
1

Online Detection of E�ectively Callback Free Objects with
Applications to Smart Contracts

SHELLY GROSSMAN, Tel Aviv University
ITTAI ABRAHAM, VMware Research
GUY GOLAN-GUETA, VMware Research
YAN MICHALEVSKY, Stanford University
NOAM RINETZKY, Tel Aviv University
MOOLY SAGIV, Tel Aviv University and VMware Research
YONI ZOHAR, Tel Aviv University

Callbacks are essential in many programming environments, but drastically complicate program understanding and reasoning
because they allow to mutate object’s local states by external objects in unexpected fashions, thus breaking modularity. The
famous DAO bug in the cryptocurrency framework Ethereum, employed callbacks to steal $150M. We de�ne the notion of
E�ectively Callback Free (ECF) objects in order to allow callbacks without preventing modular reasoning.

An object is ECF in a given execution trace if there exists an equivalent execution trace without callbacks to this object.
An object is ECF if it is ECF in every possible execution trace. We study the decidability of dynamically checking ECF in a
given execution trace and statically checking if an object is ECF. We also show that dynamically checking ECF in Ethereum
is feasible and can be done online. By running the history of all execution traces in Ethereum, we were able to verify that
virtually all existing contract executions, excluding these of the DAO or of contracts with similar known vulnerabilities, are
ECF. Finally, we show that ECF, whether it is veri�ed dynamically or statically, enables modular reasoning about objects with
encapsulated state.

CCS Concepts: •Software and its engineering→ General programming languages; •Social and professional topics
→ History of programming languages;

Additional Key Words and Phrases: keyword1, keyword2, keyword3

ACM Reference format:
Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017.
Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts. PACM Progr. Lang. 1, 1, Article 1
(January 2017), 28 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The theme of this paper is enabling modular reasoning about the correctness of objects with encapsulated state.
This is inspired by platforms like Ethereum (Wood 2016) that facilitate execution of Smart Contracts (Szabo 1997)
on top of a blockchain-based distributed ledger (Nakamoto 2008). A key property in Ethereum Smart Contracts is
the lack of global mutable shared state, in contrast to common standard programming environments such as C
and Java. A smart contract is analogous to an object with encapsulated state.

However, the Ethereum blockchain, and many other dynamic environments, implement event-driven program-
ming using callbacks. These callbacks are necessary for functionality, but can compromise security. For example,
the famous bug in the DAO contract exploited callbacks to steal $150M (Daian 2016).

with paper note.
2017. 2475-1421/2017/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:2 • Shelly Grossman et al.

Indeed, callbacks may break modularity which is essential for good programming style and extendibility. In the
context of Blockchain, modularity is even more important since contracts are contributed by di�erent sources,
some of which may be malicious. Accordingly, the bug in the DAO allowed an adversarially crafted contract to
mutate the DAO’s state by calling back to it.

The DAO contract, that implemented a crowd-funding platform, was attacked by a ‘callback loop-hole’ (to
be precisely described below). This attack, the recovery from which required a controversial hard-fork1 of the
blockchain, exhibits a vulnerability that is peculiar to decentralized consensus systems, like Ethereum: in such
systems, a buggy contract cannot be updated or �xed (except for extreme measures like hard-forking), which
makes validation and veri�cation of smart contracts of even greater importance for this application.

E�ectively Callback-Free Objects. We identify a natural generic correctness criteria for objects which enables
modular reasoning in environments with local-only mutable states, and expect most correct objects to satisfy
this requirement. Informally, if an object o calls another object o′, and the execution of o′ calls o again, this
second call to o is de�ned as a callback. The main idea is to allow callbacks in o only when they cannot a�ect the
serial non-interruptible behavior of o. Thus, such callbacks can be considered harmless and do not a�ect the set
of local reachable states of the object o. In particular, the behavior of such objects is independent of the client
environments and of other objects. It is possible to reproduce all behaviors of the object using a most general
client and without analyzing external objects.

