
Making Smart Contracts Smarter
Luu, Chu, Olickel et al.

Oriel Zahavi
Noa Ziv

INTRODUCTION

INTRODUCTION

● In many cryptocurrencies today, there
are smart contracts.
We will mainly discuss the smart
contracts on the Ethereum network.

● The value held in smart contracts
 on Ethereum today is enormous,
and therefore the security of these
contracts is crucial.

INTRODUCTION

● Even today, 9 years after the
release of Ethereum, there are
numerous smart contracts that do
not take security seriously. As a
result, there are still many
vulnerabilities present in these
smart contracts, and people may
risk losing their funds.

Smart Contract

● Smart contracts are a type of program that allows for an agreement to be automatically
executed without a third party.
For example, there are smart contracts that enable loans without the need for banks

● Unlike traditional applications, any code that is uploaded to the blockchain cannot be
changed. Therefore, before uploading a smart contract to the blockchain, it is important to
ensure that it is safe for use.

● On the contrary to centralized financial services (such as banks), smart contracts are
completely decentralized. This means that there is no entity capable of reversing a money
transfer, for example, in the event of a security breach. Consequently, attackers can exploit
this for their own benefit.

Ethereum

Ethereum is an open-source blockchain-based platform that enables the creation and use of
distributed tokens, NFT tokens, and smart contracts.
These features facilitate the closure of transactions and agreements over the internet in a
decentralized manner, meaning without a central entity managing them.

EVM and Solidity

● Solidity is the high-level language used to write smart contracts for Ethereum

● The code of the smart contract is compiled into bytecode that runs on the EVM, in order to
run the code of the smart contract.

Blockchain

● Decentralized cryptocurrencies operate on a peer-to-peer (P2P) system, without a
third-party intermediary. Transaction tracking is performed through a "ledger" called the
blockchain.

● We will denote the state-transition function as σ.
For example, given an address γ, so σ(γ) represents the state of the account.

● A valid transition from σ to σ’, via transaction T is denoted as:

Blockchain

The blockchain is a linked list of blocks and
each block contains the following fields:

● prevBlock: Points to the previous block.
● TimeStamp: The time when the block

was mined (created).
● ListOftxs: The list of transactions.
● Blockchain State: Maps addresses to

accounts, indicating the state of each
account after transaction operations.

Blockchain

The blockchain is a linked list of blocks and
each block contains the following fields:

● Balance: Each account can hold an
Ethereum balance.

● Code: For addresses holding smart
contracts, a significant code is stored.

● Storage: The space where the code is
stored.

Blockchain

The blockchain is a linked list of blocks and
each block contains the following fields:.

● Nonce: The nonce value ensure that
transactions from the same account are
processed in the correct order and are not
duplicated.
The nonce is also used as a counter to
ensure that a block is unique and has not
been created before.

GAS SYSTEM

● Every operation in Ethereum has a predefined amount of gas required to execute it.
Only for the example, the POP command requires 5 gas units.

● For each gas unit, we can specify a price called the gasPrice.
Additionally, there is a gasLimit, which serves as an upper limit on the amount of gas in
a transaction.
If the gas used exceeds the gasLimit, the transaction terminates with an exception, and
the blockchain state remains unchanged.

SECURITY BUGS IN CONTRACTS

TOD -
 Transaction-Ordering Dependence

● Let us consider a scenario where the
blockchain is at state σ and the new block
includes two transactions (e.g., Ti, Tj)
invoking the same contract. In such a
scenario, users have uncertain knowledge of
which state the contract is at when their
individual invocation is executed

Question: What is the security issue that arises
from TOD in this contract?

Reminder

Block.timestamp value is also checked to validate the block to be added to the blockchain
network. This value should be equal to or less than the actual value plus 900 seconds.

● The timestamp value should be higher or equal to the parent.timestamp value,
otherwise the next block will be automatically rejected.

● Here, the nodes have the opportunity to change the timestamp in such a way that is no
lower than the parent.timestamp and not higher than the actual time plus 900.

 Timestamp Dependence

● The timestamp of the block can also pose a
security issue when using the block
timestamp as a triggering condition to
execute some critical operations, e.g.,
sending money.

● We call such contracts as
timestamp-dependent contracts.

Question: What is the security issue that arises
from TOD in this contract?

Mishandled Exceptions

● The possibility of an attack in this case is
when there is no consideration for handling
and/or catching exceptions, meaning the
calling function does not check if an
exception occurred in the called function.

Question: Where is the vulnerability in the
following contract?

KOE attack example

Reentrancy Vulnerability

● A reentrancy attack is a type of vulnerability
in smart contracts that allows attackers to
execute a function multiple times before the
previous call completes. This can lead to
unexpected and harmful behavior, such as
the theft of funds or unauthorized access to
data.

Question: Where is the vulnerability in the
following contract?

