KEVM

K Ethereum
Virtual
\ViETelallal=

Agenda

* Motivation

* Background
* BNF

e K Framework
e EVM

* KEVM

e K Semantics of EVM

* Semantic Evaluation

e Derived Analysis Tools

* Feature Comparison Overview

Motivation

Example of C Program

* What should the following program evaluate to?

Motivation

Example of C Program

* What should the following program evaluate to?

Motivation * According to the C “standard”, It is undefined
* GCC3, ICC, Clang returns 3
* GCC4, MSVC return 4

* Formal program verifiers actually “proved” it retuns 4

How can we trust any program verification claim if advanced formal
analysis tools can prove correct about what is obviously wrong?

DAO Attack — Reminder

* The DAO was a digital decentralized autonomous organization

* The DAO had an objective to provide a new decentralized business model
for organizing both commercial and non-profit enterprises

* Effectively it was a Smart Contract that held over $150 million.

* The attackers used vulnerability found in the contract and was able to
Motivation steal over S50 million worth of Ether.

* This attack caused the entire Ethereum team to get involved in order to
save its reputation.

* |n order to return the stolen funds
hard fork has been done.

4 Deployment
The D/

DAO T

Contract name Value affected Root cause
The DAO* [11] 150M USD Re-entrancy
HackerGold (HKG)* [26] 400K USD Typo in code
Rubixi [6] < 20K USD Wrong constructor name
Governmental [6] 10K USD Exceeds gas limit 3 Oevebopment

jed. work starts. s
bound by irrefutable smart contract code to deliver on a series

Parity Multisig [5] 200M USD Unintended function exposure T e T T

Background

BNF — Backus-Naur Form
K Framework

Ethereum Virtual Machine

Context free grammar. ldealy suited for describing the syntax
of programming languages.

Basic Definitions:
e ::=reads as “is defined as”

| reads as “or”
e <> Used to surround category names
e ~=reads as “followed by”

 =>reqds as “rewrites to”

|-> reads as “look up”

Example

<digit>—>0]1]2|3|4|5|6|7|8]|9
<natural> =2 <digit> | <digit><natural>

Example:

<natural> => <digit><natural>
=> 9<natural>
=> 9<digit>
=>95

Consider some programming language, L:

* Formal Semantics of L?
Typically skipped — considered expensive & useless

Implementations for L
Based on adhoc understanding of what L is

Model Checkers for L
Based on some adhoc encodings / models of L

Program Verifieirs for L.
Based on some other adhoc encodings / models of L

Etc.

[I nterpreter}

[Compiler}

Formal Language Definition

/

A

Test-case

\

generation

4

(Syntax and Semantics)

|

(semantic)
Debugger

& .
Deductlve\

program

verifier b

5

Model
checker

|

y

|

Symbolic
execution

What is K

* Kis language for building Programming Languages

 When building PL using K,
one can derive the aforementioned tools from it.

* PL Expert gives the formal language definitions (Syntax &
Semantic) and get K Framework derive the tools from it.

K Backend

* Matching Logic - unifying foundational logic for programming
languages, specification, verification.

e Reachabillitiy Logic - logic for reasoning symbolically about
potentially infinite transition systems

A Formal Semantics Manifesto

* Programming languages must have formal semantics

 Analysis / Verification tools should build on them
(o.w. they are adhoc and likely wrong)

* Informal Manuals are not sufficient

* Manuals typically have a formal syntax of the language
(in an appendix)

* In other words — separate development of PL software
into two task:
1. The Programming Language

2. The Tooling (Parser, Interpeter, Debugger, Compiiler, Model
Checker, Program Verifier)

Syntax

syntax Exp ::=Int | Id | “(“ Exp “)” [bracket]
| Exp “*” Exp
> Exp “+” Exp // looser binding

syntax Stmt ::=Id “:=" Exp
| Stmt “;” Stmt

| “return” Exp

This would allow correctly parsing programs like:
a:=3%2;
b:=2*a+5;

return b

Configuration

Tell K about the structure of your execution state. For example, a simple imperative
language might have:

configuration <k> $PGM:Program </k>
<env> .Map </env>
<store> .Map </store>

e <k> will contain the initial parsed program.
e <env> contains bindings of variable names to store locations

e <store> contains bindings od store location to integers

Transition Rules

Rules define how the system transitions from one state to the next

Using the above grammar and configuration:

Variable lookup

rule <k> X:Id => V ... </k>
<env> cee X |=>8X ... </env>
<store> ... SX |->V ... </store>

Variable assignment
rule <k> X := I:Int => </k>
<env> ess X |=> SX ... </env>
<store> ... SX |-> (V =>1I) ... </store>

Example Execution

Program

a:=3 * 2;
b:=2 % a+ 5;
return b
Next Configuration

Initial Configuration

<k> ~> b := +5 ; </k>
<k> a:=3%2;b:=2%a+5; return b </k> . LS L A Rl B
e aileD b 11 </amys <env> a |->0 b |-> 1 </env>
<store> 0 |-> 6 1 |-> 0 </store>

<store> 0 |-> 0 1 |-> 0 </store>

Next Configuration

Next Configuration

<k> a:=6 ~>b :=2x%a+5; return b </k> Variable <k> b:=2*6+ 5 ; return b </k>
<env> a |-> 0 b |-> 1 </env> Assignment <env> a |-> 0 b |-> 1 </env>
<store> 0 |[-> 0 1 |-> 0 </store> <store> 0 |-> 6 1 |-> 0 </store>

Next Confi ti . s
ol e el Next Configuration

Variable

<k> b :=2%*a+ 5 ; return b </k>) Variable

<env> a |-> 0 b |-> 1 </env> Assignment <k> b := 17 ~> return b </k> ; I

<store> 0 |-> 6 1 |-> 0 </store> <env> a |-> 0 b |-> 1 </env> SR
<store> 0 |-> 6 1 |-> 0 </store>

Next Configuration

Variable
<k> a~>b:=2x*[] +5; return b </k> Lookup
<env> a |-> 0 b |-> 1 </env>

<store> 0 |[-> 6 1 |-> 0 </store>

Next Configuration

Variable
<k> return b </k> Assignment
<env> a |-> 0 b |->1 </env>

<store> 0 |-> 6 1 |-> 17 </store>

Ethereum

Virtual
Machine

-

[}
|

|
|
|
|
|
|
|
|
|
}
|

Account State Block Header
-Block no. - Gas Limit
Codehash -Logs BloomFilter - Difficulty, Mixhash,
(Stores Logs) Nonce

- Parent Hash

Blockchain
Block No. N

X
Root

Storage
Root Balance
EN)!

v
' EVM World State ¢ s EVM Global -
. Namespace of Variables and Units
' <ADDR>:ACCOUNT STATE ‘i - MSG.SENDER)
' ' - MSG.VALUE "

)
'
'
[
'
'
'

|
N / - Existing State -TX Data
. ! o | Receivelnput] _pemaining Gas (STARTGAS) - TX Value in WEI (MSG.VALUE)
15 8 7| TXtobxecutef _jock Header - Owner of Code to be Executed
re § in EVM -TX Sender (MSG.SENDER) - Bytecode Contract to Execute
|l 8= |
- ZI3E
E '
i §E g Smart A 4
L = 5| Contract ARGS Program
l S | Bytecode Storage (TX Data) Counter
1§]
g, I
' “‘ﬂ
! E - A 4
” LIFO
TX CALLER ; : E CALLERIIEl?SS}-w (g))é(z)k)lal;]zﬁg)i\ll\)% -OPCODES
-Nonce B I B 02, EAT,
Gac | imi F
_g:: H',Tet BIARIGAS : | 3 - Update State & Logs 7 .
T MSGSENDER), 4 AN N M it R RO SO,
VALUE (MSG.VALUE) ™~ i Exception Revert TX
-V,R, S (SignedTX >
WithSENDER) 1 |ermmmmmf oo s AT e AR A :
- Data Bytecode ! Execute :
-INIT " OPCODE I
A Operation :I
A
!
i
Consume Gas £
2 Dedict OPCODE Fee |
- - - »{ Deduct OPCODE Fee i
I | - Operation Computation ——1 Iy
' ; - Message Call (ETH CALL) or Contract Creation (ETH SENDTRANSACTION) : I
I -Memory Usage State Machine Cycle for Bytecode Opcodes ! |