We say that an execution isDynamically E�ectively Callback Free (dECF) when there exists “an equivalent”
execution without callbacks which starts in the same state and reaches the same �nal state. By equivalent, we
refer to the behavior of a particular object as an external observer may perceive. We say that an object is
Statically E�ectively Callback Free (sECF) when all its possible executions are dynamically ECF. We do not
distinguish between dynamic and static ECF when the context is clear. Both de�nitions are useful. Dynamic
ECF in particular is applicable to the blockchain environment, since static ECF is undecidable in the general case.
We ran experiments on Ethereum, proving that checking dynamic ECF is inexpensive, and thus can be done
e�ciently in-vivo. This, combined with Ethereum’s built-in rollback feature, would have allowed to prevent the
DAO bug from occurring, without invalidating legitimate executions. (In fact, we found just one such legitimate
non-ECF contract, discussed in Section 8).

We show that the vulnerable DAO contract is non-ECF while no non-ECF executions are detected after
applying the suggested corrections to it. Notice that the ECF notion is similar to the notion of atomic transactions
in concurrent systems. Indeed, despite the fact that contract languages do not usually support concurrency,
modularity and callbacks require similar kind of reasoning.

The ECF property’s usefulness is not limited to bug-�nding; once ECF is established, it can be served to
simplify reasoning on the object in isolation of other objects: We show that the set of reachable local states in ECF
objects can be determined without considering the code of other objects and thus enable modular reasoning. This
modular reasoning can be performed automatically using abstract interpretation e.g., as suggested in Logozzo
(2009) or by using deductive veri�cation which is supported by Dafny (Leino 2010). We demonstrate this by
verifying an interesting invariant of the DAO contract. (See Section 2).

Online Detection of ECF executions. A naïve detection of dECF may be costly because of the need to enumerate
subexecution traces. Therefore, we develop an e�ective polynomial online algorithm for checking if an execution
is ECF. The main idea is to detect con�icting memory accesses and utilize commutativity in an e�ective manner.
We integrated the algorithm into the Ethereum Virtual Machine (EVM) (Wood 2016). We ran the algorithm on all
executions kept in the Ethereum blockchain until 23 June 2017, and demonstrate that: (i) the vulnerable DAO
contract and other buggy contracts are non-ECF. (ii) very few correct contracts are non-ECF, (iii) callbacks are

1Which can be thought of as taking an agreed history of transactions, and manually change it.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:3

not esoteric and are used in many contracts, and (iv) the runtime overhead of our implementation is negligible
and thus can be integrated as an online check.

This online detection can thus be used to prevent incidents like the theft from the DAO at the cost of slightly
more restricted form of programming.

As far as we are aware, our tool is also the most precise and e�ective tool for �nding such vulnerable behaviors
due to callbacks. We compared it to the Oyente tool (Luu et al. 2016; Melonport 2017), by giving it both ECF
and non-ECF contracts based on the DAO object (Figure 1). We found that it has false positives, as it detects a
‘reentrancy bug’ (the common name of the DAO vulnerability in the blockchain community) for any one of the
�xes that render our example contract ECF.

Decidability of sECF for objects. We also consider the problem of checking sECF algorithmically. Obviously, since
modern contract languages, such as Solidity (Ethereum Foundation 2017b), support Turing complete languages,
checking if a contract is ECF is undecidable.

We show that checking that a contract is sECF in a language with �nite local states is decidable. This is
interesting since many contracts only use small local states or maps with uniform data independent accesses.
Technically, this result is non-trivial since the nesting of contract calls is unbounded, and since ECF requires
reasoning about permutations of nested invocations. The reason for the decidability is that non-ECF executions
which occur in high depth of nesting must also occur in depth 2.

Main Results. Our results can be summarized as follows:
(1) We de�ne a general safety property, called ECF, for objects (sECF) and executions (dECF). Our de�nition

is inspired by the Blockchain environment but it may also be useful for other environments with
encapsulated states, such as Microservices.

(2) We show that objects with encapsulated data, under the assumption that they satisfy ECF, can be veri�ed
using modular reasoning in a sound manner.

(3) A stronger notion of ECF, based on con�ict-equivalence, enabling e�cient veri�cation of dECF in real-life
environments, and for which sECF is decidable for programs with �nite state and unbounded stack.

(4) A polynomial time and space algorithm for online checking of dECF and prototype implementation of it
as a dynamic monitor of dECF, built on top of an Ethereum client.

