
DRAT-based Bit-Vector Proofs in CVC4?

Alex Ozdemir, Aina Niemetz, Mathias Preiner, Yoni Zohar, and Clark Barrett

Stanford University

Abstract. Many state-of-the-art Satisfiability Modulo Theories (SMT)
solvers for the theory of fixed-size bit-vectors employ an approach called
bit-blasting, where a given formula is translated into a Boolean satisfia-
bility (SAT) problem and delegated to a SAT solver. Consequently, pro-
ducing bit-vector proofs in an SMT solver requires incorporating SAT
proofs into its proof infrastructure. In this paper, we describe three ap-
proaches for integrating DRAT proofs generated by an off-the-shelf SAT
solver into the proof infrastructure of the SMT solver CVC4 and explore
their strengths and weaknesses. We implemented all three approaches us-
ing CryptoMiniSat as the SAT back-end for its bit-blasting engine and
evaluated performance in terms of proof-production and proof-checking.

1 Introduction

The majority of Satisfiability Modulo Theories (SMT) solvers for the theory of
fixed-size bit-vectors employ an approach called bit-blasting. That is, an input
formula is first simplified, and then eagerly translated into propositional logic
and handed to a Boolean satisfiability (SAT) solver. Thus, when producing a
proof of unsatisfiability for a given bit-vector input, it is crucial to obtain the
unsatisfiability proof from the SAT solver back-end and incorporate it into a
possibly larger SMT proof. The bit-blasting engine of the SMT solver CVC4 [1]
currently supports several SAT solvers as back-ends. Producing proofs, however,
is only supported with a modified version of MiniSat [6], which was extended to
record resolution proofs that can be embedded into CVC4 proofs [9]. This custom
MiniSat implementation requires extra maintenance and is less competitive than
more recent off-the-shelf SAT solvers.

In recent years, the Delete Resolution Asymmetric Tautologies (DRAT) proof
system [18], a generalization of extended resolution (ER) [17], has become the
de facto standard for validating unsatisfiability in SAT solvers. Using a state-
of-the-art SAT solver with support for DRAT inside CVC4 would allow CVC4
to use the latest, best SAT techniques while being able to produce bit-vector
proofs without additional customization of the SAT solver code. However, in
order to support this, CVC4 must be able to incorporate DRAT proofs into
its proof infrastructure, which is based on LFSC, an extension of Edinburgh’s
Logical Framework [10] (LF) with functional programs called side conditions

? This work was supported in part by DARPA (N66001-18-C-4012 and FA8650-18-2-
7861) and NSF (1814369).

(see [15] for more details on LFSC and [2] for a more general survey of proofs
in SMT-solvers). In this paper, we examine three approaches for translating
DRAT proofs to LFSC: (i) a direct translation from DRAT to LFSC proofs,
(ii) an intermediate translation from DRAT to Linear RAT (LRAT) proofs [4],
and (iii) an intermediate translation from DRAT to ER proofs [11], which are
then translated to LFSC. The produced proofs can be independently checked
by any proof checker for LFSC. We describe the implementation of these three
approaches for generating bit-vector proofs in CVC4, discuss their strengths
and weaknesses, and evaluate their performance in terms of proof production
and proof checking.

2 From DRAT to LFSC

We briefly review the definitions relevant to the proof systems DRAT, LRAT,
and ER. More details can be found in [4, 11, 18].

A literal is either a propositional variable or its negation. A clause is a
disjunction of literals, sometimes interpreted as a set of literals. A clause is unit
if it is a singleton. A formula in conjunctive normal form (CNF) is a conjunction
of clauses, sometimes interpreted as a set of clauses.

A proof for formula F in CNF is a sequence π = C1, . . . , Cm, Im+1, . . . , In
with clauses C1, . . . , Cm ∈ F and pairs Ii of the form 〈�, X〉, where either � ∈
{a, d} and X is a clause, or � = e and X is a CNF formula. Letters a, d, and
e indicate addition, deletion, and extension, respectively. Sequence π induces a
sequence of CNF formulas F0, . . . , Fn such that Fi = {C1, . . . , Ci} for 1 ≤ i ≤ m,
and for i > m, Fi = Fi−1 ∪ {C} if Ii = 〈a,C〉, Fi = Fi−1 \ {C} if Ii = 〈d,C〉,
and Fi = Fi−1 ∪G if Ii = 〈e,G〉. It is a proof of unsatisfiability of F if ∅ ∈ Fn.

A proof π of unsatisfiability of F is a valid ER proof if every Ii is either: (i)
〈a,C ∪D〉, where C ∪ {p} and D ∪ {p} ∈ Fi−1 for some p; or (ii) 〈e,G〉, where
G is the CNF translation of x↔ ϕ with x a fresh variable and ϕ some formula
over variables occurring in Fi−1. Proof π is a valid DRAT proof if every Ii is
either 〈d,C〉 or 〈a,C〉 and for the latter, one of the following holds:

– C is a reverse unit propagation (RUP) [8] in Fi−1, i.e., the empty clause is
derivable from Fi−1 and the negations of literals in C using unit propagation.

