIVES
« Truth symbols: T (true), L (false) - Meaning
* Propositional variables: _F negation (“not)
P, Q, R, P1, PZ, Fi1 N Fo conjunction (“and)
Fi v Fo disjunction (“or)
Fi1— Fy implication (“impplies”)
F1 < Fy biconditional (ifand

1 Propositional Logic (PL) 1.1 Syntax

12

SYNTAX

 Atom: truth symbol (T, L) or propositional variable (P).

e Literal: An atom or its negation (e.g., P or =P).

* Formula: literal or An application of a logical connective to other

formulas
-F “not” (negation)
F1 A F2 “and” (conjunction)
F1V F2 “or” (disjunction) FAQ — R
F1 — F2 “implies” (implication) “(PAQ) < (=P V —Q)
F1 & F2 “if and only if” (iff) (P V Q) & (P — Q)

1 Propositional Logic (PL) 1.1 Syntax 13

SUBFORMULAS

« Formula G is a subformula of F if it occurs within F.

 Rules:
« Subformulaof Pis P
« Subformulae of =F: °F and subformulae of F

« Subformulae of F: - F2 (- = logical connectives): the full formula and the
subformulae of F+ and F:

o Strict subformulae: all subformulae except the formula itself

1 Propositional Logic (PL) 1.1 Syntax

14

1 Propositional Logic (PL)

PAQ

SUBFORMULAS - EXAMPLE

F: (PAQ) — (PV-Q)

PV -Q P

1.1 Syntax

15

PRECEDENCE & ASSOCIATIVITY

Formula G is a subformula of F if it occurs within F.

Precedence Order (Highest to Lowest):
e —(not)
* A (and)
 V(or)
e — (implies)
e o (if and only if)
Associativity Rules:

* — and ¢ are right-associative.
* Example: P - @ — R is interpreted as P — (Q — R).

1 Propositional Logic (PL) 1.1 Syntax

16

Parentheses are cumbersome. We define the relative
precedence of the logical connectives from highest to
“test as! follows I AT Vi

Which of the following is logically equivalent to:
PiA P ATV P AP:

1 Propositional Logic (PL) 1.1 Syntax 18

Which of the following is logically equivalent to:
PiAP. ATV P AP:

@2(;31 A (P2 A 7)) V (7P: /\) @2()(9 A “P2) A T) V (P /\>
@R A (P A (TV PY)) /\> @()(R AP, ATV AP A >

1 Propositional Logic (PL) 1.1 Syntax 19

SYNTAX - EXAMPLE

* Formula: F: (PAQ) - (TV-=0Q)
e atoms: P,Q,T

* literal: =0

e subformulas: PAQ,T V =(Q

subformula atom literal
F: (PAQ) »(T v =0Q)

1 Propositional Logic (PL) 1.1 Syntax

20

1 Propositional Logic (PL)

PROPOSITIONAL LOGIC (PL)

11v

110

o]1
SEMANTICS

What formulas mean

21

SEMANTICS

What is Semantics?

 Semantics defines the meaning of

logical formulas.

* |n PL, the meaning is based on truth
values: true or false

1 Propositional Logic (PL) 1.2 Semantics

22

INTERPRETATION

Interpretation (l) assigns a truth value to each propositional
variable.

 Example: I: {P > true, Q — false, ...}

1 Propositional Logic (PL) 1.2 Semantics

23

Negation (7):

F

- F

0

1

1

0

1 Propositional Logic (PL)

TRUTH TABLES

Connectives Table:

Fi|Fs||Fy N Fo|Fy V Fy|Fy — Fy|Fy - Fy
00 0 0 1 1
01 0 1 1 0
110 0 | 0 0
11 1 1 1 1

1.2 Semantics

24

TRUTH TABLES - EXAMPLE

Formula: F: PAQ — PV-Q

Interpretation: ;. {P > true, Q — false}

Step-by-step Table:

P|1Q|[—Q|P AN QP V —Q|F
1(Of 1 0 1 1

F evaluates to true under interpretation .

1 Propositional Logic (PL) 1.2 Semantics

1 Propositional Logic (PL)

TRUTH TABLES

Is truth table a efficient method
to evalute formulas in PL?

1.2 Semantics

26

INDUCTIVE
DEFINITION OF
PL'S SEMANTICS

| = F if F evaluates to true under /

| ¥~ F false
Base Case:

| = T

| = L

I = iff I[P] = true

| = P iff [I[P] =false

Inductive Case:

I = —F 1L F

I = R AF iffl £ Fadl = F

/ F VvV F> iff / |: Fiorl |= Fs

| = R - F iff,ifl = Fithen! = F
| = Fl > F2 iff,l |= F1 and / |= Fz,

orl - Frand | &= Fp

I%F1—>F2 iff I|:F1andI|#F2

1 Propositional Logic (PL) 1.2 Semantics 27

Formula:

Interpretation:

2R R o

1 Propositional Logic (PL)

NN NN NN

s 0TS

INDUCTIVE DEFINITION - EXAMPLE

F: P\NQ — PV-Q

P

Q
Q)
PAQ
PV -Q
F

I: {P > true, @+ false}

since I[P] = true
since I[Q] = false
by 2 and semantics of —
by 2 and semantics of A
by 1 and semantics of V
by 4 and semantics of —

1.2 Semantics

?Why

28

F: P\NQ — PV-Q
I: {P > true, Q + false}

INDUCTIVE DEFINITION - EXAMPLE

1. I = P since I[P] = true

2. 1 ¥~ Q since I[Q] = false

3. I = —Q by 2 and semantics of —

4. I = PANQ by 2 and semantics of A

5. I = PV -Q by 1 and semantics of V

6. I = F by 4 and semantics of — ?Why

I |=F1 —>F2 iff,if[lelthenllez

1 Propositional Logic (PL) 1.2 Semantics 29

1 Propositional Logic (PL)

PROPOSITIONAL LOGIC (PL)

©

SATISFIABILITY AND
VALIDITY

When formulas are true

30

SATISFIABILITY AND VALIDITY

F satisfiable & there exists an interpretation | such that I & F.