(5) Evaluation of the algorithm on the entire history of the Ethereum blockchain (both main and ‘Classic’
forks, see Section 8). The monitor detects true bad executions (the infamous DAO and others) as non-ECF,
and has near-zero false positives. Based on this result, it can be inferred that, in practice, most non-ECF
executions correspond to bad executions. We also show that our monitor has a very small runtime
overhead. By retroactively running the dECF monitor on the available history, we were able to prove its
e�ectiveness in preventing the exploitation of the vulnerability in the DAO, and even more importantly,
the feasibility of leveraging it in other applications, e.g., simplifying modular contract veri�cation.

2 OVERVIEW
This section provides some necessary background and an informal overview of our approach.

2.1 The DAO Bug
Figure 1 shows pseudocode illustrating the vulnerability in the DAO 2. The contract stores a credit for each
object, as well as the current balance.3 The credit represents individual investments per object. To align with
2DAO is acronym for decentralized autonomous organization, and its purpose is to facilitate voting on proposals and on investments by the
owners of the DAO.
3In programming languages like Solidity, balance is a prede�ned �eld of every contract, maintained by the runtime system. We write it
explicitly for clarity.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 • Shelly Grossman et al.

Object DAO
Map<Object, int> credit
int balance
Invariant (sum o: credit[o]) = balance

Method withdrawAll(Object o)
1: oCredit = credit[o]
2: if (oCredit > 0)

// 2.5: credit[o] = 0
3: this.balance -= oCredit
4: o.pay(oCredit)
5: credit[o] = 0

Method deposit(Object o, int amount)
6: credit[o] += amount
7: this.balance += amount

Fig. 1. A contract illustrating the DAO bug. The representation invariant may be violated by callbacks from malicious
contracts. Line 2.5 fixes the bug.

the Ethereum terminology, the unit of currency represented by credit and balance is called ether. The contract
maintains a representation invariant, where the sum of the credits equals to the current balance, i.e.,

Σo∈dom(credit)credit[o] = balance (1)
The contract o�ers two methods for manipulating states: deposit for depositing money and withdrawAll for

withdrawing all available funds of a speci�c object.

Object GoodClient
Object Dao, int balance
Method init(Object dao)

1: this.Dao = dao

Method pay(int profit)
2: this.balance += profit

Method depositCredit(Object dao, int amount)
3: Dao.deposit(this, amount)

Method getCredit(Object dao)
4: Dao.withdrawAll(this)

Fig. 2. An innocent client using the DAO object without vio-
lating its representation invariant.

Object Attacker
Object Dao, bool stop, int balance

Method init(Object dao)
1: Dao = dao
2: stop = false

Method pay(int profit)
3: this.balance += profit
4: if (!stop)

5: stop = true
6: Dao.withdrawAll(this)

7: stop = false

Fig. 3. A snippet of an Attacker object. It is stealing money
from the DAO object by violating its representation invariant.

Figure 2 shows a simple client illustrating the expected usages of the DAO object. Figure 3 shows a simple
attack on the DAO object. The code callbacks to the DAO method withdrawAll to steal money. Figure 4 depicts a
concrete trace of attacking the DAO assuming that the DAO’s initial balance is 200 ether. We reached that state

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:5

D.c[G] = 100
D.c[A] = 100
D.b = 200
A.b = 0
A.s = false

w {

1
// read D.c[A] = 100
D.b = 100

p {

2
// A.b = 100
A.s = true

w {

3
// read D.c[A] = 100
D.b = 0

p {

4
// A.b = 200
A.s = true

p }

5

tt
D.c[A] = 0

w }

6
// A.s = false

p }

7
// D.c[A] = 0

w }

8
//

D.c[G] = 100
D.c[A] = 0
D.b = 0
A.b = 200
A.s = false

Fig. 4. A trace of calls illustrating an a�ack on the DAO. Nodes are labeled by local changed states and edges are labeled
by actions and by the corresponding order in the original trace. D denotes the DAO, G denotes a GoodClient and A is an
Attacker object. w denotes the withdrawAll operation and p denotes the pay operation. b is a shorthand for balance, c is
a shorthand for credit, and s is a shorthand for stop.