Reentrancy attack example

TOWARDS A BETTER DESIGN

TOWARDS A BETTER DESIGN
So let's start by defining symbols in semantics:

● ← - Assignment
● • - Arbitrary element
● ⇓ - Big evaluation step
● ↝ - Small evaluation step
● a[i→v] - a is a new array where the element at index i receives the value v.
● <BC,σ> - Global Ethereum state is a pair where BC is the current blockchain and σ is the

state-transition function
● Γ - The stream of incoming new transactions.

TOWARDS A BETTER DESIGN
● The Propose rule - is executed only

by one selected miner who
determines which transactions will
be included in the next block

● The Accept rule - is executed by
the other miners in the network
who accept the proposed block
and add it to the blockchain.

TOWARDS A BETTER DESIGN

What problems arise from the semantics
rules?

TOWARDS A BETTER DESIGN

What problems arise from the semantics
rules?

1. The selected miner determines the
timestamp.

2. The selected miner decides on the
order of transactions.

The activation record stack
● In Ethereum, an activation record stack is a data structure that is used to keep track of the current state of a

contract during execution. It is a stack of records that contain information about the current state of the
contract, including the values of its variables, the address of the contract, and the current function being
executed.

● Each time a function is called within a contract, a new activation record is pushed onto the stack, containing
information about the function call. When the function returns, the activation record is popped from the
stack and the contract returns to the previous state before the function was called.

● The activation record stack is important because it allows the Ethereum Virtual Machine (EVM) to keep track
of the current state of a contract, even as it executes complex operations involving multiple function calls.
By maintaining a record of the state of the contract at each point in the execution, the EVM can ensure that
the contract is executed correctly and that the results are consistent with the rules of the Ethereum network.

The activation record stack

● According to the following derivation
rules, we have defined how stack
operations should appear, and through
them, we can represent all possible
state snapshots of the stack. We can
say that every program can either
terminate successfully or end with an
exception.

● When this quadruple represents the
state of the called function.

Rules for Transaction Execution

● We will say that a transaction has been
successfully received if we transition from state
σ to state σ'.

● We will say that a transaction has failed if an
exception is thrown during the execution of the
code, in which case we remain in state σ.

● The money is transferred to the contract as a
condition at the beginning of the code's
execution as MSG.VALUE, and only if the
transaction completes without an exception, the
money remains in the contract. If not, the money
will not be received by the contract.

Execution of EVM Instructions

We will present some of the commands that are possible in the EVM, which is the execution
environment of Ethereum in the EtherLite language.

● op - denotes all arithmetic and logical operations (addition, subtraction, OR, AND, etc.).
● bne - pops two items from the top of the stack - if the first item is not zero, the program

counter becomes the second item; otherwise, increment the program counter by 1 (i.e.,
proceed to the next instruction).

Execution of EVM Instructions

We will present some of the commands that are possible in the EVM, which is the execution
environment of Ethereum in the EtherLite language.

● mload and mstore - instructions for memory operations.
● sload and sstore - instructions for contract storage operations.
● call - function call.
● return - return from a function.

Execution of EVM Instructions

We will present some of the commands that are possible in the EVM, which is the execution
environment of Ethereum in the EtherLite language.

● suicide - Transfer of all funds to user 𝜸 and then terminate the contract (storage is
released, and the contract becomes inactive and unusable), without using the stack
operation "call".

Execution of EVM Instructions

We will present some of the commands that are possible in the EVM, which is the execution
environment of Ethereum in the EtherLite language.

● create - creation of a new smart contract, receiving three arguments: the initial amount
with which the contract starts, the address of the smart contract code, and the memory to
allocate to the code.

● getstate - pushes the timestamp of the last block and several other insignificant variables
to the stack.

 Recommendations for Better Semantics

● The article's authors propose an improvement to the semantics of accepting or
rejecting a transaction for TOD.

● Recall that the TOD contract is a vulnerable contract since users are unaware of
the contract's state when their transaction is executed.
Therefore, we need to ensure that users' transactions are not affected by TOD.

● To achieve this, the caller of the transaction will add a condition. If the condition is
not met, the transaction will not be executed.

1. Guarded Transactions (for TOD)

 Recommendations for Better Semantics

1. Guarded Transactions (for TOD)

● the first rule states that if the condition is
not met, the blockchain state remains
unchanged.

● We can see that the other two rules are
very similar to what we saw previously
only that the difference here is that the
state function is updated according to the
additional condition.

● In the puzzle example, we can now demand
by using a guard condition that if the prize is
as we see it when we check the contract
(before the transaction is executed), we
compare it to that value before the
transaction. If the condition is met, then the
transaction will indeed be executed.

