Smart Contracts Verification (89400) Lecture 2

Yoni Zohar – Bar Ilan University

Seminar

Smart Contracts Verification

Outline

Updates

2 Automated Reasoning

3 Reading a Paper

Presenting a Paper

5 Schedule

Updates

- Welcome, new students!
- Introductions
- New papers
- Updated Class Structure

Classes

- Each lecture is 45 minutes
- Each class there are two options:
 - Two lectures
 - A single lecture + discussion
 - Discussion:
 - Questions and elaboration on current lecture
 - Questions and elaboration on previous lectures
 - Other

Automated Reasoning

Tools

- SAT-solvers
- SMT-solvers
- Theorem-provers
- Proof assistants
- Synthesizers
- . . .

Applications

- Scheduling Problems
- Software Verifications
- Hardware Verification
- Compiler Optimization
- Test Generation

SAT-solvers?

Reminder

- SAT problem: $(x_1 \lor \neg x 2 \lor x 3) \land \ldots \land (x 5 \lor \neg x 6)$
- Is the input formula SAT?

SAT

- SAT is NP-complete
- Best known algorithm is exponential time (worst case)
- Still, there are SAT-solvers
- Yearly Competition
- Used in many applications

SAT

How is that possible

- Smart Algorithms (DPLL, CDCL, local search, etc.)
- Much better in practice than naive search
- Heuristics (e.g., what variable to guess)
- Implementation details (e.g., caching, data structures)

Applications

- Equivalence Checking
- Search Problems
- Verification
- Math
- NP complete Every NP problem is polynomial time reducible to SAT
- But Useful! Every NP problem is polynomial time reducible to SAT

Demo

Pythagorean Triples

- https://www.comp.nus.edu.sg/~gregory/sat/
- https://www.cs.utexas.edu/~marijn/ptn/
- Can you color 1,..., *n* in blue and red with no monochromatic Pythagorean triple?
- $a^2 + b^2 = c^2$

Example

- *n* = 5: nly triple is 3, 4, 5
- Make sure these don't have the same color $1 \ 2 \ \underline{3} \ \underline{4} \ \underline{5}$

Example

- n = 10: triples -3, 4, 5 and 6, 8, 10
- 1 2 <u>3 4 5</u> 6 7 8 9 10

Pythagorean Triples

Theorem [Heule et al. 2016]

• There exists *n* for which no such coloring exists.

• *n* = 7825

Proof

Using a SAT solver

Encoding

- Boolean variables: x_1, x_2, \ldots
- x_i is true iff x_i is red. Otherwise x_i is blue.
- Being non-mono-chromatic = Having both blue and red
 - $x_3 \vee x_4 \vee x_5$
 - $\neg x_3 \lor \neg x_4 \lor \neg x_5$
 - . . .
- ./ptn-encode 13

SMT-solvers?

SMT

- Satisfiability Modulo Theories
- SAT allows only to use Boolean variables
- SMT is much more general and flexible
- e.g. $x + y < 5 \land y^2 = len(s)$

How Is That Possible?

- In general, SMT is undecidable
- Still, SMT-solvers exist
- Integrated in many verification tools
- Yearly competition

Demo

SMT for Solidity

- https://cvc4.github.io/app/
- https://github.com/leonardoalt/text/blob/master/ solidity_isola_2018/main.pdf

```
(set-logic ALL)
(declare-const a0 Int)
(declare-const b0 Int)
(declare-const b1 Int)
(declare-const b2 Int)
(declare-const b3 Int)
(declare-const b4 Int)
(assert (<= 0 a0))
(assert (< a0 (^ 2 256)))
(assert (<= 0 b0))
(assert (< b0 (^ 2 256)))
(assert (=> (= a0 0) (<= b0 100)))
(assert (= b1 1000))
(assert (= b2 10000))
(assert (= b3 (ite (= a0 1) b1 b2)))
(assert (= b4 (ite (= a0 0) b0 b3)))
(assert (not (<= b4 100000)))
(check-sat)
```

Summary of AR

Summary

- Exciting field
- Many applications
- Theoretical hardness vs. Practical feasibility
- Theory and implementation

Challenges

- Active field of research
- Current Challenges
 - certifying results (proofs)
 - scalability
 - Smart Contracts Verification

Reading Papers

Tips – 1

Start early

- Read background material
- Papers are rarely fully self-contained
- Ask for help, via email or a meeting
- Start Early

Tips – 2

- Look for references in the paper
 - for background material
- Look for references of the paper
 - for a more general understanding
 - google scholar

The Three Pass Approach

Read more than once

- https://web.stanford.edu/class/ee384m/Handouts/ HowtoReadPaper.pdf
- Reading once from start to finish often does not work
- Ideas need to be absorbed
- Understanding requires time

Three Passes

Three Passes

• First Pass:

- title, abstract
- section titles
- references
- contributions

Second Pass:

- "normal" reading
- write notes
- mark notions, questions, important parts
- ignore proofs / low level details
- summarize
- Third Pass:
 - critical thinking
 - trying to "re-create" the details
 - deeper understanding
 - Iow-level details

Presenting a Paper

Tips 1

- Start after or during the reading of the paper
- What would you have asked?
- What might be unclear?
- Keep it simple (effects)
- Go deep (content)

Tips 2

- Many examples
- Examples may come before definitions
- presentation \neq handout
 - Short bullets
 - Do not include long summaries
 - Graphs, plots, illustrations
 - Demos

Preparing a Presentation

Preparing Slides

- https://homes.cs.washington.edu/~mernst/advice/ giving-talk.html
- Know the paper well
- Remember the audience
- What are the key takeaways?
- Rely on previous lectures

Structure Your Talk

Structure

- Intro/Background:
 - What is the paper about?
 - Motivation
 - Terminology and notions from previous presentations
 - Main Contribution
- Body
 - Main results
 - Significance
 - Methods / Tools / Techniques
 - Examples and Demos
 - Advanced material
- Conclusion
 - Repeat the main message
 - What was done
 - What is left to do

Presenting

Presenting Slides

- Practice
- Writing \neq Speaking
- Time yourself
- Not too fast, not too slow
- Engage

Schedule

Remaining Papers

- We will try to schedule now
- Notify me before until next class about your preferences, if you weren't scheduled by the end of this class
- No preference I assign arbitrarily

Sanity Check

- Make sure you have access to the paper you are assigned to
- Do this early
- Preferably this week

Tentative Schedule

- https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/index.html
- Short summary of potential papers