F valid & for all interpretations I, I E F.

[F is valid & —F is unsatisfiable J
Why it works?

If F is valid,
then forevery I, | EF —
sol ¥ AF —

—F is unsatisfiable

1 Propositional Logic (PL) 1.3 Satisfiability and Validity

31

METHODS FOR VALIDITY & SATISFIABILITY

32

METHODS FOR VALIDITY & SATISFIABILITY

33

Example:

METHOD 1: TRUTH TABLES

F: PNQ — PV-Q.

PIQ|PNQ|-Q|PV -Q|F
0({0] O 1 1 1
0|1 O 0 0 1
110 O 1 1 1
111] 1 0 1 1

1 Propositional Logic (PL)

1.3 Satisfiability and Validity

34

METHODS FOR VALIDITY & SATISFIABILITY

1 Propositional Logic (PL) I 3 Satisfiability and Validity
V 4 | y h_

35

METHOD 2: SEMANTIC ARGUMENTS

Semantic Arguments provide an alternative to truth tables for
proving validity.

Approach:

* Assume the formula F is invalid (i.e., there is a falsifying
interpretation | such that | » F)

* Apply semantic definitions to deduce consequences
* Derive a contradiction — proves F is valid

1 Propositional Logic (PL) 1.3 Satisfiability and Validity 36

METHOD 2: SEMANTIC ARGUMENTS - EXAMPLE

1 IT#F
2 _YFPAQ
3 IEPV-Q

4 I'eP
5 IEP
6 1

1 Propositional Logic (PL)

F:PANQ— PV -Q

I E-F I £ —F IEFAG
(@assum.) IF#F IEF IET IEG
(1 and —) IEFAG IEFVG
(1 and —) IEF | IEG It F | IE=G
(2 and A) IEFVG IEF>G
(3 and V) I¢F I#G I#F | IEG
(4 and 5) I¥F -G

IEF IEG

Found a contradiction, so F is valid

1.3 Satisfiability and Validity

37

SEMANTIC
ARGUMENT

PROOF RULES

NEGATION (-) Lz :_F ; b; :_F
| = FAG I - FAG
CONJUNCTION (A) T E F I~ F | 1 £ G
I = G “=and or
| = FVG | = FVG
DISJUNCTION (V) 7= F T T E G L F
| - G
IMPLICATION (=) - bélllf: f ('i - ; b; ﬁ_’G
| = G
| E Fo G | £ F— G
BICONDITIONAL (@) 7" FRG T TE FVG TE FA-G | T E <FAG
| = F
CONTRADICTION RULE | W F
= L

1 Propositional Logic (PL) 1.3 Satisfiability and Validity

38

The Calculus of Computation

LECTURE OUTLINE

First Order Logic
(FOL)

Logic with predicates, functions, and
quantifiers.

Lecture OUTLINE

39

FIRST ORDER
LOGIC (FOL)

2 First Order Logic (FOL)

- g(ig):
og = 1ig
for 1 in range(2):

og = f(og, 1ig)
return og

MOTIVATION

2.1 Syntax

~ h(ih):
oh = f(f(ih,ih),ih)

return

oh

41

o

SYNTAX

How formulas are built

2 First Order Logic (FOL)

FIRST ORDER LOGIC (FOL)

O

1
11 f
0] f(x)

SEMANTICS

What formulas mean

SATISFIABILITY AND
VALIDITY

When formulas are true

42

o

SYNTAX

How formulas are built

2 First Order Logic (FOL)

FIRST ORDER LOGIC (FOL)

o

43

SYNTAX

FOL extends PL with:

e Terms — the basic ones are variables and constants. More complex terms

are functions which takes n terms as arguments.

* Predicates — generalization of propositional variables of PL. An n-ary

predicate takes n terms as arguments and return truth value.

* Quantifiers - existential quantifier 3 x. F[x], universal quantifier ¥ x. F[x].

2 First Order Logic (FOL) 2.1 Syntax

44

SYNTAX

The following are all terms:
e Xx,a variable;
* f(a),aunary function f applied to a constant;

e g(x,b),a binary function g applied to a variable x and a constant b;

* f(g(x, f(b)))

2 First Order Logic (FOL) 2.1 Syntax

45

SYNTAX

e atoms — 1, L, or an n-ary predicate applied to n terms.

e literals - An atom or its negation.

atom/Aliteral litqral
p(f(x),y), —p(f»),9()
term

2 First Order Logic (FOL) 2.1 Syntax

46

SYNTAX

The most simple and basic FOL formula is just one literal
p(x,y)
But we can create complex FOL formulae using logical connectives,

like AV, —, =1 or <.

atom/ }iteral literal
p(f(x),y) Ar(gy),x) — —p(f(¥),g(x))

term

2 First Order Logic (FOL) 2.1 Syntax

47

SYNTAX

There are two FOL quantifiers:
+ the existential quantifier 3 x. F[x], read “there exists an x such that F[x]’;

« and the universal quantifier V x. F[x], read “for all x, F[Xx]".

vx. p(f (0,) (390 (F9 1) 9 0)) Aa(x. £ ()

2 First Order Logic (FOL) 2.1 Syntax

48

SYNTAX

A variable is free in formula F[x] if there is an occurrence of x that is not bound
by any quantifier. Denote by free(F) the set of free variables of a formula F.

A variable is bound in formula F[x] if there is an occurrence of x in the scope of

a binding quantifier ¥ x or 3 x. Denote by bound(F) the set of bound variables
of a formula F.

A formula F is closed if it does not contain any free variables.

2 First Order Logic (FOL) 2.1 Syntax 49

SYNTAX

For example, consider the following FOL formula:

F: Vx. p(f(x),y) » Vy. p(f(x),y)

x only occurs bound, while y appears both free (in the antecedent) and bound
(in the consequent). Thus, free(F) = {y} and bound(F) = {x,y}.

