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Abstract
The operations of expansion and refinement on non-deterministic matrices (Nmatrices) are composed
to form a new operation called rexpansion. Properties of this operation are investigated, together
with their effects on the induced consequence relations. Using rexpansions, a semantic method for
obtaining conservative extensions of (N)matrix-defined logics is introduced and applied to fragments
of the classical two-valued matrix, as well as to other many-valued matrices and Nmatrices. The main
application of this method is the construction and investigation of truth-preserving ¬-paraconsistent
conservative extensions of Gödel fuzzy logic, in which ¬ has several desired properties. This is
followed by some results regarding the relations between the constructed logics.

1 Introduction
Since its introduction in Avron and Lev (2005), the framework of non-deterministic matrices1

(Nmatrices) has proven to be very useful, as it has almost all the advantages of the framework
of ordinary matrices, while capturing logics that are practically left out by it. Accordingly,
Nmatrices have been widely investigated and utilized in various areas, like many-valued log-
ics (Kulicki and Trypuz 2012), paraconsistent logics (Avron 2007), and proof theory (Lahav
2013).

Nmatrices differ from (ordinary) matrices in that the truth value of a compound formula
may not be uniquely determined by the truth values of its immediate subformulas, but only
constrained by those truth values. This means that truth values of compound formulas are
chosen non-deterministically from a set of options. The particular instance of ordinary ma-
trices is obtained when all these sets are singletons. For some logics, this generalization
provides an effective finite-valued semantics, where finite-valued matrices are beyond reach
(see, e.g., Avron and Zamansky 2011).

1For a survey of Nmatrices, see Avron and Zamansky (2011).
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In Arieli et al. (2011) and Avron (2007) two fundamental operations which are peculiar
to Nmatrices were introduced: expansion and refinement. Both of them transform a given
Nmatrix (that may be an ordinary matrix) to another one. The former amounts to a simple
duplication of the truth values that are employed in the given Nmatrix, while the latter reduces
the amount of non-determinism, by taking out possible values from the interpretations of the
connectives. The two operations were shown useful for the modular construction of families
of paraconsistent logics (Avron 2007, Avron et al. 2012), as well as for studying maximality
properties in the constructed logics (Arieli et al. 2011).

In this paper we show that expansion and refinement are most useful when combined into
one operation, which we call rexpansion (refined expansion). We investigate rexpansion as
a powerful tool for generating new Nmatrices from existing ones. Properties of this com-
bined operation are presented, along with its effects on the consequence relations which are
induced by the operated Nmatrices. In particular, we identify a useful sufficient criterion for
a rexpansion of an Nmatrix to result in an equivalent Nmatrix, that induces the same logic.

The main application of rexpansion in this paper is for the problem of conservatively ex-
tending a given logic L with new connectives which have some desirable properties. The
method is to apply appropriate rexpansion to a matrix (or an Nmatrix) that is known to be
characteristic for L, getting by this alternative semantics for it, for which the addition of
the desired connectives is an easier task. The relations between the original logic and the
extended one follow then from the general properties of rexpansions. We demonstrate this
method with several examples, including matrices (and Nmatrices) for classical logic, para-
consistent logics, finite-valued logics and infinite-valued logics.

The most important demonstration of this technique provides a new (and as we show, sig-
nificantly better) solution for the problem of constructing paraconsistent fuzzy logics. These
are logics that are useful for modeling vague propositions, while avoiding the explosion prin-
ciple, according to which any proposition follows from a contradiction. A first solution to this
problem was given in Ertola et al. (2015), using a completely different approach. However,
we show that this solution has some serious drawbacks, which are overcome in the solution
proposed here. Our solution is obtained by performing different rexpansions on the Gödel
matrix, and then augmenting the resulted Nmatrices with an involutive negation. We further
investigate the connection between the various constructed logics.

The rest of this paper is organized as follows. We begin with a preliminaries section
(Section 2), in which we review existing definitions and results in the theory of Nmatrices,
including the operations of expansion and refinement. In Section 3 we combine these two
operations into a single operation that is called rexpansion, and prove several results regarding
this operation and its effects on consequence relations. Section 4 includes examples for
applications of rexpansions in well-known logics from the literature. Section 5 focuses on
paraconsistent conservative extensions of Gödel fuzzy logic that are obtained by performing
various rexpansions on the Gödel matrix. We conclude with Section 6, in which several
directions for further research are proposed.2

2A preliminary, concise version of this paper appears as Avron and Zohar (2017). Besides including full
proofs, in this full version we have also expanded the demonstration of our approach in Section 4, and in par-
ticular included a detailed analysis of logics of formal inconsistency in Section 4.2. The investigation of para-
consistent conservative extensions of Gödel logic was expanded as well. In particular, the results in Section 5.3
are new.
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2 Preliminaries

2.1 Propositional Logics and Matrices
A propositional language L consists of a countably infinite set of atomic variables
At = {p1, p2, . . .} and a finite set ♦L of propositional connectives. The set of all n-ary con-
nectives of L is denoted by♦nL, and its set of well-formed formulas byW(L). We sometimes
identify Lwith its set of connectives (e.g. when speaking about “the language {∧,∨,¬}”). A
propositional logic is a pair L = 〈L,`L〉 such that L is a propositional language and `L is a
structural and non-trivial3 (Tarskian) consequence relation for L. In what follows, L denotes
an arbitrary propositional language.

A notion that will be widely used in what follows, and especially when investigating
relations between different logics, is that of conservative extensions:

Definition 2.1. A logic L2 = 〈L2,`L2〉 is conservative over a logic L1 = 〈L1,`L1〉 (or:
L2 is a conservative extension of L1) if W(L1) ⊆ W(L2), and for every T ⊆ W(L1) and
ϕ ∈ W(L1) it holds that T `L1 ϕ iff T `L2 ϕ.

The most standard way of defining logics semantically is by using matrices (Urquhart
2001):

Definition 2.2.

1. A matrix for L is a tuple 〈V ,D,O〉 such that:

(a) V is a non-empty set (of truth values).

(b) D is a non-empty proper subset of V (of designated truth values).

(c) O : ♦L→
⋃∞
i=0(V i→V) such that for every i ∈ N and � ∈ ♦iL, O(�) : V i→V .

O(�) is often regarded as the “truth table” of �.

2. Let M = 〈V ,D,O〉 be a matrix for L. An M-valuation is a function v
from W(L) to V such that for every � ∈ ♦nL and ψ1, . . . , ψn ∈ W(L),
v(�(ψ1, . . . , ψn)) = O(�)(v(ψ1), . . . , v(ψn)). AnM-valuation v is anM-model of a
formula ψ (in symbols: v �M ψ) if v(ψ) ∈ D. It is anM-model of a set T of formulas
(in symbols: v �M T ) if v �M ψ for every ψ ∈ T . A formula ψ is anM-consequence
of a set T of formulas (in symbols: T `M ψ) if everyM-model of T is anM-model
of ψ. We say thatM induces a logic L = 〈L,`L〉 (or thatM is characteristic for L)
if `M = `L.

Many well-known non-classical logics are characterized using matrices:

Example 2.3. Asenjo–Priest’s three-valued logic of paradox LP (Asenjo 1966, Priest 1979)
and Kleene’s three-valued logic KL (Kleene 1938) are both defined by matrices that differ
only in the set of designated values. Consider the set V3 = {t, f, i}, and the interpretation
function O3 that is defined by the following tables:

3This requirement is not always demanded in the literature, but we find it convenient (and natural) to include
it here.
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O3(∧) t f i

t t f i
f f f f
i i f i

O3(∨) t f i

t t t t
f t f i
i t i i

O3(¬)
t f
f t
i i

LP is characterized by the matrix MLP = 〈V3, {t, i} ,O3〉, and KL by the matrix
MKL = 〈V3, {t} ,O3〉.
Example 2.4. Gödel fuzzy logic G (Dummett 1959) is characterized by the following matrix
MG = 〈VG,DG,OG〉 for {∧,∨,⊃,⊥}:

1. VG = [0, 1]

2. DG = {1}

3. OG(⊥) = 0, OG(∨)(a, b) = max {a, b}, OG(∧)(a, b) = min {a, b}, and

OG(⊃)(a, b) =

{
1 a ≤ b

b a 6≤ b
.

Łukasiewicz fuzzy logic Ł (Łukasiewicz 1930) is characterized by a matrix that differs from

MG solely in the interpretation of ⊃, that is changed to: O(⊃)(a, b)

{
1 a ≤ b

1− a+ b a 6≤ b
.

2.2 Non-deterministic Matrices
Matrices are truth-functional, that is, the truth value of a compound formula is uniquely
determined by the truth values of its immediate subformulas. In Avron and Zamansky (2011),
matrices are generalized to allow non-deterministic assignments of truth values to compound
formulas.

Definition 2.5.

1. A non-deterministic matrix (Nmatrix) for L is a tuple 〈V ,D,O〉 such that:

(a) V is a non-empty set (of truth values).

(b) D is a non-empty proper subset of V (of designated truth values).

(c) O : ♦L→
⋃∞
i=0(V i→P+(V)) such that for every i ∈ N and � ∈ ♦iL,

O(�) : V i→P+(V) (where P+(V) = P (V) \ {∅}).

2. Let M = 〈V ,D,O〉 be an Nmatrix for L. An M-valuation is a function
v from W(L) to V such that for every � ∈ ♦nL and ψ1, . . . , ψn ∈ W(L),
v(�(ψ1, . . . , ψn)) ∈ O(�)(v(ψ1), . . . , v(ψn)). The definitions of M-models and M-
consequences are as in Definition 2.2, using the non-deterministic notion of an M-
valuation.
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To be considered as a particular instance of Nmatrices, we take matrices to be Nmatrices
in which O(�)(x1, . . . , xn) is a singleton for every � ∈ ♦nL and x1, . . . , xn ∈ V . In matrices
mentioned below we freely interchange truth values with their singletons, whenever there is
no danger of confusion.

Like matrices, Nmatrices provide an analytic semantic framework, in the sense that for
every Nmatrix M, every partial M-valuation can be extended to a full M-valuation.4 A
useful consequence of this property is the modular character that the framework of Nmatrices
exhibits:

Definition 2.6. Let L1 and L2 be propositional languages such that W(L1) ⊆ W(L2), and
M1 = 〈V1,D1,O1〉 andM2 = 〈V2,D2,O2〉 be Nmatrices for L1 and L2, respectively. M2

is an extension ofM1 to L2 if V1 = V2, D1 = D2, and O1(�) = O2(�) for every � ∈ ♦L1 .

Proposition 2.7. Let L1 and L2 be propositional languages such thatW(L1) ⊆ W(L2), and
M1 andM2 be Nmatrices for L1 and L2, respectively. IfM1 is an extension ofM2 to L2

then 〈L2,`M2〉 is conservative over 〈L1,`M1〉.

