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Abstract
The SMT-LIB theory of bit-vectors is restricted to bit-vectors of fixed width. However, several important
applications can benefit from reasoning about bit-vectors of symbolic widths, i.e., parametric bit-vectors. Recent
work has introduced an approach for solving formulas over parametric bit-vectors, via an eager translation
to quantified integer arithmetic with uninterpreted functions. The approach was shown to be successful for
several applications, including the bit-width independent verification of compiler optimizations, invertibility
conditions, and rewrite rules. We extend and improve that approach in several aspects. Theoretically, we improve
expressiveness by defining a new theory of parametric bit-vectors that supports more operators and allows
reasoning about the bit-widths themselves. Algorithmically, we introduce a lazy algorithm that avoids the use of
uninterpreted functions and quantified axioms for them. Empirically, we show a significant improvement by
implementing and evaluating our approach, and comparing it experimentally to the previous one.
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1 Introduction

Bit-precise reasoning as provided by Satisfiability Modulo Theories (SMT) for the theory of fixed-size
bit-vectors [3] is a key requirement for a wide range of verification applications. In particular, it allows
verification engines to reason about machine integers and hardware registers and supports a variety of
operators (including arithmetic, bitwise, and word operators such as concatenation and extraction).
It is also very useful for other theories, such as floating-point arithmetic and non-linear integer
arithmetic, where reasoning over certain fragments of those theories can be reduced to reasoning in
the theory of fixed-size bit-vectors [7, 17].

One of the biggest limitations of this theory is already evident in its name: it only allows reasoning
about bit-vectors whose size (or, equivalently, width) is fixed. Thus, when declaring a bit-vector sort
in the SMT-LIB language, its width must be specified as a numeral. This limitation poses a serious
expressiveness issue: when a verification tool verifies a property using this theory of bit-vectors, the
verification result is only valid for the explicitly specified bit-width(s). In the context of software
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9:2 Bit-precise Reasoning with Parametric Bit-vectors

verification, this means that some programs are proven correct in the presence of, say, 32-bit integer
variables, but if their type is changed to 64-bit integers, the verification process has to be repeated.
Similar issues occur during the development of specialized solvers for this theory, where much effort is
dedicated to the design of rewrite rules and the generation of auxiliary lemmas [23,28,31,34]. Before
adding new rules or lemmas in the solver, it is valuable to be able to verify that they are correct, and
their correctness is usually independent of bit-width. Being able to do so fast and automatically using
SMT solvers (as opposed to following the lengthier process of developing interactive proofs [12, 19])
is highly beneficial for the development process. However, state-of-the-art SMT solvers do not
currently support reasoning over bit-vectors of parametric size. Thus, it is common to verify the
correctness of such rewrite rules and lemmas only for fixed bit-widths, from 1 up to some reasonably
large value. This does not yield a proof of correctness in general although it increases confidence that
the rules and lemmas are also correct for arbitrary bit-widths [28, 31].

Early work on bit-precise reasoning supported reasoning about parametric bit-vectors, but only
for a small fragment of the theory (see, e.g., [5, 15, 16, 35]). In all cases, however, the supported
fragment is not expressive enough for modern verification efforts.

More recently, an approach for solving formulas over parametric bit-vectors via an eager transla-
tion to quantified non-linear integer arithmetic with uninterpreted functions was proposed by Niemetz
et al. [29, 30]. In that work, bitwise operators and the exponentiation function with base 2, which
is required for translating arithmetic bit-vector operators to the integers, are axiomatized by means
of uninterpreted functions and quantifiers. In particular, [30] introduced a theory of parametric
bit-vectors where bit-widths are implicit, and so it is not possible to reason about then. The trans-
lation was implemented outside of an SMT solver and evaluated on three case studies: bit-width
independent verification conditions for compiler optimizations [20], invertibility conditions [28],
and rewrite rules [34]. In addition, since all three case studies only require reasoning about a single
parametric bit-width, the implementation of the translation targets a fragment of the SMT-LIB theory
of bit-vectors that does not involve multiple bit-widths. As a result, the possibility of verifying,
e.g., compiler optimization reductions was limited, as it excluded optimizations involving bit-vector
concatenations, extractions and extensions, all of which involve multiple bit-widths.

Later work [39] presented a translation of fixed-size bit-vectors to quantifier-free non-linear
integer arithmetic with uninterpreted functions (coined int-blasting, generalizing earlier approaches,
see, e.g., [6, 8, 38]) with the goal of improving the scalability of reasoning over large bit-vectors.
Unlike [30], the approach of [39] is lazy, does not introduce any quantifiers and does not support
reasoning over parametric bit-vectors. Further, it is integrated in cvc5 [1]. While not in general
competitive with state-of-the-art bit-vector solvers, int-blasting showed promising performance
improvements on problems involving large bit-widths arising from smart contract verification.

In this paper, we propose a procedure for reasoning about parametric bit-vectors based on the
eager approach presented in [30]. Our technique extends and combines this eager approach with lazy
techniques introduced for reasoning about fixed size bit-vectors via a reduction to the integers in [39].
In particular, we make the following contributions:

(i) We introduce a theory of parametric bit-vectors with symbolic bit-widths as part of its signature.
Our theory definition simplifies yet strengthens the theory of parametric bit-vectors introduced
in [30] while enabling the reasoning over bit-widths.

(ii) We present a lazy algorithm for determining satisfiability of parametric bit-vectors constraints that
does not rely on quantifiers (as opposed to [30]) and generalizes the lazy handling of bitwise and
from [39] to parametric bit-vectors. Additionally, instead of eagerly axiomatizing exponentiation
with base 2 (as in [30]), we handle this operator lazily.

(iii) We provide an implementation of a solver for parametric bit-vectors. The implementation is
generic: it supports reasoning over arbitrary parametric bit-vector formulas (which goes beyond
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the prototype implementation presented in [30]). In particular, it fully supports reasoning over
bit-widths, constraints on bit-vectors with multiple widths, and operators combining or returning
bit-vectors of different widths, such as extraction, concatenation and extension.

(iv) We evaluate our approach on a large and diverse set of benchmarks and show that our technique
significantly improves over the eager approach introduced in [30].

For brevity and simplicity, and similarly to previous work [30,39], our formal presentation focuses
on quantifier-free formulas. We stress however, that our implementation fully supports quantifiers.1

The remainder of this paper is organized as follows. In Section 2, we provide the necessary
background on first-order logic. In Section 3, we present our definition for a theory of parametric
bit-vectors. In Section 4, we describe our new solver for parametric bit-vectors. We provide a detailed
evaluation of the solver in Section 5 and conclude with directions for future research in Section 6.

2 Preliminaries

We briefly review notions of many-sorted first-order theories with equality (see [13, 37] for more
details). Let S be a set of sort symbols, and for every sort σ ∈ S, let Xσ be an infinite set of variables
of sort σ. We assume that sets Xσ are pairwise disjoint and define X as the union of sets Xσ. A
signature Σ consists of a set Σs⊆ S of sort symbols and a set Σf of function symbols. Arities of
function symbols are defined in the usual many-sorted way. Constants are treated as nullary functions.
We assume that Σ includes a Boolean sort Bool and the Boolean constants ⊤ (true) and ⊥ (false).
Function symbols whose return sort is Bool are also called predicate symbols. We assume that for
each sort σ ∈ Σs, a binary equality predicate symbol ≈σ is included in the signature. We will write
just ≈ when σ is clear or not important.

We assume the usual definitions of well-sorted terms, literals, and formulas, and refer to them as
Σ-terms, Σ-literals, and Σ-formulas, respectively. We include the ternary if-then-else operator iteσ of
arity Bool× σ × σ → σ for each σ ∈ Σs, and omit σ when it is clear from the context.

A Σ-interpretation I maps: each σ ∈ Σs to a distinct non-empty set of values σI (the domain
of σ in I); each x ∈ Xσ to an element xI ∈ σI ; and each fσ1···σnσ ∈ Σf to a total function
fI : σI

1 × ... × σI
n → σI if n > 0, and to an element in σI if n = 0. We use the usual inductive

definition of the satisfiability relation |= between Σ-interpretations and Σ-formulas.
A theory T is a pair (Σ, I), where Σ is a signature and I is a non-empty class of Σ-interpretations

that is closed under variable reassignment, i.e., if interpretation I ′ only differs from an I ∈ I in how
it interprets variables, then also I ′ ∈ I . Each interpretation I ∈ I interprets Bool as the two-element
set {⊤I ,⊥I} and ≈σ as the identity relation over each sort σ ∈ Σs. A Σ-formula φ is T -satisfiable
(resp. T -unsatisfiable) if it is satisfied by some (resp. no) interpretation in I; it is T -valid if it is
satisfied by all interpretations in I .