So in this case we have: free(F) N bound(F) # ¢

2 First Order Logic (FOL) 2.1 Syntax

50

SYNTAX

The subformulae of a FOL formula are defined according to an extension of
the PL definition of subformula:

the only subformula of p(t4, ..., t;), where the t; are terms, is p(tq, ..., t;);
* the subformulae of =F are =F and the subformulae of F;

* the subformulaeof F; AF, ,F;VF,,F, - F,,F; & F, are the formula itself

and the subformulae of F; and F5;

e the subformulae of Ax. F and Vx. F are the formula itself and the

subformulae of F.

2 First Order Logic (FOL) 2.1 Syntax 51

SYNTAX

The subterms of a FOL term are defined as follows:

* the only subterm of constant a or variable x is a or x itself.

* and the subterms of f(t4, ...

tyy sty

2 First Order Logic (FOL)

,tn) are the term itself and the subterms of

2.1 Syntax

52

SYNTAX :SUBFORMULAS - EXAMPLE

F: Vx. p(f(x),y) = Vy. p(f(x),y)

The subformulae of F are:

F p(f(x),y) » Vy.p(f(x),y) Vy.p(f(x),y)

2 First Order Logic (FOL) 2.1 Syntax

p(f(x),y)

53

SYNTAX :SUBFORMULAS - EXAMPLE

i g (feo.f (h(F@)))

The subterm of F are:

r f@) f (r(r@)) A(f @)

2 First Order Logic (FOL) 2.1 Syntax

2 First Order Logic (FOL)

o

FIRST ORDER LOGIC (FOL)

O

1
1] ¢
L0] f(x)

SEMANTICS

What formulas mean

@

99

SEMANTICS

We must remember that both PL and FOL formulas are evaluated to the truth
values true and false. However, terms of FOL formulae evaluate to values
from a specified domain.

That lead us to definition of FOL interpretation.

An interpretation | is a pair (D;, a;) which consist of a domain and an
assignment.

2 First Order Logic (FOL) 2.2 Semantics

56

SEMANTICS

The domain D; of an interpretation | is a nonempty set of values or objects,
such as integers, real numbers, dogs, people, or merely abstract objects.

|D;| denotes the cardinality, or size, of D;.

2 First Order Logic (FOL) 2.2 Semantics

57

SEMANTICS

The assignment a; of interpretation | maps constant, function, and predicate
symbols to elements, functions, and predicates over D;.

It also maps variables to elements of D;:

* each variable symbol x is assigned a value x; from Dy;

* each n — ary function symbol f is assigned an n — ary function f; : D' —

D, that maps n elements of D; to an element of D;;

* each n — ary predicate symbol p is assigned an n — ary predicate p;:

D' — {true, false} that maps n elements of D; to a truth value.

2 First Order Logic (FOL) 2.2 Semantics 58

SEMANTICS

let’s clarify these ideas with the following example:

F: x+y>z — vy >z—x

F': p(f(x,),2z) — p(y,9(zx)).

2 First Order Logic (FOL) 2.2 Semantics

59

SEMANTICS

F: x+y>z — vy >z—x

now let’s construct a “standard” interpretation:

* The domain is the integers, D; = Z.

e a ={+P 45, =P —3, > >,, x » 13, y » 42, z — 13}

2 First Order Logic (FOL) 2.2 Semantics

60

SEMANTICS

Given a FOL formula F and interpretation, | : (D;, a;), we want to compute
if F evaluates to true under interpretation |, I E F, or if F evaluates to false
under interpretation |, I ¥ F.

We define the semantics inductively, we saw the assignment a; gives
meaning «; [x], a; [c], and a; [f] to variables x, constants ¢, and functions f.

2 First Order Logic (FOL) 2.2 Semantics 61

SEMANTICS

Evaluate arbitrary terms recursively: a;[f (ty, ..., t,)] = a;[f1(a;[t1], ..., a;[t,]),
for terms t4, ..., t,.

That is, define the value of f(tq, ..., t,) under a; by evaluating the function a;
a;|f] over the terms a;[t{], ..., a;[tn].

Similarly, evaluate arbitrary atoms recursively:

ar[p(ty, ... tn)] = aylpl(a;[ti], ..., a;[tn])

Then I E p(tq, ..., t,) © a;|p]l(a;[t{], ..., a;[t,]) = true

2 First Order Logic (FOL) 2.2 Semantics

62

SEMANTICS

after covering the base case of the inductive semantics, we can
turn to the inductive step.

|
J
B

= iff I (£ F
= F} A Fy iff I = F and I = F5

=F1\/F2 iﬁ.IZFlol‘Il:FZ

= F; — I iff, if I = F; then I = F5

F, < F it I =FandI = Fy,or I F) and I = F;

~

|

2 First Order Logic (FOL) 2.2 Semantics

SEMANTICS

F:xz4+y>z - y>z—=x
of Example 2.7 and the interpretation I : (Z, ay), where

ar: {++— +z, —+— —z, >—>z, x+— 13z, y— 42z, z+— 1z} .
Compute the truth value of F' under I as follows:

rT+y>2z since arfxr +y > z| =13z +z42 >z 1z
= y>z—2x since arly > z — x| =42z >z 1z —z 132
I by 1, 2, and the semantics of —

Lo DN =
N NN
l

2 First Order Logic (FOL) 2.2 Semantics

64

SEMANTICS

For the quantifiers, let x be a variable. Define an x-variant of an
interpretation I = (D;, ;) as an interpretation J = (D], a]) such that:

d D[=D]

 And a;|y] = a][y] for all constants, free variable, function and predicate

symbols y, except possibly x.

That is, I and J agree on everything except possibly the value of variable x.

2 First Order Logic (FOL) 2.2 Semantics 65

SEMANTICS

Denote by J: I « {x + v} the x-variant of I in which a;[x] = v for some ve Dj.

Then:

e [EVxX.F iffforallveD;,, I «{x—v}|=F

| £ 3x.F iff there existv € D;, suchthat | « {x — v} | =F

2 First Order Logic (FOL) 2.2 Semantics

66

2 First Order Logic (FOL)

o

FIRST ORDER LOGIC (FOL)

SATISFIABILITY AND
VALIDITY

When formulas are true

67

SATISFIABILITY AND VALIDITY

e A formula F is said to be satisfiable <& there exists an
interpretation | such that I = F.

