SMi-based Compile-time Verification
Safety: Properties for Smart Contracts

Leonardo Alt and Christian Reitwiessner

Background

Problem
O Smart contract are immutable once deployed

O It must be bug-free at deployment time

Suggested Solution (Solidity)
O Compile-time verification
O SMT-based

RequiresV:s:

Similarity — Practical
O Evaluate argument — true/false

O Terminate execution if false and revert any previous state changes

Difference - Conceptual
O Require — check preconditions

O Assert — check postconditions

RequiresV:s: -\CGode example

function transfer (address to, uint256 value) public ({

require (balances[msg.sender] >= value);

uint256 sumBefore = balances[msg.sender] + balances[to];
balances[msg.sender] -= value;

balances|[to] += value;

uint256 sumAfter = balances[msg.sender] + balances[to];

assert (sumBefore == sumAfter);

SMTFEncoeding

Branch conditions

Constraints
O Variable assignment
O Type constraint

O Control-flow

Verification Target

Branchrconditions

AST - Abstract syntax tree

O Each if/else statement is a new branch

O Branch conditions — the condifions of the current branch of execution
O Grow and shrink as we traverse the AST
O

Let if-statement:
if (condition) { << TrueBranch >> }

else { << falseBranch >> }

O Add condition to “Branch conditions” during the visit of frueBranch,
replace with —condition during the visit of falseBranch,
remove that when we are finished with the if-statement.

Eonstraints

Variable assignment

O SMT variable is assigned only once, SSA - Single Static Assignment

O Each assignment to a program variable infroduces a new SMT variable
O Re-combine after condition:
var = ite(condition, trueBranchValue, falseBranchValue)

var = condition ? trueBranchValue : falseBranchValue

Eonstraints

Type consiraint
O Variable declaration — default value of the declared type

O Function parameters are inifialized with a range of valid values for the given type

Control-flow

O Let b the current Branch conditions state, and r the argument for require(r) or assert(r)
O Add b - r to the set of constraints

VerificationiTarget

Arithmetic operations
O Checked against underflow and overflow (according to the type of the values)
Constant branch conditions

O Trivial condifions

O Unreachable blocks

Require & Assert

O Check - Ar forrequire, Unsatisfiable = unreachable code

O Check ---A =r for assert, Unsatisfiable = assertion failure.

SMIfEncodingk-rexample

contract C

{

function £ (uint256 a, uint256 b)
{
if (a == 0)
require (b <= 100) ;

else if (a == 1)

b = 1000;
else
b = 10000;

assert (b <= 100000) ;

Type constraint
ap = 0Aag < 2%°°
bg = 0 A by < 2256

Control-flow
(ap ==0) - (by < 100)

Variable assignment
b, = 1000

b, = 10000

b; = ite(ay == 1,by, b,)
b, = ite(ay == 0, by, b3)

—(b, < 100000)

Future plans

O Multi-transaction invariants
O Function modifiers

O Effective Callback Freeness