The theory TIA = (ΣIA, IIA) of integer arithmetic is defined as in the SMT-LIB 2 standard [2, 4].
Its signature ΣIA is shown in Table 1 and includes a single sort Int, function and predicate symbols
{+,−, ·, div,mod, <,≤, >,≥}, and a constant symbol for every integer value. Given a set F of
function symbols disjoint from those of ΣIA, the signature ΣIA(F) is obtained from ΣIA by the
addition of the symbols in F . The theory TIA(F) consists of all ΣIA(F)-interpretations whose reduct
to ΣIA is a TIA-interpretation (i.e., the symbols in F are freely interpreted). We may remove set
braces when listing the elements of F , e.g., by writing ΣIA(f, g) instead of ΣIA({f, g}).

1 In fact, one of the benchmark sets in our experimental evaluation contains quantified formulas.
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9:4 Bit-precise Reasoning with Parametric Bit-vectors

Symbol SMT-LIB Syntax Arity

≈Int, ̸≈Int =, distinct Int× Int→ Bool
0, 1, 2, . . . 0, 1, 2, . . . Int
+,−, ·, div,mod +, -, *, div, mod Int× Int→ Int
≤,≥, <,> <=, >=, <, > Int× Int→ Bool

Table 1 Signature ΣIA of the theory of integer arithmetic TIA.

3 A Theory of Parametric Bit-vectors

The SMT-LIB theory of bit-vectors TBV does not support parametric bit-vectors. Neimetz et al. [30]
define a theory of parametric bit-vectors based on auxiliary functions (outside of the signature of
the theory). These functions provide an implicit mapping from bit-vector variables to their symbolic
bit-width and from symbolic parametric bit-vector constants to ΣIA-terms. A notion of admissibility
is introduced to exclude mappings that assign non-standard interpretations (e.g., interpretations with
zero or negative bit-widths). Furthermore, a parametric bit-vector formula is viewed as a class
of fixed-size bit-vector formulas, i.e., a class of instances with concrete values for the bit-widths.
This allows for a notion of well-sortedness based on the well-sortedness of these instances. As a
consequence of relying on auxiliary mappings for symbolic bit-widths and constants, however, it is
not possible to reason about bit-widths within that theory.

In the following, we introduce a new formal definition of the theory of parametric bit-vectors TPBV .
As in [30], we have a single sort PBV for bit-vectors of parametric size. Compared to that work,
however, our definition of TPBV does not rely on meta-level functions to maintain well-sortedness
constraints. Instead, we make symbolic bit-widths of parametric bit-vector terms explicit in the
signature via the new operator | | and introduce an explicit representation of parametric bit-vector
constants via the conversion operator to-pbv. This enables reasoning about both parametric bit-
vectors and their bit-widths within the theory.

3.1 Theory Definition

We define the theory of parametric bit-vectors TPBV as the pair (ΣPBV , IPBV ), where the signature
ΣPBV is the extension of ΣIA described in Table 2. In addition to the integer sort Int, its set of sort
symbols includes a single, new sort PBV for bit-vectors of parametric size. The set of function and
predicate symbols of ΣPBV consists of parametric variants of a strict subset of the fixed-size bit-vector
operators defined in SMT-LIB 2. This set of parametric bit-vector operators, however, is complete in
the sense that it suffices to express parametric variants of the remaining bit-vector operators from
SMT-LIB 2. Additionally, we introduce two new function symbols, | | of arity PBV → Int and
to-pbv of arity Int× Int→ PBV, in the signature.

In all the interpretations of IPBV , the domain of Int is the set of integer numbers, and the domain of
PBV is the set of all bit-vectors of all possible positive widths. The operators in ΣIA are interpreted in
the same way as in TIA. The new symbol | | is interpreted as the function that maps each bit-vector x
to its bit-width expressed as an integer. The new symbol to-pbv is interpreted as the function that
maps any two integers n andm to the bit-vector of size n that representsm mod 2n in binary notation
if n > 0, and to an arbitrary bit-vector otherwise. It can model constants of parametric bit-widths, e.g.,
to-pbv(k, 0) represents the bit-vector that consists of k zeros when k ≥ 0. Operator ◦ is interpreted
as the function that maps any two bit-vectors (of any two possible widths) to the bit-vector consisting
of their concatenation. Operator [ : ] denotes the function that maps a bit-vector x, an integer i,
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Symbol SMT-LIB Syntax Arity

ΣPBV = ΣIA + the following operators

≈PBV, ̸≈PBV =, distinct PBV × PBV→ Bool
<u, >u, <s, >s bvult, bvugt, bvslt, bvsgt PBV × PBV→ Bool
≤u, ≥u, ≤s, ≥s bvule, bvuge, bvsle, bvsge PBV × PBV→ Bool
∼, −B bvnot, bvneg PBV→ PBV
&, |, ⊕ bvand, bvor, bvxor PBV × PBV→ PBV
<<, >>, >>a bvshl, bvlshr, bvashr PBV × PBV→ PBV
+B, −B bvadd, bvsub PBV × PBV→ PBV
·B, modB, divB bvmul, bvurem, bvudiv PBV × PBV→ PBV

[ : ] pextract PBV × Int× Int→ PBV
◦ concat PBV × PBV→ PBV
extz pzero_extend Int× PBV→ PBV
exts psign_extend Int× PBV→ PBV
| | bvsize PBV→ Int
to-pbv int_to_pbv Int× Int→ PBV

ΣIA(pow2,&N) = ΣIA + the following operators

&N piand Int× Int× Int→ Int
pow2 pow2 Int→ Int

Table 2 Signatures ΣPBV and ΣIA(pow2, &N), defined as extensions of signature ΣIA.

and an integer j, in that order, to the bit-vector of width i − j + 1 that ranges from the j-th bit of
x to the i-th bit of x (inclusive) if 0 ≤ j ≤ i < |x|, and is interpreted arbitrarily otherwise. For a
bit-vector x, we refer to the i-th bit of x as x[i], which abbreviates x[i : i]. We interpret x[0] as the
least significant bit (LSB) and x[|x| − 1] as the most significant bit (MSB). Operators extz and exts

take an integer and a bit-vector argument and are interpreted as in the SMT-LIB theory of fixed-size
bit-vectors whenever the first argument (the number of added bits) is non-negative: the former extends
the second argument with leading 0s, while the latter extends it with its most significant bit. If the
number of added bits is negative, the interpretation is arbitrary. Operators ∼ and −B correspond to
one’s and two’s complement. All other operators of ΣPBV are interpreted according to the following
principle: if both operands have the same (positive) bit-width, then their interpretation is the same as
in the theory of fixed size bit-vectors. Otherwise, the interpretation is arbitrary.

▶ Remark 1. Recall that the signature of the theory of fixed-size bit-vectors TBV has a unique
sort BV(i) for each bit-width i ∈ {1, 2, 3, . . .}. A more natural choice for a theory of parametric
bit-vectors might then be the generalization of TBV to sorts of the form BV(t) where t is an arbitrary
integer term. However, this introduces the complication that syntactically distinct sort terms with
equivalent integer arguments, such as BV(1 + 3) and BV(4) or BV(x+x) and BV(2 ·x), would have
to denote the same domain (bit-vectors of 4 bits) or domain family (bit-vectors of even bit-width).
This exceeds the expressiveness of many-sorted logic where, in effect, distinct sorts denote disjoint
domains. For this reason, we define a single sort PBV to represent bit-vectors of all bit-widths. As a
consequence, in our signature ΣPBV , terms can be well-sorted that do not match well-sorted terms in
TBV. For example, the term x+By is well-sorted in our case even when x and y denote two bit-vectors
of different bit-widths, something that is not permitted in the language of TBV. Thus, we establish
restrictions on the interpretations of ΣPBV (described in Section 3.2) to have semantics that coincide
with the semantics of the theory of fixed-size bit-vectors. In the example above, the restriction will be

SAT 2025



9:6 Bit-precise Reasoning with Parametric Bit-vectors

Algorithm 1 Function ADM to recursively construct admissibility constraints. Symbol z denotes constants
of sort Int and x constants of sort PBV. Symbol • ranges over symbols of ΣIA, Boolean connectives, and iteInt.
Symbol ⋄ ranges over symbols in ΣPBV not explicitly handled otherwise.

function ADM(e)
match e:
x → BW(e) > 0
z → ⊤
to-pbv(k, t) → BW(e) > 0 ∧ ADM(t)
|t| → ADM(t)
t[i : j] → 0 ≤ j ≤ i < BW(t) ∧ ADM(t)
extz(n, t) → n ≥ 0 ∧ ADM(t)
exts(n, t) → n ≥ 0 ∧ ADM(t)
t1 ◦ t2 → ADM(t1) ∧ ADM(t2)
itePBV(t1, t2, t3) → BW(t2) ≈ BW(t3) ∧

∧3
i=1 ADM(ti)

•(t1, . . . , tn) →
∧n

i=1 ADM(ti)
⋄(t1, . . . , tn) → (

∧n
i=2 BW(t1) ≈ BW(ti)) ∧ (

∧n
i=1 ADM(ti))

that x and y can only be interpreted as bit-vectors of the same width.
Note that parametric bit-vectors are expected to be supported more faithfully in the upcoming

Version 3 of SMT-LIB, which is based on a higher-order logic with dependent types.

