
Leonardo Alt and Christian Reitwiessner



Problem

 Smart contract are immutable once deployed

 It must be bug-free at deployment time

Suggested Solution (Solidity)

 Compile-time verification

 SMT-based



Similarity – Practical

 Evaluate argument – true/false

 Terminate execution if false and revert any previous state changes

Difference - Conceptual

 Require – check preconditions

 Assert – check postconditions



function transfer(address _to, uint256 _value) public {

require(balances[msg.sender] >= _value);

uint256 sumBefore = balances[msg.sender] + balances[_to];

balances[msg.sender] -= _value;

balances[_to] += _value;

uint256 sumAfter = balances[msg.sender] + balances[_to];

assert(sumBefore == sumAfter);

}



Branch conditions

Constraints

 Variable assignment

 Type constraint

 Control-flow

Verification Target



AST – Abstract syntax tree

 Each if/else statement is a new branch

 Branch conditions – the conditions of the current branch of execution

 Grow and shrink as we traverse the AST

 Let if-statement:

if (condition) { << TrueBranch >> }

else { << falseBranch >> }

 Add 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 to “Branch conditions” during the visit of trueBranch, 

replace with ¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 during the visit of falseBranch,

remove that when we are finished with the if-statement.



Variable assignment

 SMT variable is assigned only once, SSA – Single Static Assignment

 Each assignment to a program variable introduces a new SMT variable

 Re-combine after condition:

𝑣𝑎𝑟 = 𝑖𝑡𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑡𝑟𝑢𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑉𝑎𝑙𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑉𝑎𝑙𝑢𝑒

var = condition ? trueBranchValue : falseBranchValue



Type constraint

 Variable declaration – default value of the declared type

 Function parameters are initialized with a range of valid values for the given type

Control-flow

 Let 𝑏 the current Branch conditions state, and 𝑟 the argument for require(r) or assert(r)

 Add 𝑏 → 𝑟 to the set of constraints



Arithmetic operations

 Checked against underflow and overflow (according to the type of the values)

Constant branch conditions

 Trivial conditions

 Unreachable blocks

Require & Assert

 Check ⋯∧ 𝑟 for require, Unsatisfiable = unreachable code

 Check ⋯∧ ¬𝑟 for assert, Unsatisfiable = assertion failure.



contract C

{

function f(uint256 a, uint256 b)

{

if (a == 0)

require(b <= 100);

else if (a == 1)

b = 1000;

else

b = 10000;

assert(b <= 100000);

}

}

Type constraint

𝑎0 ≥ 0 ∧ 𝑎0 ≤ 2256

𝑏0 ≥ 0 ∧ 𝑏0 ≤ 2256

Control-flow

𝑎0 == 0 → 𝑏0 ≤ 100

Variable assignment

𝑏1 = 1000

𝑏2 = 10000

𝑏3 = 𝑖𝑡𝑒 𝑎0 == 1, 𝑏1, 𝑏2

𝑏4 = 𝑖𝑡𝑒 𝑎0 == 0, 𝑏0, 𝑏3

¬ 𝑏4 ≤ 100000



 Multi-transaction invariants

 Function modifiers

 Effective Callback Freeness


