
Zeus: Analyzing Safety of
Smart Contracts
Sukrit Kalra, Seep Goel, Mohan Dhawan and Subodh Sharma

  

Tommy and Idan

1



Introduction
Smart contracts are programs that run on the blockchain
They are written in high-level languages such as Solidity
Faithful execution of a smart contract is enforced by the blockchain’s
consensus protocol
Correctness and fairness of the smart contracts is not enforced by the
blockchain, and should be verified by the developer

2



Correctness and Fairness
Correctness means the code is accurate and complete, producing intended
results without errors and bugs
Fairness means the code adheres to the agreed upon higher-level business
logic for interaction
The code shouldn't be biased towards any party, and shouldn't allow any party
to cheat

3



Correctness and Fairness - Example
while (Balance > (depositors[index].Amount * 115/100) && index<Total_Investors) {
    if(depositors[index].Amount!=0)) {
        payment = depositors[index].Amount * 115/100;
        depositors[index].EtherAddress.send(payment);
        Balance -= payment;
        Total_Paid_Out += payment;
        depositors[index].Amount=0; // Remove investor
    } break;
}

The contract offers a 15% payout to any investor.
Sadly, the contract has both fairness and correctness issues.

4



Correctness and Fairness - Example
while (Balance > (depositors[index].Amount * 115/100) && index<Total_Investors) {
    if(depositors[index].Amount!=0)) {
        payment = depositors[index].Amount * 115/100;
        depositors[index].EtherAddress.send(payment);
        Balance -= payment;         // --------------------------
        Total_Paid_Out += payment;  // POTENTIAL OVERFLOW! 
        depositors[index].Amount=0; // --------------------------
    } break;
}

Correctness issue: The contract has a potential overflow in the Total_Paid_Out
variable.

5



Correctness and Fairness - Example
while (Balance > (depositors[index].Amount * 115/100) && index<Total_Investors) {
    if(depositors[index].Amount!=0)) {
        payment = depositors[index].Amount * 115/100;
        depositors[index].EtherAddress.send(payment);
        Balance -= payment;
        Total_Paid_Out += payment;
        depositors[index].Amount=0;
    } break;
}

Fairness issue (1): index  is never incremented within the loop, and so the payout
is made to just one investor.

6



Correctness and Fairness - Example
while (Balance > (depositors[index].Amount * 115/100) && index<Total_Investors) {
    if(depositors[index].Amount!=0)) {
        payment = depositors[index].Amount * 115/100;
        depositors[index].EtherAddress.send(payment);
        Balance -= payment;
        Total_Paid_Out += payment;
        depositors[index].Amount=0;
    } break; // <------------------------------------
}

Fairness issue (2): The break  statement is inside the while  statement, and so
the loop will always break after the first iteration.
Meaning, only the first investor will get paid. (Prob. the owner)

7



Incorrect Contracts - Reentrancy
contract Wallet {
    mapping(address => uint) private userBalances;
    function withdrawBalance() {
        uint amountToWithdraw = userBalances[msg.sender];
        if (amountToWithdraw > 0) {
            msg.sender.call(userBalances[msg.sender]);
            userBalances[msg.sender] = 0;                                   
        }
    }
    // ...
}

contract AttackerContract {
    function () {
        Wallet wallet;
        wallet.withdrawBalance();
    }
}

8



Incorrect Contracts - Reentrancy
contract Wallet {
    mapping(address => uint) private userBalances;
    function withdrawBalance() {
        uint amountToWithdraw = userBalances[msg.sender];
        if (amountToWithdraw > 0) {
            userBalances[msg.sender] = 0; // Mitigated by swapping the lines
            msg.sender.call(userBalances[msg.sender]);
        }
    }
    // ...
}

contract AttackerContract {
    function () {
        Wallet wallet;
        wallet.withdrawBalance();
    }
}

9



Incorrect Contracts - Unchecked Send
Solidity allows only  gas upon a send call
Computation-heavy fallback function at the receiving contract will cause the
invoking send to fail
Contracts not handling failed send calls correctly may result in the loss of
Ether

10



Incorrect Contracts - Unchecked Send
if (gameHasEnded && !prizePaidOut) {
    winner.send(1000); // Send a prize to the winner
    prizePaidOut = True;
}

The send  call may fail, but prizePaidOut  is set to True  regardless.
Meaning the prize will never be paid out. 