2.3 Expansions and Refinements
Next we present two basic operations from Arieli et al. (2011) and Avron (2007), that can
be performed on Nmatrices: expansions and refinements. Loosely speaking, an expansion of
an Nmatrix is obtained by making several distinct copies of each truth value, so that the new
designated values are the copies of the original ones, and each value in the interpretation of
the connectives is replaced by all of its copies. This is formally defined as follows:

Definition 2.8.

1. A function F is called an expansion function if for every x ∈ dom(F ), F (x) is a
non-empty set, and F (x) ∩ F (y) = ∅ whenever x 6= y. We say that F is an expan-
sion function for an NmatrixM = 〈V ,D,O〉 for L if it is an expansion function and
dom(F ) = V .

2. For every expansion function F and y ∈
⋃
Im(F ), we denote by F̃ [y] the unique

element x ∈ dom(F ) such that y ∈ F (x).

3. Let M = 〈V ,D,O〉 be an Nmatrix for L and F an expansion function for M. The
F -expansion ofM is the NmatrixMF = 〈VF ,DF ,OF 〉, where:

(a) VF =
⋃
x∈V F (x).

(b) DF =
⋃
x∈D F (x).

(c) OF (�)(y1, . . . , yn) =
⋃
z∈O(�)(F̃ [y1],...,F̃ [yn])

F (z) for every � ∈ ♦nL and
y1, . . . , yn ∈ VF .

M2 is an expansion ofM1 if it is the F -expansion of it for some F .

Nothing but uniformly duplicating all truth values is done in expansions, and hence the
consequence relation remains the same, as was shown in Arieli et al. (2011):

4Following Avron and Zamansky (2011), we use the term analytic for this property.
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Proposition 2.9. LetM2 be an expansion ofM1. Then `M1 = `M2 .

Example 2.10.

1. Two Nmatrices are isomorphic to one another if and only if one is the F -expansion of
the other for some expansion function F (in which F (x) is always a singleton).

2. Consider the usual matrix which is characteristic for classical logic, where the truth val-
ues are t and f . By assigning {t,>} to t and {f} to f , we obtain an expansion function.
The outcome of this expansion would be a non-deterministic matrix for classical logic,
in which, for example, the interpretation of negation is O(¬)(t) = O(¬)(>) = {f}
and O(¬)(f) = {t,>}.

3. The classical matrix can be further expanded by assigning [0, 1
2
) to f and

[
1
2
, 1
]

to
t. The outcome would be another non-deterministic matrix which is characteristic for
classical logic. The interpretation of negation would then be O(¬)(x) = [0, 1

2
) when-

ever x ≥ 1
2

and O(¬)(x) =
[
1
2
, 1
]

whenever x < 1
2
.

Next, we define the refinement operation on Nmatrices. Loosely speaking, refining an
Nmatrix means deleting some of its truth values, and then reducing the amount of non-
determinism (each of these steps is optional). This is formally defined as follows:

Definition 2.11. LetM1 = 〈V1,D1,O1〉 andM2 = 〈V2,D2,O2〉 be Nmatrices for L.M2 is
a refinement ofM1 if:

1. V2 ⊆ V1.

2. D2 = V2 ∩ D1.

3. O2(�)(x1, . . . , xn) ⊆ O1(�)(x1, . . . , xn) for every � ∈ ♦nL and x1, . . . , xn ∈ V2.

M2 is a simple refinement ofM1 if in addition, V2 = V1.
Example 2.12. The infinite characteristic Nmatrix for classical logic from Example 2.10 can
be (simply) refined by e.g. redefining O(¬) in the following way: O(¬)(x) = {0} whenever
x ≥ 1

2
and O(¬)(x) = {1} whenever x < 1

2
.

Clearly, refining an NmatrixM can only reduce the set ofM-valuations. Consequently,
we have the following proposition from Avron (2007):

Proposition 2.13. LetM2 be a refinement ofM1. Then `M1 ⊆ `M2 .

3 Refined Expansions
In this section we combine the two basic operations defined above and obtain refined expan-
sions (in short: rexpansions). In what follows, L continues to denote a fixed propositional
language, and by an Nmatrix we mean an Nmatrix for L, unless stated otherwise.
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3.1 Definition and Properties
We start by explicitly defining the combined operation and exploring its properties.

Definition 3.1. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices and F an
expansion function forM1. We say thatM2 is an F -rexpansion ofM1 if it is a refinement
of the F -expansion ofM1. It is called:

1. simple if it is a simple refinement of the F -expansion ofM1.

2. preserving if F (x) ∩ V2 6= ∅ for every x ∈ V1.

3. strongly preserving if it is preserving, and for every x1, . . . , xn ∈ V2, � ∈ ♦nL, and
y ∈ O1(�)(F̃ [x1], . . . , F̃ [xn]), it holds that the set F (y) ∩ O2(�)(x1, . . . , xn) is not
empty.

M2 is called a rexpansion ofM1 if it is an F -rexpansion of it for some expansion function
F for M1. If M2 is a rexpansion of M1, then we may call M2 “preserving”, “strongly
preserving” or “simple” (without the suffix “rexpansion ofM1”) whenever that is clear from
the context.

Loosely speaking, being a preserving rexpansion amounts to keeping at least one “copy”
of every original truth value. Being strongly preserving means that this property holds not
only for the set of truth values, but also for the interpretation of the connectives.

Example 3.2. The Nmatrix from Example 2.12 is a rexpansion of the classical matrix, which
is simple and strongly preserving.

First, let us elaborate on the connections between the different properties of rexpansions:

Lemma 3.3. Every simple rexpansion is preserving, every expansion is a strongly preserving
rexpansion, and every preserving rexpansion of a matrix is strongly preserving.

Proof. We prove that every preserving rexpansion of a matrix is strongly preserv-
ing. The other statements are trivial. Let M1 be a matrix, M2 an Nmatrix,
and F an expansion function such that M2 is a preserving F -rexpansion of M1.
Let x1, . . . , xn ∈ V2, � ∈ ♦nL, and y ∈ O1(�)(F̃ [x1], . . . , F̃ [x1]). We prove
that F (y) ∩ O2(�)(x1, . . . , xn) 6= ∅. O2(�)(x1, . . . , xn) ⊆

⋃
z∈O1(�)(F̃ [x1],...,F̃ [x1])

F (z)

and M1 is a matrix. Therefore, O2(�)(x1, . . . , xn) ⊆ F (y), which means that
F (y) ∩ O2(�)(x1, . . . , xn) = O2(�)(x1, . . . , xn). This set cannot be empty, as M2 is an
Nmatrix.

Next we provide a necessary and sufficient condition for an Nmatrix to be a rexpansion
of another Nmatrix.

Proposition 3.4. M2 = 〈V2,D2,O2〉 is a rexpansion of M1 = 〈V1,D1,O1〉 iff there is a
function f : V2→V1 such that:

1. For every x ∈ V2, x ∈ D2 iff f(x) ∈ D1.
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2. For every x1, . . . , xn ∈ V2 and y ∈ O2(�)(x1, . . . , xn), it holds that
f(y) ∈ O1(�)(f(x1), . . . , f(xn)).

Proof.
(⇐): Suppose such a function f exists. For every subset Y of V1, denote the set
{x ∈ V2 | f(x) ∈ Y } by f−1 [Y ]. Let V be some set such that V ∩ V2 = ∅ and |V| = |V1|,
and let g : V1 → V be a bijection. We show thatM2 is an F -rexpansion ofM1 for

F = λx ∈ V1.

{
f−1 [{x}] x ∈ Im(f)

{g(x)} otherwise

F is clearly an expansion function for M1. Now, V2 is the domain of f , and thus it is
contained in (V1)F . Next, by property (1) of f , D2 = f−1 [D1], which, by the definition of F
is equal to (D1)F ∩ V2. Finally, by property (2) of f ,

O2(�)(x1, . . . , xn) ⊆ f−1 [O1(�)(f(x1), . . . , f(xn))] ⊆

⋃
z∈O1(�)(f(x1),...,f(xn))

F (z) =
⋃

z∈O1(�)(F̃ [x1],...,F̃ [xn])

F (z) = (O1)F (�)(x1, . . . , xn)

(⇒): IfM2 is an F -rexpansion ofM1 for some F , then the function λx ∈ V2.F̃ [x] satisfies
the required conditions.

Remark 3.5. In Avron and Zamansky (2011), the term ‘simple refinement’ was reserved for
what is called here ‘refinement’, while the term ‘refinement’ was related to the functions from
Proposition 3.4.

Another useful property of the rexpansion operation is that it induces some forms of
transitivity:

Theorem 3.6.

1. IfM2 is a preserving rexpansion ofM1 andM3 is a (preserving) rexpansion ofM2,
thenM3 is a (preserving) rexpansion ofM1.

2. If M2 is a strongly preserving rexpansion of M1 and M3 is a strongly preserving
rexpansion ofM2, thenM3 is a strongly preserving rexpansion ofM1.

Proof. Let F and G be expansion functions such that M2 is a preserving F -rexpansion of
M1 andM3 is a G-rexpansion ofM2. For every 1 ≤ i ≤ 3, assume thatMi = 〈Vi,Di,Oi〉.
Define H = λx ∈ V1.

⋃
y∈F (x)∩V2 G(y). Using the fact thatM2 is preserving, it can easily

be shown that H is an expansion function forM1. We first prove thatM3 is a H-rexpansion
ofM1:
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V3 ⊆ (V2)G =
⋃
y∈V2

G(y) =
⋃

y∈(V1)F∩V2

G(y) =
⋃

y∈(
⋃
x∈V1

F (x))∩V2

G(y) =

⋃
y∈

⋃
x∈V1

(F (x)∩V2)

G(y) =
⋃
x∈V1

 ⋃
y∈F (x)∩V2

G(y)

 =
⋃
x∈V1

H(x) = (V1)H

and

(D2)G =

( ⋃
y∈D2

G(y)

)
=

 ⋃
y∈(D1)F∩V2

G(y)

 =

 ⋃
y∈(

⋃
x∈D1

F (x))∩V2

G(y)

 =

 ⋃
x∈D1

⋃
y∈F (x)∩V2

G(y)

 =

( ⋃
x∈D1

H(x)

)
= (D1)H

which means that D3 = (D2)G ∩ V3 = (D1)H ∩ V3.
As for O3, let � ∈ ♦nL, x1, . . . , xn ∈ V3, and w ∈ O3(�)(x1, . . . , xn).

We show that w ∈ (O1)H(�)(x1, . . . , xn). M3 is a refinement of
(M2)G, and hence w ∈ (O2)G(�)(x1, . . . , xn). Now, there must exists
z ∈ O2(�)(G̃ [x1], . . . , G̃ [xn]) such that w ∈ G(z), and since M2 is a refine-
ment of (M1)F , we have z ∈ (O1)F (�)(G̃ [x1], . . . , G̃ [xn]). Similarly, there exists
u ∈ O1(�)(F̃

[
G̃ [x1]

]
, . . . , F̃

[
G̃ [x1]

]
) such that z ∈ F (u). So we have that there

exists z ∈ F (u) ∩ V2 such that w ∈ G(z). Hence w ∈ H(u). To prove that
w ∈ (O1)H(�)(x1, . . . , xn), we show that u ∈ O1(�)(H̃ [x1], . . . , H̃ [xn]). That is, we
show that for every 1 ≤ i ≤ n, H̃ [xi] = F̃

[
G̃ [xi]

]
. For every 1 ≤ i ≤ n let yi = H̃ [xi],

zi = G̃ [xi], and wi = F̃ [zi]. We prove that yi = wi: xi ∈ H(yi), and hence there exists
y ∈ F (yi) ∩ V2 such that xi ∈ G(y). Since G is an expansion function, y = zi. Hence
y ∈ F (wi). Similarly, F is an expansion function, and hence yi = wi.