● User who submits a transaction Tu to claim
the reward should specify the condition
 g ≡ (reward == R), where R is the current
reward stored in the contract

 Recommendations for Better Semantics

2. Deterministic Timestamp

We will recall that a timestamp has two purposes:

1. To serve as a random seed
2. To serve as a global timestamp signature.

 Recommendations for Better Semantics

2. Deterministic Timestamp

Now let's see an example for when the timestamp is served as a global
timestamp signature.

If we know that a block in Ethereum is generated on average every 12 seconds,
what is the issue with the following condition:
timestamp - lastTime > 24 hours?

 Recommendations for Better Semantics

2. Deterministic Timestamp

If we know that a block in Ethereum is generated on average every 12 seconds,
what is the issue with the following condition:
timestamp - lastTime > 24 hours?

So if we recall the vulnerabilities associated with using a timestamp, we
remember that the timestamp can be manipulated by the caller. Therefore, a
better and equivalent condition would be: blockNumber - lastBlock > 7,200.

Since the block number increases by one each time, if someone wants to check if
24 hours have passed, they would need to check that 7,200 blocks have passed,
which, if calculated, equals: 7200 * (12/60) / 60 = 24.

 Recommendations for Better Semantics

3. Better Exception Handling

● If the send and call commands fail for any reason, no error is thrown.
Therefore, if the contract writer does not check the return value of these
calls, atomicity is not achieved.

● One possible solution is to add throw and catch commands to the EVM
language. This ensures that if an error occurs, it propagates upward until
it is caught or the transaction fails. In this way, we maintain atomicity.

THE Oyente TOOL

Oyente

● In fact, the purpose of the article is to publish the researchers' solution, which is a
testing tool called "Oyente." All the solutions presented so far require an update
of the Ethereum network.

● Therefore, an external testing tool is proposed that does not require an update of
the network.

● Its goal is to assist in two ways: to write safer contracts and to prevent users
from interacting with problematic (malicious) contracts.

● We will see an example of its usage further on.

Oyente

● The tool is based on symbolic execution, which is a technique aimed at
describing all the possible paths that a program can reach and checking the
program's correctness and the presence of bugs.

● For example, in the case of TOD, we would need to compare the results of
different paths, and if we observe a contradiction between two different paths,
we can conclude that the contract is problematic in terms of TOD.

Let's discuss the design and algorithm of the tool:

● Oyente takes the bytecode of the contract and
its blockchain state as input and determines
whether there are any issues in the contract.

● CFG (Control Flow Graph) Builder -
CFG constructs a graph representing the code
(in bytecode) and captures all the possible
program paths.

The nodes represent the commands in the
program, and each edge between two nodes
represents a possible execution from command
A to command B.

● EXPLORER -
The explorer starts from the initial node and
generates all possible paths that can be
traversed from the graph. It runs in parallel all
the possible transitions from each state.

When encountering a conditional jump (JUMPI)
in the program, Explorer queries Z3 to check if
the branch condition can be determined as
either provably true or provably false along the
current path.

● If the branch condition is true/false - explorer
will update the PC accordingly.
Else, Explorer employs a Depth First Search
(DFS) approach to explore both paths. It
updates the program counter and path
condition for each path accordingly.

● By using Z3 in this manner, Explorer can
eliminate provably infeasible traces during the
exploration phase

● The output of the explorer presents, to the next
component, all the unique paths within the
contract and from the contract outward

● CORE ANALYSIS -
It identifies the software behavior for many
different scenarios and inputs. Ultimately, the
output of the explorer

● for example, for TOD, if the contract produces
different results for the same transactions in a
different order, it indicates a TOD issue.

● Another example is that we can determine if the
contract is timestamp-dependent if the checked
condition includes the timestamp of the block.

● VALIDATOR -
verifies that both orderings (t1, t2) and (t2, t1)
are plausible for transactions t1 and t2, and if
such orderings do not exist at all, the result of
the core analysis is considered a false positive
(FP).

EVALUATION

● The diagram illustrates the
efficiency of the tool as of
2016.

● The tool was run on
approximately 20,000
smart contracts in 2016.
The combined value of
these contracts was
around 30 million dollars at
the time the article was
written.

● We can see that most
contracts use a stack
depth of 0 to 50, which is
well below the limit of 1024
stack-depth calls. This
allows for an atmosphere
of naivety where extreme
cases are not thoroughly
checked. It also makes it
easier to attack the
contract by pre-filling the
stack so that an exception
is only thrown on the
1024th call.

● Let's take a look at the following contract,
EtherID, which was very popular in 2016. There
were 57,738 transactions executed, and using
Oyente, we discovered an exception
vulnerability by inspecting the stack.

Oyente example

SUMMARY

SUMMARY

What have we learned today?

● We learned about smart contracts and their importance in being secure for
use.

● We discussed the potential issues that can arise when using smart contracts
on the Ethereum network.

● We explored how to write smart contracts in a more secure manner.
● We introduced Oyente as a tool for identifying vulnerabilities in smart

contracts.