3.2 Satisfiability and Admissible Satisfiability

The way it is defined, theory TPBV contains non-standard interpretations as it has to account for
terms like (x ◦ y) +B x and formulas like x ◦ x ≈ x that are not well sorted in the theory of fixed-size
bit-vectors. To address this laxness of TPBV ’s sort system, we therefore define a notion of admissible
TPBV -satisfiability that excludes such spurious interpretations. This definition relies on function
ADM, defined in Algorithm 1. Function ADM collects width constraints while traversing over a given
ΣPBV -term. It is defined via a function BW as given in Algorithm 2, which constructs an integer term
representing the symbolic bit-width of a parametric bit-vector term.

▶ Definition 2. Let φ be a ΣPBV -formula and I a TPBV -interpretation. Let ADM be a function
as defined in Algorithm 1. Interpretation I is admissible w.r.t. φ if I |= ADM(φ). Formula φ is
admissibly TPBV -satisfiable if it is satisfied by a TPBV -interpretation that is admissible w.r.t. φ.

Thus, a formula φ is admissibly TPBV -satisfiable only if it is satisfied by an admissible TPBV -
interpretation I . We require that an admissible interpretation I assign bit-widths to ΣPBV -terms in φ
while satisfying the admissibility condition described by the function ADM defined in Algorithm 1.

▶ Example 3. Consider a formula φ given as y ≈ z ◦ w. The admissibility condition ADM(φ) is
determined as |y| ≈ |z|+ |w| ∧ |y| > 0 ∧ |z| > 0 ∧ |w| > 0. An admissible TPBV -interpretation I
satisfying φ is given by yI = 00, zI = 0 and wI = 0. Thus, φ is admissibly TPBV -satisfiable. Now,
consider formula φ′ given as x ≈ x+B(x ◦ x). Its admissibility condition ADM(φ′) is defined as
|x| ≈ |x| ∧ |x| > 0 ∧ |x| ≈ |x| + |x| (after simplifications), which is TPBV -unsatisfiable. That is,
there exists no admissible TPBV -interpretation for φ′ and, thus, φ′ is not admissibly TPBV -satisfiable.
However, φ′ is TPBV -satisfiable: consider a TPBV -interpretation I , given by xI = 0. Then, (x ◦ x)I

is the bit-vector 00. Since x and x ◦ x do not have the same bit-width, I may interpret x+B(x ◦ x)
arbitrarily, and so we can set (x+B(x◦x))I to be again the bit-vector 0. We then get that I satisfies φ′.
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Algorithm 2 Function BW to compute the bit-width of PBV-terms. Symbol x denotes variables of sort
PBV. Symbol ⋄ ranges over the symbols of ΣPBV of sort PBV not explicitly handled otherwise.

function BW(e)
match e:
x → |x|
to-pbv(k, t) → k

t[i : j] → i− j + 1
extz(n, t) → BW(t) + n

exts(n, t) → BW(t) + n

t1 ◦ t2 → BW(t1) + BW(t2)
itePBV(t1, t2, t3) → BW(t2)
⋄(t1, . . . , tn) → BW(t1)

Note that our notion of admissibility corresponds to the notion of admissibility introduced by
Niemetz et al. [30]. However, its definition differs in one key aspect. In [30], admissibility was
enforced by using auxiliary functions and by instantiating parametric bit-vector formulas for all
possible fixed bit-widths via universal quantification over the parametric bit-widths. Bit-widths
and mappings from PBV -constants to ΣIA-terms were implicit in the signature, whereas in our
definition of ΣPBV , we explicitly include operators | | and to-pbv. This allows us to explicitly define
admissibility conditions and to reason about symbolic bit-widths in ΣPBV -formulas.

4 A Solver for Parametric Bit-vectors

In this section, we describe a solver for admissible TPBV -satisfiability. Its main component is the
translation of ΣPBV -formulas to formulas over a signature ΣIA(pow2,&N). As defined in Table 2,
signature ΣIA(pow2,&N) extends ΣIA with two new function symbols, pow2 and &N.

We define a theory TIA(pow2,&N) over ΣIA(pow2,&N), where symbols pow2 and &N are
interpreted arbitrarily. Additionally, for the purpose of the translation, we consider a theory
TIA(pow2⋆,&N

⋆) over ΣIA(pow2,&N) in which the interpretation of pow2 and &N is fixed and
defined as follows. The term pow2(n) is interpreted as the n-th power of 2 whenever n is non-
negative, and as 0 otherwise. The interpretation of &N(k, a, b) is defined as follows. If k > 0 and
a, b ∈ {0, . . . , 2k − 1}, then &N(k, a, b) is the integer that corresponds to performing a bitwise
conjunction on the unsigned bit-vector representations of a and b. That is, let a′, b′ be the unsigned
bit-vector representations of a and b of width k, then the interpretation of &N(k, a, b) is defined as
Σk−1

i=0 a
′[i] · b′[i] · 2i. If k > 0 and a, b ̸∈ {0, . . . , 2k − 1}, then the interpretation of &N(k, a, b) is the

same as &N(k, a mod 2k, b mod 2k). If k ≤ 0, then its interpretation is 0.

▶ Remark 4. Notice that pow2 is defined over the integers. Thus, we always interpret a negative
exponent −n as 0, as this is consistent with truncating the integer division in 2−n ≡ 1

2n towards zero.
Further, notice that &N defines a special case for bit-width k ≤ 0. Our translation will never produce
ΣIA(pow2,&N)-formulas that are satisfiable due to these corner cases because it ensures that: (1)
the exponents of pow2 are integer terms representing bit-widths and (2) integer terms that represent
bit-widths are always positive. In fact, for our purposes, the special cases mentioned above could also
be interpreted arbitrarily. We choose a fixed interpretation since it is easier to implement.

Starting with a ΣPBV -formula, we first simplify the formula by applying rewrite rulesRWB, as
described in Section 4.1. The rewritten ΣPBV -formula is then translated to a ΣIA(pow2,&N)-formula
using function TRANS, as described in Section 4.2. Finally, the TIA(pow2⋆,&N

⋆)-satisfiability of the
resulting ΣIA(pow2,&N)-formula is determined via procedure SOLVE⋆, described in Section 4.3.

SAT 2025



9:8 Bit-precise Reasoning with Parametric Bit-vectors

4.1 The Parametric Bit-Vector Rewriter RWB

State-of-the-art SMT solvers rely heavily on simplification techniques that are applies as a preprocess-
ing step, before the main solver process begins. One such technique is based on term rewriting. For
the theory of fixed-size bit-vectors (for which the dominant solving technique is bit-blasting, an eager
reduction to propositional logic), SMT solvers implement hundreds of rewrite rules. However, rewrite
rules for TBV that target bit-blasting are not necessarily beneficial for alternative solving procedures.
In particular, they may not be useful for our TPBV procedure, which relies on a translation to integer
arithmetic. Thus, some care is required in selecting rewrite rules for our procedure.

We implemented a set of rewrite rules for TPBV based on rewrite rules for TBV as implemented in
the SMT solver cvc5 [1]. Rewrite rules implemented in cvc5 are documented in the domain-specific
language RARE [33], which allows for easy adoption and lifting to TPBV . We selected TBV-rewrite
rules for lifting to TPBV based on the following principles: (i) a rewrite rule should not introduce a
bitwise operator; (ii) the translation of the rewritten formula to the integers should not have more
occurrences of operators mod and pow2 than the original one. These principles are based on the fact
that state-of-the-art solvers for integer arithmetic do not support bitwise operations over integers,
and also offer very limited support for exponentiation. Further, mod is non-linear and one of the
most expensive operations for integer arithmetic procedures. Interestingly, following these guiding
principles, some TBV-rewrite rules are useful for TPBV when applied in the opposite direction.

The rewrite rules that we have implemented are presented in Section A.

▶ Example 5. Consider a TBV-rule that rewrites (x & y)[i : j] to (x[i : j]) & (y[i : j]). This is
useful for bit-blasting since it reduces the size of the bit-level representation. However, for our
translation to integer arithmetic, extractions are expensive as they introduce div, mod and pow2

terms. Thus, we did not lift this rule to TPBV but included its right-to-left variant inRWB instead.

4.2 The Translation Function TRANS

After obtaining the rewritten ΣPBV -formula φ, we translate it into a ΣIA(pow2,&N)-formula φ′ such
that φ is admissibly TPBV -satisfiable iff φ′ is TIA(pow2⋆,&N

⋆)-satisfiable. The translation function
TRANS is given in Algorithms 3 and 4. It is based on the one in [30], with changes underlined.