Next, we show that if M3 is a preserving G-rexpansion of M2 then it is a preserving
H-rexpansion ofM1, that is, H(x) ∩ V3 6= ∅ for every x ∈ V1. SinceM2 is a preserving F -
rexpansion ofM1, there exists y ∈ F (x) ∩ V2. And sinceM3 is a preserving G-rexpansion
ofM2, there exists z ∈ G(y) ∩ V3 ⊆ H(x) ∩ V3.

Finally, we show that ifM2 is a strongly preserving F -rexpansion ofM1 andM3 is a
strongly preserving G-rexpansion of M2, then M3 is a strongly preserving H-rexpansion
of M1. Let z1, . . . , zn ∈ V3 and � ∈ ♦nL. We show that H(x) ∩ O3(�)(z1, . . . , zn) 6= ∅
for every x ∈ O1(�)(H̃ [z1], . . . , H̃ [zn]). Let x ∈ O1(�)(H̃ [z1], . . . , H̃ [zn]). For ev-
ery 1 ≤ i ≤ n let xi = H̃ [zi]. Then there exists yi ∈ F (xi) ∩ V2 such that
zi ∈ G(yi). Since M2 is a strongly preserving F -rexpansion of M1, there exists
y0 ∈ F (x) ∩ O2(�)(y1, . . . , yn). Since M3 is a strongly preserving G-rexpansion of M2,
there also exists z0 ∈ G(y0) ∩ O3(�)(z1, . . . , zn) ⊆ H(x) ∩ O3(�)(z1, . . . , zn).
Corollary 3.7. For every sequenceM1, . . . ,Mn of Nmatrices such thatMi+1 is an expan-
sion or a simple refinement ofMi, we have thatMn is a preserving rexpansion ofM1.

9



3.2 Consequence Relations
In this section we investigate the effect rexpansions induce on semantically defined conse-
quence relations. Our main theorem is the following:

Theorem 3.8. IfM2 is a rexpansion ofM1 then `M1 ⊆ `M2 . Moreover, ifM2 is strongly
preserving then `M1 = `M2 .

Proof. The first part follows directly from Propositions 2.9 and 2.13 above. SupposeM2 is a
strongly preserving F -rexpansion ofM1. We prove that `M2 ⊆ `M1 . For this, it obviously
suffices to prove that for every M1-valuation v there exists an M2-valuation v′ such that
v �M1 ψ iff v′ �M2 ψ for every ψ ∈ W(L). Let c : P (V2) \ {∅}→V2 and suppose that for
every X ∈ P (V2) \ {∅}, c(X) ∈ X .5 Let ψ1, ψ2, . . . be an enumeration of W(L) such that
if ψi is a subformula of ψj then i < j. Now let v be anM1-valuation. For the construction
of v′, we first define a sequence v0, v1, . . . of partial functions from W(L) to V2: v0 is the
empty function, and for every i > 0, vi is defined as follows. For every ψ ∈ dom(vi−1),
vi(ψ) = vi−1(ψ). If ψi /∈ dom(vi−1), then:

1. If ψi is atomic and F (v(ψi)) ∩ V2 is not empty, vi(ψi) = c(F (v(ψi)) ∩ V2).

2. If ψi has the form �(ϕ1, . . . , ϕn) for ϕ1, . . . , ϕn ∈ dom(vi−1)
and F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), . . . , vi−1(ϕn)) is not empty,
vi(ψi) = c(F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), . . . , vi−1(ϕn))).

We prove by induction on i that:

1. vi(ψ) ∈ F (v(ψ)) for every ψ ∈ dom(vi);

2. dom(vi) = {ψ1, . . . , ψi}; and

3. vi satisfies the conditions induced by M2, that is:
vi(�(ϕ1, . . . , ϕn)) ∈ O2(�)(vi(ϕ1), . . . , vi(ϕn)) whenever ϕ1, . . . , ϕn and
�(ϕ1, . . . , ϕn) are in dom(vi).

For i = 0, this trivially holds. Let i > 0.

1. Let ψ ∈ dom(vi). If ψ ∈ dom(vi−1) then this holds by the induction hypothesis.
Otherwise, ψ = ψi, and then this holds by definition.

2. By the induction hypothesis, dom(vi−1) = {ψ1, . . . , ψi−1}, and therefore we have
to prove that ψi ∈ dom(vi). If ψi is atomic, this amounts to showing that the
set F (v(ψi)) ∩ V2 is not empty, which holds as M2 is a preserving F -rexpansion
of M1. Otherwise, ψi has the form �(ϕ1, . . . , ϕn). By our enumeration and the
induction hypothesis, ϕ1, . . . , ϕn ∈ dom(vi−1), and therefore this amounts to showing
that F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), . . . , vi−1(ϕn)) is not empty. By the induction
hypothesis, we have that vi−1(ϕj) ∈ F (v(ϕj)) for every 1 ≤ j ≤ n. In other words,
v(ϕj) = F̃ [vi−1(ϕj)] for every 1 ≤ j ≤ n. By the fact that v is an M1-valuation,
v(ψi) ∈ O1(�)(v(ϕ1), . . . , v(ϕn)) = O1(�)(F̃ [vi−1(ϕ1)], . . . , F̃ [vi−1(ϕn)]), and
hence F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), . . . , vi−1(ϕn)) 6= ∅, asM2 is strongly preserving.

5The existence of such a function relies on the axiom of choice in case V2 is infinite.
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3. Let �(ϕ1, . . . , ϕn), ϕ1, . . . , ϕn ∈ dom(vi). We prove that
vi(�(ϕ1, . . . , ϕn)) ∈ O2(�)(vi(ϕ1), . . . , vi(ϕn)). If �(ϕ1, . . . , ϕn) ∈ dom(vi−1),
then this holds by the induction hypothesis and our enumeration. Otherwise,
ψi = �(ϕ1, . . . , ϕn), and then this holds by the induction hypothesis and the definition
of vi.

For every ψ ∈ W(L), let iψ = ιi ∈ N.ψ = ψi.6 v′ is defined by v′(ψ) = viψ(ψ).
First, we show that v′ is an M2-valuation. Let � ∈ ♦nL and ϕ1, . . . , ϕn ∈ W(L).
Let k = i�(ϕ1,...,ϕn). v′(�(ϕ1, . . . , ϕn)) = vk(�(ϕ1, . . . , ϕn)), which belongs to
O2(�)(vk(ϕ1), . . . , vk(ϕn)) = O2(�)(v′(ϕ1), . . . , v

′(ϕn)). Second, we show that v �M1 ψ
iff v′ �M2 ψ. Suppose v �M1 ψ. Then v(ψ) ∈ D1. Now, by the construction of v′,
v′(ψ) ∈ F (v(ψ)) ⊆ (

⋃
x∈D1

F (x))∩V2 = D2, which means that v′ �M2 ψ. For the converse,
suppose v′ �M2 ψ. Then v′(ψ) ∈ D2 ⊆ (

⋃
x∈D1

F (x)). Hence there exists x ∈ D1 such that
v′(ψ) ∈ F (x). Now, by the construction of v′, v′(ψ) ∈ F (v(ψ)). Since F is an expansion
function, v(ψ) = x ∈ D1, which means that v �M1 ψ.

The following corollary immediately follows as a consequence of Lemma 3.3 and Theo-
rem 3.8:

Corollary 3.9. Let M2 be a preserving rexpansion of M1. If M1 is a matrix then
`M2 = `M1 .

An important consequence of Corollary 3.9 and Proposition 2.7 (the usefulness of which
is demonstrated in Sections 4 and 5) is a general method for providing a given logic with an
alternative new semantics, and then use it for conservatively augmenting it with new connec-
tives. This is established in the following corollary:

Corollary 3.10. Let L1 and L2 be propositional languages such thatW(L1) ⊆ W(L2),M1

a matrix for L1, and M2 an extension to L2 of some preserving rexpansion of M1. Then
〈L2,`M2〉 is conservative over 〈L1,`M1〉.

We conclude this section with a stronger instance of Corollary 3.10, that applies only for
two-valued matrices:

Corollary 3.11. Let L1 and L2 be propositional languages such that W(L1) ⊆ W(L2),
M1 = 〈{t, f} , {t} ,O1〉 a matrix for L1, and M2 an extension to L2 of some rexpansion
ofM1. Then 〈L2,`M2〉 is conservative over 〈L1,`M1〉.

Proof. By Definition 2.5, for every F -rexpansionM′ = 〈V ′,D′,O′〉 ofM1 we must have
F (t) ∩ V ′ 6= ∅ (as otherwise D′ = ∅) and F (f) ∩ V ′ 6= ∅ (as otherwise D′ = V ′). The result
then follows from Corollary 3.10.

4 Some Basic Applications
In this section we present some examples of applications of rexpansion in non-classical log-
ics. This is done by performing it on fragments of well-known matrices and Nmatrices, and
thus obtaining conservative extensions of their induced logics.

6That is, iψ is the index of ψ in the enumeration.
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Let CL = {¬,∨,∧,⊃,⊥}. Denote the (propositional) language whose set of connectives
is CL by CL, classical logic (over CL) by CL, and the classical two-valued matrix for CL
byMCL. For any C ⊆ CL, we denote the C-fragment of CL by CLC , the C-fragment of
classical logic by CLC , and the C-fragment of the classical matrix byMC

CL. We start with a
direct consequence of Corollary 3.11:

Lemma 4.1. Let C ⊆ CL. If L is a language such that W(CLC) ⊆ W(L), andM is an
extension to L of some rexpansion ofMC

CL, then 〈L,`M〉 is conservative over CLC .

We shall use Lemma 4.1 to present conservative extensions of fragments of classical
logic. Some of the resulting logics are paraconsistent, that is: unlike classical logic, they
tolerate contradictions. Here is a formal definition, based on properties that were investigated
in Carnielli et al. (2007), Marcos (2005), Arieli et al. (2011), Arieli and Avron (2015):

Definition 4.2. Let L be a logic in CL. ¬ is a weak negation in L if p 6`L ¬p and ¬p 6`L p.
¬ is a negation in L if L is subclassical, that is, T `L ϕ only if T `CL ϕ. L is paraconsistent
if ¬ is a weak negation in L and ¬p, p 6`L q. It is strictly paraconsistent if it is paraconsistent
and ¬ is a negation in L. It is boldly paraconsistent if it is paraconsistent, and ¬p, p 6`L ϕ
whenever 6`L ϕ and p /∈ At(ϕ).