– C is a resolution asymmetric tautology (RAT) in Fi−1, i.e., there is some
p ∈ C such that for every D ∪ {p} ∈ Fi−1, C ∪D is a RUP in Fi−1. If C is
a RAT but not a RUP, we call it a proper RAT.

LRAT proofs are obtained from DRAT proofs by allowing a third element in
each Ii that includes hints regarding the clauses and literals that are relevant
for verifying the corresponding proof step.

2.1 Integration Methods

The Logical Framework with Side Conditions (LFSC) [15] is a statically and
dependently typed Lisp-style meta language based on the Edinburgh Logical
Framework (LF) [10]. It can be used to define logical systems and check proofs

(program is specified drat proof ((f cnf) (proof DRATProof)) bool
(match proof

(DRATProofn (cnf has bottom f))
((DRATProofa c p) (

match (is rat f c) (tt (is specified drat proof (cnfc c f) p)) (ff ff)))
((DRATProofd c p) (is specified drat proof (cnf remove clause c f) p))))

Fig. 1. Side condition for checking a specified DRAT proof. The side conditions
cnf has bottom, is rat, and cnf remove clause are defined in the same signature.
Type cnfc is a constructor for CNF formulas, and is defined in a separate signature.

written within them by way of the Curry-Howard correspondence. Like LF,
LFSC is a framework in which axioms and derivation rules can be defined for
multiple theories and their combination. LFSC additionally adds the notion of
side conditions as functional programs, which can restrict the application of
derivation rules. This is convenient for expressing proof-checking rules that are
computational in nature. In order to use DRAT proofs in CVC4, the proofs
need to be representable in LFSC. We consider the following three approaches
for integrating DRAT proofs into LFSC.

Checking DRAT Proofs in LFSC. This approach directly translates DRAT
proofs into LFSC. It requires creating a signature for DRAT in LFSC, which
essentially is an LFSC implementation of a DRAT checker.

Checking LRAT Proofs in LFSC. LRAT proofs include hints to accelerate
unit propagation while proof checking. We use the tool DRAT-trim [18] to trans-
late DRAT proofs into the LRAT format and then check the resulting proof with
an LRAT LFSC signature.

Checking ER Proofs in LFSC. This approach aims at further reducing com-
putational overhead during proof checking by translating a DRAT proof into an
ER proof with the tool drat2er [11]. The ER proof is then translated to LFSC
and checked with an ER LFSC signature.

3 LFSC Signatures

In this section, we describe the main characteristics of the LFSC signatures1

that we have defined for checking DRAT, LRAT, and ER proofs.
The LFSC DRAT signature makes extensive use of side conditions to express

processes such as unit propagation and the search for the resolvents of a proper
RAT. Because of the divergence between operational and specified DRAT and
the resulting ambiguity (see [13] for further details), our signature accepts both
kinds of proofs. Figure 1 shows the main side condition that is used to check a
DRAT proof. Though we do not explain the LFSC syntax in detail here due to
lack of space, the general idea can be easily understood. Given a proof candidate
proof, it covers three cases: (i) the proof is empty and the working formula

1 https://github.com/CVC4/CVC4/blob/master/proofs/signatures/

(declare definition (! x var (! p lit (! ls lit list type))))
(declare decl definition

(! p lit (! ls lit list (! pf continuation
(! x var (! def (definition x p ls) (holds empty clause)))

(holds empty clause)))))

Fig. 2. Derivation rules for checking that a clause constitutes an extension.

Complex Side Conditions Simple Side Conditions

DRAT
· unit propagation
· resolvent search

LRAT
· guided unit propagation
· resolvent search

ER
· deferred

resolution

Fig. 3. Side conditions across our signatures.

includes a contradiction; (ii) the proof begins with an addition of a (proper or
improper) RAT; or (iii) the proof begins with a deletion of some clause. In (ii)
and (iii), the same side condition is recursively called on the rest of proof, with
an updated working formula. In (ii), side condition is rat checks whether the
added clause is indeed a RAT via resolvent search and unit propagation.

The LFSC LRAT signature is similar in nature, and also makes extensive use
of side conditions—albeit less computationally expensive ones. In particular, this
signature uses hints provided in the LRAT proofs to accelerate unit propagation.

