
SMT-Friendly
formalization of the
solidity memory
model

Omer and YoavAkos Hajdu and Dejan Jovanovi´c

Agenda

● Motivation
● Background

● Formalization
○ Types

○ Local storage pointers

○ State variables, function, memory and defval

○ Assignments

○ Expressions

○ Statements

● Summary

Solidity

● Object Oriented

● Runs on the EVM

● By now, you are probably familiar with it

Smart Contracts

● Deployed on the ethereum network

● EVM bytecode

● Typically written in a high level language(e.g. Solidity)

● Cannot be modified

● Communication via transactions

● Two kinds of memory locations

● Don’t support null pointers

The problem

● Contracts are prone to errors

● Errors can lead to devastating losses

● DAO, Bitrue, Deus and many more

● We want to use formal verification

Our end goal

● Convert solidity to an smt based program(Boogie, why3 etc.)

● Convert solidity programs to smt-based syntax

Agenda

● Motivation

● Background
● Formalization

○ Types

○ Local storage pointers

○ State variables, function, memory and defval

○ Assignments

○ Expressions

○ Statements

● Summary

Contract storage

● Persistent

● Stored on the blockchain

● Array of up to 2**256 slots
○ Each slot is 32 bytes

○ Most data is allocated on a fixed number of slots starting from 0

○ Fixed size arrays

○ Dynamic arrays and mappings are implemented as a hash table

Contract memory

● Accessible only on executions

● Deleted after each transaction

● Stores function arguments and return values

● Heap-like

Reference vs value types

Agenda

● Motivation

● Background

● Formalization
○ Types
○ Local storage pointers

○ State variables, function, memory and defval

○ Assignments

○ Expressions

○ Statements

● Summary

The 𝑇 function

● A mapping function from Solidity types to SMT types

● Ignores side effects

● Assumes each declaration has a unique name

● Assumes data location of reference type is a part of the type

Value types

Mappings

Arrays

Structs

Agenda

● Motivation

● Background

● Formalization
○ Types

○ Local storage pointers
○ State variables, function, memory and defval

○ Assignments

○ Expressions

○ Statements

● Summary

Local storage pointers

● Pointers to storage that are used in a local context

● Function parameters or local variables that reference storage

● We denote it as storptr

Local storage pointers

● Question: How can we encode local storage pointers with SMT?

● Partial solution: Substitute each occurrence of the local pointer with the expression that

is assigned to

● Downsides: storage pointer can be reassigned, received as a function argument and more.

tree(.) function

● Given a contract and a type T, returns a tree of its variables that includes:
○ Storage variables

○ Variables that lead to a sub variable of type T

Local storage pointers - solution

● Local storage pointer’s SMT type is always [int]int

● The array will be the finite path from the tree of values of the contract

T(a) = [int]int

a → [2,5,1,8]

Usage

● We got a representation of storage pointers, but how do we use it?

● On initialization, we use the pack function

● On dereferencing we use the unpack function

Pack function

● Given an expression, pack(.) uses the storage tree

● Encodes the expression to an array

● Fits the expression into the tree

Pack function

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

[ss, ss[8], ss[8].ts, ss[8].ts[5]]

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

ss
[ss, ss[8], ss[8].ts, ss[8].ts[5]]

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

node = contract (tree)
subExprs =[ss, ss[8], ss[8].ts, ss[8].ts[5]]
d = 0
result = []

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

node = contract (tree)
subExprs =[ss, ss[8], ss[8].ts, ss[8].ts[5]]
d = 0
result = []
expr = ss

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

node = contract (tree)
subExprs =[ss, ss[8], ss[8].ts, ss[8].ts[5]]
d = 0
result = [2]
expr = ss
i = 2
child = S[]

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

node = S[]
subExprs =[ss, ss[8], ss[8].ts, ss[8].ts[5]]
d = 1
result = [2]
expr = ss