[e I I el e

Blockchain

EVM Execution
Module

Example program (sum 0 - 10):

PUSH(1, 0) ; PUSH(1, 0) ; MSTORE
; PUSH(1, 10) ; PUSH(1, 32) ; MSTORE

E ; JUMPDEST

thereum ; PUSH(1, 0) ; PUSH(1, 32) ; MLOAD ; GT

\/irtllal ; ISZERO ; PUSH(1, 43) ; JUMPI

RAEBCF]HWEE ; PUSH(1, 32) ; MLOAD ; PUSH(1, O) ; MLOAD ; ADD ; PUSH(1, 0) ; MSTORE
; PUSH(1, 1) ; PUSH(1, 32) ; MLOAD ; SUB ; PUSH(1, 32) ; MSTORE
; PUSH(1, 10) ; JUMP
; JUMPDEST

; PUSH(1, O0) ; MLOAD ; PUSH(1, 0) ; SSTORE
; .0OpCodes

Ethereum

Virtual
Machine

Enforcing Termination (Gas) — Quick Reminder

User submitted transactions could have infinite loops (DoS
Attacks)

e Solution:

e Each opcode costs some gas, paid for in Ether.
* Spent gas aawarded to miner, remaining refunded to account.

Notes
* It’s important to charge according to the actual used compute resources

* Tuning gas costs is an ongoing challenge:
new hardware = new gas model

Ethereum

Virtual
Machine

Intercontract Executions & EVM ABI

e Contracts can call other contracts (called re-entrancy)

* Payload to other contract is a raw string of bytes called
CallData

e External to the EVM, the Ethereum ABI has been developed,
which specifies:
* Calling conventions (how to interpret CallData correctly)
* Some high-level types (and their mapping to EVM words)

KEVM

K Semantic of EVM

Semantic Evaluation

Derived Analysis Tools

Feature Comparison Overview

K Semantics of EVM

Instantiating K with an EVM semantics requires:

K Semantics

of * modeling transaction execution state and network evolution using
EVM the configuration

» detailing changes in transaction execution and network evolution
using transition rules

EVM Execution State (Configuration)

The state of EVM is broken into two components:

» Active Transaction (Smart Contract execution)

<op> MSTORE 8 75 </op>
<Id> T </id>
<gas> 98422223 </gas>

K Semantics <gasPrice> 1000000 </gasPrice>

<pc> 13 </pc>
c)f <program> ... 13 |-> MSTORE ... </program>

<wordStack> 7 : 9 : ... </wordStack>

EVM <localMem> ... 8 |-> _ ... 39 |-> _ ... </localMem>

* Network as a whole (Account information)

<accounts>

<account multiplicity="*" type="Map">
<acctID> ... </acctID>
<balance> ... </balance>
<code> ... </code>
<storage> ... </storage>
<acctMap> ... </acctMap>

</account>

</accounts>

Exceptional States

Before attempting to execute an opcode KEVM check if one of
several exceptional cases will happen:

* |s the next opcode one of the designated invalid or undefined opcodes?

K Semantics
of * Will the stack over / under-flow upon executing the opcode?
EVM
 If the opcode is a JUMP* code, will it jump to a valid destination?
syntax InternalOp ::= "#exceptional?" "[" OpCode "]"
[/

rule <op> #exceptional? [OP]
=> #invalid? [OP] ~> #stackNeeded? [OP] “> #badJumpDest? [OP]

.. </op>

Exceptional States

Example - #invalid? Definition

syntax InvalidOp ::= "INVALID"

K Semantics c
()f syntax InternalOp ::= "#invalid?" "[" OpCode "]"

EVM

rule <op> #invalid? [OP
rule <op> #invalid? [OP

=> #exception ... </op> requires isInvalidOp(OP)
=> </op> requires notBool isInvalidOp(OP)

K Semantics

of
EVM

Control Flow

The exception consumes any ordinary Word or OpCode behind
it on the cell, until it reaches a Kitem

syntax KItem ::= Exception
syntax Exception ::= "#exception"
[/ mmmmm
rule <op> EX:Exception “> (W:Word => .) . </op>
rule <op> EX:Exception "> (OP:0pCode => .) . </op>

By putting operators in sort Kltem, we can use them to affect
how an #exception is caught.

syntax KItem ::= "#7?" K ":" K "7#"

[/ o
rule <op> #7 K : _ 7# => K ... </op>
rule <op> #exception "> #7 _ : K 7# => K ... </op>

#? . ?#-branching choice operator. Chose the first branch when no
exception is thrown and the second when one is.