Prior to the actual conversion step, ΣPBV -formula φ is augmented, conjunctively, with the
admissibility constraints ADM(φ), constructed as described in Algorithm 1, as well as the range
and size constraints RANGE(φ). The latter are defined over integer constants that represent either
parametric bit-vector constants or symbolic bit-widths, as described in Algorithm 4. The latter
traverses the formula and adds constraints for the range of the integer terms representing bit-vector
terms, according to their original bit-widths.

The augmented ΣPBV -formula is then converted via function CONV into an equisatisfiable
ΣIA(pow2,&N)-formula as defined in Algorithm 3.

We assume a one-to-one mapping χ from variables of sort PBV to variables of sort Int, as well as
a one-to-one mapping κ from PBV-terms to variables of sort Int, such that their images are disjoint.
Intuitively, χ translates variables of sort PBV to corresponding variables of sort Int while κ translates
terms of the form |t| to fresh integer variables representing the size of the parametric bit-vector term t.
Compared to our previous work [30], our new translation handles the new operators | | and to-pbv,
improves the encodings of the operators >>, |, and ⊕ to eliminate applications of mod, and adds
support for the operators [ : ], exts, and extz. Notice that the encoding of >>a is not explicitly
described, as that operator can be expressed in terms of >> and ite.

Following Zohar et al. [39], we do not handle | and ⊕ natively. Instead, we eliminate them
by means of &, +B and −B, based on the following identities derived from [18]: x | y ≈
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Algorithm 3 Translation function TRANS and conversion function CONV. We use x for PBV variables, z

for Int variables, uts(k, z) for 2 · (z mod pow2(k − 1)) − z, ▷◁ for any operator in {<, ≤, >, ≥}, and • for
ite, logical connectives and symbols in ΣIA.

function TRANS(φ)
return CONV(φ ∧ RANGE(φ) ∧ ADM(φ))

function CONV(e)
match e:
z → z

|t| → κ(t)
to-pbv(k, t) → CONV(t) mod pow2(k)
x → χ(x)
t1 ≈ t2 → CONV(t1) ≈ CONV(t2)
t1 ▷◁u t2 → CONV(t1) ▷◁ CONV(t2)
t1 ▷◁s t2 → uts(κ(t1),CONV(t1)) ▷◁ uts(κ(t2),CONV(t2))
t1+Bt2 → (CONV(t1) + CONV(t2)) mod pow2(κ(t1))
t1−Bt2 → (CONV(t1)− CONV(t2)) mod pow2(κ(t1))
t1·Bt2 → (CONV(t1) · CONV(t2)) mod pow2(κ(t1))
t1divBt2 → ite(CONV(t2) ≈ 0,pow2(κ(t1))− 1,CONV(t1) div CONV(t2))
t1modBt2 → ite(CONV(t2) ≈ 0,CONV(t1),CONV(t1) mod CONV(t2))
∼ t → pow2(κ(t))− (CONV(t) + 1)
−Bt → (pow2(κ(t))− CONV(t)) mod pow2(κ(t))
t1 <<t2 → (CONV(t1) · pow2(CONV(t2))) mod pow2(κ(t1))
t1 >>t2 → CONV(t1) div pow2(CONV(t2))
t1 & t2 → &N(κ(t1),CONV(t1),CONV(t2))
t1 | t2 → CONV(t1) + CONV(t2)−&N(κ(t1),CONV(t1),CONV(t2))
t1 ⊕ t2 → CONV(t1) + CONV(t2)− 2 ·&N(κ(t1),CONV(t1),CONV(t2))
t1 ◦ t2 → CONV(t1) · pow2(κ(t2)) + CONV(t2)
t[i : j] → (CONV(t) div pow2(j)) mod pow2(i− j + 1)
extz(n, t) → CONV(t)
exts(n, t) → ite(CONV(t[κ(t)− 1]) ≈ 1,

(pow2(n)− 1) · pow2(κ(t)) + CONV(t),CONV(t))
•(t1, . . . , tn) → •(CONV(t1), . . . ,CONV(tn))

(x+By)−B(x & y) and x ⊕ y ≈ (x | y)−B(x & y). This elimination is embedded in the trans-
lation function and improves upon the original elimination in [39] by avoiding the introduction of
additional mod operations.

▶ Example 6. Consider again the formula φ := y ≈ z ◦ w from Example 3. Then, TRANS(φ) =
CONV(φ ∧ RANGE(φ) ∧ ADM(φ)). Now, CONV(φ) is y′ ≈ z′ · pow2(kw) + w′, where y′ = χ(y),
z′ = χ(z), w′ = χ(w), and kw = κ(w). Further, CONV(RANGE(φ)) is 0 ≤ y′ < pow2(ky) ∧ 0 ≤
z′ < pow2(kz) ∧ 0 ≤ w′ < pow2(kw), where ky = κ(y) and kz = κ(z). The result of ADM(φ) is
given in Example 3, and then CONV replaces |y|, |z|, and |w| by ky , kz , and kw, respectively.

Our translation function TRANS makes heavy use of mod and pow2 operations. In practice, some
of these applications can be safely eliminated to optimize the encoding. For example, consider the term
(x+Bx)+Bx, where κ(x) = k. The result of CONV on this term is (((x′ +x′) mod 2k)+x′) mod 2k,
where x′ = χ(x). Instead, we directly translate it to ((x′ + x′) + x′) mod 2k.

SAT 2025
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Algorithm 4 Function RANGE to recursively construct size and range constraints. We use x for PBV
variables, z for Int variables, and • for ite, logical connectives and symbols in ΣPBV .

function RANGE(e)
match e:
x → 0 ≤ χ(x) < pow2(κ(x))
|t| → e ≈ BW(t) ∧ RANGE(t)
z → ⊤
•(t1, . . . , tn) →

∧n
i=1 RANGE(ti)

Algorithm 5 Procedure for TIA(pow2⋆, &N
⋆)-satisfiability. We assume SOLVE is a procedure for

TIA(pow2, &N)-satisfiability that returns “sat” or “unsat” and an interpretation I for satisfiable formulas. For a
set X , Terms(X) denotes the set of terms occurring in X .

function SOLVE⋆(φ)
Γ← {φ}
loop

result, I ← SOLVE(Γ)
if result is “unsat” return “unsat”
L ← L&N({&N(k, t1, t2) | &N(k, t1, t2) ∈ Terms(Γ)}, I)
L ← L ∪ Lpow2({pow2(t) | pow2(t) ∈ Terms(L ∪ Γ)}, I)
if I |= L return “sat”
Γ← Γ ∪ {ψ | ψ ∈ L and I ̸|= ψ}

4.3 The TIA(pow2⋆, &N
⋆)-Solver

After translating a ΣPBV -formula to a ΣIA(pow2,&N)-formula, we check if it is TIA(pow2⋆,&N
⋆)-

satisfiable with a dedicated CEGAR-style procedure SOLVE⋆, which iteratively refines over-approxima-
tions of pow2 and &N as given in Algorithm 5. This procedure takes an approach similar to the
incremental linearization of non-linear arithmetic constraints [9,10]. It relies on a set of quantifier-free
lemmas L which fully specify the semantics of operators pow2 and &N. The set is constructed by
instantiating the (implicitly) universally quantified lemma schemas Lpow2 , shown in Table 3, and
L&N , shown in Table 4, for all pow2-terms and &N-terms in φ. The instantiations of the lemmas
also depend on the values of variables in the current interpretation I. Note that when computing the
instantiation for pow2-lemmas, we also include pow2-terms occurring in lemmas for &N.

The procedure further assumes the availability of a subprocedure SOLVE to determine the
TIA(pow2,&N)-satisfiability of a set of ΣIA(pow2,&N)-formulas Γ. Recall that in TIA(pow2,&N),
symbols pow2 and &N are uninterpreted and thus, Γ is an over-approximation of φ in TIA(pow2⋆,&N

⋆).
If SOLVE determines the unsatisfiability of Γ, we conclude with “unsat”. If it determines its satisfi-
ability, we conclude with “sat” only if the resulting interpretation I also satisfies all lemmas in L.
Otherwise, we refine Γ by adding to it all lemmas that are not satisfied by I.

The set Lpow2 in Table 3 includes 4 lemma schemas from [30], which describe basic properties of
the pow2 operator. In addition, we consider the following three new lemmas. Lemma neg considers
negative inputs, for which pow2 is defined to be interpreted as 0 in TIA(pow2⋆,&N

⋆). Lemma bound
strengthens a lemma from recent work proposing a CEGAR-style approach for a new SMT theory for
integer arithmetic with exponentiation [14]. From there, we get that when x ≥ 3, then 2 · x+ 1 is a
lower bound for pow2(x). We notice that when x ≥ 7, we have 2 · x2 as a tighter lower bound. In
order to avoid non-linear multiplications, we linearize this bound via concrete values v = xI . We
further include instances of value with v = xI , to block concrete model values.
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Name Lemma Schema Source

pow2(x) ∈ S

positive x ≥ 0⇒ pow2(x) > 0 [30]
even x ≥ 1⇒ pow2(x) mod 2 ≈ 0 [30]
div x ≥ 0⇒ x div pow2(x) ≈ 0 [30]
neg x < 0⇒ pow2(x) ≈ 0 new
bound (7 ≤ v ∧ v ≤ x)⇒ v · x+ v2 < pow2(x) new
value (0 ≤ x ∧ x ≈ v)⇒ pow2(x) ≈ 2v new

pow2(x) ∈ S, pow2(y) ∈ S

monotonicity (0 ≤ x ∧ x < y)⇒ pow2(x) < pow2(y) [30]

Table 3 The set of lemma schemas defined by Lpow2(S, I), over a set of pow2-terms S and an interpretation
I. The variables x and y in the formulas above are instantiated for each pow2-term in S. Symbol v is a schema
variable standing for an arbitrary numeral. It is instantiated with v := xI .