Remark 4.3. Inspired by Marcos (2005), the requirement for being a weak negation is re-
garded in Arieli et al. (2011) as a minimal condition that is expected from a unary connective
to be called a negation. This is hardly enough, though, to characterize negation. Therefore,
Arieli and Avron (2015) generalizes it to the requirement of subclassicality, leading to what is
called here “strict paraconsistency”. (Note that in practice, almost all non-classical logics in
CL that have ever been studied are subclassical.) Finally, the requirement of bold paraconsis-
tency connects paraconsistency to (and justifies it by) the broader principle of relevance: the
inconsistency of p should not be a reason for inferring a formula that is completely irrelevant
to p.

4.1 Rexpansion of Matrices
We start with finite-valued conservative extensions of classical logic.

Example 4.4. The {∧,∨}-fragments of MLP and MKL (see Example 2.3) are
simple rexpansions of M{∧,∨}

CL , as can be witnessed by the expansion functions

λx ∈ {t, f} .

{
{t, i} x = t

{f} x = f
and λx ∈ {t, f} .

{
{t} x = t

{f, i} x = f
, respectively. By Lemma

4.1, LP and KL are both conservative over CL{∧,∨}. Note that neither of the matrices is
a preserving rexpansion of the other: suppose for contradiction that MLP is a preserving
F -rexpansion ofMKL. Then we must have that {t, i} ⊆ F (t), and so f ∈ F (i) ∪ F (f). If
f ∈ F (i) then F (f) ∩ {t, f, i} = ∅, and if f ∈ F (f) then F (i) ∩ {t, f, i} = ∅. Either way,
MLP is not preserving. Clearly,MKL cannot be a preserving F -rexpansion ofMLP, as if
this were the case, it would have two designated values.

Next, we consider the three-valued paraconsistent logics from Arieli and Avron (2015):
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Example 4.5. Theorem 42 of Arieli and Avron (2015) characterizes all three-valued strictly
paraconsistent logics in the language {¬,∧,∨,⊃} that admit some natural properties. These
logics coincide with the {¬,∧,∨,⊃}-fragments of the family of 8K conservative extensions
of positive classical logic studied in Carnielli et al. (2007) and Carnielli and Marcos (2002).
The three-valued matrices that induce these logics are all simple refinements of the following
NmatrixM = 〈{t,>, f} , {t,>} ,O〉, where O is given by:

O(∧) t f >
t {t} {f} {t,>}
f {f} {f} {f}
> {t,>} {f} {t,>}

O(∨) t f >
t {t} {t} {t,>}
f {t} {f} {t,>}
> {t,>} {t,>} {t,>}

O(⊃) t f >
t {t} {f} {t,>}
f {t} {t} {t,>}
> {t,>} {f} {t,>}

O(¬)
t {f}
f {t}
> {t,>}

Now, every simple refinement ofM is an extension to {∧,∨,⊃,¬} of some rexpansion
ofM{∧,∨,⊃}

CL . Indeed, for F (t) = {t,>} and F (f) = {f}, it is easy to see that the {∧,∨,⊃}-
fragment ofM is a simple refinement of (M{∧,∨,⊃}

CL )F = 〈{t,>, f} , {t,>} ,O′〉, where O′
is defined by:

O′(∧) t f >
t {t,>} {f} {t,>}
f {f} {f} {f}
> {t,>} {f} {t,>}

O′(∨) t f >
t {t,>} {t,>} {t,>}
f {t,>} {f} {t,>}
> {t,>} {t,>} {t,>}

O′(⊃) t f >
t {t,>} {f} {t,>}
f {t,>} {t,>} {t,>}
> {t,>} {f} {t,>}

The fact that all these logics are conservative over positive classical logic is then obtained
as a consequence of Lemma 4.1. Actually, by Corollary 3.11, all extensions of simple re-
finements of (M{∧,∨,⊃}

CL )F have this property. In addition, they have many of the natural
properties demanded in Arieli and Avron (2015).

Example 4.6. The {∧,∨,⊃,¬}-fragment of the four-valued logic of bilattices from Arieli
and Avron (1998) is characterized by the matrixM4 = 〈{t, f,>,⊥} , {>,⊥} ,O4〉, where
O4 is given by:

O4(∧) t f >⊥
t t f >⊥
f f f f f
> > f > f
⊥ ⊥ f f ⊥

O4(∨) t f >⊥
t t t t t
f t f >⊥
> t>> t
⊥ t⊥ t ⊥

O4(⊃) t f >⊥
t t f >⊥
f t t t t
> t f >⊥
⊥ t t t t

O4(¬)
t f
f t
> >
⊥ ⊥

By dismissing⊃, we obtain a matrix for the logic of first-degree entailment (fde) from An-
derson and Belnap (1975). Define an expansion function F forM{∧,∨,⊃}

CL by F (f) = {f,⊥}
and F (t) = {t,>}. It is easy to see that M4 is an extension to {∧,∨,⊃,¬} of a simple
refinement of (M{∧,∨,⊃}

CL )F = 〈{t,>, f,⊥} , {t,>} ,O〉, where
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O(∧) t f > ⊥
t {t,>} {f,⊥} {t,>} {f,⊥}
f {f,⊥} {f,⊥} {f,⊥} {f,⊥}
> {t,>} {f,⊥} {t,>} {f,⊥}
⊥ {f,⊥} {f,⊥} {f,⊥} {f,⊥}

O(∨) t f > ⊥
t {t,>} {t,>} {t,>} {t,>}
f {t,>} {f,⊥} {t,>} {f,⊥}
> {t,>} {t,>} {t,>} {t,>}
⊥ {t,>} {f,⊥} {t,>} {f,⊥}

O(⊃) t f > ⊥
t {t,>} {f,⊥} {t,>} {f,⊥}
f {t,>} {t,>} {t,>} {t,>}
> {t,>} {f,⊥} {t,>} {f,⊥}
⊥ {t,>} {t,>} {t,>} {t,>}

Arieli and Avron (1998) provided an analytic sequent calculus for `M4 , and used it to
prove that it is conservative over CL{∧,∨,⊃} (and that fde is conservative over CL{∧,∨}). Here
we obtain this result as a simple consequence of Lemma 4.1, by identifying the {∧,∨,⊃}-
fragment ofM4 as a rexpansion ofM{∧,∨,⊃}

CL .

The next example concerns Gödel fuzzy logic G and its relation to classical logic.

Example 4.7. It is routine to verify thatMG (Example 2.4) is an extension to {∧,∨,⊃,⊥}
of a simple refinement of the F -expansion ofM{∧,∨,⊥}

CL , for F (f) = [0, 1) and F (t) = {1}.
Consider ∧, for example, and denote its classical interpretation byO(∧). Let x, y ∈ [0, 1] and
z = min(x, y), and suppose x′ = F̃ [x] and y′ = F̃ [y]. We show that z ∈ F (O(∧)(x′, y′))
(recall that in matrices we identify singletons with their unique elements). If z < 1, then
either x < 1 or y < 1, and so either x′ = f or y′ = f , which means that O(∧)(x′, y′) = f .
In this case, we get z ∈ [0, 1) = F (f) = F (O(∧)(x′, y′)). Otherwise, z = 1, which
means that x = y = 1, and so x′ = y′ = t. In this case, O(x′, y′) = t, and so we have
z ∈ {1} = F (t) = F (O(∧)(x′, y′)). By Lemma 4.1,MG is conservative over CL{∧,∨,⊥}.

Note that this argument does not survive the addition of implication:
OG(⊃)(0.5, 0.25) = 0.25, while OCL(⊃)(0, 0) = 1 and 0.25 /∈ F (1). And indeed,
G is not conservative over positive classical logic, as, for example, the classical tautology
((p ⊃ q) ⊃ p)) ⊃ p is not valid in it (as can be seen e.g. by assigning 0.5 to p and 0.25 to q).

The process described in the above examples need not start with classical logic, as can be
seen by the following example:

Example 4.8. Consider the following matrixM = 〈V ,D,O〉, defined by V = {t, f,>,⊥},
D = {t}, and O is given by:

O(∧) t f >⊥
t t f >⊥
f f f f f
> > f >⊥
⊥ ⊥ f ⊥⊥

O(∨) t f >⊥
t t t t t
f t f >⊥
> t>> >
⊥ t⊥> ⊥

O4(¬)
t f
f t
> t
⊥ t

Its conjunction and disjunction are interpreted as minimum and maximum (respectively)
over the ordering f ≤ ⊥ ≤ > ≤ t. Its {∧,∨}-fragment is a simple F -rexpansion of the
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{∧,∨}-fragment ofMKL (Example 2.3), for F (t) = {t}, F (f) = {f,⊥} and F (i) = {>}.
By Corollary 3.10, the logic it induces is conservative over the {∧,∨}-fragment of KL. It is
a different logic than KL, as it has tautologies (e.g. p∨¬p).

4.2 Rexpansion of Nmatrices
In all the examples above, rexpansions were performed on matrices. In this section, Nmatri-
ces are taken as the starting points.

Avron et al. (2012) provided cut-free sequent calculi for many paraconsistent logics of
the family called Logics of Formal Inconsistency (LFIs) (Carnielli et al. 2007, Carnielli and
Marcos 2002). This is done uniformly, by first finding a characteristic Nmatrix, and then ex-
tracting a sequent calculus from it. The underlying language is CL◦ = CL\{⊥}∪{◦}, where
◦ is a unary connective which is intended to classify a given proposition as consistent (that
is, ◦ϕ should be read as “ϕ is consistent”). We show how rexpansions can be incorporated
into this investigation in a useful way, that naturally uncovers relations between the different
Nmatrices involved, as well as their induced logics.

The most basic logic that is investigated in Avron et al. (2012) is called BK. It is proven
there to be characterized by the NmatrixMBK , which is the extension to CL◦ of the Nmatrix
(M{∧,∨,⊃}

CL )F from Example 4.5, given by:

O(¬)
t {f}
f {t,>}
> {t,>}

O(◦)
t {t,>}
f {t,>}
> {f}

WhileBK serves as a basis for the modular construction of more powerful paraconsistent
logics, its negation lacks some fundamental properties. For example, the following principles
are not valid in it:

• Double negation: (c) ¬¬ϕ ⊃ ϕ and (e) ϕ ⊃ ¬¬ϕ.

• De Morgan laws: e.g., (nr
∧) (¬ϕ∨¬ψ) ⊃ ¬(ϕ∧ψ) and (nl

∧) ¬(ϕ∧ψ) ⊃ (¬ϕ∨¬ψ).

