
Vulnerabilities in Smart Contracts ,

suggestions to prevent/overcome them,

and detection using Oyente. https://eprint.iacr.org/2016/633.pdf
See also https://eprint.iacr.org/2016/1007.pdf



MOTIVATION

19,366/1,459,999

contract within first blocks

8,833/19,366

was flagged by oyente

1,682/8,833

was “specially” flagged by oyente

175/1,682

was checked via their source code

10/(175-10)

false positive =6.4%



TRANSACTION

ORDERING
DEPENDENCE



TRANSACTION

ORDERING
DEPENDENCE

• Programmers / users think transactions are 
immediately, by the order they sent to the 
Ethereum net

• Even order within block isn’t known and cannot 
be ensured

• Blockchain is distributed system, based on the 
consensus principal, you can’t enforce 
order(/synchronize) as you wish. (no 1 
authority) 

• “Protocol” Solution: “Guard condition”

𝑔 ≡ (𝑟𝑒𝑤𝑎𝑟𝑑 == 𝑅)



TIMESTEP
DEPENDENCE



• Programmers / users don’t take in account the 
influence of the miners on the created block 
(timestep can be manipulate, not so “random”)

• Miners can choose timestep as they wish,

+ - 900 sec , and it still be “fine” to the consensus

• Any miner has its own Discretion to the timestep in 
block it creates

• The seed for random() must be inferred from the 
blockchain, but also be “secret” as much as could

• time() must be inferred from the blockchain

• “Educational” Solution: 

𝑢𝑠𝑒 𝑏𝑙𝑜𝑐𝑘′𝑠 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛𝑠𝑡𝑒𝑎𝑑

TIMESTEP
DEPENDENCE



MISHANDLED
EXCEPTIONS



MISHANDLED
EXCEPTIONS



• Programmers don’t check return value to see if exception was 
thrown but suppressed 

• “Safe” and “simple” code can make user lose money by 
mistake, or by intentional hacker attack

• Programmers / users aren’t familiar with Solidity rules, and 
EVM, which exception handling are complex

• When writing contract programmers think no exception will be 
thrown inside their contract execution if it written good

• “Partial” Solution: solidity compiler

• “Educational” Solution: check for return value,

maybe Solidity should introduce try/catch syntax

MISHANDLED
EXCEPTIONS



REENTRANCY
VULNERABILITY



• Programmers don’t take in account that any function call 

outside their contract, can be risk

• Programmers / users don’t think their contract can be 

invoked because of their own contract in “innocent send() 

command”

• Contract which didn’t take in account that address can be 

for another contract 

• “Educational” Solution: put all transaction right before the 

function will return

REENTRANCY
VULNERABILITY



OYENTE

Based on math representation 

to evm bytecode’s instructions 

, EtherLite



SUMMARIZE:

• Examples, suggested solution to:

Transaction ordering dependence

Timestep dependence

Mishandled Exceptions

Reentrancy vulnerability

• Oyente
•



QUESTIONS?