The set of lemma schemas L&N in Table 4 includes 8 lemmas that were introduced in [30] and
capture basic properties of the &N operator. In addition, we consider 4 lemmas that did not appear
in [30]. Lemma empty captures the corner case when the bit-width is non-positive. Lemmas lsb and
one capture the cases where one of the arguments is even or 1. Note that due to lemma sym, it is
sufficient to consider only one variant of each lemma. Lemma sum≥ is based on the fact that for a fixed
bit-width n, &N(n, x, y) is defined as Σn−1

i=0 exi(x)·exi(y)·2i, with exi(x) defined as (x div 2i) mod 2
as in Table 4. We observe that for a bit-width m ≥ n with 0 ≤ x < 2n and 0 ≤ y < 2n, the equation
&N(m,x, y) ≈ &N(n, x, y) holds — consider, for example, &N(5, 1, 1) ≈ &N(4, 1, 1). Lemma sum≥
is a generalization of this observation. It is instantiated with v = kI .

▶ Example 7. Consider the formula x & x ≈ x. Its translation will be &N(k, x, x) ≈ x mod
pow2(k), with the addition of the appropriate admissibility and range constraints. Then lemma div
will be instantiated in set L as k ≥ 0 ⇒ k div pow2(k) ≈ 0. Lemma min will be instantiated as
x ≈ 0⇒ &N(k, x, x) ≈ 0. In contrast, the approach of [30] introduces the universal closure of such
lemmas, instead of specific instantiations.

Note that procedure SOLVE⋆ resembles the lazy approach of [39], with several key differences.
First, since we are dealing with parametric bit-widths, our algorithm does not necessarily terminate,
as the set of possible bit-widths is unbounded. Second, our algorithm not only lazily handles operator
&N, but also pow2. Operator pow2 did not occur when int-blasting in [39] since there, all exponents
were concrete constants. Thus, exponentiation was simply evaluated. Finally, our sets of lemmas for
&N and pow2 expand both the axioms from [30] and the lemmas from [39].

Putting all components described in this section together, we obtain an incomplete but sound
procedure SOLVE⋆(TRANS(RWB(φ))) for admissible TPBV -satisfiability.

▶ Theorem 8. Let φ be a ΣPBV -formula and let φ′ = TRANS(RWB(φ)). If SOLVE⋆(φ′) termi-
nates, then φ is admissibly TPBV -satisfiable if and only if SOLVE⋆(φ′) returns “sat".

4.4 Proof of Theorem 8

The correctness argument for Theorem 8 is similar to those from [30, 39]: assuming a TPBV -
interpretation that satisfies a ΣPBV -formula φ, while also being admissible w.r.t. φ, we can construct
a TIA(pow2⋆,&N

⋆)-interpretation that satisfies the translation of φ, as well as the relevant lemmas
from Tables 3 and 4, and vice versa. Compared to [30], the auxiliary admissibility condition that was
assumed is now replaced by the satisfaction of ADM(φ). What is left to show is:
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Name Lemma Schema Source

&N(k, x, y) ∈ S

base (k > 0 ∧ x ≈ 1 ∧ y ≈ 1)⇒ &N(k, x, y) ≈ 1 [30]
max (k > 0 ∧ ⟨x⟩k ∧ y ≈ pow2(k)− 1)⇒ &N(k, x, y) ≈ x [30]
min y ≈ 0⇒ &N(k, x, y) ≈ 0 [30]
idem (k > 0 ∧ ⟨x⟩k ∧ x ≈ y)⇒ &N(k, x, y) ≈ x [30]
contra (x+ y) mod pow2(k) ≈ pow2(k)− 1⇒ &N(k, x, y) ≈ 0 [30]
range 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ &N(k, x, y) ≤ min(x, y) [30]
empty k ≤ 0⇒ &N(k, x, y) ≈ 0 new
lsb x mod 2 ≈ 0⇒ &N(k, x, y) mod 2 ≈ 0 new
one (k > 0 ∧ y ≈ 1)⇒ &N(k, x, y) ≈ x mod 2 new
sum≥ (k ≥ v ∧ v > 0 ∧ ⟨x⟩v ∧ ⟨y⟩v)⇒ &N(k, x, y) ≈ Σv−1

i=0 exi(x) · exi(y) · 2i new

&N(k, x, z) ∈ S, &N(k, y, w) ∈ S

sym (x ≈ w ∧ y ≈ z)⇒ &N(k, x, y) ≈ &N(k, z, w) [30]
diff (k > 0 ∧ z ≈ w ∧ x ̸≈ y ∧ ⟨x⟩k ∧ ⟨y⟩k ∧ ⟨z⟩k)⇒ (&N(k, x, z) ̸≈ y ∨&N(k, y, w) ̸≈ x) [30]

Table 4 The set of lemma schemas defined by L&N(S, I) over a set of &N-terms S. The variables k, x,
z, and w in the formulas above are instantiated for each &N-term in S. We use the expression ⟨t⟩k to denote
0 ≤ t < pow2(k), the expression min(x, y) to abbreviate ite(x < y, x, y), and exi(x) for (x div 2i) mod 2.
Symbol v is a schema variable standing for an arbitrary numeral. It is instantiated with v := kI .

1. The new translation of >> is correct.
2. The eliminations of | and ⊕ are correct.
3. The treatment of extraction and extensions is correct.
4. The rules of theRWB rewriter are TPBV -valid.
5. All lemmas of Tables 3 and 4 are TIA(pow2⋆,&N

⋆)-valid.

We prove the first item in Section 4.4.1 and the second in Section 4.4.2. The third follows directly
from the SMT-LIB standard. For the fourth, notice that we only use rewrite rules that are already used
in cvc5 and are bit-width independent. For their correctness proofs, see, e.g., [19]. For the fifth, most
lemmas are taken from [30]. Of the new lemmas that we add, correctness is trivial for lemmas neg,
value, empty, lsb and one. We prove the correctness of the remaining lemmas in Section 4.4.3.

4.4.1 Correctness of Translation of >>

It suffices to show that in every TIA(pow2⋆,&N
⋆)-interpretation that satisfies the formulas CONV(x) ≥

0, pow2(CONV(y)) > 0, and pow2(k) > CONV(x), the expressions CONV(x) div pow2(CONV(y))
and (CONV(x) div pow2(CONV(y))) mod pow2(k) are interpreted the same. This holds, as every
such interpretation also satisfies CONV(x) div pow2(CONV(y)) ≤ CONV(x) < pow2(k).

4.4.2 Correctness of Elimination of | and ⊕
We start with the following lemma:

▶ Lemma 9. Suppose k > 0, x ≥ 0 and y < 2k. Then, 0 ≤ x + y − &N(k, x, y) < 2k and
0 ≤ x+ y − 2 ·&N(k, x, y) < 2k.

Proof. In this proof we treat &N and pow2 as arithmetic operators with a fixed interpretation as given
to them by all TIA(pow2⋆,&N

⋆)-interpretations. This saves us from superscripting interpretations to
these symbols, which is not needed since their interpretations are fixed. We consider the required
inequalities separately:
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0 ≤ x+ y −&N(k, x, y) < 2k:

1. By the semantics of &N, we have &N(k, x, y) ≤ x. Since y ≥ 0, we get &N(k, x, y) ≤ x+ y.
Therefore, x+ y −&N(k, x, y) ≥ 0.

2. Next, we show x+ y−&N(k, x, y) < 2k. Since 0 ≤ x, y < 2k, we have: x = Σk−1
i=0 2i · exi(x)

and y = Σk−1
i=0 2i·exi(y), where for every z ∈ N, exi(z) = (z div 2i) mod 2. By the semantics

of &N, we have &N(k, x, y) = Σk−1
i=0 2i ·ite(exi(x) = exi(y) = 1, 1, 0). Notice that we can also

have y = Σk−1
i=0 2i·ite(exi(x) = exi(y) = 1, 1, 0)+Σk−1

i=0 2i·ite(exi(x) = 0 ∧ exi(y) = 1, 1, 0).
Now, we clearly have that x+y−&N(k, x, y) equals Σk−1

i=0 2i · exi(x)+Σk−1
i=0 2i · ite(exi(x) =

exi(y) = 1, 10) + Σk−1
i=0 2i · ite(exi(x) = 0 ∧ exi(y) = 1, 1, 0) − Σk−1

i=0 2i · ite(exi(x) =
exi(y) = 1, 1, 0), which is: Σk−1

i=0 2i · exi(x) + Σk−1
i=0 2i · ite(exi(x) = 0 ∧ exi(y) = 1, 1, 0).