Some basic properties that could be expected from the consistency operator are missing as
well. Examples include:

• Inconsistency: (i) ¬ ◦ ϕ ⊃ (ϕ∧¬ϕ)

• Propagation laws: (a) (◦ϕ]◦ψ) ⊃ ◦(ϕ]ψ) for ] ∈ {∧,∨,⊃}

Accordingly, a set A0 of well-known axioms for LFIs is considered (that includes, among
others, the aforementioned formulas), and is modularly incorporated into this Nmatrix: each
subset of A0 induces a simple refinement ofMBK . For example, the addition of the axiom
(c) above amounts to setting O(¬)(f) to {t} (instead of {t,>}). Further, the addition of (a)
amounts to ensuring that ϕ]ψ is given a value from {t, f} whenever both ϕ and ψ are given
values from {t, f}, for each ] ∈ {∧,∨,⊃}. The Nmatrix that corresponds to the logicBKca,
obtained by the addition of (c) and (a) to BK, turns out to be the extension to CL◦ of the
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NmatrixM from Example 4.5, obtained by including the truth table for ◦ above. We denote
the resulting Nmatrix byMBKca = 〈{t,>, f} , {t,>} ,OBKca〉.

Things become more complicated when the following two well-known axioms for LFIs
are added to A0:

(l) ¬(ϕ∧¬ϕ) ⊃ ◦ϕ and (d) ¬(¬ϕ∧ϕ) ⊃ ◦ϕ

It was shown in Avron (2007) that most of the systems in the family induced by
A0 ∪ {(l), (d)} that include at least one of {(l), (d)} cannot be characterized by a finite
Nmatrix. This means that they go beyond the reach ofMBK and its refinements.

For this reason, an infinite Nmatrix, that we denote by M∞
BK = 〈V∞BK ,D∞BK ,O∞BK〉,

is introduced, which utilizes the following three (disjoint) sets: T =
{
tji | i ≥ 0, j ≥ 0

}
,

I =
{
>ji | i ≥ 0, j ≥ 0

}
, and F = {f}. M∞

BK is then defined by V∞BK = T ∪ I ∪ F ,
D∞BK = T ∪ I, and:

O∞BK(∧)(a, b) =

{
F a ∈ F or b ∈ F
D∞BK otherwise

O∞BK(∨)(a, b) =

{
D∞BK a ∈ D∞BK or b ∈ D∞BK
F otherwise

O∞BK(¬)(a) =


F a ∈ T
D∞BK a ∈ F{
>j+1
i , tj+1

i

}
a = >ji

O∞BK(◦)(a) =

{
D∞BK a ∈ F ∪ T
F otherwise

O∞BK(⊃)(a, b) =

{
D∞BK a ∈ F or b ∈ D∞BK
F otherwise

Now,M∞
BK is a strongly preserving F -rexpansion of MBK , for

F = λx ∈ {t, f,>} .


T t

F f

I >

Moreover, every subset A of A0 induces a simple refinement of M∞
BK , that is a strongly

preserving F -rexpansion of the simple refinement of MBK that is associated with A. In
particular, without (l) and (d), we obtain an infinite characteristic Nmatrix for each sys-
tem, equivalent to the three-valued one. For example, going back to BKca, we obtain the
Nmatrix M∞

BKca = 〈V∞BK ,D∞BK ,O∞BKca〉, where O∞BKca is obtained from O∞BK by setting
O∞BKca(¬)(f) = T , and ensuring that ϕ]ψ is given a value from T ∪ F , whenever both ϕ
and ψ are given values from T ∪ F , for every ] ∈ {∧,∨,⊃}:

O∞BKca(∧)(a, b) =


F a ∈ F or b ∈ F
T a, b ∈ T
D∞BK otherwise

O∞BKca(∨)(a, b) =


T a ∈ T and b ∈ T ∪ F
T a ∈ T ∪ F and b ∈ T
F a, b ∈ F
D∞BK otherwise
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O∞BKca(¬)(a) =


F a ∈ T
T a ∈ F{
>j+1
i , tj+1

i

}
a = >ji

O∞BKca(◦)(a) =

{
D∞BK a ∈ F ∪ T
F otherwise

O∞BKca(⊃)(a, b) =


T a ∈ F and b ∈ T ∪ F
T a ∈ T ∪ F and b ∈ T
F a ∈ D∞BK and b ∈ F
D∞BK otherwise

It is routine to verify thatM∞
BKca is a strongly preserving F -rexpansionMBKca. By Theorem

3.8, `MBKca
= `M∞BKca .

When either (l) or (d) are included, however, what is obtained is again a preserving
rexpansion of the corresponding three-valued Nmatrix, but not a strongly preserving one.
For example, the refinement that is associated with (l) amounts to the requirement that ϕ∧ψ
is assigned a value from T whenever ϕ is assigned >ji and ψ is assigned either >j+1

i or tj+1
i .

Thus, the logic BKcal (obtained from BKca by the addition of (l)) is characterized by the
NmatrixM∞

BKcal = 〈V∞BK ,D∞BK ,O∞BKcal〉, which is obtained fromM∞
BKca by setting

O∞BKcal(∧) =


F a ∈ F or b ∈ F
T a, b ∈ T
T a = >ji and b ∈

{
>j+1
i , tj+1

i

}
D∞BK otherwise

M∞
BKcal is indeed a preserving F -rexpansion of MBKca, but not a strongly preserving

one. For example, F (>) ∩ O∞BKcal(∧)(>
j
i ,>

j+1
i ) = ∅, although > ∈ OBKca(∧)(>,>).

As was shown in Avron et al. (2012), the ◦-free fragment ofM∞
BKcal is characteristic for

da Costa’s historical paraconsistent logic C1 (da Costa 1974), thus providing this logic with
an effective semantics.

5 Negations for Gödel Logic
The goal of this section is to develop reasonable logics in the language CL that simultaneously
have two properties that were discussed in Section 4: paraconsistency and fuzziness.

The main problem we face in achieving the above goal is that the ordinary fuzzy logics
(like the two described in Example 2.4) are defined via matrices with a single designated
value. However, it is well known (Arieli and Avron 2015) that a logic which is induced by
such a matrix cannot be paraconsistent. Therefore none of the standard fuzzy logics is para-
consistent. In order to develop logics that are both paraconsistent and fuzzy, it is necessary to
replace the standard method of defining a fuzzy consequence relation by a weaker one. An
additional step that can be made is to take ¬ as a primitive connective, and use new semantic
interpretations for it. (In the standard fuzzy logics ¬ψ is defined as ψ ⊃ ⊥.)
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The first attempt to achieve the goal of this section according to the above lines was
made by Ertola et al. (2015). Their main idea was to follow a recent approach (Bou et al.
2009) to defining fuzzy consequence relations, that instead of preserving absolute truth (i.e.
the truth value 1), preserves degrees of truth. Given a fuzzy matrix M, which induces the
ordinary (i.e. truth-preserving) fuzzy logic L, this means that a formula ψ follows from a
set of formulas T if there is a finite subset {ϕ1, . . . , ϕn} ⊆ T such that the truth value
which is assigned to ψ by someM-valuation v is always greater than or equal to the minimal
truth value that v assigns to ϕ1, . . . , ϕn. For the standard matrices used in fuzzy logics, the
latter condition is equivalent to demanding the formula (ϕ1∧ . . .∧ϕn) ⊃ ψ to be valid in
the corresponding truth-preserving logic L (cf. Bou et al. 2009). This fact implies that L≤,
the degree-preservation logic induced byM, has the same set of valid formulas as the truth-
preserving logic L which is induced byM. This makes L≤ a natural variant of L.

A good example of the method of Ertola et al. (2015) is provided by Łukasiewicz logic
Ł (Example 2.4). The interpretation of ¬ there (where ¬ is taken as a defined connective, as
explained above) is: O(¬)(a) = 1−a. As said above, Ł itself cannot be paraconsistent. How-
ever, its degree-preserving variant Ł≤ is paraconsistent, as can be seen by any valuation v such
that v(p) = v(¬p) = 1

2
and v(q) = 1

4
. Ł≤ is also subclassical (as it is contained in Ł, which

is subclassical), and thus it is even strictly (though not boldly) paraconsistent. Moreover, it
validates some basic classical equivalences connected with negation, like De Morgan’s laws
and the double negation laws. Unfortunately, Ł≤ has some very serious drawbacks as well.
The main (but definitely not the only) one is that M.P. for ⊃ is not valid in it. (This is exem-
plified by any valuation v in which v(ϕ) = 0.5, v(ψ) = 0.4 and v(ϕ ⊃ ψ) = 0.9.) Thus ⊃
cannot be regarded in Ł≤ as an implication connective of any sort.

Is there a standard fuzzy logic L such that M.P. for ⊃ is valid in L≤? Of the three basic
fuzzy logics (Łukasiewicz logic, Gödel logic and product logic), only in Gödel logic ⊃ has
this property (see, e.g., Hájek 1998). Hence it seems better to try to use G≤ instead of Ł≤.
However, in its original language (of {∧,∨,⊃,⊥}) G≤ is identical to G. In particular, G≤

is not paraconsistent with respect to the official negation of G. To obtain a paraconsistent
variant of G, one should employ also the second idea mentioned above (and used in Ertola
et al. 2015): to augment the language with a new negation connective. A particularly appeal-
ing choice is to augment G≤ with the involutive Łukasiewicz negation. Denote the resulting
logic by G≤¬ . As a fuzzy paraconsistent logic, G≤¬ has all the nice properties of Ł≤ that were
mentioned above. On the other hand it does not have its main shortcoming, because ⊃ is
in it a true implication connective: ϕ ⊃ ψ follows in G≤¬ from T iff ψ follows in it from
T ∪ {ϕ}. What is more: G≤¬ is a conservative extension to a richer language of the basic
fuzzy logic G. However, even G≤¬ still has some serious drawbacks. Thus like Ł≤ it is not
boldly paraconsistent.7 Even more significant is the fact that (again like Ł≤) ϕ∨¬ϕ is not
valid in it. This is very important, since classical negation is determined by a combination of
two principles: the law of contradiction (that implies that ψ follows from ϕ and ¬ϕ), and the
law of excluded middle (validity of ϕ∨¬ϕ). Since we are seeking here paraconsistency, we
are giving up the first of these two principles. So in order to justify viewing ¬ as a sort of
negation (and in order to recover as much as possible from classical logic, while still being

7In both logics q∨¬q is not valid, but it follows from {p,¬p}, as the minimum value assigned to {p,¬p} is
at most 1

2 , while the value assigned to q∨¬q is at least 1
2 .
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paraconsistent), we should keep intact at least the other basic principle of classical negation:
the law of excluded middle.