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

node = S[]
subExprs =[ss, ss[8], ss[8].ts, ss[8].ts[5]]
d = 1
result = [2]
expr = ss[8]

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

node = S[]
subExprs =[ss, ss[8], ss[8].ts, ss[8].ts[5]]
d = 1
result = [2]
expr = ss[8]
(idx = 8)

Pack function - run example
● Lets run the pack(.) function on - ss[8].ts[5]

node = S[]
subExprs =[ss, ss[8], ss[8].ts, ss[8].ts[5]]
d = 1
result = [2,8]
expr = ss[8]
(idx = 8)
child = S

Pack function

Unpack function

● The function takes a storage pointer (of type [int]int) and produces a conditional

expression that decodes any given path in to one of the leaves of the storage tree

● The SMT equivalent to dereference

Unpack function

Agenda

● Motivation

● Background

● Formalization
○ Types

○ Local storage pointers

○ State variables, functions, memory and defval
○ Assignments

○ Expressions

○ Statements

● Summary

State variables

● Always stored in storage

● Ae add the declaration s_i : T(type(s_i) storage)

● Wlog, we assume they are assigned in the constructor

Function calls

● The types of function variables and return values can be either memory or storage ptr

● We can treat them as regular assignments

● for each parameter and return value, we add p_i : T(type(p_i)), r_i : T(type(r_i))

Memory allocation

● We use arrays as heaps

● We keep track of an allocation counter called refcnt
● In each declaration, refcnt is incremented

Default values

● The defval function maps a solidity type to its default value in smt

● Trivial for value types

Default values - mappings

● Mappings can only be stored in storage or storptr

Default values - fixed size arrays

● Storage arrays get a value of a n sized array with recursive defval

● Memory arrays cause an int declaration, and refcnt increment

● Initialization can be done without loop

Default values - dynamic arrays

● Initialized as a 0 length fixed size array

Default values - structs

● Similar to arrays

● Initialization can be done without loops

Agenda

● Motivation

● Background

● Formalization
○ Types

○ Local storage pointers

○ State variables, functions, memory and defval

○ Assignments
○ Expressions

○ Statements

● Summary

The A(.,.) function

● Reference type assignments can be either pointer assignments or value assignments
○ value assignments can create new allocations

● A(lhs,rhs) denotes assigning rhs to lhs as SMT expressions

● Value type assignments are simple to convert to smt

Mappings

● Solidity disables mapping assignments

● Storage pointers can be assigned, either from a pointer or a storage variable.

Structs

●

Arrays

●

Agenda

● Motivation

● Background

● Formalization
○ Types

○ Local storage pointers

○ State variables, functions, memory and defval

○ Assignments

○ Expressions
○ Statements

● Summary

The ε(.) function

● Translates a Solidity expression to an SMT expression

● Can introduce side effects (declarations and statements)

The ε(.) function - member access

The ε(.) function - index access

The ε(.) function - conditionals

● Evaluates both expressions, uses memory if at least one is in memory, storptr otherwise

● Creates the variables and calls the side effects before checking the conditional

The ε(.) function - memory allocation

Agenda

● Motivation

● Background

● Formalization
○ Types

○ Local storage pointers

○ State variables, functions, memory and defval

○ Assignments

○ Expressions

○ Statements

● Summary

The S[.] function

● Translates Solidity statements to a list of statements in the SMT program

The S[.] function

Reverse assignment example

The S[.] function

Dangling pointer example

●

Agenda

● Motivation

● Background

● Formalization
○ Types

○ Local storage pointers

○ State variables, function, memory and defval

○ Assignments

○ Expressions

○ Statements

● Summary

SOLC-VERIFY

● SOLC-VERIFY is a verification tool that uses this approach

● Converts to boogie

● Better results than other existing tools

Summary

● The solidity memory model - storage and memory

● High-level SMT-based formalization of the Solidity memory model semantics.
○ Covers both memory and storage locations

○ Uses the packing method for storage pointers

○ Allows deep copies

Questions?

⭐⭐