D.c[G] = 100
D.c[A] = 100
D.b = 200
A.b = 0
A.s = false

w {

1
// D.c[A] = 0
D.b = 100

p {

2
// A.b = 100
A.s = true

w {

3
// read D.c[A] = 0

w }

4
// A.s = false

p }

5
// w }

6
//

D.c[G] = 100
D.c[A] = 0
D.b = 100
A.b = 100
A.s = false

D.c[G] = 100
D.c[A] = 100
D.b = 200
A.b = 0
A.s = false

w {

1
// D.c[A] = 0
D.b = 100

w }

6
// p {

2
// A.b = 100
A.s = true

w {

3
// read D.c[A] = 0

w }

4
// A.s = false

p }

5
//

D.c[G] = 100
D.c[A] = 0
D.b = 100
A.b = 100
A.s = false

Fig. 5. Two traces of calls illustrating the original and callback-free versions of a failed a�ack on the ECF version of the DAO.
Nodes are labeled by local changed states and edges are labeled by actions and by the corresponding order in the original
trace. D denotes the DAO, G denotes a GoodClient and A is an Attacker object. w denotes the withdrawAll operation and
p denotes the pay operation. b is a shorthand for balance, c is a shorthand for credit, and s is a shorthand for stop.

after a GoodClient object and an Attacker object deposited each 100 ether. In the �rst call to withdrawAll, the
attacker will get the amount he invested originally in the attack (100 ether). The DAO then calls to the Attacker
object’s pay method, which increases the attacker’s balance by 100 ether, and calls withdrawAll again. The pay
method is designed to call withdrawAll at most once in a trace by updating the stop variable, and avoid in�nite
recursion.4 The code of withdrawAll in the second run will transfer an additional 100 ether from the DAO object

4For clarity, we avoid technical discussion of the semantics of executions and exceptions in Ethereum/Solidity, to allow us to focus on the
ECF property.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 • Shelly Grossman et al.

to the attacker. In the end of the trace, the DAO was depleted of its funds completely, and the attacker managed to
illegitimately receive the funds that belonged to GoodClient.

2.2 E�ectively Callback Free Contracts
In principle, semi-automatic program veri�cation and abstract interpretation can be used to verify the absence of
malicious attacks like the one in the Attacker object. However, this requires reasoning about the whole code5.
This paper advocates a di�erent solution by exploring modularity. The idea is to require stronger conditions
from the contracts which prevent the need to reason about other objects at all.

Speci�cally, we de�ne the notion of e�ectively callback free (ECF) objects. Our de�nition is inspired by
Blockchain contracts but is applicable to enforce modularity in other environments with local states.

We say that an execution of an object with an initial state s0 and �nal state s is Dynamically E�ectively
Callback Free (dECF) when there exists “an equivalent” execution of the contract without callbacks which starts
in the same initial state s0 and reaches the �nal state s . We say that an object is Statically E�ectively Callback
Free (sECF) when all its possible executions are e�ectively callback free.

The DAO object is not ECF. For example, the trace depicted in Figure 4 cannot be reproduced without callbacks
to reach the same state. In contrast, the �x to the DAO object by uncommenting line 2.5 and deleting line 5 makes
the contract ECF. This contract is now ECF since all its traces can be reordered to avoid callbacks. For example,
Figure 5 shows a trace of an attempt to perform an attack similar to the attack in Figure 4 and its corresponding
reordering that avoids callbacks. Note, that in the reordered trace, withdrawAll did not execute line 4. Omitting
calls is allowed for the sake of proving an execution is ECF, as our goal is to be able to reproduce, assuming there
are no callbacks, the same behaviors that are feasible with callbacks.

2.3 Online ECF Detection
It is possible to check in a naïve way that an execution is ECF by recording the trace and checking the ECF
property at the end of the execution, by enumerating all possible permutations. However, this is costly both in
space and in time, since the number of permutations grows exponentially with the size of the trace. In particular,
it is hard to see if such a solution can be integrated into a virtual machine.

In order to obtain a feasible online algorithm, we check a stronger requirement than ECF, which is inspired
by con�ict serializability of database transactions. The main idea is to explore commutativity of operations for
e�cient online checking of a correctness condition which guarantees that the callback-free trace results in the
same state as the original trace.

