
REFAEL YZGEAV

Proof-carrying
Smart
Contracts
Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, Vikram
Saraph,
Eric Koskinen
https://paulgazzillo.com/papers/wtsc18.pdf

Content
Outline
Topics for discussion

Introduction to Proof Carrying Code01

02 Introduction to Smart Contracts & ERC20

03 Implementation of Proof Carrying Smart
Contracts

04 Example of Proof Carrying Smart Contracts

05 Future Work

Proof-carrying code is a mechanism for ensuring the safe behavior
of a program.

In PCC the code consumer (e.g. host) verifies that code provided by
an untrusted code producer by executing the saftey policy provided
by the code producer.
These rules (safety policy), are sufficient guarantees for safe
behavior of programs.

What is Proof Carrying Code?

The key idea behind proof-carrying code is that
the code producer is required to create a formal
safety proof that attests to the fact that the code
respects the defined safety policy. Then, the code
consumer is able to use a simple and fast proof
validator to check, with certainty, that the proof
is valid and hence the foreign code is safe to
execute.

Correctness (functional)
Type correctness
Memory access & array bound
Resource-consumption

What does the safety policy check?

IMPORTANCE OF THE SAFETY POLICY

Example of Proof Carrying code
Implementation

This program is written in Machine code, running
in kernel mode in order to filter packets.
This program could contain malicious code that
writes to the kernel data structure.

The Code producer will create a safety policy
attached to his software.
The kernel publishes a security policy specifying
properties that any packet filter must obey.
The code consumer will validate the saftey policy
to ensure safe usages of the software.

Packet filter program

Real PCC Example

Like a legal contract

Smart Contracts are a set of promises specified in a digital
format, following certain rules and data given.
They could operate alone, or using outside resources like the
internet.(Oracles)

Another Type of Account

Smart Contracts are another type of Ethereum account, they
hold a balance and can send transactions just like an user
account.
Opposite to a user account they operate according to the
terms defined in the contract.

Implementation

Smart Contracts are written in high level languages such as
Solidity, Vyper, Yul and more.
The code is then compiled to EVM bytecode and deployed to
the Ethereum blockchain.

Intro to
Smart
Contracts

Savings
Speed, efficiency and

accuracy

Key Benefites of Smart Contracts

no need for a middleman
to take another part of the

pie

Once a contract is deploy the
contract will be exectued

immdetily without any beauracy

The terms and conditions of
these contracts are fully visible
and accessible to all relevant

parties

Transparency

Smart
Contracts
Security
Issues

Smart Contracts are essentially another
type of software, therefore they are prone
to bugs and vulnerabilities.

In addition, the environment the smart
contracts are executed on is the EVM, and
it also posses som several vulnerabilities.

Software Related
Vulnerabilities

Incorrect naming
Incorrect calculation of the output
token amount
Indirect execution of unknown code
Improper Behavioral Workflow
Incorrect initialization
Improper handling of Errors
Improper Access control

A Token is a representation of something in the blockchain. This
could be lottery ticket, fiat current(USD), share of a company etc..

Using this representation enables us to make smart contracts
intractable with all tokens.
A Token contract is simply another type of Ethereum contract.
The community developed a standard for smart contracts
documenting rules a smart contract should follow and how one
contract can interoperate with other contracts.

The ERC-20 Token Standard

What is it?
Well known tokens are ERC20, ERC721, ERC777.

The ERC-20 Token standard is a contract standard for fungible
token (tokens that are equivalent and interchangeable).
This is the main token standard for etherum.
This token standard consists of a set of function and events.

ERC-20 Token
Interface

Functions

totalSupply()
balanceOf(account)
transfer(recipient, amount)
allowance(owner, spender)
approve(spender, amount)
transferFrom(sender, recipient,
amount)

Events

Transfer(from, to, value)
Approval(owner, spender,
value)

https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-totalSupply--
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-balanceOf-address-
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-transfer-address-uint256-
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-allowance-address-address-
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-approve-address-uint256-
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-transferFrom-address-address-uint256-
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-Transfer-address-address-uint256-
https://docs.openzeppelin.com/contracts/3.x/api/token/erc20#IERC20-Approval-address-address-uint256-

Example Scenario

Alice allows Bob to
transfer N tokens to

Bob
Alice regrets and

allows to send to Bob
only M tokens
Bob calls the

trasferFrom method
with the value N.

(Before alices second
call was mined)

Bob calls again the
transferFrom method
this time with M value.

1.

2.

3.

4.

Attack

Possible attack vector
on standard ERC20
Ethereum Token API

was discovered in mid
2019, this attack

effects all contracts
that implemented the

ERC20 standard.

Analysis

This attack is possible
because approve

method overrides the
current allowance

regardless of weather
spender already used

it or not.

Root Cause

Two main method
were responsible for

this attack.
transferFrom &

approve method.

ERC-20 Race
Condition \

Front-Running

function transferFrom(address _from, address
_to, uint256 _value) returns (bool success)

function approve(address _spender, uint256
_value) returns (bool success)

Our PCSC involves two parts:
- The parent part of pcsc includes the smart contract internal state,
api methods and formal specification.
- Child part of the PCSC includes the source code for all API
methods and a proof that the implementation satisfies the spec.

