
KEVM
K Ethereum
Virtual
Machine

Agenda

Agenda

• Motivation

• Background
• BNF
• K Framework
• EVM

• KEVM
• K Semantics of EVM
• Semantic Evaluation
• Derived Analysis Tools
• Feature Comparison Overview

Motivation

Motivation

Example of C Program

• What should the following program evaluate to?
int main(void) {

int x = 0;
return (x = 1) + (x = 2);

}

Motivation

Example of C Program

• What should the following program evaluate to?

• According to the C “standard”, It is undefined
• GCC3, ICC, Clang returns 3
• GCC4, MSVC return 4

• Formal program verifiers actually “proved” it retuns 4
How can we trust any program verification claim if advanced formal
analysis tools can prove correct about what is obviously wrong?

int main(void) {
int x = 0;
return (x = 1) + (x = 2);

}

Motivation

DAO Attack – Reminder

• The DAO was a digital decentralized autonomous organization

• The DAO had an objective to provide a new decentralized business model
for organizing both commercial and non-profit enterprises

• Effectively it was a Smart Contract that held over $150 million.

• The attackers used vulnerability found in the contract and was able to
steal over $50 million worth of Ether.

• This attack caused the entire Ethereum team to get involved in order to
save its reputation.

• In order to return the stolen funds
hard fork has been done.

Background

BNF – Backus-Naur Form

K Framework

Ethereum Virtual Machine

BNF

Context free grammar. Idealy suited for describing the syntax
of programming languages.

Basic Definitions:
• ::= reads as “is defined as”

• | reads as “or”

• <> Used to surround category names

• ~= reads as “followed by”

• => reads as “rewrites to”

• |-> reads as “look up”

BNF

Example

<digit> à 0|1|2|3|4|5|6|7|8|9
<natural> à <digit> | <digit><natural>

Example:
<natural> => <digit><natural>

=> 9<natural>
=> 9<digit>
=> 95

K Framework

Consider some programming language, L:

• Formal Semantics of L?
Typically skipped – considered expensive & useless

• Implementations for L
Based on adhoc understanding of what L is

• Model Checkers for L
Based on some adhoc encodings / models of L

• Program Verifieirs for L.
Based on some other adhoc encodings / models of L

• Etc.

K Framework

K Framework

What is K

• K is language for building Programming Languages

• When building PL using K,
one can derive the aforementioned tools from it.

• PL Expert gives the formal language definitions (Syntax &
Semantic) and get K Framework derive the tools from it.

K Backend

• Matching Logic - unifying foundational logic for programming
languages, specification, verification.

• Reachabillitiy Logic - logic for reasoning symbolically about
potentially infinite transition systems

K Framework

A Formal Semantics Manifesto

• Programming languages must have formal semantics
• Analysis / Verification tools should build on them

(o.w. they are adhoc and likely wrong)

• Informal Manuals are not sufficient
• Manuals typically have a formal syntax of the language

(in an appendix)

• In other words – separate development of PL software
into two task:

1. The Programming Language
2. The Tooling (Parser, Interpeter, Debugger, Compiiler, Model

Checker, Program Verifier)

K Framework

Syntax

syntax Exp ::= Int | Id | “(“ Exp “)” [bracket]

| Exp “*” Exp

> Exp “+” Exp // looser binding

syntax Stmt ::= Id “:=“ Exp

| Stmt “;” Stmt

| “return” Exp

This would allow correctly parsing programs like:

a := 3 * 2;

b := 2 * a + 5;

return b

K Framework

Configuration

Tell K about the structure of your execution state. For example, a simple imperative
language might have:

• <k> will contain the initial parsed program.

• <env> contains bindings of variable names to store locations

• <store> contains bindings od store location to integers

K Framework

Transition Rules
Rules define how the system transitions from one state to the next

Using the above grammar and configuration:

Variable lookup

Variable assignment

K Framework

Example Execution

Variable
Assignment

Variable
Assignment

Variable
Lookup

Variable
Lookup

Variable
Assignment

Variable
Assignment

Variable
Lookup

Ethereum
Virtual
Machine

Blockchain

EVM Execution
Module

Ethereum
Virtual
Machine

Ethereum
Virtual
Machine

Enforcing Termination (Gas) – Quick Reminder

User submitted transactions could have infinite loops (DoS
Attacks)
• Solution:

• Each opcode costs some gas, paid for in Ether.
• Spent gas aawarded to miner, remaining refunded to account.

Notes
• It’s important to charge according to the actual used compute resources
• Tuning gas costs is an ongoing challenge:

new hardware à new gas model

Ethereum
Virtual
Machine

Intercontract Executions & EVM ABI

• Contracts can call other contracts (called re-entrancy)

• Payload to other contract is a raw string of bytes called
CallData

• External to the EVM, the Ethereum ABI has been developed,
which specifies:
• Calling conventions (how to interpret CallData correctly)
• Some high-level types (and their mapping to EVM words)

KEVM

K Semantic of EVM

Semantic Evaluation

Derived Analysis Tools

Feature Comparison Overview

K Semantics
of
EVM

K Semantics of EVM

Instantiating K with an EVM semantics requires:

• modeling transaction execution state and network evolution using
the configuration

• detailing changes in transaction execution and network evolution
using transition rules

K Semantics
of
EVM

EVM Execution State (Configuration)

The state of EVM is broken into two components:

• Active Transaction (Smart Contract execution)

• Network as a whole (Account information)

K Semantics
of
EVM

Exceptional States

Before attempting to execute an opcode KEVM check if one of
several exceptional cases will happen:

• Is the next opcode one of the designated invalid or undefined opcodes?