In this section we use rexpansions of the Gödel matrixMG for constructing even better
paraconsistent fuzzy logics which are based on G. Before describing our method, here is the
list of properties that we would like a paraconsistent fuzzy logic L to have:

(i) L should be boldly paraconsistent;

(ii) L should be subclassical (and so, by (i), strictly paraconsistent);

(iii) L should be conservative over G;

(iv) ⊃, ∧, and ∨ should respectively be an implication, a conjunction, and a disjunction for
L. This means that for every T , ϕ, ψ, and σ we should have:

(iv).A T ∪ {ϕ} `L ψ iff T `L ϕ ⊃ ψ;

(iv).B T `L ϕ∧ψ iff T `L ϕ and T `L ψ;

(iv).C T ∪ {ϕ ∨ ψ} `L σ iff T ∪ {ϕ} `L σ and T ∪ {ψ} `L σ;

(v) L should validate ϕ∨¬ϕ;

(vi) L should validate the basic classical equivalence concerning ¬, ∨, and ∧: ϕ ≡ ¬¬ϕ,
¬(ϕ∨ψ) ≡ (¬ϕ∧¬ψ), and ¬(ϕ∧ψ) ≡ (¬ϕ∨¬ψ);

(vii) L should validate the following connections between negation and implication:

(vii).A ϕ ⊃ (¬ψ ⊃ ¬(ϕ ⊃ ψ))

(vii).B ¬(ϕ ⊃ ψ) ⊃ ¬ψ
(vii).C (ϕ ⊃ ψ) ⊃ (¬(ϕ ⊃ ψ) ⊃ ϕ)

A word of explanation is needed for the last item in this list. Ideally, we would have liked
to add to item (vi) of the list above also the classical equivalence that connects ¬ and ⊃:
¬(ϕ ⊃ ψ) ≡ (ϕ∧¬ψ). This, in turn, is equivalent to the validity of (vii).A, (vii).B and

(vii).C’ ¬(ϕ ⊃ ψ) ⊃ ϕ

Unfortunately, we cannot include (vii).C’ in our list, since together with items (iv) and (v), it
immediately entails the validity of ϕ∨(ϕ ⊃ ψ), contradicting item (iii) of our list. So instead
of (vii).C’ we include in the list a weaker version, which is valid in G≤¬ , as well as in all the
standard fuzzy logics (in which ¬ψ is taken as ψ ⊃ ⊥).

5.1 The NmatrixMG
t
¬ and Its Refinements

The method of rexpansions allows us to present a better approach to the construction of
paraconsistent conservative extensions of Gödel logic, which stays within the framework of
truth-preservation. This is achieved by relaxing the principle of truth-functionality, and the
preservation of absolute truth. The former is done by basing our construction on Nmatrices,
and the latter by replacing “completely true” with “true enough”, that is, taking a larger set
of designated truth values. Formally:
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Definition 5.1. Let 0 < t ≤ 1.MG
t is the Nmatrix for {∧,∨,⊃,⊥} obtained fromMG by:

1. Taking [t, 1] as the designated values.

2. Changing O (⊃) to O (⊃) (a, b) =

{
[t, 1] a ≤ b or b ≥ t

{b} a > b and b < t
.

MG
t
¬ is the extension ofMG

t to {∧,∨,⊃,⊥,¬}, in which O(¬)(a) = 1− a.

The next theorem shows that MG
t
¬ provides a satisfactory basis for constructing para-

consistent fuzzy logics.

Theorem 5.2. Let 0 < t ≤ 1 and letM = 〈V ,D,O〉 be a simple refinement ofMG
t
¬. Then:

1. `M satisfies (iii), (iv).B, (iv).C, and (vi) (that is, it is conservative over G, ∧ is a
conjunction, ∨ is a disjunction, and De Morgan and double negation laws are valid).8

2. If 1 ∈ O(⊃)(x, y) whenever either x = 0 or y = 1 then `M satisfies (ii).

3. If t > 1
2

then `M satisfies neither of (i), (iv), and (v).

4. If t ≤ 1
2

then `M satisfies (i) and (v).

Proof. SupposeM = 〈V ,D,O〉 andMG
t
¬ = 〈V t,Dt,Ot〉.

1. It is straightforward to verify (iv).B, (iv).C and (vi). As for (iii), one verifies thatMG
t

is a simple F -rexpansion ofMG, for F = λx ∈ [0, 1] .

{
[t, 1] x = 1

{t · x} x < 1
. By Corollary

3.10, every simple refinement ofMG
t
¬ induces a logic that is conservative over G.

2. Suppose that T 6`CL ϕ. Then there exists a classical valuation v such that v(ψ) = 1 for
every ψ ∈ T and v(ϕ) = 0. v is also anM-valuation, and thus T 6`M ϕ.

3. If v �M p and v �M ¬p, we must have v(p), 1 − v(p) ≥ t, which is impossi-
ble for t > 1

2
. Therefore, p,¬p `M q and (i) fails. Moreover, 6`M (p∧¬p) ⊃ q

(by assigning 1
2

to p and 0 to q), and thus also (iv) fails. Finally, v 6�M p∨¬p for
v(p) = v(¬p) = v(p∨¬p) = 1

2
.

4. We start with (i): First we show that ¬ is a weak negation in `M. Since 0 < t ≤ 1
2

there
exists a < t such that 1 − a ≥ t. AnyM-valuation v in which v(p) = 1 − a satisfies
p but not ¬p, and anyM-valuation v in which v(p) = a satisfies ¬p but not p. Thus
p 6`M ¬p and¬p 6`M p. Second, in anyM-valuation v in which v(p) = v(¬p) = 1

2
and

v(q) = 0, we have v �M {p,¬p} and v 6�M q. Therefore p,¬p 6`M q. Next, we show
that `M is boldly paraconsistent. Suppose 6`M ϕ and p /∈ At(ϕ). Then there exists an
M-valuation v such that v(ϕ) < t. Define a function v′ as follows: v′(ψ) = v(ψ) for
every subformula ψ of ϕ (including ϕ itself), and v′(p) = v′(¬p) = 1

2
. Now extend v′

to anM-valuation, and obtain that p,¬p 6`M ϕ. As for (v), for everyM-valuation v,
if v(ϕ) < t then v(¬ϕ) > t and vice versa, and hence `M¬ϕ∨ϕ.

8While the left-to-right direction of (iv).A may not hold, its right-to-left direction (namely M.P.) does hold.
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The proof of Theorem 5.2 actually provides another interesting result regarding the Gödel
matrix: the same logic would result if the designated values were taken to be any interval of
the form [t, 1] for any 0 < t < 1.

Proposition 5.3. Let 0 < t < 1 andMt = 〈V t,Dt,Ot〉, where V t = [0, 1], Dt = [t, 1], and
Ot = OG. Then `MG

= `Mt .

Proof. Mt is a simple refinement ofMG
t, which is a simple rexpansion ofMG. By Corol-

lary 3.9, we have `MG
= `Mt .

Other negations can be considered for G, and rexpansions (and in particular Corollary
3.9) can be used in order to prove that the result is conservative over G.

Lemma 5.4. Let A be a set of axioms in CL. If A is valid inMG
t
¬ then GA, the axiomatic

extension of G with A, is conservative over G.

Proof. Clearly, `G ⊆ `GA . Now let T ⊆ CL \ {¬} and ϕ ∈ CL \ {¬}. If T `GA ϕ, then
T `MG

t
¬
ϕ. And since `MG

t
¬

is conservative over G, we must have T `G ϕ.

Note that finding a new semantics for the augmented logic is not required, as only sound-
ness is needed for the proof.

Example 5.5. Let A be a set consisting of the axioms from property (vi) above. Then GA is
an axiomatic extension of G with a negation that satisfies the usual double negation and De
Morgan rules, and is conservative over G.

5.2 Two Particular Refinements ofMG

1
2¬

Theorem 5.2 shows that simple refinements of MG

1
2¬ enjoy many desirable properties one

would expect from a paraconsistent fuzzy logic. However, they may lack some of the prop-
erties mentioned above. In particular, the formulas in (vii) are not valid in the logic that is
induced byMG

1
2¬ itself (for example, if v(ϕ) = 0.7, v(ψ) = 0.8, and v(ϕ ⊃ ψ) = 0.7, then

v does not satisfy (vii).B). Moreover, (iv) does not hold in the simple refinementM0.7−0.8 of
MG

1
2¬ , obtained by settingO(⊃)(a, b) = 0.7 whenever b ≥ 1

2
or a = b, andO(⊃)(a, b) = 0.8

whenever b < 1
2

and a < b. Indeed, v(¬(ϕ ⊃ ϕ)) = 0.3 < 1
2

for everyM0.7−0.8-valuation
v, which means that ¬(ϕ ⊃ ϕ) `M0.7−0.8 ψ. However, the M0.7−0.8-valuation u in which
u(ϕ) = u(ψ) = 0 and u(ϕ ⊃ ϕ) = 0.7, shows that 6`M0.7−0.8 ¬(ϕ ⊃ ϕ) ⊃ ψ. Property (ii)
also does not hold in `M0.7−0.8 , as q follows from ¬(p ⊃ p) ⊃ ¬(⊥ ⊃ ¬(p ⊃ p)) in it, but
not in classical logic.

We present two particularly interesting simple refinements ofMG

1
2¬ . The first is obtained

by refining the interpretation of ⊃ back to its original interpretation inMG. The second is
a reconstruction of a well-known semi-relevant logic (Anderson and Belnap 1975, Dunn and
Restall 2002), in which all properties (i)–(vii) hold.
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5.2.1 Closest to The Original: det(MG

1
2¬)

If we refine the interpretation of ⊃ inMG

1
2¬ to its original interpretation inMG, we obtain a

matrix for a paraconsistent fuzzy logic (denoted det(MG

1
2¬)), whose {∧,∨,⊃,⊥}-fragment

differs fromMG solely in the choice of designated values. This seems as close as one can get
to adding a paraconsistent involutive negation toMG. Moreover, `

det(MG

1
2¬ )

strictly extends

`
MG

1
2¬
, and satisfies all properties listed above, except for (vii).A. The only property whose

verification is not routine is (iv).A, which we now prove.

Proposition 5.6 (Deduction Theorem for `
det(MG

1
2¬ )

). T `
det(MG

1
2¬ )
ϕ1 ⊃ ϕ2 iff

T , ϕ1 `
det(MG

1
2¬ )
ϕ2.

Proof. The fact that T `
det(MG

1
2¬ )
ϕ1 ⊃ ϕ2 implies T , ϕ1 `

det(MG

1
2¬ )
ϕ2 is easily verified us-

ing the interpretation of ⊃. For the converse, suppose T 6`
det(MG

1
2¬ )
ϕ1 ⊃ ϕ2. We prove

that T , ϕ1 6`
det(MG

1
2¬ )
ϕ2. By our assumption, there exists a det(MG

1
2¬)-valuation v such that

v(ψ) ≥ 1
2

for every ψ ∈ T , and v(ϕ1 ⊃ ϕ2) <
1
2
. Let r1 = v(ϕ1) and r2 = v(ϕ2). Then:

v(ϕ1 ⊃ ϕ2) = r2 < 1
2
, 1 − r2 > 1

2
, and r1 > r2. If r1 ≥ 1

2
then v �det(MG

1
2¬ ) ϕ1 and

v 6�det(MG

1
2¬ ) ϕ2, and thus T , ϕ1 6`

det(MG

1
2¬ )
ϕ2. Hence we assume in addition that r1 < 1

2
.

We construct an appropriate countermodel by “fixing” v so that it satisfies T and ϕ1, but
still does not satisfy ϕ2. This is done by replacing r1 by 1

2
, and then making other necessary

adjustments to keep the resulting valuation a det(MG

1
2¬)-valuation. Let

f = λx ∈ [0, 1] .