Consider a trace π with potential callbacks and a reordered trace π ′ which does not include callbacks. π ′ is
not necessarily feasible, unless we permit to ignore external calls by objects and force the clients to perform
these calls instead. We say that π and π ′ are con�ict equivalent if every pair of con�icting read/write operations
in π appear in the same order in π ′. Operations con�ict when they are not commutative. Commutativity is
mechanically checked by comparing the read and the write sets of operations, and forbidding intersection of
read/write con�icts. For example, in Figure 4, the read operation of D.c[A] in the withdrawAll action labeled
1 (lines 1-3) does not commute with the write operation of D.c[A] in the withdrawAll action labeled 5 (line
5). However, in Figure 5, depicting a trace of the ECF version of DAO, the operations in the withdrawAll action
labeled 3 (lines 1-2) commute with the operations in the withdrawAll action labeled 6, which has an empty read
and write sets (no code was executed). The information regarding commutativity of di�erent subtraces is used to
build a constraint graph on the ordering of object invocations. When this constraint graph contains no cycles, it

5In the case of Ethereum, it is in fact impossible to reason about the whole code, as new contracts can be added at any time, and these
contracts could interact with the contract being checked.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:7

is possible to perform topological sort to �nd a concrete callback-free trace. A full description of the algorithm
and its complexity is available in Section 7.

We integrated this algorithm into the EVM (the Ethereum Virtual Machine) and applied it to all available
executions in the blockchain. The results are summarized in Section 8. They indicate that the vast majority
of non-ECF executions come from erroneous contracts. They also indicate that the runtime overhead of our
instrumentation is neglectable. From these encouraging results, we concluded that if the ECF check was part
of the Ethereum protocol, it could have prevented the vulnerability in the DAO from being exploited. Its clearly
bene�ciary for an environment like Ethereum, which handles sensitive �nancial transactions, and in which code
is virtually impossible to upgrade.

2.4 Deciding ECF Contracts
We also investigated the possibility to verify at compile-time that a contract is ECF (the sECF property). In general,
this is undecidable, since languages such as Solidity, a high-level front-end to EVM bytecode, are Turing-complete.
However, we show that for contracts with �nite local states, checking ECF is decidable. This result is non-trivial
as the model allows for an unbounded stack length. The decision procedure devised provides insight on additional
techniques for checking ECF in practice.

2.5 Verifying Properties of ECF
In the paper, we show that reasoning about ECF contracts can be performed in a modular fashion. The local
reachable states of an ECF contract are only a�ected by the code of the contract, and cannot be changed by
external contracts.

This is useful for program veri�cation and program analysis. For program veri�cation, it means that external
calls are treated as a non-deterministic operation that may return an arbitrary value, but cannot change the local
state. We utilized this property using Dafny (Leino 2010), to verify correctness of the revised DAO object from
Figure 1 (including line 2.5, excluding line 5). When doing so, we ignored the call in line 4, because the return
value was not used. We provide a deeper discussion on verifying this example using Dafny in Section 6.

2.6 Summary of the rest of this paper
The paper is organized as follows: In Section 3 we formally present the syntax and semantics of our programming
language for contracts, called SMAC. The ECF property and its di�erent ‘�avors’ (dynamic vs. static, and notions
of equivalence) are presented in Section 4. We discuss decidability results for ECF in Section 5. Section 6 shows
the application of the ECF property to achieve modular object-level analysis. The algorithm for online veri�cation
of dECF is given in full in Section 7. Results of experiments of running the algorithm on the Ethereum blockchain
are presented in Section 8 as well as extensive discussion. Related work is provided in Section 9 and we conclude
in Section 10.

3 PROGRAMMING LANGUAGE
We formalize our results for SMAC, a simple imperative object-based programming language with pass-by-
value parameters with integer-typed local variables and data members (�elds). For simplicity, and without loss
of generality, every method has a single formal parameter named arg and returns a value by assigning it to
a designated variable ret. Even though we present our theoretical development for contracts in SMAC, for
readability we use a Java-like notation in our examples, which can be easily desugared.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 • Shelly Grossman et al.

c ∈ PCmd
def
= x B e | F B x | x B F | assert(b) | x B o(e) | skip | enter | return

C ∈ Cmd
def
= c | C ; C | if b then C else C | whileb do C

K ∈ Contract
def
= k : f enter var x C return

Fig. 6. Syntax.

