
Decision Procedures
chapters 12.1-12.3

 Daniel Kroening and Ofer Strichman
With help of Nikolaj Bjorner and Leonardo de Moura

Program

• Introduction to software verification

• Bounded Program Analysis

• Unbounded Program Analysis

Introduction to software verification

• Example of algorithm:

Input: array of integer

Output: sum of the inverse of
each element of the array

Can we find a bug in this program?

Yes.
If one of the numbers is equal to 0.

Introduction to software verification

Introduction to software verification

How to detect errors/bugs ?

• Method 1 - Testing: The traditional method to detect bugs:
• Execute the program with a set of inputs and verify the outputs.

• Can never guarantee the absence of errors.

• Testing can only declare a program as incorrect if a test fails.

Introduction to software verification

How to detect errors/bugs ?

• Method 2 - Formal verification: check if a given specification is
satisfied for all possible inputs.

• Example: A given code will never divide by 0.

• Is it possible?

The Reachability Problem

• “The problem of checking whether a given state occurs in any
execution of the program.”

• Like the halting problem, this problem is undecidable – no algorithm
can give always the correct answer in a finite amount of time.

• because of unbounded allocation of memory. (allocation in loops)

• That mean a program can have an unbounded amount of states.

Side note about finite memory space

• The memory of a computer is finite therefore a theoretical solution to
the reachability problem is possible.

• It does not help for practical solutions unless the memory bound is
very small –> small amount of possible program states.

• It also restricts the proof to a specific memory bound

• Also there is a problem with unbounded recursion (even without
memory allocation)

• Therefore, we will treat the problem as undecidable.

Partial Solutions

• Solutions only for certain programs. (testing is an example)

• SMT (Satisfiability modulo theories) - generalizes SAT to more complex
formulas involving real numbers, integers, and various data structures.

• Modern tools use solvers for Satisfiability Modulo Theories (SMT)

These solvers find a simultaneous assignment to variables that satisfies a
given logical formula.

• Logical solutions seems static and programs seems to be dynamic.
• We will try to bridge this gap, By representing the program as a logical formula.

Bounded Program Analysis

Bounded Program Analysis

Some definitions:

• Execution path is a sequence of program instructions executed during a run of
a program

• Execution trace is a sequence of states that are observed along an execution
path (different inputs have differents executions trace)

• An assertion is a program instruction that takes a condition as argument, and if
the condition evaluates to false, it reports an error and aborts

Bounded Program Analysis
● The first element of each block

contains the index of the next
block

● Skipping data that is equal to
the input parameter cookie

Bounded Program Analysis
● We assume that verification

tools has some heuristic to
choose execution path

● Suppose, that it choose the
following path:
○ begin at line 3
○ Run for loop once, take the

else branch and exit the for
loop

○ exit the while loop during
the second iteration in line
8

Bounded Program Analysis
● We assume that verification

tools has some heuristic to
choose execution path

● Suppose, that it choose the
following path:
○ begin at line 3
○ Run for loop once, take the

else branch and exit the for
loop

○ exit the while loop during
the second iteration in line
8

Bounded Program Analysis
Rewrite instructions and conditions into static single assignment representation
(SSA),
 A “time- stamped version” of the program variables (every time a variable is
written, a new symbol is introduce for it.

SSA form

Bounded Program Analysis
● Now, we can translate the SSA into logical formula called the path

constraint.

● Note that the equality symbol in the formula denotes mathematical equality, whereas
it denotes an assignment

Assertion Checking

● Assume we have path that lead to an assertion.

● How we can use path constraint to check if an assertion can be
violated?

We add to the path constraint the negation of the assertion !

If the new path constraint is satisfiable then the assertion can be
violated !

Assertion Checking: Example

• Consider the path that executes the
assignment in Line 3 and then lead to
an assertion that checks if the
variable i is within the required range
for the array access in Line 7.

• The path constraint is:
The assertion is:

• Then the new path constraint is :

Assertion Checking: Example

• This path constraint is satisfiable ?

Bounded Program Analysis

● There are at least two arrays out
of bounds errors!

Which ones ?