* A formula F is said to be valid < for all interpretations I, I = F.

* Determining satisfiability and validity of formulae are important
tasks in FOL.

* Recall that satisfiability and validity are dual:
F is valid & =F is unsatisfiable.

2 First Order Logic (FOL) 2.3 Satisfiability and Validity

68

SATISFIABILITY AND VALIDITY

According to the semantics of universal quantification, from [& Vx. F, deduce

| « {x — v} E F for any ve D;.

IEVX.F I # 3x.F
. for any ve D; for any ve D,
I—{x—v} |=F I—{x—v}H¥EF
[E3x.F I #Vx.F

. for some ve D,

for a some ve D;
I—{x—v}|=F

I—{x—V}H¥F

2 First Order Logic (FOL) 2.3 Satisfiability and Validity

69

SATISFIABILITY AND VALIDITY

We add another rule which helps us determine a contradiction.

e A contradiction exists if two variants of the original interpretation I dis-
agree on the truth value of an n-ary predicate p for a given tuple of domain

values.
Jd 2 d Gore: B P(S1508058%)
K:Iqa--- [p(ty,...,tn) forie{l,...,n}, aj[s:] = axlti]
I E L1

2 First Order Logic (FOL) 2.3 Satisfiability and Validity

70

SATISFIABILITY AND VALIDITY

We want to prove that (Vx.p(x)) — (Vy.p(y)) is valid.

Suppose not, then there is an interpretation | such that] ¥ F:

I EVx.p(x) assumption and semantics of —
I ¥ Vy.p(y) assumption and semantics of —
I — {y»v}#¥p(ly) 2andsemantics ofV, for some ve D;

I — {x - v} Ep) 1andsemantics of V

g9 N W N F

Under I,p(v) is false by 3 and true by 4.

2 First Order Logic (FOL) 2.3 Satisfiability and Validity

71

2 First Order Logic (FOL)

f g(ig):
og = 1ig

for 1

og = f(og, ig)
og

return

SATISFIABILITY AND VALIDITY

h(ih):
oh = f(f(ih,ih),ih)

in range(2): return oh

2.3 Satisfiability and Validity

72

lef g unroll(ig):
og = 1ig
og = f(og, 1ig)

og = f(og, ig)
return og

2 First Order Logic (FOL)

SATISFIABILITY AND VALIDITY

g(1g): h(ih):

og = 18 oh = f(f(ih,1ih),ih)
for 1 in range(2):

og = f(og, ig)
return og

return oh

Yy 0gl =igAog2=f(ogl,ig) ANog3 = f(0g2,ig)

Wn: ohl = f(f(ih, ih),ih)

2.3 Satisfiability and Validity

73

SATISFIABILITY AND VALIDITY

Two functions are equivalent if and only if for every two equal inputs the
outputs are the same, that lead us to the formula:

g = (ih=igA YpAY,) > 0g3 = ohl

Finally: g and h are equivalent < Y is valid

2 First Order Logic (FOL) 2.3 Satisfiability and Validity

74

LECTURE OUTLINE

Propositional Logic
(PL)
The logic of statements that are
either true or false.

The Calculus of Computation

First Order Logic
(FOL)

Logic with predicates, functions, and
quantifiers.

Lecture OUTLINE

First Order Theories

Logical frameworks for reasoning
about numbers, arrays, and data.

75

FIRST ORDER
THEORIES

FIRST-ORDER THEORIES

How logic meets real data:

3 First Order Theories

o

3.1 First-Order Theories

77

FIRST ORDER THEORIES

First-Order Theories

Symbols and axioms

Equality

Rules of equality

Rationals and Reals

Logic over numeric values

Recursive Data Structures

Logic for lists and trees

3 First Order Theories

Natural Numbers and Integers

Logic over whole numbers

Arrays

Logic for read/write memory

78

FIRST ORDER THEORIES

First-Order Theories

Symbols and axioms

Equality

Rules of equality

Rationals and Reals

Logic over numeric values

Recursive Data Structures

Logic for lists and trees

3 First Order Theories

Natural Numbers and Integers

Logic over whole numbers

Arrays

Logic for read/write memory

79

FIRST-ORDER THEORIES

Definition: A first-order theory T is defined by:
e Signature (Z): A set of constant, function, and predicate symbols.
 Axioms (A): A set of closed FOL formulas using only symbols from 2.

2-formulas are built from these symbols, variables, connectives, and
quantifiers.

* The symbols themselves have no built-in meaning.

« Their meaning comes from the axioms A.

Ye=ila . bif, P}
A = {P(a),Vx.P(x) » P(f(x))}

3 First Order Theories 3.1 First-Order Theories 80

SATISFIABILITY AND VALIDITY

T-validity (T = F): Aformula F is valid in theory T if every interpretation |

that satisfies all axioms A also satisfies F.

T-satisfiability: A formula F is satisfiable in T if there is some interpretation

| (a T-interpretation) such that | = F.

Example: Let T contain axiom: ¥V x. P(x) — Q(x)
Then the formula: P(a) — Q(a) is T-valid if P(a) holds under T.

3 First Order Theories 3.1 First-Order Theories

81

SATISFIABILITY AND VALIDITY

* Complete theory: For every formula F: either T EFor T E =F.

* Consistent theory: There exists at least one interpretation satisfying all
axioms.

* This means we cannot have both T E Fand T E -F.
 Otherwise, TE FA-F — T E 1 (contradiction).

Equivalence: Formulas F; and F, are T-equivalent if T £ F; © F,.

3 First Order Theories 3.1 First-Order Theories

82

FRAGMENTS AND DECIDABILITY

Fragment: A syntactically restricted subset of formulas.

* e.dg., The quantifier-free fragment contains formulas with no quantifiers.

Decidability:

« Atheory T is decidable if there exists an algorithm that can decide for
every 2-formula F whether T = F.

« Afragment is decidable if this holds within the fragment's restrictions.