ρ ∈ E =Var⇀�n Val Local states
ψ ∈Ψ = Fld→�n Val Object states
γ ∈ Frame=Cnt × Cmd × E Frames

Γ ∈ Sta�= Frame Stacks
σ ∈ Store =Cnt⇀�n Ψ Stores
s ∈ State = Sta� × Store States

Fig. 7. Semantic domains.

3.1 Syntax
Figure 6 de�nes the syntax of SMAC. We assume in�nite syntactic domains of k ∈ Cnt, f ∈ Fld, and x ∈ Var
contract identi�ers, �eld names, and variable identi�ers, respectively. A contract K is identi�ed by of a (unique)
contract identi�er k , and contains a sequence of �eld de�nitions f and a (single nameless) contract method. The
contract method is comprised of a sequence of local variable de�nitions x and a command C ∈ Cmd. C may be a
primitive command c ∈ PCmd or a compound command, i.e., a sequential composition of commands, a conditional,
or a loop. A primitive command c ∈ PCmd may be either an assignment of an expression e to a local variable x
(x B e), an assignment of the value of a local variable x to a �eld F (F B x), an assignment of the value of a
�eld F to a local variable x (x B F), an assert command (assert(b)), a call to a contract method with a single
argument e , keeping the returned value in a local variable x (x B o(e)), or a skip command. Each contract has a
single method, thus methods are not named, and may be colloquially referred to using the name of their contract.
We also use the terms ‘contract’ and ‘object’ interchangeably.

3.2 Semantics
SMAC has a rather mundane stack-based operational semantics, which handle method calls using a stack of
activation records (frames), and uses a store to record the values stored in object �elds. We refer to a state in
which the stack is empty as a quiescent state and to a non-quiescent state as an active state. Once the execution
reaches a quiescent state, any object method may start running. We refer the reader’s attention to three important
points: (i) contract states are encapsulated: A contract o can only access its own �elds, (ii) local variables are
private to their invocation, and (iii) once a contract method is invoked, the semantics is deterministic.

States. Figure 7 de�nes the semantic domains. A state s = 〈Γ,σ 〉 is a pair comprised of a (possibly empty) stack
of frames Γ ∈ Sta� and a store σ ∈ Store, denoted by Γ(s) = Γ and σ (s) = σ , respectively. The depth of a state s ,
denoted by Depth(s), is the number of elements in its stack, i.e., Depth(s) = |Γ(s)|.

We denote the top of the stack in an active state s = 〈Γ,σ 〉 by top(s) = Γ(1). Intuitively, top(s) contains the
local state of the active (i.e., currently executing) contract method, while the other frames record the locals states
of pending calls to contract methods. A frame γ = (o, c, ρ) records the local state of (a call to the contract method
of) an object. Formally, γ is a triple comprised of an object identi�er, denoted by o(γ) = o, a command, denoted
by C(γ) = c , which the method needs to execute, and a local environment ρ ∈ E, denoted by ρ(γ) = ρ, which
assigns values to the invocation’s local variables. A store σ ∈ Store is a mapping from a �nite number of object
identi�ers to their object state.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:9

〈ϵ,σ 〉 ⇒ 〈(o, κ(o), [arg 7→ n]), σ 〉 o ∈ dom(σ),n ∈ N
〈(o, return, ρ), σ 〉 ⇒ 〈ϵ,σ 〉

〈(o, x B o′(e), ρ) · γ , σ 〉 ⇒ 〈(o′,κ(o′), [arд 7→ ρ(e)]) · (o, x B res, ρ) · γ ,σ 〉
〈(o′, return, ρ ′) · Γ,σ 〉 ⇒ 〈(o, done, ρ[res 7→ ρ ′(ret)]) · Γ,σ 〉

Fig. 8. Operational semantics with respect to a given context κ = Cnt⇀f in Cmd mapping all contracts to their codes. ρ is
naturally extended for expressions over variables in LVar.

Transition relations. We formalize the semantics of our programming language using a transition relation.
A transition is a triple τ = (ι, s, s ′) ∈ Tr ⊆ I × State × State comprised of a transition identi�er ι, denoted by
ι(τ), a source state s , denoted by src(τ), and target state s ′, denoted by trg(τ). For clarity, we sometimes write a
τ = (ι, s, s ′) as s ⇒ι s

′. We denote the active object of the transition by o(τ) = o(top(src(τ))), or omain if it starts in
a quiescent state. We de�ne for each transition the primitive step, which is the primitive command that justi�es
the change in the transition’s states, denoted by c(τ) ∈ PCmd.

