
Smart Contracts Verification (89400)

Yoni Zohar – Bar Ilan University

Seminar

Smart Contracts Verification

Outline

1 Seminar Plan

2 Blockchain and Smart Contracts

3 Verification

4 Seminar Overview

Smart Contracts Verification

Seminar Goals

Learn how to read a paper in CS
Focus on the important results
Cover necessary background

Learn how to present
Who are you presenting to
What is the important message
Keep audience engaged

Discover interesting research and tools
Active field of research
Many new techniques and tools

And many more institutions and startups
Smart Contracts Verification

Technical Details

10:00 – 11:30
Present one paper (80%)
Attend and Participate (20%)
https://u.cs.biu.ac.il/˜zoharyo1/sc-seminar/index.html

Smart Contracts Verification

https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/index.html

Guidelines

Make enough time for reading the paper
Read background material
Be prepared to answer questions from audience
Presenting a demo of the tools themselves is recommended

Make enough time for preparing the slides
Slides should be clear
Practice the time frame

When there are difficulties:
Ask me questions
Meet with me
Start early

Smart Contracts Verification

Motivation

Transfer money between parties directly
Not going through a bank
Retain security without a trusted verifying third-party

Smart Contracts Verification

Blockchain
What is a blockchain?

Linked list
Elements are called blocks
Each block has:

ID
data (set of transactions)
Pointer to previous block
Hash of previous block

Allowed operations: append

Main Property
Data remains forever
Blocks are cryptographically
immutable
If A changes a block, B can
(easily) notice it

Hash function
Remember the pointer and
hash to the head

Smart Contracts Verification

Bitcoin
Bitcoin

Bitcoin is a currency
Distributed
Operated through the bitcoin p2p network
Uses the bitcoin blockchain

The Bitcoin Blockchain
Decentralized
Public
Used as a ledger
The blocks data consists of transactions

Optimization: Several transactions in each block

Smart Contracts Verification

Bitcoin Transactions

Transfer Transaction
Transfer = destroy and create
Address and signature of sender
Address of recipient
Coins to be used
Pointer to creation of coins

Creation Transaction
Data:

Address of recipient
Value

When are these issued?
Genesis block
Every addition of a block

Smart Contracts Verification

Bitcoin Transactions

Submitting a Transaction
1 A wants to send n coins to B
2 A broadcasts the transaction details to the entire bitcoin network
3 A waits for the transaction to be completed.

Completing a Transaction
The network decides: Include it in a block on the blockchain?
Each node makes its own decision
Honest nodes:

Only include valid transactions in their blocks
Always add blocks to the longest valid branch

Assumption: Most nodes are honest

Is the transaction then completed?

Smart Contracts Verification

Bitcoin Transactions

What does it even mean?
I own a coin

=
I am able to spend a coin

=
When I submit a transaction with this coin

the transaction will be added to the blockchain

Smart Contracts Verification

Bitcoin Transactions

What does it even mean?
I own a coin

=
I am able to spend a coin

=
When I submit a transaction with this coin

the transaction will be added to the longest valid branch in the blockchain

Smart Contracts Verification

Pizza

Example
I broadcast a transaction where I transfer money to Amici’s Pizza
My transaction is added to the longest valid branch
Should Amici’s start preparing my pizza?

Will this transaction stay on the longest valid branch?
The more Amici’s wait, the better
6 blocks should be enough (≈ 1 hour)

Smart Contracts Verification

Consensus

Consensus
Transactions are broadcasted to the entire network
Each node maintains a block with all the new transactions
A hopefully random node gets to add its block to the chain
Where? hopefully appending to the longest valid branch

Adding to a branch = confirming validity

Hope
How to fulfill hopes?
How to choose a random node?
How to encourage nodes to being honest?