3 First Order Theories 3.1 First-Order Theories

83

COMBINING THEORIES

Union of Theories:

 T: U T:has signature 2: U 2., and axioms A: U A..
* An interpretation of T: U T: satisfies both theories.
Implications:

« IfaformulaisvalidinT:orT: — validinT: U T..

« |If a formula is satisfiable in T+ U T: — satisfiable in both T1 and T-.
Why we care:

« First-Order Logic (FOL) itself is undecidable.

« Many theories and fragments are decidable.

« These are central to automated reasoning and verification.

FIRST ORDER THEORIES

First-Order Theories

Symbols and axioms

Equality

Rules of equality

Rationals and Reals

Logic over numeric values

Recursive Data Structures

Logic for lists and trees

3 First Order Theories

Natural Numbers and Integers

Logic over whole numbers

Arrays

Logic for read/write memory

85

EQUALITY

I is the simplest first-order theory.
* Signature Xg:
= (equality) — binary predicate, interpreted via axioms

* All other symbols (constants, functions, predicates) are
uninterpreted — except as they relate to equality

3 First Order Theories 3.2 Equality

86

EQUALITY

Axioms of Tt :

1. Reflexivity: Vx. x = x

2. Symmetry: Vx,y. x=y->y=Xx

3. Transitivity: Vx,y,z. x =yAy=zZ-ox =12

4. Function congruence: VX, y. (Al xi =vy;) = f(X) = f(¥)

5. Predicate congruence: VX, y. (Al.;x; = y;) = (p()?) o p(y))

3 First Order Theories 3.2 Equality

1z 1S UNDECIDABLE

* Tk includes all constant, function, and predicate symbols.
* So, any FOL formula can be rephrased as a 7z formula.

* That makes 7g undecidable, just like FOL.

But the quantifier-free fragment /s decidable — and very useful.

3 First Order Theories 3.2 Equality

88

VALIDITY AND SATISFIABILITY IN 7g

Although 7¢ as a whole is undecidable, Its quantifier-free fragment is

both interesting and efficiently decidable.

Example:
Fra=bAb=b- g(f(a),b) =g(f(c)a) // constants
Fix=yAy=2z-g(f(x),y) =g9(f(2),x) // free variables

Fis Tz-valid & F'is Ig-valid F is Tg-satisfiable © F' is Tg-satisfiable

3 First Order Theories 3.2 Equality 89

SEMANTIC ARGUMENT — PROVING VALIDITY IN Tg

We can use a semantic argument to prove that a formula is valid in 7.

Example: Prove that: F: a=b A b=c — g(f(a),b) = g(f(c),a)

is Tg -valid Assume it's false.

1. I ¥ F assumption

2. I = a=bANb=c 1, —

3. I |~ g(f(a),b)=9(f(c),a) 1,—

4. I = a=0b 2, \

5. I = b=c 2, A

6. I = a=c 4, 5, (transitivity)

“ I E fla)=f(e) 6, (function congruence)
8. I = b=a 4, (symmetry)

9. I E g(f(a),b) =g(f(c),a) 7, 8 (function congruence)
10. I = L 3,9

3 First Order Theories 3.2 Equality

FIRST ORDER THEORIES

First-Order Theories

Symbols and axioms

Equality

Rules of equality

Rationals and Reals

Logic over numeric values

Recursive Data Structures

Logic for lists and trees

3 First Order Theories

Natural Numbers and Integers

Logic over whole numbers

Arrays

Logic for read/write memory

91

NATURAL NUMBERS AND INTEGERS

We explore three foundational arithmetic theories:

* Peano Arithmetic (Tp,4): supports addition and multiplication over N.

* Presburger Arithmetic (TN): only supports addition.

* Theory of Integers (TZ): simplifies reasoning over Z.

3 First Order Theories 3.3 Natural Numbers and Integers

92

PEANO ARITHMETIC (Tp,)

Signature Xpy : {0, 1, +, -, =}

* 0, 1: constants

« +, -2 binary functions (addition, multiplication)
e =: equality predicate

Axioms:

1. Zero: Vx.(x+1=0)

2. Successor: VX, y.x+1=y+1-5x=y

3. Induction: F[0O] A (VX.F[x] - F[x+1]) = VX. F[X]
4. plus zero: Vx.x+0=x

5. plus successor: VX, y. x+(y+1)=(x+y)+ 1

6. timeszero: Vx.x-0=0

/. timessuccessor: VX, y.x-(y+1)=x-y+X

3 First Order Theories 3.3 Natural Numbers and Integers

93

INTENDED INTERPRETATION OF Tpp

The standard model of Peano Arithmetic assumes:
e Domain: N (natural numbers)
e I[0],I[1]: Oy, 1y EN
e I[+]: +y ,addition over N
X

|: Xy ,multiplication over N

[
—~
I

]: =n ,numeric equality over N

3 First Order Theories 3.3 Natural Numbers and Integers

94

LIMITS OF PEANO ARITHMETIC

* Satisfiability and validity in Tp, are undecidable
* Even quantifier-free Tp, is undecidable!
* Moreover, Tp, is incomplete (Godel, 1930)

* Upshot: there are valid arithmetic propositions that are Tp, -invalid

Lesson: Multiplication is hard! Let’s try something easier.

3 First Order Theories 3.3 Natural Numbers and Integers

95

PRESBURGER ARITHMETIC (Ty)

Signature: Yy : {0, 1, +, :}

Axioms: Subset of Tpy

1. All of the equality axioms: reflexivity, symmetry, transitivity,
and congruence

Zero: Vx.-~(x + 1 =0)
Additive identity: Vx.x + 0 = x
Successor: Vx, y.(x +1=y+1) > x=y

Plus successor: Vx, y.x+ (y+1)=(x+y) +1
Induction: F[0] A (Vx. F[x] — F[x + 1]) — Vx. F[x]

o, k2 W N

3 First Order Theories 3.3 Natural Numbers and Integers

96

PRESBURGER ARITHMETIC (Ty)

The intended interpretation is over N, like with Tpp

But, unlike Tpp, it has nice properties:

* Validity is decidable!
* But complexity is high: 0(22")
* Complete: For every Ty-formula F, either E F or & -F

* Admits quantifier elimination: For any Ty-formula F, there is
an equivalent quantifier-free F’

* Validity in quantifier-free fragment is coNP-complete

3 First Order Theories 3.3 Natural Numbers and Integers

THEORY OF INTEGERS (T;)

Signature: »,: {...,-2,-1,0, 1, 2, ...,=3-,—-2-, 2, 3-, ..., +, —, =, >}
e Constants: ..., -2,-1,0,1, 2, ...

