
The Move Prover.
Zhong et el.

Agenda

Agenda

● Motivation

● Move Language Overview

● Move Prover Toolchain Implementation

○ Move Specification Language

○ Boogie Integration

○ Architecture & Flow

● Move Prover Evaluation & A Live Demo

Motivation

Motivation

● The Libra blockchain is designed to store billions
of dollars in assets.

● Bugs in smart contracts have led to massive
amount of funds being stolen or made
inaccessible.

● Move supports verification.

● Creating a culture of specification from the
beginning.

Motivation

An Example of a Move Resource:

Motivation

The Move Prover in Action

The Move Language
in verification
perspective

Overview

Features

Move bytecode verifier

Overview

Move Language

(Based on Shani Cattan slides)

- Blockchain high-level programming language for the Diem
(Libra) Blockchain.

- Used to implement custom transactions and smart
contracts.

- Developed by Meta (Facebook), 2019.

- Bytecode based, and has a bytecode verifier.

Features

The Move language is verification
friendly:

- Depends only on global transaction & current transaction
to ensure deterministic execution

- Any non deterministic operation is absent which causes
challenges in verification.

- Safe arithmetic operations are set so verificator can rely on
it.

Move
bytecode
verifier

Many common issues are ensured by the Move bytecode
verifier, for example:

● Module dependencies are acyclic.

● A procedure can only touch stack locations belonging to
callers via a reference passed to the callee.

● There are no dangling references.

And many more!

Move Prover Toolchain
Implementation

Architecture

Move Prover
Architecture

Move Prover Architecture

Specifications

Floyd-Hoare

- Formal reasoning about program correctness using pre- and postconditions.

- Syntax: {P} S {Q}. P & Q are predicates, S is the program.

{ true } x := 5 { x = 5 }

{ x = y } x := x + 3 { x = y + 3 }

{ x > -1 } x := x * 2 + 3 { x > 1 }

{ x < 0 } while (x != 0) x := x-1 {?}

Specifications

Specifications

- Specifications include classical Floyd-Hoare pre-conditions, post-conditions,
and a new condition specifying when a function aborts.

- Conditions are separated from the actual code.

- Specifications never affect the execution of a module.

Specifications

Specifications Syntax

- requires P, ensures P
- old

- aborts if P

- exists<M::T>(A)

- global<M::T>(A)

Specifications

Specifications

Boogie
Model

Boogie IVL

● Designed for verification.

● Used as backend for multiple verification tools.

● Gets a bpl file and translates it to SMT formulas

Evaluation

Statistics

Statistics

Model Evaluation

- The Libra and LibraAccount modules comprise nearly 1300
lines (including specifications). The total size of the
generated Boogie files is a little over 14,000 lines, and the
generated SMT files are around 52,000 lines

- The prover is used in continuous integration, and is
beginning to be used to verify contracts in production

Live Demo

Questions?

Thank you for listening!

