
A survey of attacks on
Ethereum smart contracts

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli

Presenting: David Krongauz

Agenda

• Background on Ethereum smart contracts

• Vulnerabilities

• Attacks

Background on Ethereum Smart
Contracts

What is Ethereum?

• Decentralized virtual machine

• Runs programs – contracts

• Turing-complete bytecode language - EVM bytecode

• Usually written in a high-level language: Solidity

• Contracts can transfer ether to/from users and to other contracts

Transactions

• Actions invoked by external accounts (users)

• Create new contracts

• Invoke functions of a contract

• Transfer ether to contracts or to other users

Transactions

• All transactions recorded on the blockchain

• Sequence of transactions determines:

• State of each contract

• Balance of each user

Miners

• Execution of contracts

• Decentralized network of untrusted peers

• Conflicts resolved by consensus protocol

• Better for a miner to follow than to attack

• Execution fees paid by users

Deeper Background

Programming Smart Contracts

Programming Smart Contracts

• Functions in contracts can be invoked by users :

• Transaction must include execution fee (for miners)

• May include transfer of ether – from caller to contract

Programming Smart Contracts

• Exceptions

• Cannot be caught

• Execution stops

• Fee is lost

• All side effects – reverted

Programming Smart Contracts

Hashtable of addresses
and amount sent to them

Programming Smart Contracts

Constructor

Programming Smart Contracts

Ether is returned
to caller

Programming Smart Contracts

No need for exception

Programming Smart Contracts

Checks if send
succeeds

Execution Fees - Gas

• Transaction specifies:
• Gas limit

• Gas price – wei per gas unit

• Higher gas price → Higher chance of execution by miner

• Transaction Termination:
• Successful

• Exception

• “Out-of-gas” exception

Once I had a love and it was a gas

Execution Fees - Gas

• Denial-of-service attack
• Attacker plans an attack

• E.g. invoking a time-consuming function

• Needs lots of gas

• Market price - attack is too expensive

• Low price – miners will ignore

Once I had a love and it was a gas

The Mining Process

• Already talked about in previous lectures

Functions

• Function is uniquely identified by a signature

• Signature is passed to the called contract:
• If matches – jumps to corresponding code

• Else – jumps to fallback function

• Empty signature is passed - jumps to fallback function

Vulnerabilities in Smart
Contracts

Call to the unknown

• call - invokes a function and transfers ether to the callee

• send - transfers ether from the running contract to recipient r
r.send(amount)

• delegatecall – like call, only the invocation of the called function
is run in the caller environment

c.delegatecall(bytes4(sha3("ping(uint256)")),n)

Call to the unknown

• Direct call

contract Alice {
function ping(uint)

returns (uint)
}

contract Bob {
function pong(Alice c){

c.ping(42);
}

}

Exception disorder

• Exception is raised when:

• The execution runs out of gas

• The call stack reaches its limit

• The command throw is executed

Exception disorder

• Exception handling is not uniform, for example:

contract Alice {
function ping(uint)

returns (uint)
}

contract Bob {
uint x=0;
function pong(Alice c)
{

x=1;
c.ping(42);
x=2;

}
}

Exception disorder

• Exception handling is not uniform, for example:

contract Alice {
function ping(uint)

returns (uint)
}

contract Bob {
uint x=0;
function pong(Alice c)
{

x=1;
c.call.value()(ping_sig… ,5)
x=2;

}
}

Exception disorder

Direct
call

Direct
call

Direct
call

Direct
call

•Exception

Exception disorder

Direct
call

Direct
call

Direct
call

•Reverted

Direct
call

•Exception

Exception disorder

Direct
call

Direct
call •Reverted

Direct
call

•Reverted

Direct
call

•Exception

Exception disorder

Direct
call

•Reverted

Direct
call •Reverted

Direct
call

•Reverted

Direct
call

•Exception

Exception disorder

call

Direct
call

Direct
call

Direct
call

•Exception

Exception disorder

call

Direct
call

Direct
call

•Reverted

Direct
call

•Exception

Exception disorder

call

Direct
call •Reverted

Direct
call

•Reverted

Direct
call

•Exception

Exception disorder

call •Returns false

Direct
call •Reverted

Direct
call

•Reverted

Direct
call

•Exception

Exception disorder

call •Returns false

Direct
call •Reverted

Direct
call

•Reverted

Direct
call

•Exception

Continue Execution

call / send / delegatecall

Gasless send

• c.send(amount) - compiled in the same way of a call with no
signature

• C will invoke the recpinet fallback function

• Gas units available to the callee is bound by 2300 units

• Allows to execute a limited set of bytecode instructions

Gasless send

Reentrancy

Keeping secrets

contract Alice

{

uint public year;

uint private grade;

}

Immutable bugs

• Published contract on the blockchain cannot be changed
• Including bugs

• No direct way to patch it

• Can and has been exploited in attacks

• “DAO attack”

Stack size limit

Stack size limit

Exception

Unpredictable state

• Fields and balance determines contract’s state

• Other transactions can chang the state

• Not knowing the state at transactions execution is a vulnerability

• Dynamically updated contracts

Time constraints

• Many applications use time constraints

• Usually implemented by block timestamps

• Miners can choose the timestamp to some degree

• Malicious miner can exploit this

Attacks

The DAO attack

The DAO attack

The DAO attack

The DAO attack

The DAO attack

The DAO attack

The DAO attack

The DAO attack

The DAO attack

The DAO attack

The DAO attack – Round 2

The DAO attack – Round 2

The DAO attack – Round 2

The DAO attack – Round 2

The DAO attack – Round 2

The DAO attack – Round 2

The DAO attack – Round 2

The DAO attack – Round 2

X2

The DAO attack – Round 2

X2 credit[msg.sender] = 2256 − 1

The DAO attack – Round 2

The DAO attack – Round 2

King of the Ether Throne

King of the Ether Throne

King of the Ether Throne

King of the Ether Throne

King of the Ether Throne – Fair Edition

King of the Ether Throne – fair edition

GovernMental

GovernMental

GovernMental

GovernMental - simplified

GovernMental - simplified

GovernMental - simplified

GovernMental – Round 1

.timestamp

GovernMental – Round 1

.timestamp

GovernMental – Round 1

.timestamp

GovernMental – Round 2

.timestamp

GovernMental – Round 2

.timestamp

GovernMental – Round 3

.timestamp

GovernMental – Round 3

.timestamp

GovernMental – Round 3

.timestamp

The attacks #1 and #3 have been also reported in, while attack #2 is fresh

Epilogue

Summary

Discussion

• The paper analyses all major vulnerabilities and attacks to date of
publishing (April 2017)

• Difficulty of detecting mismatches in contracts behavior

• Turing-complete language limits the possibility of verification

Discussion

• Verification of smart contracts
• Automation of vulnerabilities detection

• Low-level attacks
• Targeting the Ethereum network

• Exploit vulnerabilities at EVM specification level

• Vulnerabilities in client implementations

Key Takeaways

• Turing complete language with all its new possibilities diminishes
the of the key aspects of cryptocurrencies – security

• Solidity at time of events needed major updates (many of which
have been made in the hard-fork)

• Automatic verification of smart contracts is crucial for them to be
used in the future by financial establishments

References

• Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. "A survey of
attacks on ethereum smart contracts (sok)." In International
conference on principles of security and trust, pp. 164-186. Springer,
Berlin, Heidelberg, 2017

Thank you for listening