11



Incorrect Contracts - Failed Send
Best practices suggest executing a throw  upon a failed send , in order to
revert the transaction
However, this may put contracts in risk

12



Incorrect Contracts - Failed Send
for (uint i=0; i < investors.length; i++) {
    if (investors[i].invested == min investment) {
        payout = investors[i].payout;
        if (!(investors[i].address.send(payout)))
            throw;
        investors[i] = newInvestor;
    }
}

A DAO that pays dividends to its smallest investor when a new investor offers
more money, and the smallest is replaced
A wallet with a fallback function that takes more than  gas to run can
invest enough to become the smallest investor
No new investors will be able to join the DAO

13



Incorrect Contracts - Overflow/underflow
uint payout = balance/participants.length;
for (var i = 0; i < participants.length; i++)
    participants[i].send(payout);

i  is of type uint8 , and so it will overflow after  iterations

Attacker can fill up the first  slots in the array, and gain payouts at the
expense of other investors

14



Incorrect Contracts - Transaction State Dependence
Contract writers can utilize transaction state variables, such as tx.origin
and tx.gasprice , for managing control flow within a smart contract

tx.gasprice  is fixed and is published upfront - cannot be exploited 

tx.origin  allows a contract to check the address that originally initiated the
call chain

15



Incorrect Contracts - Transaction State Dependence

contract UserWallet {
    function transfer(address dest, uint amount) {
        if (tx.origin != owner)
            throw;
        dest.send(amount);
    }
}

contract AttackWallet {
    function() {
        UserWallet w = UserWallet(userWalletAddr);
        w.transfer(thiefStorageAddr, msg.sender.balance);
    }
}

16



Incorrect Contracts - Transaction State Dependence

contract UserWallet {
    function transfer(address dest, uint amount) {
        if (msg.sender != owner) // FIXED!
            throw;
        dest.send(amount);
    }
}

tx.origin  is the address of the original initiator of the call chain

msg.sender  is the address of the caller of the current function

17



Unfair Contracts - Absence of Logic

Access to sensitive resources and APIs must be guarded, for instance:

selfdestruct :

Kill a contract and send its balance to a given address
Should be preceded by a check that only the owner of the contract is
allowed to kill it
Several contracts did not have this check

18



Unfair Contracts - Incorrect Logic
 while (balance > persons[payoutCursor_Id_].deposit / 100 * 115) {
    payout = persons[payoutCursor_Id_].deposit / 100 * 115;
    persons[payoutCursor_Id].EtherAddress.send(payout);
    balance -= payout;
    payoutCursor_Id_ ++;
}

Two similar variables, payoutCursor_Id  and payoutCursor_Id_

The deposits of all investors go to the 0th participant, possibly the person who
created the contract

19



Unfair Contracts - Logically Correct but Unfair

Auction House Contract

function placeBid(uint auctionId){
    Auction a = auctions[auctionId];
    if (a.currentBid >= msg.value)
        throw;
    uint bidIdx = a.bids.length++;
    Bid b = a.bids[bidIdx];
    b.bidder = msg.sender;
    b.amount = msg.value;
    // ...
    BidPlaced(auctionId, b.bidder, b.amount);
    return true;
}

The contract does not disclose
whether it is "with reserve" or not
The seller can participate in the
auction and artificially bid up the
price
The seller can withdraw the
property from the auction before it
is sold

20



ZEUS
Takes as input a smart contract and a policy against which the smart contract
must be verified
Performs static analysis atop the smart contract code
Inserts the policy predicates as asserts
Converts the smart contract embedded with policy assertions to LLVM bitcode
Invokes its verifier to determine assertion violations

21



Zeus Workflow

22



Formalizing Solidity Semantics
Abstract language that captures relevant constructs of Solidity programs
A program consists of a sequence of contract declarations.
Each contract is abstractly viewed as a sequence of one or more method
definitions

23



An Abstract Language modeling Solidity

24



An Abstract Language modeling Solidity

A program consists of a sequence of contract declarations

25



An Abstract Language modeling Solidity

Each contract is abstractly viewed as a sequence of one or more method
definitions
Storage private to a contract, denoted by the keyword global
Since T is generic, we lose no generality with a single variable 26



An Abstract Language modeling Solidity

27



An Abstract Language modeling Solidity

28



An Abstract Language modeling Solidity

29



An Abstract Language modeling Solidity

Regular if-then-else statements

30



An Abstract Language modeling Solidity

goto a given line

31



An Abstract Language modeling Solidity

Assigns a non-deterministic value

32



An Abstract Language modeling Solidity

Check of truth value of predicates

33



An Abstract Language modeling Solidity

Blocks until the supplied expression becomes true

34



An Abstract Language modeling Solidity

call() invocations (send with argument)

35



An Abstract Language modeling Solidity

36



An Abstract Language modeling Solidity

37



An Abstract Language modeling Solidity

38



Language Semantics
 - The blockchain state

 - The block  being currently mined
 - The completed transactions that are not committed