The meaning of primitive and compound commands is standard, and thus omitted. We only mention that
primitive commands can only use local variables taken from the top stack frame, and that only the �elds of the
current object can be accessed.

Figure 8 de�nes meaning of method calls and returns. When an object o is called from a quiescent state, a new
stack frame is pushed to the currently empty stack. The frame determines that the active object is o, the command
executing is the code κ(o) of o, and the local environment for the invocation is the assignment of the value of n to
arg. The last command in κ(o) is always a return, after which the frame is popped, leading to a quiescent state.
When a call x B o′(e) is made from an active state, a new stack frame is pushed as in the previous case. We note
that the local environment is initialized by assigning to arg the value of e in the local environment belonging to
the caller, ρ(e). To handle retrieval of the return value from the callee, the command in the caller is modi�ed to
assign to x the value of res. When the callee invocation of o′ �nishes, the command in the top frame is return
and we let ρ ′ denote the local environment of the callee. The control transfers back to the caller object o, and the
value of res is set to be the value of ret in ρ ′. The assigned value of res is then automatically assigned to x , as
determined by the operational semantics of the call. The primitive step associated with a call is enter, and with
a return is return. The return step in the callee is reduced to a done step in the caller, which behaves like a
skip command.

Executions. An execution π = π (1) . . . π (|π |) is a �nite sequence of transitions coming from Tr . An execution π is
well-formed if the target state of every transition is the source state of the following one, i.e., ∀i ∈ {2..|π |}. trg(π (i−
1)) = src(π (i)). For clarity, we sometimes write an execution π as π = s1 ⇒ s2 ⇒ · · · sn

We say that a transition τ appears in a π , denoted by τ ∈ π , if π = _ · τ · _. We say that a state s appears
in a π , denoted by s ∈ π , if there is a transition τ ∈ π such that s ∈ {src(τ), trg(τ)}. We denote the sets of
transitions and states that appear in an execution π by States(π) and Transitions(π), respectively. An execution
π ′ is a subexecution of an execution π , denoted by π ′ v π , if it is a subsequence of π .

We denote the �rst and last states of a non-empty execution π by src(π) = src(π (1)) and trg(π) = trg(π (|π |)).
We say that π = τπ ′τ ′ is a complete execution if src(π) and trg(π) are quiescent states and π ′ contains only active
states. A run is a concatenation of complete executions.

The minimal and maximal depths of a non-empty execution π , denoted by minDepth(π) = min{Depth(s) | s ∈
States(π)} and maxDepth(π) = max{Depth(s) | s ∈ States(π)} are the minimal, respectively, maximal depths of
any of the states it contains.

A well formed execution π ′ is an invocation in an execution π if there exist transition τ and τ ′ such that
π = _ · τ · π ′ · τ ′ · _, where Depth(src(τ)) = Depth(trg(τ ′)) and minDepth(π ′) = Depth(src(τ)) + 1. We refer to

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 • Shelly Grossman et al.

Depth(trg(τ)) as the depth of the invocation π ′ and denote it by Depth(π ′). Note that according to this de�nition,
the depth of an invocation that results from calling a contract method on a quiescent state is one.

Traces. We de�ne an event as a triple e = (ι,o,a), consisting of a transition identi�er ι, an object o, and a
primitive step a. Each transition τ can be transformed to an event by e(τ) = (ι(τ),o(τ), c(τ)). A trace is a sequence
of events, denoted by T . The trace matching an execution π is received by point-wise application of e(·) on all
the transitions in π , denoted T (π).

Con�icts. Two transitions τ and τ ′ con�ict, denoted by Con�ict(τ ,τ ′), if both have the same object (o(τ) = o(τ ′)),
and their primitive steps c(τ) and c(τ ′) both access the same �eld of the current object, and at least one of these
accesses is a write (i.e., a command such as F B x).

Execution equivalence. We de�ne two notions of equivalence of executions: �nal-state equivalence and con�ict
equivalence.