Implementing PCSC

What is it?
As seen earlier in proof carrying code the code producer gives the
software to check that the code is valid.
And the code consumer is the one running the validation.
But in PCSC the code producer is the contract writer and the code
consumer are all other people in the network.
In PCSC the code producer is providing the verification that the
contract is safe.
This method uses the consensus mechanism of the blockchain in
order to ensure validation of the updated smart contract. Any
update to the fields needs to be provided by a proof that the
update is valid

"Point to implementation" is a C++ programming technique that removes
the implementation details of a class from its object class by placing the
implementation details in a separate class.
It is about hiding the actual class implementation behind the pointer to
forward the declared implementation class, so all the implementation's
heavy details and dependencies dont pollute the class interface and it's
header file.

What is the PIMPL Paradigm?

Parent Contract

Child Contract

Implements the actual functions details and
calculation.
Provides a verification proof for the child
contract.

api_transfer(uint256 value, addr from) : bool
{
code of transfer
}

Verification proof of api_transfer

PCSC Diagram

General Components:
- Functions specification
- State Management
- Addresses to child contracts

Each function:

api_transfer(uint256 value, addr from) : bool
{
child_ptr.transfer()
}

Verification
process of
PCSC
A multi-step process

Stage 1

The code producer generates a
proof that the child contract
satisfies the specification.

Stage 2

The producer issues an update
operation to the blockchain

Stage 3

The miner validates the proof
against the code and produces a
new block containing the safe

update

Stage 4

The rest of the blockchain rerun
and validate the SAFEUPDATE

operation

PCSC In Detail

Changing the specification is
possible only for making the
spec more strict. This means
that changes are acceptable

as long as the new spec
implies the previous one as
other child contracts are

depend on it.

The child contract typically will
not have any state, it will instead

operate on the state of the
parent, if some caching is needed

it must be guaranteed to not
affect the global state of the

parent. The parent contract will
use a DELEGATECALL to the child
contract to make sure the child
contract operates on the parent

contract state.

We assume the parent contract
is not valid until provided with
an initial child contract (this is
because the child contract

contains the validation proof).
There is nothing preventing the
parent contract from having a
multiple child contracts, so long
as each child address must be
modified only with the safe

update command to ensure a
proof is attached to the

contract.

Updating PCSC

Major Upgrades

Updates that alter the safety
policy require a consensus
among contract participants.
A new safety policy need to be
provided.
The SAFEUPDATE function will
verify the new child contract
against the new safety policy,
the new child contract will
need to generate a proof
against the new safety policy.

Minor Upgrades

A new child contract is
permitted as long as the safety
policy is preserved. It is
enforced by the proof
verification performed by
SAFEUPDATE.
This enables upgrades to the
child contract & lowers
obstacles to development.

ERC20 As
PCSC -
Parent

As discussed earlier the parent part will
include: API specification and State.
In the ERC20 example the state of the
parent will be:

- Balance: Addr -> N

- Allowed: Addr -> (Addr -> N)

- Child_ptr: Addr

balance is a mapping from addresses
to tokens, respresented as natural
numbers
allowed is a mapping from addresses
to address-token mappings
child_ptr is the point to the child part
of the PCSC which will contain the
implementation

is a formal system with a set of logical rules for reasoning rigorously
about the correctness of computer programs. It was proposed in 1969
by the British computer scientist and logician Tony Hoare, and
subsequently refined by Hoare and other researchers. The original
ideas were seeded by the work of Robert W. Floyd

What is the Hoare Logic?

https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Correctness_of_computer_programs
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Robert_W._Floyd

api_transfer(uint256
value, addr from) : bool

ERC20 PCSC Parent implementation

Preconditions:
I ∧ Σa ‘balance(a) = Σa balance(a)
∧ ‘allowed(from)(me) ≥value

Postconditions:
⇒allowed = ‘allowed[from,me

7→‘allowed(from)(me) −value] ∧rv =
true

∧ ‘allowed(from)(me) ≤value
⇒allowed = ‘allowed ∧rv = false

api_allowance(addr
whom) : uint256

api_approve(uint256
value, addr whom) : bool

Preconditions:
{I ∧ Σa ‘balance(a) = Σa balance(a) ∧
ρme(whom) = allowed(me)(whom)}

Preconditions:
I ∧ Σa ‘balance(a) = Σa balance(a)
∧ (‘allowed(me)(whom) =

ρme(whom)
Postconditions:

⇒allowed = ‘allowed[me,whom
7→value] ∧rv = true)

∧ (‘allowed(me)(whom) 6=
ρme(whom) ⇒allowed = ‘allowed ∧rv

= false)

Implementation

The implementation of each API method is houses in the child
part of PCSC such that, if the implementation satisfy the spec
provided earlier(in the parent part) then the child will be
installed and accessed via child_ptr.transfer()

How can we be 100% that the
implementation works
correctly?

Using the Floyd-Haore style of pre post specifications we can
verify that the implementation using the verification conditions.

PCSC allows us from buggy implementation like the original
approve from being accepted to the blockchain.
The buggy version of approve in the ERC20 token standard
isn't approval in a specification.

Child Part
implementat
ion of PCSC

The authors of the paper intend to make a verification tool for
PCSC building on existing work for verification in solidity and EVM.

The authors state that indeed the work is still early in the process
and there is a lot to be done.
Future goals include formally modeling proof carrying smart
contracts and creating an implementation as an extension of the
Etherum blockchain and virtual machine.

What's next?

In addition they intend to investigate how
consensus integrates with these proofs .
 For generating and validating proofs, they plan to use off-the-shelf
tools, such as Why3

ThankThankThank
you!you!you!
ForForFor

listeninglisteninglistening