This is equal to Σk−1
i=0 2i · ite(exi(x) = 1, 1, 0) + Σk−1

i=0 2i · ite(exi(x) = 0 ∧ exi(y) = 1, 1, 0).
Clearly, this must be at most Σk−1

i=0 2i · ite(exi(x) = 1, 1, 0) + Σk−1
i=0 2i · ite(exi(x) = 0, 1, 0),

which equals Σk−1
i=0 2i, which must be strictly smaller than 2k.

0 ≤ x+ y − 2 ·&N(k, x, y) < 2k:

1. By the semantics of &N, we have &N(k, x, y) ≤ x and &N(k, x, y) ≤ y. Therefore, x+ y ≥
2 ·&N(k, x, y), and so x+ y − 2 ·&N(k, x, y) ≥ 0.

2. For the other direction, since &N(k, x, y) ≥ 0 for all k, x, y, we have: x+y−2 ·&N(k, x, y) ≤
x+ y −&N(k, x, y). By the inequality item, x+ y −&N(k, x, y) < 2k. ◀

We now justify the elimination of operator | and ⊕, relying on the following equations from [18]:

x+By ≈ (x & y)+B(x | y) (1)

x⊕ y ≈ (x | y)−B(x & y) (2)

For |, we get get: x | y ≈ (x+By)−B(x & y). Translating the right-hand side of this equation
to integer arithmetic with &N, we get ((x + y) mod 2k − (&N(k, x, y))) mod 2k, where k is the
bit-width of x and y. This can be simplified to ((x + y) − (&N(k, x, y))) mod 2k. In order to
show an equality to ((x+ y)− (&N(k, x, y))), which is our actual translation, it is left to show that
0 ≤ ((x+ y)− (&N(k, x, y))) < 2k, as stated in the first item of Lemma 9.

The justification for the elimination of operator ⊕ is similar. Combining (1) and (2), we get
that x ⊕ y ≈ ((x+By)−B(x & y))−B(x & y) and thus x ⊕ y ≈ x+By−B(2·Bx & y). Translating
the right-hand side of this equation to integer arithmetic with &N, we get ((x + y mod 2k) − (2 ·
&N(k, x, y) mod 2k)) mod 2k, which can be simplified to (x+y−2·&N(k, x, y)) mod 2k. To prove
that this is the same as (x+y−2 ·&N(k, x, y)), it suffices to prove that 0 ≤ (x+y−2 ·&N(k, x, y)) <
2k, as stated in the second item of Lemma 9.

4.4.3 Correctness of Lemmas

The following lemmas prove the validity of our lemmas bound and sum≥.

▶ Lemma 10. Suppose v ≥ 7. Then x ≥ v ⇒ v · x+ v2 < pow2(x).

Proof. We first prove that x ≥ 7⇒ 2 · x2 < 2x by induction on x. If x = 7 then this trivially holds.
Assume that this holds for some x. Then, 2 · (x+1)2 = 2 ·x2 +4 ·x+2. By the induction hypothesis,
2 ·x2 < 2x. Also, 4 ·x+ 2 < 2 ·x2 < 2x when x ≥ 7. Hence we get 2 · (x+ 1)2 < 2x+1. Let v ≥ 7
and suppose x ≥ v. Then, v · x ≤ x2 and v2 ≤ x2, and so v · x+ v2 ≤ 2 · x2 < 2x. ◀

▶ Lemma 11. If k ≥ v > 0 then (⟨x⟩v ∧ ⟨y⟩v)⇒ &N(k, x, y) ≈ Σv−1
i=0 exi(x) · exi(y) · 2i.

Proof. We always have &N(k, x, y) ≈ Σk−1
i=0 exi(x) · exi(y) · 2i. Since k ≥ v and 0 ≤ x, y < 2v , we

have that exi(x) = exi(y) = 0 for every v ≤ i ≤ k − 1, and thus exi(x) · exi(y) · 2i = 0. ◀
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5 Evaluation

We have implemented our approach by extending two tools: the generic SMT solver API smt-
switch [21] and the SMT solver cvc5 [1]. In smt-switch, we extended the SMT-LIB parser with
support for parsing ΣPBV -formulas, and implemented our rewriter RWB (Section 4.1) and the
translation TRANS (Algorithm 3). In cvc5, we implemented our procedure SOLVE⋆ (Algorithm 5) by
extending cvc5’s non-linear arithmetic module with two subsolvers to lazily handle pow2 and &N.
The subsolver for &N generalizes the &N-subsolver in [39], which was only able to reason over &N

with fixed bit-widths, by allowing reasoning over symbolic bit-widths.
Note that the handling of ΣPBV -formulas and their translation is entirely implemented in smt-

switch. Externalizing the ΣPBV -translation pipeline enables the use of our approach in combination
with other back-end solvers that support reasoning over pow2 and &N operators.

5.1 Benchmarks

The SMT-LIB standard [2, 4] does not yet define a theory for parametric bit-vectors. Consequently,
benchmarks encoding problems over parametric bit-vectors are not yet part of the SMT-LIB bench-
mark library. Thus, we evaluate our techniques utilizing a wide range of benchmark sets, originating
from various sources, as detailed below.

alive (200 benchmarks). Set alive consists of verification conditions for compiler optimizations
that are generated by Alive [20]. The evaluation of [30] included 180 such conditions. Here, we
include 20 additional conditions that were not supported by the implementation of [30]. Among
the new conditions, 17 involve multiple bit-widths and 3 include terms of the form to-pbv(k, k),
representing a bit-vector of length k whose unsigned integer value is k.

ic (180 benchmarks). Set ic consists of benchmarks to verify the correctness of the invertibility
conditions formalized in Niemetz et al. [27], which utilizes them for quantifier instantiation. They are
also instrumental to the local search procedure of [27]. The evaluation of [30] included correctness
checks for 160 out of 180 conditions. Here, we add the remaining 20 checks that encode invertibility
conditions over concatenation, which were not supported by the implementation of [30].

rewrite (1500 benchmarks). Set rewrite consists of the bit-width independent correctness checks
of rewrite rule candidates for the theory of fixed-size bit-vectors considered in [30]. They were
automatically generated using CVC4SY [36], a Syntax-Guided Synthesis (SyGuS) engine.

syrew (1500 benchmarks). Set syrew consists of bit-width independent versions of the equiva-
lence checks of TBV-terms from [31], which were enumerated by the SyGuS engine of cvc5. There,
these checks were instantiated for large bit-widths to evaluate the performance of TBV-solvers.

lemmas (70 benchmarks). Set lemmas, also originating from [31], consists of 70 refinement
lemmas describing properties of arithmetic bit-vector operators for a CEGAR-style procedure for TBV
implemented in the SMT solver Bitwuzla [25]. These lemmas were verified to be correct up to
bit-width 256 [31] but are required to be correct for arbitrarily large bit-widths. This benchmark
set encodes bit-width independent correctness checks of these lemmas. Note that two benchmarks
involve multiple bit-widths, and thus cannot be handled by the implementation of [30].

icfb (46 benchmarks). Set icfb originates from a local search procedure [24] that generalizes
the technique from [27] and defines invertibility conditions (and conditions for a weaker notion
of invertibility called consistency) over ternary bit-vectors. These conditions were verified to be
correct up to bit-width 65 but are required to hold for any bit-width. This benchmark set consists
of bit-width independent correctness checks of the conditions, of which 16 benchmarks involve
multiple bit-widths. Note that some conditions cannot be encoded to TPBV due to the occurrence of
bit-width dependent functions that require counting, e.g., the counting of leading zeroes, and were
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Feature BASELINE EAGER PBV

Target Theory TIA(pow2, &N, |N, ⊕N) TIA(pow2, &N) TIA(pow2⋆, &N
⋆ )

Multiple Bit-widths ✕ ✓ ✓
Lazy pow2 ✕ ✕ ✓
Lazy &N ✕ ✕ ✓
|-elimination ✕ ✓ ✓
⊕-elimination ✕ ✓ ✓
>> without mod ✕ ✓ ✓
New lemmas for &N ✕ ✓ ✓
New lemmas for pow2 ✕ ✓ ✓
No redundant axioms ✕ ✓ ✓
RWB ✕ ✓ ✓
mod-reduction ✕ ✓ ✓

Table 5 Configurations considered in our experimental setup.

thus excluded from this set. Further note that in the original publication [24], one of the invertibility
conditions for operator <u was given incorrectly (the implementation and verification of the rule used
the correct definition) [26]. We include both versions for this condition.

mut (9442 benchmarks). The majority of the benchmarks in the sets above are unsatisfiable. For a
more thorough evaluation on satisfiable benchmarks, we created a benchmark set mut by mutating the
benchmarks from the other sets. This realistically mimics the introduction of bugs in verification condi-
tions, e.g., by using a bitwise disjunction instead of conjunction. Let (f, g) be a pair of ΣPBV -terms or
function symbols with the same arity, and let φ be a ΣPBV -formula in which f occurs. A mutation of
φ is obtained from (f, g) by replacing the first occurrence of f by g. We generated mutations for pairs
(f, g) ∈ {(&, |), (+B, −B), (−B, ∼), (<<, >>), (to-pbv(k, 1), to-pbv(k, 0)), (to-pbv(k, k), to-pbv(k, 0))}
and their permutations (g, f), and filtered out duplicates.