1

2r1
x x < r1

1
2

r1 ≤ x ≤ 1− r1
x−1+2r1

2r1
x > 1− r1

and let v′(ϕ) = f(v(ϕ)) for every ϕ. f is clearly an increasing function from [0, 1] to [0, 1].
Now, v′(ψ) ≥ 1

2
for every ψ ∈ T , as v(ψ) ≥ 1

2
> r1 for every such ψ. Also, v′(ϕ1) =

1
2
, and

v′(ϕ2) <
1
2
, as v(ϕ2) = r2 < r1. It is left to prove that v′ is a det(MG

1
2¬)-valuation. Suppose

det(MG

1
2¬) = 〈V ,D,O〉.

1. v′(ϕ∧ψ) = f(v(ϕ∧ψ)) = f(min {v(ϕ), v(ψ)}) = min {v′(ϕ), v′(ψ)}, as f is increas-
ing.

2. Disjunction is shown similarly.

3. If v′(ϕ) ≤ v′(ψ) then v(ϕ) ≤ v(ψ), and then v′(ϕ ⊃ ψ) = f(v(ϕ ⊃ ψ)) = f(1) = 1.
v′(ϕ ⊃ ψ) = f(v(ϕ ⊃ ψ)) = f(v(ψ)) = v′(ψ).

4. We show that v′(¬ϕ) = 1 − v′(ϕ). If v(ϕ) < r1, then v(¬ϕ) > 1 − r1. In
such a case, v′(ϕ) = 1

2r1
v(ϕ) and v′(¬ϕ) = v(¬ϕ)−1+2r1

2r1
= 2r1−v(ϕ)

2r1
. In particular,

v′(ϕ) + v′(¬ϕ) = v(ϕ)+2r1−v(ϕ)
2r1

= 1. If r1 ≤ v(ϕ) ≤ 1− r1, then v′(ϕ) = v′(¬ϕ) = 1
2
.

And if v(ϕ) > 1− r1, then this case is symmetric to the first case.
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5. v′(⊥) = f(v(⊥)) = f(0) = 0.

5.2.2 A Semi-relevant Refinement:MRM⊃

The matrix for the logicRM⊃ (Avron 1986), that we denote byMRM⊃ is a simple refinement

ofMG

1
2¬ in which implication is interpreted by: O(⊃)(a, b) =

{
{1− a} a ≤ b ≤ 1− a
{b} otherwise

.

Note that RM⊃ is shown in Avron (1986) to be equivalent to the famous Dunn-Meyer
semi-relevant logic RM (Anderson and Belnap 1975). RM⊃ satisfies all of the properties
listed above. (All properties but (iv).A and (vii) follow from Theorem 5.2. (iv).A and (vii)
were proved in Avron 1986.) In particular, it strictly extends `

MG

1
2¬
.9 Moreover, we show

that RM⊃ is unique with respect to the properties above:

Proposition 5.7. RM⊃ is the only finitary10 logic that satisfies all properties (i)–(vii) above.

Proof. Let L be such a logic. Denote byH the Hilbert calculus for G from Dummett (1959),
and by HRM⊃ the Hilbert calculus obtained from H by the addition of the axiom schemes
of (v), (vi) and (vii). Note that the only rule of inference in H and HRM⊃ is M.P. It was
shown in Avron (1986) that the set of theorems of HRM⊃ is the same as the set of formulas
that are valid in RM⊃. Since RM⊃ is finitary11 and admits the deduction theorem, it follows
that HRM⊃ is sound and complete for RM⊃, that is, ϕ is derivable from T in HRM⊃ iff
T `RM⊃ ϕ. Now, to satisfy (iii), all axiom schemes fromH must be valid in L, as otherwise,
it would not be conservative over G. To satisfy (v), (vi) and (vii), the axioms they include
must be valid in L also. For (iv), M.P. must be valid in L. Thus HRM⊃ is sound for L, and
in particular, RM⊃ is contained in L. Now, if L strictly contains RM⊃, then since M.P. is
valid inRM⊃ and L is both finitary and admits the deduction theorem (by (iv)), there exists a
formula ϕ that is valid in L but not in RM⊃. It is then a corollary of Avron (1986) that L has
a finite characteristic matrix, and in particular, so does its ¬-free fragment. Since G cannot
be finitely characterized by a matrix (Dummett 1959), L is not a conservative extension of
G, and thus (iii) fails. Therefore, we must have that L and RM⊃ are identical.

Table 1 summarizes the various logics and properties discussed in this section, and in
particular, specifies the properties that hold in each logic. In the table, “t” means that the
property holds, and “f” means that it does not. The column in the middle (titled “Simple
Refinements of MG

1
2¬”) includes some cells with the symbol “>”. For the corresponding

properties, the meaning is that some simple refinements ofMG

1
2¬ satisfy them, and some do

9The axiomatic extension of RM⊃ with (vii).C’, that we did not include in our list of requirements, is also
considered in Avron (1986), and is proven to be equivalent to the 3-valued logic PAC (Arieli and Avron 2015),
that is also known as RM3.

10A logic L is called finitary if the compactness theorem holds for it, that is: T `L ϕ iff Γ `L ϕ for some
finite Γ ⊆ T .

11This follows from the equivalence between RM⊃ and RM shown in Avron (1986), together with the fact
that RM itself is finitary. The latter follows from the (strong) soundness and completeness theorem that was
proven for RM in Avron (2016).
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not. In contrast, property (iii) is not relevant for Ł≤, as it does not include any new connective.
Thus it is marked with “⊥”.

Table 1: Summary of Properties

Property Ł≤ G≤ Simple
Refinements

ofMG

1
2¬

det(MG

1
2¬) RM⊃

(i) f f t t t
(ii) t t > t t
(iii) ⊥ t t t t
(iv) f t > t t
(v) f f t t t
(vi) t t t t t
(vii) t f > f t

5.3 What is the Cardinality of
{
`MG

t
¬
| 0 < t ≤ 1

}
?

We conclude by investigating the relation between the different logics that are induced by the
NmatricesMG

t
¬ (see Definition 5.1) themselves. These logics are minimal in the family of

logics that are studied in Theorem 5.2, as different refinements of them may induce different
extensions.

The main result of this concluding section can be summarized as follows:

1. All the NmatricesMG
t
¬ for 0 < t ≤ 1

2
induce the same logic;

2. There are exactly two logics that are induced for t > 1
2
.

3. All together, the answer to the above question is: three.12

The rest of this section is devoted to the proof of this result. We start by introducing
the notion of 〈t1, t2〉-expanding functions in Definition 5.8, and prove that they characterize
all strongly preserving rexpansions between elements of

{
MG

t
¬ | 0 < t ≤ 1

}
in Lemma 5.9.

This fact is then used in Lemma 5.10, where the logics that are induced by these Nmatrices
are identified, thus obtaining the aforementioned result in Corollary 5.11.

Definition 5.8. Let 0 < t1 < t2 ≤ 1. An expansion function F : [0, 1]→P ([0, 1]) is called
〈t1, t2〉-expanding if:

(1)
⋃
x∈[0,1] F (x) = [0, 1] and

⋃
x∈[t2,1] F (x) = [t1, 1].

(2) F is increasing: if x < y then x′ < y′ for every x′ ∈ F (x) and y′ ∈ F (y).
12We stress that the logics that are considered here are those that are induced by the NmatricesMG

t
¬ them-

selves, not their refinements.
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(3) F (1 − x) = {1− y | y ∈ F (x)} for every x ∈ [0, 1] (that is, y ∈ F (x) iff
1− y ∈ F (1− x)).

(4) F (x) is a singleton whenever x < t2 (and so because of (3), also when x > 1− t2).

Lemma 5.9. Let F : [0, 1]→P ([0, 1]) and 0 < t1 < t2 ≤ 1. Then the following statements
are equivalent:

1. F is 〈t1, t2〉-expanding.

2. MG
t1
¬ is an F -rexpansion ofMG

t2
¬ .

3. MG
t1
¬ is a strongly preserving F -rexpansion ofMG

t2
¬ .

Proof. Suppose MG
t1
¬ = 〈[0, 1] , [t1, 1] ,O1〉, MG

t2
¬ = 〈[0, 1] , [t2, 1] ,O2〉 and

(MG
t2
¬ )F = 〈VF ,DF ,OF 〉.

(1⇒ 3) : Let us calculate (MG
t2
¬ )F : VF = [0, 1] andDF = D1 = [t1, 1], because of property

(1). As for OF : Using property (2), we have that OF (∧)(x, y) = F (min
{
F̃ [x], F̃ [y]

}
) and

OF (∨)(x, y) = F (max
{
F̃ [x], F̃ [y]

}
). By property (3), we haveOF (¬)(x) = F (1−F̃ [x]).

Combining properties (2) and (4) gives us OF (⊃)(x, y) =

{
[t1, 1] x ≤ y or y ≥ t1

{y} x > y and y < t1
.

Finally, OF (⊥) = F (0).
We show thatMG

t1
¬ is a (simple) refinement of (MG

t2
¬ )F :

1. O1(∧)(x, y) ⊆ OF (∧)(x, y): Assume w.l.g. that x ≤ y.
Since F is increasing, F̃ [x] ≤ F̃ [y], which means that
O1(∧)(x, y) = {x} ⊆ F (F̃ [x]) = F (min

{
F̃ [x], F̃ [y]

}
) = OF (∧)(x, y).

2. O1(∨)(x, y) ⊆ OF (∨)(x, y): this is shown similarly.

3. O1(¬)(x) ⊆ OF (¬)(x): using property (3), we have that
O1(¬)(x) = {1− x} ⊆

{
1− y | y ∈ F (F̃ [x])

}
= F (1− F̃ [x]) = OF (¬)(x).

4. O1(⊃)(x, y) ⊆ OF (⊃)(x, y): If x ≤ y or y ∈ [t1, 1] then
O1(⊃)(x, y) = [t1, 1] = OF (⊃)(x, y). Otherwise, O1(⊃)(x, y) = {y}, which
conforms with the calculation of OF (⊃) above.

5. O1(⊥) ⊆ OF (⊥): We show that 0 ∈ F (0) (= OF (⊥)). Since Im(F ) = [0, 1],
0 ∈ F (x) for some x. Assume for contradiction that x > 0. Since F is an expansion
function, there exists some y ∈ F (0). By property (2), 0 > y, which is a contradiction.