* Coefficient functions: ..., -2, 2-, ...

* Binary functions: +, -

* Predicates: =, >
Claim: Ty is reducible to Ty

* Their expressive power is the same, so we won’t bother axiomitizing

* Tz is more convenient, and thus more commonly-used, than Ty

3 First Order Theories 3.3 Natural Numbers and Integers

98

EXAMPLE — REDUCING INTEGER LOGIC TO
NATURALS

Goal: Rewrite a formula over Z using only N.

Original:

Fo: Vw,z. dy,z. x+2y—2—-13> -3w+5

Idea: Represent each integer v using two naturals: vy, v,, such that v = v, — v,.

Step 1 - Encode subtraction:

vav Wny Tp, T Elypa Yny Rpy Zn-

Fy
. (Zp —) +2(Yp — Yn) — (2p — 2) — 13 > =3(wp —wy) + 5

3 First Order Theories 3.3 Natural Numbers and Integers 99

EXAMPLE — REDUCING INTEGER LOGIC TO
NATURALS

YWy Weis Tps s TWps Yris Doy D
F1 :
(Zp — Zn) + 2(yp — Yn) — (2p — 2n) — 13 > =3(wp —wy) + 5

Step 2 - Eliminate - by rearranging:

V'wpa Wpy Tpy Ty - Ely]oa Yny Zpy Zn-

F5 -
S my 2y + 2n+ 3wy > T+ 2y + 2p + 13+ 3wn + 5 .

Step 3 - Remove constants and > using extra variable u # 0:

VWp, Wny Tpy Tn- Yp; Yns Zp; Zn. JU.
—(u=0) A
Tp+ Yp T Yp + 2n + Wp + Wp + Wp
=ZTn +Yn +Yn + 2p + Wp +Wp + Wp + U
+1+1+14+14+14+14+14+1+41
+14+1+14+14+14+14+14+141.

F3 :

3 First Order Theories 3.3 Natural Numbers and Integers 100

THEORY OF INTEGERS (T;)

Examples in T;:

* Example1:Vx.dy. x=y+1=2Vx=>20—-3dy=>0.x=y+1

* Example 2: VX,y,z. X>zZAy=20—oXx+y>z

e Example 3: Vx,y. x>0A(x=2yVx=2y+1l) ->x-y>0

All are Tz-valid and show how to reason semantically over integers.

3 First Order Theories 3.3 Natural Numbers and Integers 101

ARITHMETIC THEORY SUMMARY

Theory Domain Ops Decidable?
N +, - No
N + Yes
7 +, - Yes

Tpa: powerful but undecidable
T: limited but decidable and complete

T 7: useful, intuitive, and reducible to Ty

3 First Order Theories 3.3 Natural Numbers and Integers 102

FIRST ORDER THEORIES

First-Order Theories Equality Natural Numbers and Integers
Symbols and axioms Rules of equality Logic over whole numbers

Rationals and Reals Recursive Data Structures Arrays

Logic over numeric values Logic for lists and trees Logic for read/write memory

3 First Order Theories 103

REAL & RATIONAL ARITHMETIC THEORIES

We study two important arithmetic theories:

Theory Domain Ops Supported Notes
Field with roots, ordered,
R +9 b ' b :9 2
supports multiplication
0 o=,z

3 First Order Theories

3.4 Rationals and Reals

104

THEORY OF REALS (TR)

Signature X : {0, 1, +, —, -, =, >}
Includes addition, multiplication, and ordering over [

Abelian Group Axioms (Addition):

1. Yo, 8. (&+y)+e=p+ G+ 2) (4 associativity)
2. Vz.2+0=z (+ identity)
3. Vx. z + (—x) =0 (+ inverse)

4. Ve,y. x+y=y+=x (+ commutativity)

3 First Order Theories 3.4 Rationals and Reals 105

THEORY OF REALS (TR)

Ring Axioms (Multiplication & Distributivity):

Vz,y, 2. (Ty)z = 2(y2)
Va. 2l ==
V. lza=a

Va,y,z. x(y + 2) = xy + x2
Ve,y,2. (x+y)z =22+ yz

S e

Field Axioms:

L Vo, y. 2y = yz
2. 0#£1
3.Vz. 2 40 — Jy.zy=1

3 First Order Theories 3.4 Rationals and Reals

(- associativity)

(- left identity)

(- right identity)
(left distributivity)
(right distributivity)

(- commutativity)

(separate identities)
(- inverse)

106

THEORY OF REALS (TR)

Order Axioms (2):

LYEB . Z2Y NY28 — =7
2. Vx,y,z.c 2y N y>2z — x>=2
3. Ve,y. x>y Vy>=x

Real Closure Axioms:

l. Vez,y,z. 22y - z+2>2y+=2
2. Vz,y. 220 AN y>0 — 2y >0
3. Vz. Jy. z =9y V = —y?

4. for each odd integer n,

VZ. Hy yn +$1yn—1 r b i +xn—1y+xn =0

3 First Order Theories 3.4 Rationals and Reals

(antisymmetry)
(transitivity)
(totality)

(+ ordered)

(- ordered)
(square-root)

(at least one root)

107

14.
15.

16.
17.