Reverting State

During execution, state may need to be partially or fully
reverted when an exception is thrown.

K Semantics KEVM supplies six operators to handle this:
* #{push/pop/drop}CallStack
» #{push/pop/drop}WordStack

These operators can be used to save and restore copies of the
execution and network state in the cells and, respectively.

K Semantics

of
EVM

EVM OpCodes & Arguments Loading

EVM OpCodes
The opcodes in EVM are broken into several subsorts of

OpCode when common behavior can be associated to that
group of opcodes.

syntax OpCode ::= NullStackOp | UnStackOp | BinStackOp | TernStackOp | QuadStackOp
| InvalidOp | StackOp | InternalOp | CallOp | CallSixOp | PushOp

Arguments Loading
When an opcode is executed, the correct number of

arguments are unpacked from the <wordStack>

syntax InternalOp ::= BinStackOp Word Word

rule <op> #exec [BOP:BinStackOp => BOP WO W1] ... </op>
<wordStack> WO : W1 : WS => WS </wordStack>

Execution Cycle

1. Check if the opcode is exceptional given the current state
(#exceptional?).

2. Perform the state update associated with the operator

: Hexec).
K Semantics ()
of 3. Increment the program counter to the correct value given
EVM the operator (#pc).
rule <mode> EXECMODE </mode>
<op> #next
=> #pushCallStack ~> #exceptional? [OP]
~> #exec [OP]
~> #pc [OpP]
> #7 #dropCallStack : #popCallStack “> #exception 7#
<Jop>
<pc> PCOUNT </pc>
<program> ... PCOUNT |-> OP ... </program>

requires EXECMODE in (SetItem(NORMAL) SetItem(VMTESTS))

K Semantics

of
EVM

Gas Semantics

The #exec operator above is turned into two consecutive state update:

1. First, the #gas update is applied

2. Then updates to execution state are applied

syntax InternalOp ::= "#gas" "[" OpCode "]" | "#deductGas"

rule <op> #gas [OP]
=> #gasExec(0OP) “> #memory(OP, MU) ~> #deductGas

. </op>
<memoryUsed> MU </memoryUsed>

» Several fee schedules are provided.

 KEVM provide additional helper functions for more complicated gas
calculation.

OpCode Semantics

* Operator #exec places the opcode directly at the front of the cell with its
arguments from the loaded

K Semantics * the semantics of ADD:
of rule <op> ADD WO W1 => WO +Word Wi “> #push ... </op>

EVM « _+Word_ is a word operation supplied in the semantics which lifts the
native K +Int operation and ensures the correct modulus-256 semantics are
implemented for EVM.

* Reminder - behind the addition, there’s a helper #push which places the
preceding word on the front of the <wordStack>

Semantic

Evaluation

Semantic Evaluation

KEVM evaluation focused on measuring:

1.Correctness — As Consensus-critical software,
implementations of the EVM are held to a high standard

2.Performance — important for real-world application and
usability

3.Extensibility — KEVM was built with extensibility in mind

Semantic

Evaluation

Correctness & Performance

Test Set (no. tests) Lem EVM [22] KEVM cpp-ethereum
All (40683) - 78m45s 2m25s
Lem (40665) 288m39s (mean: 430ms) 36m3s (mean: 53ms) 3m6s (mean: 5ms)
Lem Stress (14) * 10m7s 51s

- = unable to complete, * = did not measure

Table 2: Completeness and total execution time of existing executable semantics

* As shown in the comparison, the automatically extracted interpreter for
KEVM outperforms the currently available formal executable EVM semantics

* In addition to handling the entirety of the test-suite, the KEVM semantics
outperforms the Lem semantics by more than eight times

¢ Compared to the C++ implementation KEVM performs favorably, coming in

roughly 30 times slower than the reference implementation on all 40,683
tests

These numbers are very promising for an early version of an automatically

generated, formally derived interpreter, and substantiates the practicality
of KEVM approach.