The LFSC ER signature is an extension of the LFSC signature for resolu-
tion proofs that is currently employed by CVC4. It implements deferred res-
olution to quickly check large resolution proofs using only a single side con-
dition [15]. The signature extends resolution in order to check the ER proofs
produced by the drat2er tool. These proofs feature extensions of the form
x↔ (p∨ (l1 ∧ l2 ∧ · · · ∧ lk)), where x is fresh and p and li are not. Our signature
includes side-condition-free rules for introducing such extensions and translat-
ing them to CNFs of the form

{
{x, p} ,

{
x, l1, . . . , lk

}
, {x, p, l1} , . . . , {x, p, lk}

}
.

The decl definition rule in Figure 2 is used to introduce these extensions. Its
first two arguments are literal p and the list of literals li (denoted as ls of type
lit list) from the definition. The third argument is a function that receives a
fresh variable x and connects the introduced definition to the rest of the proof.
Figure 3 illustrates the difference in side conditions between the three signatures.

4 Workflow: From CVC4 to LFSC

Figure 4 shows the general workflow for incorporating DRAT proofs in the LFSC
proof infrastructure of CVC4 after bit-blasting. LFSC proofs for the bit-blasting
step are described in [9]. A given bit-vector formula is bit-blasted to SAT, and
the resulting CNF is then sent to the underlying SAT solver. We use DRAT-
trim to trim the original formula, optimize the proof produced by the SAT
solver, and optionally produce an LRAT proof that is forwarded to the LRAT

Bit-Vector
Formula

Bit-Vector
Solver

SAT Solver

Bit-Vector
Proof

Storage
DRAT-trim

drat2er

DRAT
LFSC Printer

LRAT
LFSC Printer

ER
LFSC Printer

LFSC
Checker

LFSC Signatures

X

5
C

N
F

CNF

DRAT

CNF+
DRAT

CNF+LRAT

CNF+DRAT

C
N

F
+

D
R

A
T

CNF+ER

Fig. 4. Producing and checking LFSC proofs in DRAT, LRAT and ER proof systems in
CVC4. White boxes are CVC4-internal components; blue boxes are external libraries.

LFSC pipeline. In case of DRAT LFSC proofs, we can directly use the optimized
proof and formula emitted by DRAT-trim. For ER LFSC proofs, we first use
drat2er to translate the optimized DRAT proof into an ER proof, which is then
sent to the ER LFSC pipeline. The result of each pipeline is an LFSC proof in
the corresponding proof system, which can be checked with the corresponding
signature (see Section 3) using the LFSC proof checker. Note that prior to bit-
blasting, the input is usually simplified via rewriting and other preprocessing
techniques, for which CVC4 currently does not produce proofs. The addition of
such proofs is left as future work and orthogonal to incorporating DRAT proofs
from the SAT solver back-end, which is the focus of this paper.

5 Experiments

We implemented the three approaches described in Section 2.1 in CVC4 using
CryptoMiniSat 5.6 [14] as the SAT back-end. We compared them against the
resolution-based proof machinery currently employed in CVC4 and evaluated
our techniques on all 21125 benchmarks from the quantifier-free bit-vector logic
QF BV of SMT-LIB [3] with status unsat or unknown. All experiments were
performed on a cluster with Intel Xeon E5-2620v4 CPUs with 2.1GHz and 128GB
of memory. We used a time limit of 600 seconds (CPU time) and a memory limit
of 32GB for each solver/benchmark pair. For each error or memory-out, we
added a penalty of 600 seconds.

Proof System solve log log,prod log,prod,check

[s] # [s] # [s] # [s]

Resolution 20480 464k 20396 524k 14217 4400k 13510 4973k

DRAT

20767 283k 20736 319k

14098 4492k 12563 5616k

LRAT 14088 4500k 12877 5370k

ER 14035 4565k 13782 4886k

Table 1. Impact of proof logging, production, and checking on # solved problems.

Resolution DRAT LRAT ER

solve
log
prod
check

R
un

tim
e

[s
]

0
50

00
0

15
00

00
25

00
00

Fig. 5. Runtime distribution on 12539
commonly proved problems.

Table 1 shows the results for the
Resolution approach with MiniSat, and
the DRAT, LRAT and ER approaches
with CryptoMiniSat. For each, we ran
the following four configurations: proofs
disabled (solve), proof logging enabled
(log), proof production enabled (prod),
and proof checking enabled (check). Proof
logging records proof-related information
but does not produce the actual proof,
e.g., when producing DRAT proofs, proof
logging stores the DRAT proof from the
SAT-solver, which is only translated to
LFSC during proof production. In the solve configuration, the DRAT-based
approaches (using CryptoMiniSat) solve 287 more problems than the Resolution
approach (which uses CVC4’s custom version of MiniSat). This indicates that the
custom version of MiniSat was a bottleneck for solving. In the log configuration,
the DRAT-based approaches solve 31 fewer problems than in the solve configura-
tion; and in the prod configuration the DRAT-based approaches produce proofs
for ∼6600 fewer problems. This indicates that the bottleneck in the DRAT-based
approaches is the translation of DRAT to LFSC. For all approaches, about 30%
of the solved problems require more than 8GB of memory to produce a proof,
showing that proof production can in general be very memory-intensive. Finally,
with proof checking enabled, the ER-based approach outperforms all other ap-
proaches. Note that in ∼270 cases, CryptoMiniSat produced a DRAT proof that
was rejected by DRAT-trim, which we counted as error. Further, for each check
configuration, our LFSC checker reported ∼200 errors, which are not related to
our new approach. Both issues need further investigation.