• Will the stack over / under-flow upon executing the opcode?

• If the opcode is a JUMP* code, will it jump to a valid destination?

K Semantics
of
EVM

Exceptional States

Example - #invalid? Definition

K Semantics
of
EVM

Control Flow

The exception consumes any ordinary Word or OpCode behind
it on the cell, until it reaches a Kitem

By putting operators in sort KItem, we can use them to affect
how an #exception is caught.

#?_ : _?# - branching choice operator. Chose the first branch when no
exception is thrown and the second when one is.

K Semantics
of
EVM

Reverting State

During execution, state may need to be partially or fully
reverted when an exception is thrown.

KEVM supplies six operators to handle this:
• #{push/pop/drop}CallStack
• #{push/pop/drop}WordStack

These operators can be used to save and restore copies of the
execution and network state in the cells and , respectively.

K Semantics
of
EVM

EVM OpCodes & Arguments Loading

EVM OpCodes
The opcodes in EVM are broken into several subsorts of
OpCode when common behavior can be associated to that
group of opcodes.

Arguments Loading
When an opcode is executed, the correct number of
arguments are unpacked from the <wordStack>

K Semantics
of
EVM

Execution Cycle

1. Check if the opcode is exceptional given the current state
(#exceptional?).

2. Perform the state update associated with the operator
(#exec).

3. Increment the program counter to the correct value given
the operator (#pc).

K Semantics
of
EVM

Gas Semantics

The #exec operator above is turned into two consecutive state update:

1. First, the #gas update is applied
2. Then updates to execution state are applied

• Several fee schedules are provided.

• KEVM provide additional helper functions for more complicated gas
calculation.

K Semantics
of
EVM

OpCode Semantics

• Operator #exec places the opcode directly at the front of the cell with its
arguments from the loaded

• the semantics of ADD:

• _+Word_ is a word operation supplied in the semantics which lifts the
native K +Int operation and ensures the correct modulus-256 semantics are
implemented for EVM.

• Reminder - behind the addition, there’s a helper #push which places the
preceding word on the front of the <wordStack>

Semantic
Evaluation

Semantic Evaluation

KEVM evaluation focused on measuring:

1.Correctness – As Consensus-critical software,
implementations of the EVM are held to a high standard

2.Performance – important for real-world application and
usability

3.Extensibility – KEVM was built with extensibility in mind

Semantic
Evaluation

Correctness & Performance

• As shown in the comparison, the automatically extracted interpreter for
KEVM outperforms the currently available formal executable EVM semantics

• In addition to handling the entirety of the test-suite, the KEVM semantics
outperforms the Lem semantics by more than eight times

• Compared to the C++ implementation KEVM performs favorably, coming in
roughly 30 times slower than the reference implementation on all 40,683
tests

These numbers are very promising for an early version of an automatically
generated, formally derived interpreter, and substantiates the practicality
of KEVM approach.

Semantic
Evaluation

Extensibility
• The simple imperative language with control-flow supplied via

exceptions and conditional branching allows to add more primitives for
extending KEVM:
• For example, KEVM define another primitive #execTo which takes a

set of opcodes and calls #next until we reach one of the opcodes in
the set.

• Execution is parametric over an extra <mode> cell
• Currently, three modes are supported: NORMAL execution,

VMTESTS execution, and GASANALYZE mode.

Semantic
Evaluation

Extensibility – Gas Analysis

For many contracts, functional correctness is dependent upon enough gas
being supplied at the beginning of execution.
By calling krun with the option -cMODE=GASANALYSE, KEVM produce the
following output (on program that sum the numbers from 1 to 10):

This GASANALYZE mode only added 52 lines to the semantics.

Derived
Analysis
Tools

Semantic Debugger
Adding the --debugger option to the command krun drops the user into the
KDebug shell.

Taking one step, we see that a full execution cycle for the next opcode has been
loaded & Taking another 16 steps, the opcode is fully executed:

Derived
Analysis
Tools

Program Verifier

One particularly useful formal analysis tool developed for K is the Reachability Logic
prover.

This prover accepts as input a K definition and a set of logical reachability claims to
prove.

The prover then attempts to automatically prove the reachability theorems over
the language’s execution space, assuming the semantics.

Summary

Feature Comparison Overview
The tools produced in the Ethereum community are meant to fill a variety of purposes, many
of which are also able to be accomplished directly from our executable semantics.

For the implementations we compare, we ask the following questions about the tools
provided:

• Spec.: Suitable as a formal specification of the EVM language?

• Exec.: Executable on concrete tests?

• Client: Implements a full Ethereum client?

• Verif.: Used to verify properties about EVM programs?

• Debug: Supplies interactive EVM debugger?

• Bugs: Heuristic-based tools for finding common issues in smart contracts?

• Gas: Tools for analyzing gas complexity of an EVM program?

Questions?

Thank you for listening!