 - The global state of the system after executing 
 - The list of commited blocks

 - Identifier of the contract
 - Valuation of global variable

39



Language Semantics
 - A transaction defined as a stack of frames 

 - A frame

 - The valuation of the method local variables 
 - The code of the contract with identifier id
 - The program counter

 - Auxiliary memory for storing input and output

40



Language Semantics
 - The configuration, captures the state of the transaction

 - Small step operation
 - Transaction relation for globals and blockchain state
 - Assignment

41



Language Semantics

42



Policy Example
<Subject> msg.sender </Subject>
<Object> a.seller </Object>
<Operation trigger="pre"> placeBid </Operation>
<Condition> a.seller != msg.sender </Condition>
<Result> True </Result>

function placeBid(uint auctionId){
    Auction a = auctions[auctionId];
    if (a.currentBid >= msg.value)
        throw;
    uint bidIdx = a.bids.length++;
    Bid b = a.bids[bidIdx];
    b.bidder = msg.sender;
    b.amount = msg.value;
    // ...
    BidPlaced(auctionId, b.bidder, b.amount);
    return true;
}

43



Formalizing the Policy Language
 - The set of program variables

 - The set of function names in a contract
 - The set of conditional expressions

44



Formalizing the Policy Language
Policy specification: 

 - The set of source variables (one or more) that need to be
tracked

45



Formalizing the Policy Language
Policy specification: 

 - The set of variables representing entities with which the
subject interacts

46



Formalizing the Policy Language
Policy specification: 

 - The set of side-
affecting invocations that capture the effects of interaction between the
subject and the object

47



Formalizing the Policy Language
Policy specification: 

 - The set of predicates that govern this interaction leading
to the operation

48



Formalizing the Policy Language
Policy specification: 

 - Indicates whether the interaction between the subject
and operation as governed by the predicates is permitted or constitutes a
violation

49



Translation To LLVM

50



Implementation
The Policy builder:  lines of code
The translator from solidity to LLVM:  lines of code
The code was written on C++ using the Abstract Syntax Tree (AST) derived
from the Solidity compiler solc

Verifier: Verifiers that are already work with LLVM like SMACK , Seahorn

51



End-to-End Example
function transfer() {
    msg.sender.send(msg.value);
    balance = balance - msg.value;
}

<Subject> msg.value </Subject>
<Object> msg.sender </Object>
<Operation trigger="pre"> send </Operation>
<Condition> msg.value <= balance </Condition>
<Result> True </Result>

havoc value
havoc balance
B@δ() {
    assert(value <= balance)
    post B'@δ()
    balance = balance - value
}

52



End-to-End Example
define void @transfer() {
entry:
    % value = getelementptr %msgRecord* @msg, i32 0, i32 4
    %0 = load i256* % value
    %1 = load i256* @balance
    %2 = icmp ule i256 %0, %1
    br i1 %2, label %"75", label %"74"
"74":
    call void @ VERIFIER error()
    br label %"75"
"75":
    % sender = getelementptr %msgRecord* @msg, i32 0, i32 2
    %3 = load i160* % sender
    %4 = call i1 @send(i160 %3, i256 %0)
    %5 = sub i256 %1, %0
    store i256 %5, i256* @balance
    ret void
}
define void @main() {
entry:
    %0 = call i256 @ _VERIFIER_NONDET ( )
    store 1256 %0, 1256* @balance
    //...
}

53



End-to-End Example
define void @transfer() {
entry:
    % value = getelementptr %msgRecord* @msg, i32 0, i32 4
    %0 = load i256* % value     // Load msg.value into %0
    %1 = load i256* @balance    // Load balance into %1
    %2 = icmp ule i256 %0, %1   // Compare %0 and %1 (%2 = 1 if %0 <= %1)
    br i1 %2, label %"75", label %"74"      // Branch based on %2
"74": // An assert failure is modeled as a call to the verifier’s error function
    call void @ VERIFIER error()        
function
    br label %"75"
"75": // If %2 is 1 (i.e., value <= balance)
    % sender = getelementptr %msgRecord* @msg, i32 0, i32 2
    %3 = load i160* % sender
    %4 = call i1 @send(i160 %3, i256 %0)    // Call send
    %5 = sub i256 %1, %0                    // balance -= value
    store i256 %5, i256* @balance           // Store updated balance
    ret void
}
define void @main() {
entry: // Globals are automatically havoc-ed to explore the entire data domain
    %0 = call i256 @ _VERIFIER_NONDET ( )
    store 1256 %0, 1256* @balance
    // ...
}