● The simple one : empty data
○ data = []

ERROR

Assertion Checking: An Other Example

Assertion Checking: An Other Example

• This constraint path is satisfiable ?

Assertion Checking: Summary

• We reduced the problem of verifying the correctness of a path

in a program to a problem of checking the satisfiability of a

formula

• This formula is called the verification condition (VC).

Checking Feasibility of all paths in Bounded
program

• Exponential number of path with the number of
branches.

• Then we need to check exponential number of
path: → infeasible.

Transform SSA for encoding all possible paths
(with loop limits)

• Loop will be unfolded k times.
• We will write k times the loop.

And change for/while to an if statement

• Condition of each if statement will be assign by a new variable: 𝛾
 It allows to have different branches in the same SSA

• When the control flow reconverges, A statement is added
that assigns the correct value to all those variables that have
been modified in any of the branches.

UNFOLDING
k=2 flow reconverges

• Given the SSA form of the (unfolded) program, we can

construct a formula that captures exactly all the possible

traces that it can execute

• To check an assertion in the program, we need to add its

negation to the formula

• The resulting formula is then finally given to a suitable

decision procedure. (SMT solver)

Bounded Program Analysis: Summary

Unbounded Program Analysis

Unbounded Program Analysis

• We have seen a technique that under-approximates the behavior
of the program by limiting the depth of loops.

• We now show a transformation that gets rid of loops but
over-approximates the original behavior.

• When Successful, it proves for every possible input.
But it might find errors in correct programs.

Nondeterministic Assignments

We do so in three steps:

1. For each loop and each program variable that is modified by the loop,
add an assignment at the beginning of the loop that assigns a
nondeterministic value to the variable.

2. After each loop, add an assumption that the negation of the loop
condition holds.
(assume(C) - aborts any path that does not satisfy C)

3. Replace each while loop with an if statement.

Example

1. nondeterministic values to
modified variables

2. assume negation of condition

3. replace “while” with “if”

Translate to Logical Formula

- This logical formula is not
satisfiable

- The Assertion is true for
every number of iterations!

- Ignores information from
previous loop iterations

Too coarse overapproximation example

- This code cannot reach
the error state.

Abstracting the locking mechanism

1. replace the lock() and
unlock() functions with a
variable state_of_lock

2. add assertions that avoid the
error state.

Application of the
overapproximating
transformation

- The obtained formula is
satisfiable.

- first assert fails if
state_of_lock = locked

which is impossible in the
original program.

- We need a better abstraction

Loop Invariants

- Predicate that holds at the beginning of the loop body, every
iteration.

- For example:

- The following predicate is a loop invariant:

How to prove a predicate is a loop invariant?

- Induction.

- Suppose that our program match this template:

- Proof in 2 steps:
1. Base case: invariant satisfied when entering loop for the first time

2. Step case: from a state that satisfied the invariant, executing the
 loop body once brings to a state that satisfies it as well.

Induction proof

Construct 2 loop-free programs that check the 2 steps.

Base case:

Step case:

- Both programs are loop free, thus bounded, and can be verified
with a simple logical formula.

Example

Using earlier code: and invariant

Base case:

Step case:

Better Transformation with loop invariants

In addition to the previous 3 steps of the transformation, we add:

For every loop, add the invariant I with 3 steps:

1. Base Case - add an assertion that I holds before the
nondeterministic assignments

2. Induction Hypothesis - add an assumption that I holds after the
nondeterministic assignments.

3. Induction Step - Add an assertion that C => I holds at the end of
the loop body.

Back to the locks
 example
Now we claim the program
is correct :)

Finding a good loop invariant

- Is it a challenge to find an invariant strong enough.
(In this example we guessed it)

- Finding suitable invariants is not simple and is an area of active
research.

- A heuristic can select candidates and then try to proof and confirm
the invariants.

Summary:

- Formal software verification can guarantee a program is correct.

- We can do that by translating the program to a logical formula,
by adding the negation of the assertion to the formula.

- If the formula is satisfiable, the assertion does not hold.

- We can deal with loops in programs using bounded or unbounded
methods.

- There is no easy solution.

Questions?