: Yoz 2y Aygze — 3=y

Ve,y,z. 22y N y>z — 2>z
Ve,y. x>y V y>x

Vr,y,z. (x+y)+z=2+(y+2)
Ve. 2+ 0=z

Ve. 2+ (—z) =0

Ve,y. x+y=y—+zx

Ve,y,z. 2>y — z+z>y+=z

Vz,y, 2. (zy)z = z(yz)

s Vs le =g
. Y. 2£0 — dy. gy =1
s N Tl = e

V220 Ap20 — gy 20

Va,y,z. x(y + 2) = xy + x2
e |

V. y. z=1? V —x = 9>
for each odd integer n,

VZ. Y. y" + oyt 21y + 2, =0

3 First Order Theories

3.4 Rationals and Reals

(antisymmetry)
(transitivity)
(totality)

(+ associativity)
(+ identity)

(+ inverse)

(+ commutativity)
(+ ordered)

(- associativity)
(- identity)

(- inverse)

(- commutativity)
(- ordered)

(distributivity)
(separate identities)

(square-root)

(at least one root)

108

THEORY OF
REALS:

COMPLETE
AXIOMATIZATION

EXAMPLE — T QUANTIFIER ELIMINATION

Given: F: dz.azx’+bx+c=0

Transformed to: F': b2 —4ac>0

— TR supports quantifier elimination for algebraic reasoning

3 First Order Theories 3.4 Rationals and Reals 109

THEORY OF RATIONALS (Tq)

Signature Y: {0, 1, +, —, =, >}
Axioms:

Ve,y 2y Ny>2cr — z=y

Ve,y,z. x>y N y>2z — £2>2
Ve,y. 2>y Vy>=x

Vr,y,z. (z+y)+z=2+(y+2)

Vz. 2+ 0=z

Ve. z+ (—z) =0

Ve,y. z+y=y+=x

for each positive integer n, Vz. nx =0 — z =0
for each positive integer n, Vz. 3y. z = ny

R ENE

p—
e

3 First Order Theories 3.4 Rationals and Reals

(antisymmetry)
(transitivity)
(totality)

(+ associativity)
(+ identity)

(+ inverse)

(+ commutativity)
(+ ordered)
(torsion-free)
(divisible)

110

RATIONAL = REAL (FOR LINEAR FORMULAS)

Every ZQ-formuIa behaves the same in Q and R

No formula can distinguish rational from real domain

— For linear logic, R = Q under TQ

Example: Vz,y. dz. z+y > 2

— Vz,y. 3z. ~(x =2) ANz+y>=z.

3 First Order Theories 3.4 Rationals and Reals

111

TR VS T - COMPARISON

Feature

Supports multiplication

Handles square roots

Odd-degree polynomial roots

Quantifier elimination

SISISIS

SIX|X [X

Decidable?

Yes (complex)

Yes (simpler)

* Use TQ for linear rational problems

* Use T'g when full algebraic expressiveness is needed

3 First Order Theories

3.4 Rationals and Reals

112

FIRST ORDER THEORIES

First-Order Theories Equality Natural Numbers and Integers
Symbols and axioms Rules of equality Logic over whole numbers

Rationals and Reals Recursive Data Structures Arrays

Logic over numeric values Logic for lists and trees Logic for read/write memory

3 First Order Theories 113

RECURSIVE DATA STRUCTURES (RDS)

* Describe data structures common in programming

* Examples: lists, stacks, binary trees
Non-Recursive vs Recursive
* Non-recursive: Like C’s struct — a variable with multiple fields

* Recursive: A structure that refers to itself (e.g., a list containing another list)

The Theory TRDS

* TRDS = Theory of Recursive Data Structures
* Builds on 7 (Theory of Equality)

* Helps reason formally about recursive structures

3 First Order Theories 3.5 Recursive Data Structures 114

THEORY OF LISTS (TcoNsS)

Focus: LISP-style lists

* Tcons is the theory of lists

e Signature: X_,,s = {cons, car,cdr,atom, =} Where:
cons(a, b) — list constructed by concatenating a and b
car(x) - left projector of x: car(cons(a, b)) =a
cdr(x) - right projector of x: car(cons(a, b)) = b

atom(x) — true © x is a single-element list
= - equality predicate

3 First Order Theories 3.5 Recursive Data Structures 115

THEORY OF LISTS (TcoNs)

Example:

 cons(a,cons(b,c)) = list of three elements
* car(cons(a,cons(b,c))) = a

. cdr(cons (a, cons(b, c))) = cons(b,c)

3 First Order Theories 3.5 Recursive Data Structures 116

AXIOMS OF TcoNs

Based on 7; (Theory of Equality)

e Reflexivity, Symmetry, Transitivity (from 7g)

* Function congruence:
Va1, %2,Y1,Y2. T3 = T3 A y; =y — cons(xy,y1) = cons(za,ys)
Vx,y. x =y — car(z) = car(y)
Ve,y. x =y — cdr(x) = cdr(y)

« predicate congruence: Vz,y.x =y — (atom(z) < atom(y))

. left projection Vz,y. car(cons(z,y)) = x
* right projection Vx,y. cdr(cons(z,y)) =y
* Construction Vz. -atom(xz) — cons(car(z),cdr(z)) =z

e atom Vx, y. matom (conS(iU7 "J))

3 First Order Theories 3.5 Recursive Data Structures 117

PROPERTIES OF TCONS

Equality of lists depends on parts (extensionality)

Forward: equal lists — equal parts

Backward: equal parts — equal lists

Seen also in arrays

3 First Order Theories 3.5 Recursive Data Structures 118

GENERAL THEORY OF RDS

* Tcons is one example of Trps.

* Each recursive structure (RDS) has:

* Ann — ary constructor C
* Projections: ¥, ..., w§.

* Predicate: atomc.

3 First Order Theories 3.5 Recursive Data Structures 119

GENERAL THEORY OF RDS

Axiom schema for each RDS:

1. Tg axioms

2. Function congruence for C, nic

3. Predicate congruence for atomc.

4. Projection: for eachi € {1,...,n}, Vz1,...,2,. 7o(C(z1,...,2,)) = ;
5. Reconstruct: Vz. -atomc(z) — C(n$(z),...,75(x)) =2

6.

Constructor not an atom: Vzi,...,x,. matomc(C(z1,...,2z,))

3 First Order Theories 3.5 Recursive Data Structures

120

ACYCLIC LISTS AND ATOMS

* Tdons= acyclic version of Teons-

 Adds axioms like: car(x) # x, cdr(cdr(x)) # x, etc.