Next, we prove that MG
t1
¬ is a strongly preserving F -rexpansion of MG

t2
¬ . Clearly, it is

preserving (as it is simple). The interpretations of all the connectives in MG
t1
¬ are de-

terministic, with the exception of ⊃. Therefore, the only thing that needs to be verified
is that F (z) ∩ O1(⊃)(x, y) 6= ∅ whenever z ∈ O2(⊃)(F̃ [x], F̃ [y]) and either x ≤ y or
y ∈ [t1, 1]. Let z ∈ O2(⊃)(F̃ [x], F̃ [y]). Since x ≤ y or y ∈ [t1, 1], we have F̃ [x] ≤ F̃ [y]
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or F̃ [y] ∈ [t2, 1]. Therefore, z ∈ [t2, 1], and so F (z) ⊆ [t1, 1]. Since in this case,
O1(⊃)(x, y) = [t1, 1], we have F (z) ∩ O1(⊃)(x, y) = F (z) 6= ∅.
(3⇒ 2) : Clearly, every strongly preserving F -rexpansion is an F -rexpansion.
(2⇒ 1) : Suppose MG

t1
¬ is an F -rexpansion of MG

t2
¬ . We prove that F is 〈t1, t2〉-

expanding, by verifying the four properties:

1. The correctness of property (1) is trivial.

2. If F is not increasing, then there exist x, x′, y, y′ ∈ [0, 1] such that x < y, x′ ∈ F (x),
y′ ∈ F (y) and x′ ≥ y′. Since F is an expansion function, x′ 6= y′, thus x′ > y′. Now,
sinceMG

t1
¬ is an F -rexpansion ofMG

t2
¬ , y′ ∈ O1(∧)(x′, y′) ⊆ OF (∧)(x′, y′) = F (x).

This is impossible, as x 6= y, y′ ∈ F (y), and F is a rexpansion function.

3. Let x ∈ [0, 1]. We prove that F (1 − x) = {1− y | y ∈ F (x)}.
For every z ∈ F (1− x), since MG

t1
¬ is an F -rexpansion of MG

t2
¬ ,

1 − z ∈ O1(¬)(z) ⊆
⋃
z′∈O2(¬)(1−x) F (z

′) = F (x), and therefore
z ∈ {1− y | y ∈ F (x)}. And for every z ∈ {1− y | y ∈ F (x)}, 1 − z ∈ F (x), and
therefore z ∈ O1(¬)(1− z) ⊆

⋃
z′∈O2(¬)(x) F (z

′) = F (1− x).

4. If F (x) is not a singleton for some x < t2, then let y1, y2 ∈ F (x) such that y1 < y2.
In particular, y1, y2 < t1. Therefore, since MG

t1
¬ is an F -rexpansion of MG

t2
¬ ,

y1 ∈ O1(⊃)(y2, y1) ⊆
⋃
z∈O2(⊃)(x,x) F (z) = [t1, 1], which is a contradiction.

Now we apply Lemma 5.9 and Theorem 3.8 to the matricesMG
t
¬ for various values of t.

Lemma 5.10.

1. `MG
t
¬
= `

MG

1
2¬

for every 0 < t < 1
2
.

2. `MG
t1¬
= `MG

t2¬
for every 1

2
< t1 < t2 < 1.

3. `MG
t
¬
( `MG

1
¬

for every 1
2
< t < 1.

4. `
MG

1
2¬
6⊆ `MG

t
¬

and `MG
t
¬
6⊆ `

MG

1
2¬

for every 1
2
< t ≤ 1.

Proof.

1. We construct an expansion function F that maps [0, 1
2
) to [0, t) and (1

2
, 1] to (1 − t, 1].

The remaining value 1
2

is duplicated to the remaining segment [t, 1− t]. Namely:

F = λx ∈ [0, 1] .


{2tx} x < 1

2

[t, 1− t] x = 1
2

{2tx+ 1− 2t} x > 1
2

F : [0, 1]→P ([0, 1]) since t < 1
2
. By Lemma 5.9 and Theorem 3.8, it

suffices to prove that F is
〈
t, 1

2

〉
-expanding. F is clearly an increasing ex-

pansion function with
⋃
Im(F ) = [0, 1] and

⋃
x∈[ 12 ,1]

F (x) = [t, 1]. To
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see that property (3) is satisfied, we distinguish three cases: If x < 1
2
,

1 − x > 1
2
, and then F (1 − x) = {1− 2tx} = {1− y | y ∈ F (x)}.

If x = 1
2
, 1 − x = 1

2
and then F (1 − x) = [t, 1− t]. Note that

for every y, y ∈ [t, 1− t] iff 1 − y ∈ [t, 1− t]. Hence in this case,
F (1 − x) = {1− y | y ∈ [t, 1− t]} = {1− y | y ∈ F (x)}. If x > 1

2
, 1 − x < 1

2
, and

then F (1− x) = {2t(1− x)} = {1− y | y ∈ {2tx+ 1− 2t}} = {1− y | y ∈ F (x)}.
Finally, property (4) clearly holds, as F (x) is a singleton whenever x < 1

2
.

2. We construct a rexpansion function that maps [t2, 1] to [t1, 1], [0, 1− t2) to [0, 1− t1),
and [1− t2, t2) to [1− t1, t1). Consider the following function:

f = λx ∈ [0, 1] .


1−t1
1−t2 · x x < 1− t2
2t1−1
2t2−1 · x+

t2−t1
2t2−1 1− t2 ≤ x < t2

1−t1
1−t2 · x+

t1−t2
1−t2 x ≥ t2

Let F = λx ∈ [0, 1] . {f(x)}. By Lemma 5.9 and Theorem 3.8, it suf-
fices to show that F is 〈t1, t2〉-expanding. F is clearly an increasing expan-
sion function,

⋃
Im(F ) = [0, 1], and F (x) is always a singleton. In addition,⋃

x∈[t2,1] F (x) = f([t2, 1]) = [t1, 1]. Finally, F (1 − x) = {1− y | y ∈ F (x)}, as
f(1− x) = 1− f(x) for every x ∈ [0, 1].

3. To show that `MG
t
¬
⊆ `MG

1
¬
, we prove that for everyMG

1
¬-valuation v there exists

a MG
t
¬-valuation v′ such that for every formula ϕ, v �MG

1
¬ ϕ iff v′ �MG

t
¬ ϕ.13 Let

v be aMG
1
¬-valuation. We construct v′ by mapping the values that are strictly below

1 to being strictly below t, in a way that conforms with the interpretation of ¬. By
making this mapping an increasing one, we conform with the interpretation of the other
connectives. This is defined as follows: Let f be defined by:

f = λx ∈ [0, 1] .


0 x = 0

(2t− 1)x+ 1− t 0 < x < 1

1 x = 1

f : [0, 1]→ [0, 1] is strongly increasing and f(1− x) = 1− f(x) for every x ∈ [0, 1].

Define v′(ψ) = f(v(ψ)) for every ψ. First, we prove that v′ is aMG
t
¬-valuation: For

∧, we have v′(ϕ∧ψ) = f(v(ϕ∧ψ)) = f(min {v(ϕ), v(ψ)}) = min {v′(ϕ), v′(ψ)},
as f is increasing. ∨ is shown similarly. In addition,
v′(¬ψ) = f(v(¬ψ)) = f(1 − v(ψ)) = 1 − f(v(ψ)) = 1 − v′(ψ) and
v′(⊥) = f(v(⊥)) = f(0) = 0. Next, we show that the implication constraints
are satisfied: If v′(ϕ) ≤ v′(ψ), then since f is increasing, v(ϕ) ≤ v(ψ). Since v is
a MG

1
¬-valuation, v(ϕ ⊃ ψ) = 1, and hence v′(ϕ ⊃ ψ) = 1 > t. If v′(ψ) ≥ t,

then by the definition of f , v′(ψ) = 1, which means that v(ψ) = 1, and again,
v′(ϕ ⊃ ψ) = 1 > t. Finally, if v′(ϕ) > v′(ψ) and v′(ψ) < t then we have v(ϕ) > v(ψ)

13The proof of this item does not use rexpansions: by Proposition 3.4,MG
1
¬ is not a rexpansion ofMG

t
¬,

as there is no function f : [0, 1]→ [0, 1] satisfying x ∈ {1} iff f(x) ∈ [t, 1].
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and v(ψ) < 1. Since v is a MG
1
¬-valuation, v(ϕ ⊃ ψ) = v(ψ) < 1, and hence

v′(ϕ ⊃ ψ) = f(v(ψ)) = v′(ψ). Second, we prove that v �MG
1
¬ ψ iff v′ �MG

t
¬ ψ, for

every formula ψ. If v �MG
1
¬ ψ then v(ψ) = 1. In this case, v′(ψ) = 1 as well, and in

particular, v′ �MG
t
¬ ψ. In addition, if v′ �MG

t
¬ ψ, then v′(ψ) ≥ t, that is, f(v(ψ)) ≥ t.

By f ’s definition, we must have v′(ψ) = f(v(ψ)) = 1, which means that v(ψ) = 1.
Therefore, v �MG

1
¬ ψ.

To show that `MG
t
¬
6= `MG

1
¬
, note that p ⊃ q `MG

1
¬
¬q ⊃ ¬p, as for every

MG
1
¬-valuation v such that v(p ⊃ q) = 1, we must have that v(p) ≤ v(q).

In particular, v(¬q) ≤ v(¬p), and thus v(¬q ⊃ ¬p) = 1. How-
ever, p ⊃ q 6`MG

t
¬
¬q ⊃ ¬p, as can be seen by the following MG

t
¬-valuation:

v(p) = 1, v(q) = t, v(¬p) = 0, v(¬q) = 1− t, v(p ⊃ q) = t, v(¬q ⊃ ¬p) = 0.

4. By Theorem 5.2, we have that p,¬p `MG
t
¬
q but p,¬p 6`

MG

1
2¬
q, and `

MG

1
2¬
¬ϕ∨ϕ but

6`MG
t
¬
¬ϕ∨ϕ.

Corollary 5.11.
{
`MG

t
¬
| 0 < t ≤ 1

}
=

{
`
MG

1
2¬
,`
MG

3
4¬
,`MG

1
¬

}
, and its cardinality is 3.

6 Conclusion and Further Research
We have investigated rexpansions – compositions of expansions and refinements on Nmatri-
ces. Properties of this operation were proved, as well as their effects on consequence rela-
tions. Examples of applications of these results were also given, including the construction of
conservative extensions for many logics from the literature, and in particular, paraconsistent
conservative extensions of Gödel logic, that were investigated further.

Theorem 3.8 provides a sufficient condition for two Nmatrices to induce the same con-
sequence relation. However, Example 4.4 shows that this condition is not necessary, since
the {∧,∨}-fragments of MLP and MKL induce the same logic, but neither is a strongly
preserving rexpansion of the other. An interesting direction for further research is to charac-
terize general cases in which the condition it suggests is also necessary. An intermediate goal
in this direction is to further generalize the sufficient condition, so that it uniformly covers
examples that are currently left out (likeMLP andMKL). Future work would also include
more applications of rexpansions, in the spirit of Sections 4 and 5. Such applications can
simplify known results from the literature of non-classical logics, and also the construction
of new conservative extensions with certain properties. We have started to advance this line
of work in Chapter 6 of Zohar (2018), where rexpansions are used to describe the modular
construction of proof systems for non-classical logics, and plan to describe other modular
constructions via rexpansions. Section 5 should be extended beyond Gödel logic, to provide
a general method for the construction of paraconsistent fuzzy logics, based on rexpansions.
Among the logics that are induced by refinements ofMG

t
¬, only RM⊃ has a known axioma-

tization. We leave it for future research to axiomatize other such logics, and in particular, the
logic that is induced byMG

1
2¬ itself. The decidability and complexity of these logics is also

left for further research.
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