5.2 Experimental Setup

For our experimental evaluation, we consider three configurations: configuration BASELINE, which
corresponds to the best configuration of [30]; configuration PBV, which implements our techniques
as described in Section 4; and configuration EAGER, which corresponds to extending configuration
BASELINE with our rewriter RWB and optimizations as detailed in Table 5, while still handling
operators pow2 and &N eagerly. Recall that the implementation of [30] utilized translations that
were tailored to each considered benchmark set, which does not allow a faithful comparison to our
PBV-configurations. Thus, we reimplemented the best configuration comb from [30] as configuration
BASELINE in our tool. This not only allows us to evaluate BASELINE on a larger benchmark set, but
also ensures a fair comparison since all configurations use the same underlying cvc5 version as well
as the same infrastructure for parsing, manipulating and solving formulas.

Table 5 outlines the differences between the configurations. The features considered for each
configuration are listed in the first column. Target Theory specifies the underlying theory (e.g.,
whether pow2 and &N are uninterpreted or not). Accordingly, Lazy pow2 and Lazy &N determine
whether these operators are handled lazily or eagerly. For uninterpreted functions, we use quantified
axiomatizations, and No redundant axioms determines whether these axiomatizations are always
added to the input formula, regardless of whether the axiomatized operator occurs in the formula.
Multiple Bit-widths corresponds to supporting multiple bit-widths in the same formula. |-elimination
and ⊕-elimination denote the elimination of | and ⊕ in the translation (as described in Section 4.2).
The usage of an optimization to the translation of >>, which eliminates a mod operation (as shown
in Algorithm 3), is determined by >> without mod. New lemmas for &N and New lemmas for pow2

correspond to the usage of the new lemmas from Tables 3 and 4. RWB determines whether rewriter
RWB from Section 4.1 is enabled, and mod-reduction determines whether some optimizations that
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eliminate nested mod in arithmetic operators are applied, as mentioned in Section 4.2.
Configurations BASELINE and EAGER rely on an eager translation. They introduce uninterpreted

functions that are axiomatized by means of quantified formulas that are added as preamble to each
translation. In contrast, configuration PBV employs a translation to theory TIA(pow2⋆,&N

⋆), which
does not rely on quantifiers and handles operators pow2 and &N lazily. Further, configuration
BASELINE does not support multiple bit-widths in the same formula. Configuration EAGER, on
the other hand, incorporates several optimizations over BASELINE, including the new lemmas, that
are also incorporated in PBV. Notice that operators | and ⊕ are handled natively in configuration
BASELINE, while configurations EAGER and PBV use elimination rules for them. In Section B, we
include an extended set of results with 14 more configurations.

▶ Remark 12. Even though our evaluation includes benchmark sets from the evaluation in [30],
the numbers are not directly comparable due to the following reasons. Each benchmark in set ic
describes an equivalence, which was split into two implications in [30]. Additionally, conditional
inverses were introduced there, and were incorporated into the benchmarks with the main goal of
proving invertibility conditions as correct. Benchmark set rewrite was solved in a semi-automated and
iterative manner: whenever a rewrite candidate was proven correct, it was included as an axiom in the
benchmarks to prove. In this evaluation, we refrain from such interventions, as our goal is to measure
how efficient our approach is in a fully automated setting. Further, the translation of [30] utilized
quantifier-specific optimizations and included instantiation patterns as well as concrete instantiations
for some of the axioms. However, such patterns are often tailored to a specific solving procedure, and
concrete instantiations are only sound for unsatisfiable benchmarks (which was the focus of [30]). In
configuration BASELINE, we do not use any of these optimizations.

We ran our experiments on a cluster of 22 machines equipped with Intel Xeon Gold 6348 CPUs.
For each solver and benchmark pair, we used a CPU time limit of 60 seconds and a memory limit of
8GB. Preliminary experiments showed that the difference in results with higher time limits were not
significant. Also, no configuration exceeded the memory limit of 8GB during solving.

5.3 Results

Table 6 summarizes the results for each benchmark set described in Section 5.1, over the configurations
introduced in Section 5.2, as well as the virtual best solver over these configurations in column VBS.

Overall, configuration PBV significantly outperforms BASELINE and EAGER in number of solved
instances and runtime. Comparing PBV against EAGER indicates that using a lazily handling pow2

and &N is superior to the quantifier-based eager approach. Comparing EAGER against BASELINE

shows that the optimizations discussed in Section 4 are beneficial for the eager translation as well. On
the 1863 instances commonly solved by all three configurations, EAGER is almost 4 times faster than
BASELINE while PBV is more than 12 times faster than EAGER. On the 3060 instances commonly
solved by EAGER and PBV, configuration PBV is more than 18 times faster. Notice that configurations
BASELINE and EAGER do not solve any satisfiable benchmarks, due to the usage of quantified
axiomatizations. In fact, the presence of these axiomatizations already prevents both BASELINE and
EAGER from reporting that the formula ⊤ is satisfiable.

Our benchmark sets include in total 371 benchmarks that involve multiple bit-widths, which
BASELINE does not support. Configuration PBV solves 178 instances, 20 of which are satisfiable.
Configuration EAGER solves 110 instances, all of which are unsatisfiable.

Simplifying the TPBV -formula via rewriting as described in Section 4.1 is overall beneficial for
both the EAGER and the PBV configurations but has a bigger impact on EAGER. Without rewriting,
EAGER solves 474 fewer instances, while PBV only loses 72 instances.

Proving the correctness of the invertibility conditions from [28] for arbitrary bit-widths (benchmark
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Benchmarks # BASELINE EAGER PBV VBS

alive 200 71 93 107 124
ic 180 43 58 77 81
rewrite 2006 658 1221 1331 1382
syrew 1500 558 720 912 951
lemmas 70 12 14 23 23
icfb 46 1 9 12 12
mut 9441 669 1084 4863 4915

total 13443 2012 3199 7325 7488
sat 0 0 3641 3641
unsat 2012 3199 3684 3847
unique 24 57 4222 4303
time [seconds] 709k 634k 375k 355k

Table 6 Overall number of solved benchmarks for each configuration. VBS corresponds to the virtual best
solver over all three configurations. Time is the penalized runtime, counting unsolved instances as timeout.

set ic) has previously been attempted with two different approaches: (i) the eager TPBV approach
described in [30] and (ii) a bit-width independent formalization in Coq [12]. Out of the 81 invertibility
conditions proven across our three configurations, 11 were not proven by (i) and (ii). Of these 11, 8
involve multiple bit-widths which neither (i) nor (ii) can handle. The remaining 3 conditions involve
operators that are not supported by (ii) (signed inequalities, multiplication and division).

For benchmarks in sets lemmas and icfb, we provide the first bit-width independent verification.
The lemmas and conditions in these sets were only proven correct for a range of fixed bit-widths [24,
31]. Configuration PBV was able to confirm that the incorrect condition is indeed incorrect. However,
it was unable to prove the corrected condition within the given time limit.

6 Conclusion and Further Research

We have presented a new theory of parametric bit-vectors TPBV and proposed a dedicated, lazy
procedure for solving TPBV -formulas. We have shown experimentally that our techniques are a
significant improvement over previous techniques in a wide range of benchmarks.

In future work, we plan to explore proof production for parametric bit-vectors, based on the
algorithms presented in this paper. This will enable the integration of the proposed solver into proof
assistants like Coq [11], Lean [22] or Isabelle/HOL [32], in order to increase automation in these
tools for proofs involving parametric bit-vectors.

For our evaluation, we compiled sets of benchmarks for various challenging applications. These
benchmarks are, however, relatively small in terms of formula size. It would be interesting to
evaluate the scalability of our approach with respect to formula size. However, obtaining appropriate
benchmarks for this purpose is currently challenging.2 Generating and experimenting with such
benchmarks is left for future work.

2 For example, parameterizing bit-vector benchmarks from SMT-LIB (which are exclusively over fixed-size bit-vectors)
while preserving their semantics is not straightforward.
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A Rewrite Rules of the Parametric Bit-Vector Rewriter RWB

The following table lists the rewrite rules implemented in our rewriter RWB. We denote with kx

the bitwidth of x, use a lexicographic ordering <lex between terms, and normalize commutative
operations (+B, &, etc.) according to this ordering. For example, if t1 <lex t2, then t1+Bt2 is
rewritten to itself and t2+Bt1 is rewritten to t1+Bt2.