* Decidable, unlike full T¢ons-

« Specified atoms: TSLOM.

* Adds: Vz.atom(zx) — atom(car(xz)) A atom(cdr(x))

* Makes satisfiability NP-complete

3 First Order Theories 3.5 Recursive Data Structures 121

LISTS WITH EQUALITY (Tcons)

i Tcons + TE —_ Tgons - Combines Tcons with TE.
* More expressive: allows uninterpreted symbols

* Example proof:
 Assume: car(a) = car(b), cdr(a) = cdr(b)
* Then: a = b — f(a) = f(b) by congruence

 So: F is valid under Tgons

3 First Order Theories 3.5 Recursive Data Structures 122

FIRST ORDER THEORIES

First-Order Theories Equality Natural Numbers and Integers
Symbols and axioms Rules of equality Logic over whole numbers

Rationals and Reals Recursive Data Structures Arrays

Logic over numeric values Logic for lists and trees Logic for read/write memory

3 First Order Theories 123

THEORY OF ARRAYS (7j)

What are arrays?

* Common data structure in programming

* Similar to functions, but can be updated

* 7A = Theory of Arrays

Signature:

* ali]: read value at position i
 a(i < v): write value v to position i

* =: equality predicate

3 First Order Theories 3.6 Arrays 124

FUNCTIONAL ARRAYS

* Arrays are treated like functions

* Example:
e a(i < v)is the new array

v, j=1
aljl, j #i

(

* a(i < v)|[j]

* Multiple writes:

w,
e a(iv)(j<w)k]=1v,

\

3 First Order Theories

k=]
k=i ANk +#j

alk], otherwise

3.6 Arrays

125

AXIOMS OF T,

* From T : reflexivity, symmetry, transitivity
* Array congruence: Va,i,j.1=j — ali] = alj]
* Read-over-write 1: Va,v,1,j. i =7 — a(i<v)[j] =v

* Read-over-write 2: Va,v,4,j. 1 # j — a(i<v)[j] = alj]

3 First Order Theories 3.6 Arrays 126

ARRAY EQUALITY ISSUE

Note: = is only defined for array elements
F: ali]=e — afi<e)=a
not 75 — valid, but
F': ali] =e — Vj. a(i<e)[j] = alj] ,

is Ty — valid.

7p is undecidable,
Quantifier-free fragment of 74 is
decidable

3 First Order Theories 3.6 Arrays 127

EXTENDED THEORY T,

Adds extensionality axiom:
Va,b. (Vi. ali] = bli]) < a=1b

Now array equality is well-defined

Example: F': alil=e — aide) =a

is 75 — valid.

3 First Order Theories 3.6 Arrays 128

DECIDABILITY TABLE

Theory|Description Full| QFF
LE equality no| yes
Tha Peano arithmetic no| no
TN Presburger arithmetic yes| yes
17, linear integers yes| yes
Twr reals (with -) yes| yes
To rationals (without -) yes| yes
TrDs recursive data structures no| yes
T,gLDS acyclic recursive data structures| yes| yes
Ta arrays no| yes
Tx arrays with extensionality no| yes

* QFF = Quantifier-Free Fragment

3 First Order Theories

3.6 Arrays

129

COMPLEXITY TABLE

Theory|Complexity
PL NP-complete

Tv, Ty |2 (22"), 0 (222kn)
Te 0 (22’“”)
Ty 2(2"), 0 (22’“”)

+ .
Trps not elementary recursive

3 First Order Theories 3.6 Arrays 130

FINAL RECAP EXAMPLE

Back to Our Example

The Calculus of Computation 131

SATISFIABILITY AND VALIDITY

Recall our example:

g(ig):
og = 1ig
for 1 in range(2):

h(ih):

_ oh = f(f(ih,ih),ih)
og = f(og, 1ig)

return og

return oh

Yy 0gl=igAog2=[f(oglig)Aog3=7[f(og2,ig)
Yp: ohl = f(f(ih,ih),ih)

g = (ih=igA YpAY,) — 0g3 = ohl

The Calculus of Computation 132

SATISFIABILITY AND VALIDITY
Y = (ih =ig A\ Yy /\ng) — 0g3 = ohl

For the equivalence of g and h, it’s enough to show that ¢y is 7¢ -valid

Suppose not, then there is an interpretation | such that [¥ F:

1. IE (ih =igA\ Y, A tpg) assumption and semantics of —

2. I'¥0g3 =ohl assumption and semantics of —
3. IE(ih =ig) 1, and semantics of A
4. 1= (Yy) 1, and semantics of A

5 IE (wg) 1, and semantics of A

The Calculus of Computation 133

SATISFIABILITY AND VALIDITY

Yy 0gl=igAog2=[f(ogl,ig)Aog3 =[f(og2,ig)

Wn: ohl = f(f(ih, ih),ih)

6. [=(ogl =ig) 5, and semantics of A

7. 1= (ogl =ih) 3, 6 and transitivity

8. IEf(ogl,ig) = f(ih,ih) 7, 3 and Function congruence
9. I=Eo0g2 = f(ogl,ig) 5, and semantics of A

10. I=0g2 = f(ih,ih) 8, 9 and transitivity

11. /= f(og2,ig) = f(f(ih,ih),ih) 10, 3 and Function congruence
12. /=093 = f(0g2,ig) 5, and semantics of A

The Calculus of Computation 134

SATISFIABILITY AND VALIDITY

Yy 0gl =igAog2=f(ogl,ig) Nog3 =f(0g2,ig)

Yn: ohl = f(f(ih,ih),ih)
13. /=093 = f(f(ih,ih),ih) 11, 12 and transitivity

14. /F o093 = ohl 13, 4 and transitivity

We found a contradiction between our result and our initial assumption, so
we got that Y is 7¢ -valid.

The Calculus of Computation 135

HANK YOU

The Calculus of Computation 136

The Calculus of Computation

by Aaron B. Bradley and Zohar Manna, 2007
From Stanford University, USA

Q £ Sections: 1.1-1.3, 2.1-2.3,

f . S Sl