Smart Contracts Verification

Achieving Honesty: Incentives

Block Creation Fee
Every block includes a special transaction to its creator.
Fixed amount
Nodes want their blocks to appear in the longest valid branch
Otherwise, the reward is useless

Transaction Fee
Transactions may add a transaction fee to the block creator
Fee is useless unless on the longest valid branch

Smart Contracts Verification

Achieving Randomness: Mining

You Gotta Work For It!
Nodes (miners) compete for the right to create blocks
They need to prove that they worked for it

Look for a number x such that hash(x#txs) < ε and put it in the block
Assumption: the hash function is secure
No way other than exhaust the search space
Ensures randomness of block creator

Searching for x = mining
A node that searches for x : miner

Smart Contracts Verification

The Need for Altcoins

“Script”: The Language of Transactions
Transactions are written in “Script”
limited scripting language
Stack-based, no loops
Allows for limited variants of the above two transaction types

These are not “Smart Contracts” yet
“Turing-complete”-blockchain

Smart Contracts Verification

Bitcoin Recap

Public, distributed blockchain
Relies of honest majority
Never 100%, but exponentially reliable over time

Transactions are broadcasted
Written to blocks
Blocks are added to the blockchain

Miners create blocks
Achieves randomness
They get coins for it

Transactions are written in scripts
Limited language

Smart Contracts Verification

Ethereum

Ethereum
Like bitcoin, but with a Turing-complete scripting language
Also has a blockchain
Scripts = smart contracts

Code = meaning of contract
Execution = enforcement of contract

Contracts are added to the blockchain via transactions
Contracts are assigned with an address and a balance

Ether and Beyond
Ether = The Ethereum currency
General-purpose blockchain
Other currencies
Other purposes

Smart Contracts Verification

Smart Contracts

Smart Contracts
Deployed as bytecode
Run by Ethereum Virtual Machine (EVM)
Usually written in a high-level language: Solidity
Stateful
Other high-level languages are considered

pragma solidity 0.4.8;
contract ControlStructure {

address public a;
function ControlStructure(uint input1) {

while(input1 >= 0){
if(input1 == 5)

input1 = input1 - 1;
a++;

}
}

}

Smart Contracts Verification

Gas

Preventing contracts from running forever: Gas
Each VM instruction has a fixed cost in gas units
When publishing a transaction to the network, the sender specifies:

how much (s)he will pay per gas unit
gas limit

If gas limit is hit, the execution is reverted
The miner gets the gas value

Smart Contracts Verification

Challenges

Blockchain Technology, and in particular the Ethereum blockchain are
(relatively) new fields
A lot of research subjects naturally arise
To name a few:

Cryptographic protocols
Consensus Protocols
Incentives
...
Estimation of gas costs

Decide whether to submit a transaction
Decide what gas limit to put

Verification of smart contracts
Find bugs
Know what the contract does

Smart Contracts Verification

Reasoning about Smart Contracts

Solidity is a programming language
We would like to verify some properties of smart contracts
Examples:

Safety w.r.t. particular attacks
Termination
Not running out of gas
Specification by examples

Challenges:
Non-standard control flow

Contracts are called by other contracts whose code is unknown
Need for modularity

Need to reason about second-order concepts
Sum, count,. . .
Is gas an internal or external notion to the contract?

Smart Contracts Verification

Example 1: Tokens

Tokens
The Ethereum blockchain is used not only for Ether
It is a general-purpose blockchain
Many currencies are created within it, they are called tokens
Tokens may differ in their logic / rules / functionality.

ERC20 Standard
A standard for tokens
Tokens should include several functions, e.g.:

totalSupply()
balanceOf(address)
transfer(to, tokens)
...

Smart Contracts Verification

Example 1: Tokens

contract SimpleToken {
def ts : uint //total supply
def b : address -> uint //balances
method burn(a : uint, s : address) { //amount, sender

ts = ts - a
if (b[s] >= a) {

b[s] = b[s] - a
}

}
}

We would like to prove an invariant: Sum(balances) = totalSupply

(Σb = ts ⇒ (ts ′ = ts − a ∧ (b[s] ≥ a⇒ b′ = b[s ← [s]− a]) ∧
(b[s] < a⇒ b′ = b))) ⇒ Σb′ = ts ′