Rule Name Term Rewritten Term
bv-concat-extract-merge (concat (extract k (+ j 1) s) (extract j i s) ) (extract k i s)
bv-extract-extract (extract l k (extract j i x)) (extract (+ i l) (+ i k) x)
bv-extract-whole (extract kx 0 x) x
bv-add-zero (bvadd x 0) x
bv-reverse-extract-and (bvand (extract j i x) (extract j i y)) (extract j i (bvand x y))
bv-xor-simplify-2 (bvxor x (bvnot x)) (bvnot 0)
bv-or-zero (bvor x (int_to_pbv kx 0)) x
bv-mul-one (bvmul x (int_to_pbv kx 1)) x
bv-mul-zero (bvmul x (int_to_pbv kx 0)) (int_to_pbv kx 0)
bv-zero-extend-eliminate (zero-extend 0 x) x
bv-sign-extend-eliminate (sign-extend 0 x) x
bv-not-neq (= x (bvnot x)) false
bv-neg-sub (bvneg (bvsub x y)) (bvsub y x)
bv-neg-idemp (bvneg (bvneg x)) x
bv-ugt-eliminate (bvugt x y) (bvult y x)
bv-uge-eliminate (bvuge x y) (bvule y x)
bv-sgt-eliminate (bvsgt x y) (bvslt y x)
bv-sge-eliminate (bvsge x y) (bvsle y x)
bv-shl-by-const-0 (bvshl x (int_to_pbv kx 0)) x
bv-shl-by-const-2 (bvshl x (int_to_pbv kx kx)) (int_to_pbv kx 0)
bv-lshr-by-const-0 (bvlshr x (int_to_pbv kx 0)) x
bv-lshr-by-const-2 (bvlshr x (int_to_pbv kx kx)) (int_to_pbv kx 0)
bv-ashr-by-const-0 (bvashr x (int_to_pbv kx 0)) x
bv-bitwise-idemp-2 (bvor x x) x
bv-or-one (bvor x (bvnot x)) (bvnot (int_to_pbv kx 0))
bv-xor-duplicate (bvxor x x) (int_to_pbv kx 0)
bv-xor-zero (bvxor x (int_to_pbv kx 0)) x
bv-bitwise-not-or (bvor x (bvnot x)) (bvnot (int_to_pbv kx 0))
bv-xor-not (bvxor (bvnot x) (bvnot y)) (bvxor x y)
bv-not-idemp (bvnot (bvnot x)) x
bv-ult-zero-1 (bvult (int_to_pbv kx 0) x) (not (= x (int_to_pbv kx 0)))
bv-ult-zero-2 (bvult x (int_to_pbv kx 0)) false
bv-ult-self (bvult x x) false
bv-lt-self (bvslt x x) false
bv-ule-self (bvule x x) true
bv-ule-zero (bvule x (int_to_pbv kx 0)) (= x (int_to_pbv kx 0))
bv-zero-ule (bvule (int_to_pbv kx 0) x) true
bv-sle-self (bvsle x x) true
bv-ule-max (bvule x (bvnot x)) true
bv-udiv-zero (bvudiv x (int_to_pbv kx 0)) (bvnot (int_to_pbv kx 0))
bv-udiv-one (bvudiv x (int_to_pbv kx 1)) x
bv-urem-one (bvurem x (int_to_pbv kx 1)) (int_to_pbv kx 0)
bv-urem-self (bvurem x x) (int_to_pbv kx 0)
bv-shl-zero (bvshl (int_to_pbv kx 0) x) (int_to_pbv kx 0)
bv-lshr-zero (bvlshr (int_to_pbv kx 0) x) (int_to_pbv kx 0)
bv-ashr-zero (bvashr (int_to_pbv kx 0) x) (int_to_pbv kx 0)
bv-ult-one (bvult x (int_to_pbv kx 1)) (= x (int_to_pbv kx 0))
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Feature OR-E XOR-E SH-M-E ALL-E POW2++ PIAND++
Target Theory T1
Multiple Bit-widths ✕ ✕ ✕ ✕ ✕ ✕
Lazy pow2 ✕ ✕ ✕ ✕ ✕ ✕

Lazy &N ✕ ✕ ✕ ✕ ✕ ✕
|-elimination ✓ ✕ ✕ ✓ ✕ ✕
⊕-elimination ✕ ✓ ✕ ✓ ✕ ✕
>> without mod ✕ ✕ ✓ ✓ ✕ ✕

New lemmas for &N ✕ ✕ ✕ ✕ ✕ ✓
New lemmas for pow2 ✕ ✕ ✕ ✕ ✓ ✕
No redundant axioms ✕ ✕ ✕ ✕ ✕ ✕
RWB ✕ ✕ ✕ ✕ ✕ ✕
mod-reduction ✕ ✕ ✕ ✕ ✕ ✕

Table 7 Intermediate configurations with T1 = TIA(pow2, &N, |N, ⊕N).

Feature POW2-L PIAND-L EAGER�R- EAGER�R EAGER- PBV�R PBV�R- PBV-

Target Theory T3 T4 T5 T5 T5 T2 T2 T2
Multiple Bit-widths ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓
Lazy pow2 ✓ ✕ ✕ ✕ ✕ ✓ ✓ ✓
Lazy &N ✕ ✓ ✕ ✕ ✕ ✓ ✓ ✓
|-elimination ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓
⊕-elimination ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓
>> without mod ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓
New lemmas for &N ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓
New lemmas for pow2 ✓ ✕ ✓ ✓ ✓ ✓ ✓ ✓
No redundant axioms ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓
RWB ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✓
mod-reduction ✕ ✕ ✕ ✓ ✕ ✓ ✕ ✕

Table 8 Intermediate configurations. T3 = TIA(pow2⋆, &N), that is, pow2 has a fixed interpretation, while
&N is freely interpreted. T4 = TIA(pow2, &N

⋆), that is, &N has a fixed interpretation, while pow2 is freely
interpreted. T5 = TIA(pow2, &N). T2 = TIA(pow2⋆, &N

⋆).

B More Detailed Evaluation

In addition to the experimental evaluation presented above, we have performed an in-depth ablation
study of the various features listed in Table 5. In this section, we describe the results for 14 configura-
tions we evaluated in addition to the three described in Table 5. These additional configurations are
defined as described in Tables 7 and 8.

Configuration OR-E is obtained from BASELINE by turning on the elimination of |, and similarly
for XOR-E. The right-most 6 configurations of Table 8 differ by turning on or off the bit-vector
rewriterRWB, as well as the arithmetic optimizations that eliminate mod operators. In particular,
EAGER�R- is obtained from EAGER by turning both of these off.

The results of the additional configurations are shown in Tables 9 and 10. Table 9 focuses on
configurations that are based on BASELINE. Note that the elimination of mod in >> (configuration
SH-M-E) has a greater effect than the elimination of | and ⊕, since our benchmarks include more
occurrences of >>. Table 10 includes configurations that evaluate the effect of the bit-vector rewriter
RWB. Overall, enabling the rewriter improves performance, especially for the eager configurations.
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Benchmarks # OR-E XOR-E SH-M-E ALL-E POW2++ PIAND++ VBS

alive 200 71 71 71 71 71 71 72
ic 180 44 44 48 49 43 43 50
rewrite 2006 692 653 724 758 669 633 809
syrew 1500 561 556 604 603 570 551 625
lemmas 70 12 12 13 13 12 12 13
icfb 46 1 1 1 1 1 1 1
mut 9441 692 663 774 794 669 634 843

total 13443 2071 2000 2235 2289 2033 1945 2413
sat 0 0 0 0 0 0 0
unsat 2071 2000 2235 2289 2033 1955 2413

Table 9 Overall number of solved benchmarks for each configuration. VBS corresponds to the virtual best
solver over all three configurations.

Benchmarks # POW2-L PIAND-L EAGER�R- EAGER�R EAGER- PBV�R PBV�R- PBV- VBS

alive 200 63 74 87 95 85 105 97 100 125
ic 180 55 45 58 59 59 75 75 77 83
rewrite 2006 681 797 732 925 1068 1296 1148 1189 1381
syrew 1500 580 593 608 721 606 911 796 798 956
lemmas 70 17 13 14 14 14 23 23 23 25
icfb 46 1 1 9 9 9 11 11 12 12
mut 9441 732 733 885 902 1088 4832 4840 4881 5138

total 13443 2129 2256 2393 2725 2929 7253 6990 7080 7720
sat 0 0 0 0 0 3652 3657 3651 3841
unsat 2129 2256 2393 2725 2929 3601 3333 3429 3879

Table 10 Overall number of solved benchmarks for each configuration. VBS corresponds to the virtual best
solver over all three configurations.
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