Figure 5 shows the runtime distribution for all approaches and configurations
over the commonly proved problems (12539 in total). The runtime overhead of
proof production for the DRAT-based approaches is 1.35 times higher compared
to resolution. This is due to the fact that we post-process the DRAT-proof prior
to translating it to LFSC, which involves writing temporary files and calling
external libraries. The proof checking time correlates with the complexity of the
side conditions (see Figure 3), where ER clearly outperforms DRAT.

6 Conclusion

We have described three approaches for integrating DRAT proofs in LFSC, which
enable us to use off-the-shelf SAT solvers as the SAT back-end for the bit-blasting
engine of CVC4 while supporting bit-vector proofs. For future work, we plan to
reduce the complexity of the side conditions in the DRAT and LRAT signatures
and the proof production overhead in the translation workflows. We also plan
to add support for the new signatures in SMTCoq [7], a tool that increases
automation in Coq [16] using proofs generated by CVC4. In a more applicative

direction, we plan to explore the potential DRAT proofs in SMT-solvers may
have in the proof-carrying code paradigm [12], as well as its recent variant in
blockchains, namely proof-carrying smart contracts [5].

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of the 23rd International Con-
ference on Computer Aided Verification. pp. 171–177. CAV’11, Springer-Verlag
(2011), http://dl.acm.org/citation.cfm?id=2032305.2032319

2. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories.
In: Delahaye, D., Woltzenlogel Paleo, B. (eds.) All about Proofs, Proofs for All,
Mathematical Logic and Foundations, vol. 55, pp. 23–44. College Publications,
London, UK (2015)

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

4. Cruz-Filipe, L., Heule, M.J., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In: International Conference on Automated
Deduction. pp. 220–236. Springer (2017)

5. Dickerson, T.D., Gazzillo, P., Herlihy, M., Saraph, V., Koskinen, E.: Proof-carrying
smart contracts. In: Financial Cryptography Workshops. Lecture Notes in Com-
puter Science, vol. 10958, pp. 325–338. Springer (2018)

6. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) Theory and Applications of Satisfiability Testing. pp. 502–518. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004)

7. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Barrett,
C.W.: Smtcoq: A plug-in for integrating SMT solvers into coq. In: CAV (2). Lecture
Notes in Computer Science, vol. 10427, pp. 126–133. Springer (2017)

8. Gelder, A.V.: Verifying RUP proofs of propositional unsatisfiability. In: Interna-
tional Symposium on Artificial Intelligence and Mathematics (ISAIM). Springer
(2008)

9. Hadarean, L., Barrett, C.W., Reynolds, A., Tinelli, C., Deters, M.: Fine grained
SMT proofs for the theory of fixed-width bit-vectors. In: LPAR. Lecture Notes in
Computer Science, vol. 9450, pp. 340–355. Springer (2015)

10. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of
the ACM 40(1), 143–184 (1993)

11. Kiesl, B., Rebola-Pardo, A., Heule, M.J.: Extended Resolution Simulates DRAT.
In: International Joint Conference on Automated Reasoning. pp. 516–531. Springer
(2018)

12. Necula, G.C.: Proof-carrying code. In: POPL. pp. 106–119. ACM Press (1997)
13. Pardo, A.R., Biere, A.: Two flavors of drat. In: Berre, D.L., Järvisalo, M. (eds.)

Proceedings of Pragmatics of SAT 2015 and 2018. EPiC Series in Computing,
vol. 59, pp. 94–110. EasyChair (2019)

14. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: SAT. Lecture Notes in Computer Science, vol. 5584, pp. 244–257. Springer
(2009)

15. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Form. Methods Syst. Des. 42(1), 91–118 (2013)

16. development team, T.C.: The coq proof assistant reference manual version 8.9
(2019), https://coq.inria.fr/distrib/current/refman/

17. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus, pp. 466–
483. Springer Berlin Heidelberg, Berlin, Heidelberg (1983)

18. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient Checking and Trim-
ming Using Expressive Clausal Proofs. In: Sinz, C., Egly, U. (eds.) Theory and Ap-
plications of Satisfiability Testing – SAT 2014. pp. 422–429. Springer International
Publishing, Cham (2014)