Semantic

Evaluation

Extensibility

* The simple imperative language with control-flow supplied via
exceptions and conditional branching allows to add more primitives for
extending KEVM:

* For example, KEVM define another primitive #execTo which takes a
set of opcodes and calls #next until we reach one of the opcodes in
the set.

e Execution is parametric over an extra <mode> cell

e Currently, three modes are supported: NORMAL execution,
VMTESTS execution, and GASANALYZE mode.

configuration ...
<mode> $MODE:Mode </mode>

syntax Mode ::= "NORMAL" | "VMTESTS" | "GASANALYZE"

Extensibility — Gas Analysis

For many contracts, functional correctness is dependent upon enough gas
being supplied at the beginning of execution.

By calling krun with the option -cMODE=GASANALYSE, KEVM produce the
following output (on program that sum the numbers from 1 to 10):

i <analysis> "blocks" [-> (
Semant.lc ListItem ({ 0 ==>4 | 6 | 0}) // s =0; n=10
Evaluathn ListItem ({ 5 ==>9 | 9 | 0 }) // loop: if n == 0 jump to end
ListItem ({ 10 ==> 20 | 24 | 0 }) // s =s+n; n=n-1;
ListItem ({ 21 ==> 21 | 0 | 0 }) // end:
ListItem ({ 22 ==> 26 | 20005 | 0 }) // store to account
)
</analysis>

This GASANALYZE mode only added 52 lines to the semantics.

Derived

Analysis
Tools

Semantic Debugger

Adding the --debugger option to the command krun drops the user into the
KDebug shell.

KDebug> jump 91
Jumped to Step Number 91
KDebug> peek

<op> #next > #execute </op> ..

<program> ... 33 |-> PUSH (32 , N) ... </program> ..
<wordStack> N : ... </wordStack> ...

<pc> 33 </pc>

<gas> 99997 </gas>

Taking one step, we see that a full execution cycle for the next opcode has been
loaded & Taking another 16 steps, the opcode is fully executed:

KDebug> step . i
1 Step(s) Taken. b

16 Step(s) Taken.
KDebug> peek KDebug> peek

<generatedTop>
<op> #pushCallStack ~> #exceptional? [PUSH (32 , N)]
> #exec [PUSH (32, N)] <op> #next > #execute </op> ...
> #pe Lot o it <program> </program>
~> #7 #dropCallStack : #popCallStack ~> #exception 7# ~> #execute </op> ... Prog Gl PIog SR
<program> ... </program> ... <wordStack> N : (N : ...) </wordStack> ...

<wordStack> N : ... </wordStack> ... <pc> 66 </pc>
<pc> 33 </pc>

<gas> 99997 </gas> <gas> 99994 </gas>

Program Verifier

One particularly useful formal analysis tool developed for K is the Reachability Logic
prover.

Derived This prover accepts as input a K definition and a set of logical reachability claims to
prove.

The prover then attempts to automatically prove the reachability theorems over
the language’s execution space, assuming the semantics.

Analysis
Tools

Feature Comparison Overview

The tools produced in the Ethereum community are meant to fill a variety of purposes, many
of which are also able to be accomplished directly from our executable semantics.

For the implementations we compare, we ask the following questions about the tools
provided:

e Spec.: Suitable as a formal specification of the EVM language?

* Exec.: Executable on concrete tests?

e Client: Implements a full Ethereum client?

* Verif.: Used to verify properties about EVM programs?

* Debug: Supplies interactive EVM debugger?

* Bugs: Heuristic-based tools for finding common issues in smart contracts?

* Gas: Tools for analyzing gas complexity of an EVM program?

Tool S
Yellow Paper
Lem semantics
cpp-ethereum
F*
hsevm
REMIX
Oyente
Dr. Y's
KEVM

g

Exec. | Client | Verif. | Debug | Bugs
X

'\XX'\\XXXX%}

WX X %X XXX\ AT

NANNNNNANN

x X X X X X N\ X X
RN RN X
NS ™ N\ % %X % %
x X N\ %X %X N\ % X %

Questions?

Thank you for listening!