54



Handling Correctness Bugs

55



Handling Correctness Bugs - Reentrancy
contract Wallet {
    mapping(address => uint) private userBalances;
    function withdrawBalance() {
        uint amountToWithdraw = userBalances[msg.sender];
        if (amountToWithdraw > 0) {
            msg.sender.call(userBalances[msg.sender]);
            userBalances[msg.sender] = 0;
        }
    }
    // ...
}

contract AttackerContract {
    function () {
        Wallet wallet;
        wallet.withdrawBalance();
    }
}

56



Handling Correctness Bugs - Reentrancy
contract Wallet {
    mapping(address => uint) private userBalances;
    function withdrawBalance() {
        uint amountToWithdraw = userBalances[msg.sender];
        if (amountToWithdraw > 0) {
            msg.sender.call(userBalances[msg.sender]);
            userBalances[msg.sender] = 0;
        }
    }
    // ...
}

57



Handling Correctness Bugs - Reentrancy
contract Wallet {
    mapping(address => uint) private userBalances;
    function withdrawBalance2() {
        uint amountToWithdraw = userBalances[msg.sender];
        if (amountToWithdraw > 0) {
            assert(false);
            msg.sender.call(userBalances[msg.sender]);
            userBalances[msg.sender] = 0;
        }
    }
    function withdrawBalance() {
        uint amountToWithdraw = userBalances[msg.sender];
        if (amountToWithdraw > 0) {
            withdrawBalance2();
            msg.sender.call(userBalances[msg.sender]);
            userBalances[msg.sender] = 0;
        }
    }
}

58



Handling Correctness Bugs - Reentrancy
contract Wallet {
    mapping(address => uint) private userBalances;
    function withdrawBalance2() {
        uint amountToWithdraw = userBalances[msg.sender];
        if (amountToWithdraw > 0) {
            assert(false); // Now it's unreachable
            msg.sender.call(userBalances[msg.sender]);
            userBalances[msg.sender] = 0;
        }
    }
    function withdrawBalance() {
        uint amountToWithdraw = userBalances[msg.sender];
        if (amountToWithdraw > 0) {
            userBalances[msg.sender] = 0; // The safe version :)
            withdrawBalance2();
            msg.sender.call(userBalances[msg.sender]);
        }
    }
}

59



Handling Correctness Bugs - Unchecked Send
// Globals ...
prizePaidOut = False;

if (gameHasEnded && !prizePaidOut) {
    winner.send(1000); // May fail, thus the Ether is lost forever :(
    prizePaidOut = True;
}

60



Handling Correctness Bugs - Unchecked Send
// Globals ...
prizePaidOut = False;
checkSend = True;

if (gameHasEnded && !prizePaidOut) {
    checkSend &= winner.send(1000); // False if send fails
    assert(checkSend);
    prizePaidOut = True;
}

61



Handling Correctness Bugs - Unchecked Send
// Globals ...
prizePaidOut = False;
checkSend = True;

if (gameHasEnded && !prizePaidOut) {
    checkSend &= winner.send(1000); // False if send fails
    assert(checkSend);
    prizePaidOut = True;
}

Initialize a global variable checkSend  to true

Take logical AND of checkSend  and the result of each send

For every write of a global variable, assert that checkSend  is true

62



Handling Correctness Bugs - Failed Send
// Globals ...
investors = [ ... ];

for (uint i=0; i < investors.length; i++) {
    if (investors[i].invested == min investment) {
        payout = investors[i].payout;
        if (!(investors[i].address.send(payout)))
            throw;
        investors[i] = newInvestor;
    }
}

63



Handling Correctness Bugs - Failed Send
// Globals ...
investors = [ ... ];
checkSend = True;

for (uint i=0; i < investors.length; i++) {
    if (investors[i].invested == min investment) {
        payout = investors[i].payout;
        if (!(checkSend &= investors[i].address.send(payout)))
            assert(checkSend);
            throw;
        investors[i] = newInvestor;
    }
}

Same as unchecked send, but assert that checkSend  is true  before throw 's

Indicates a possibility of reverting the transaction due to control flow reaching
a throw  on a failed send

64



Limitations
Fairness properties involving mathematical formulae are harder to check

ZEUS depends on the user to give appropriate policy
Zeus is not faithful exactly to Solidity syntax

Does not explicitly account for runtime EVM parameters such as gas
throw  and selfdestruct  are modeled as program exit

Zeus does not analyze contracts with an assembly block
Only  out of  contracts in the data set use it

Zeus does not support virtual functions in contract hierarchy (i.e. super )
Only  out of  contracts in the data set use it

65



Evaluation

66



Zeus's Performance

67



Conclusion
94.6% of 22.4K contracts are vulnerable
ZEUS is sound (zero false negative)
Low false positive rate
ZEUS is fast (less than 1 min to verify 97% of the contracts)

68



Thank you for listening!  

69


