Making Smart Contracts Smarter

Loi Luu Duc-Hiep Chu Hrishi Olickel
National University of Singapore National University of Singapore Yale-NUS College
loiluu@comp.nus.edu.sg hiepcd@comp.nus.edu.sg hrishi.olickel@yale-nus.edu.sg

Prateek Saxena Aquinas Hobor
National University of Singapore Yale-NUS College&
prateeks@comp.nus.edu.sg National University of Singapore
hobor@comp.nus.edu.sg

Vulnerabilities in Smart Contracts,
suggestions to prevent/overcome them,

and detection using Oyenfe' https://eprint.iacr.org/2016/633.pdf
See also https://eprint.iacr.org/2016/1007.pdf

00 No. of contracts
BENo. of unique contracts

Exception TOD Reentrancy Timestamp

Figure 12: Number of buggy contracts per each security problem
reported by OYENTE.

lcontract Puzzle{
address public owner;
bool public locked;
uint public reward;
bytes32 public diff;
bytes public solution;

function Puzzle() //constructor{

owner = msg.sender;

reward = msg.value;

locked = false;

diff = bytes32(11111); //pre-defined difficulty
}

function(){ //main code, rumns at every invocation
if (msg.sender == owner){ //update reward
if (locked)

18 throw;
19 owner . send (reward) ;
20 reward = msg.value;
21 }
22 else
23 if (msg.data.length > 0){ //submit a solution
24 if (locked) throw;
25 if (sha256(msg.data) < diff){
26 msg.sender.send(reward); //send reward
27 solution = msg.data;
28 locked = true;

29 133}

Figure 3: A contract that rewards users who solve a computa-
tional puzzle.

TRANSACTION
ORDERING
DEPENDENCE

Programmers / users think transactions are
Immediately, by the order they sent to the
Ethereum net

Even order within block isn’'t known and cannot
be ensured

Blockchain is distributed system, based on the
consensus principal, you can’t enforce
order(/synchronize) as you wish. (no 1
authority)

“Protocol” Solution: “Guard condition”
g = (reward == R)

1l contract theRun {

uint private Last_Payout = O0;

uint256 salt = Dblock.timestamp;

function random returns (uint256 result){
uint256 y = salt * block.number/(saltb);
uint256 seed = block.number/3 + (salt¥%300)

+ Last_Payout +y;

//h = the blockhash of the seed-th last bloc
uint256 h = uint256(block.blockhash(seed));
//random number between 1 and 100
return uint256Ch % 100) + 1;

2
3
4
)
6
7
8
9
10

p—
—

—
)

TIMESTEP

DEPENDENCE

Programmers / users don’t take in account the
influence of the miners on the created block
(timestep can be manipulate, not so “random”)

Miners can choose timestep as they wish,
+ - 900 sec, and it still be “fine” to the consensus

Any miner has its own Discretion to the timestep in
block it creates

The seed for random() must be inferred from the
blockchain, but also be “secret” as much as could

time() must be inferred from the blockchain
“Educational” Solution:

use block's index instead

lcontract KingOfTheEtherThrone {
struct Monarch {
// address of the king.
address ethAddr;
string name;
// how much he pays to previous king
uint claimPrice;
uint coronationTimestamp;
X
Monarch public currentMonarch;
// claim the throne
function claimThrone(string name) {
[.../
if (currentMonarch.ethAddr != wizardAddress)
currentMonarch.ethAddr.send (compensation);
/.../
// assign the new king
currentMonarch = Monarch(
msg.sender , name,
valuePaid, block.timestamp);

1// ID on sale, and enough money
2if(d.price > 0 && msg.value >= d.price){
if (d.price > 0)
address (d.owner).send(d.price);
d.owner = msg.sender;// Change the ownership
d.price = price; // New price

d.transfer = transfer; // New transfer
d.expires = block.number + expires;
DomainChanged (msg.sender, domain, 0);

10}

Figure 18: EtherlD contract, which allows users to register, buy
and sell any ID. This code snippet handles buy requests from
users.

MISHANDLED
EXCEPTIONS

- Programmers don’t check return value to see if exception was
thrown but suppressed

- “Safe” and “simple” code can make user lose money by
mistake, or by intentional hacker attack

- Programmers / users aren’t familiar with Solidity rules, and
EVM, which exception handling are complex

- When writing contract programmers think no exception will be
thrown inside their contract execution if it written good

- “Partial” Solution: solidity compiler
- “Educational” Solution: check for return value,
maybe Solidity should introduce try/catch syntax

1 contract SendBalance {

10
11
12
13
14

mapping (address => uint) userBalances;
bool withdrawn = false;
function getBalance(address u) constant returns(uint){
return userBalances [u];
}
function addToBalance () {
userBalances [msg.sender] += msg.value;
}
function withdrawBalance (){
if (!(msg.sender.call.value(
userBalances [msg.sender])())) { throw; }
userBalances [msg.sender] = 0;

+}

Figure 7: An example of the reentrancy bug. The contract im-
plements a simple bank account.

REENTRANCY
VULNERABILITY

Programmers don't take in account that any function call
outside their contract, can be risk

Programmers / users don'’t think their contract can be
Invoked because of their own contract in “innocent send()
command”

Contract which didn’t take in account that address can be
for another contract

“Educational” Solution: put all transaction right before the
function will return

CFG Builder

CORE VALIDATOR
ANALYSIS

SUMMARIZE:

- Examples, suggested solution to:

Transaction ordering dependence

Timestep dependence
Mishandled Exceptions

Reentrancy vulnerability

- Oyente