Not Valid!
Smart Contracts Verification

Example 1: Tokens

contract SimpleToken {
def ts : uint //total supply
def b : address -> uint //balances
method burn(a : uint, s : address) { //amount, sender

if (b[s] >= a) {
b[s] = b[s] - a
ts = ts - a

}
}

}

We would like to prove an invariant: Sum(balances) = totalSupply

(Σb = ts ⇒ ((b[s] ≥ a⇒ (b′ = b[s ← [s]− a] ∧ ts ′ = ts − a)) ∧
(b[s] < a⇒ (b′ = b∧ ts ′ = ts)))) ⇒ Σb′ = ts ′

Valid!
Smart Contracts Verification

Example 2: Wallets

Multi-signature Wallets
In some cases, it makes sense to have a shared wallet
n owners, at least m must sign for each transaction
Examples:

Spouse joint account
Company board of directors
Buyer, seller, trustee

Smart Contracts Verification

Example 2: Wallets

contract Wallet {
def req : uint //number of required signatures
def os : address -> bool //owners
method removeOwner(o: address) {

os[o] = false
}

}

We would like to prove an invariant: Count(os) ≥ req

CountTrue(os) ≥ req ⇒ (os ′ = os[o ← false] ⇒ Count(os ′) ≥ req)

Not Valid!

Smart Contracts Verification

Example 2: Wallets

contract Wallet {
def req : uint //number of required signatures
def n: uint //number of owners
def os : address -> bool //owners
method removeOwner(o: address) {

if n > req {
os[o] = false
n = n-1

}
}

}

We would like to prove an invariant: n ≥ req ∧ n = Count(os)

(n ≥ req ∧ n = Count(os)) ⇒ ((n > req ⇒ (os ′ = os[o ← false] ∧
n′ = n − 1)) ⇒ (n′ ≥ req ∧ n′ = Count(os ′)))

Valid!
Smart Contracts Verification

Background Recap

We have seen:
The Blockchain data structure
Bitcoin
Ethereum & Solidity
Verification

We have not seen:

Cryptography
Consensus
Low-level details
. . .

Resources:
Princeton Bitcoin book
Stanford course
Tons of other resources

Thanks:
Shelly Grossman
Mooly Sagiv
You

Smart Contracts Verification

Topics

High Level Topic
Verification of Smart Contracts

Sub-topics
Smart Contract Languages and their vulnerability
General-purpose Verification Techniques
Specific Verification Techniques for Smart Contracts

Smart Contracts Verification

Smart Contract Languages and Vulnerabilities

Languages
Script
Solidity and Ethereum Bytecode
Move
Michelson (Tezos)
. . .

Vulnerabilities
Real assets are transferred
No safety net
Private contract storage vs. shared blockchain storage
Callbacks and interactions between contracts
. . .

Smart Contracts Verification

Verification

Verification, Testing, Auditing
Verification: 100% correctness, non-terminating
Testing: Low coverage, terminating
Auditing: Mostly manual
Combinations: e.g., verification techniques for test generation

Rice’s Theorem
It is undecidable to determine whether a given program satisfies a
certain (semantic, non-trivial) property
Verification is impossible?
Heuristics, incompleteness, application-guided research

Smart Contracts Verification

Verification Despite Rice’s Theorem

Satisfiability Modulo Theories (SMT)
Core Technique: Translating programs into a logical formula
SMT-solvers: general-purpose logical solvers
Translation is straight-forward without (unbounded) loops
Loops require dedicated techniques

Smart Contracts Verification

Verification of Smart Contracts

Specific Challenges and Techniques
Gas
Special vulnerabilities
Basic SW verification techniques work to a certain extent
Specific techniques are developed for Smart Contracts

Tools
solc-verify (SRI)
Verisol (Microsoft Research)
The Move Prover (Facebook, Stanford)
Solidity’s internal checker (Ethereum Foundation)
. . .

Smart Contracts Verification

Demos

The Move Prover
cvc5: https://cvc4.github.io/app/

Smart Contracts Verification

https://cvc4.github.io/app/

Summary

Diverse and Interesting topic: Practical tools + deep theory
Please email me by next lecture your preferred papers
Seminar Website:
https://u.cs.biu.ac.il/˜zoharyo1/sc-seminar/index.html

Smart Contracts Verification

https://u.cs.biu.ac.il/~zoharyo1/sc-seminar/index.html

	Seminar Plan
	Blockchain and Smart Contracts
	Verification
	Seminar Overview