De�nition 3.1. Executions π1 and π2 are �nal-state equivalent if they start in the same state, and �nish in the
same state:

π1 'FS π2 ⇐⇒ src(π1) = src(π2) ∧ trg(π1) = trg(π2)

De�nition 3.2. Executions π1 and π2 are con�ict-equivalent if:
(1) There is a permutation φ of the events of π1 such that T (π2) = φ(T (π1))
(2) Con�ict-ordering is retained. Namely, if the ith transition con�icts with the jth transition in π1, then

i < j ⇐⇒ φ(i) < φ(j).
Formally:

π1 'C π2 ⇐⇒ ∃φ.T (π2) = φ(T (π1)) ∧ ∀i, j .(Con�ict(π (i),π (j)) =⇒ (i < j ⇐⇒ φ(i) < φ(j)))

4 CORRECTNESS CONDITIONS
In this section we give a formal de�nition for two notions of the ECF property. We start by formally de�ning
callbacks and callback-freedom in executions.

A stack frame γ is a callback frame in a stack Γ if there exist stack frames γ ′ and γ ′′ such that Γ = _γ_γ ′_γ ′′_
and o(γ) = o(γ ′′), but o(γ) , o(γ ′). A stack Γ contains a callback, denoted by

NO
Γ, if it contains a callback frame. A

state s contains a callback, denoted by
NO
s , if its stack does, and an execution π contains a callback, denoted by

NO
π , if

it contains a state s such that
NO
s . A stack resp. state resp. execution is callback-free, denoted by ¬

NO
Γ resp. ¬

NO
s resp.

¬
NO
π , if it does not contain a callback.
In this section, we present two de�nitions of the general ECF property (e�ective callback-freedom) for

executions. We begin with ECFfs, which is based on �nal-state equivalence:

De�nition 4.1. An execution π is equivalently e�ectively callback-free (dECFfs) if there is a well-formed callback-
free execution π ′ �nal-state equivalent to π :

π � dECFfs ⇐⇒ ∃π ′.¬
N O
π ′ ∧ π 'FS π

′

The execution π ′ is a witness for π being an dECFfs execution.

Checking the dECFfs property is di�cult in practice, and undecidable in general for models with an in�nite
state. We describe a stronger de�nition of ECF, based on con�ict-equivalence, called ECFc, which permits
an e�cient algorithm for checking it. Interestingly, even though executions in our model do not allow for
concurrency, callbacks can be thought of as allowing to express a limited subset of concurrent executions. In
fact, the ECF property in our model is analogous to serializability in models that permit concurrency. Using

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:11

ϵ ϵ ϵι11 · · · ι12 · · · ιm2 ιn1 ι13 · · ·

ϵ ϵ ϵ ϵι11 · · · ιn1 ι13 · · · ι12 · · · ιm2

ϵ ϵ ϵ ϵι11 · · · ιn1 ι12 · · · ιm2 ι13 · · ·

ϵ ϵ ϵ ϵι12 · · · ιm2 ι11 ιn1 ι13 · · ·

Fig. 9. The callback reorder process. The first graph represents the original execution, which contains a callback (in red). The
three other graphs represent all possible callback free executions. Red marks the moved callback transitions. Wave edges
indicate that a call was replaced with a havoc transition.

this analogy, invocations are analogous to transactions. We show what this means to reorder invocations in the
sequential semantics of SMAC.

In general terms, ECFc requires to �nd a callback-free execution which is con�ict-equivalent to the execution
with the callbacks. Con�ict-equivalence requires that the trace of the callback-free execution is a permutation of
the trace of the original execution. It is thus useful to start with a characterization of the legal permutations of
an execution. Firstly, the permutation may not break program order of contract code. That is, the permutation
must retain the ordering of events whose transitions are part of the same invocation π , and their state have the
same depth as Depth(π). Secondly, we want to allow permutations that remove callback invocations from their
original call location, and sets them to execute in a quiescent state, and still get a well-formed execution.

We extend the de�nition of well-formed executions to modular well-formed executions, which allow havoc
transitions:

De�nition 4.2. An execution π is modular well-formed if all its transitions come from Tr or are havoc transitions,
i.e., transitions of the form 〈(o, x B o′(e), ρ) · Γ,σ 〉 〈(o, done, ρ[res 7→ n]) · Γ,σ 〉 for any values of o, o′, e , ρ,
Γ, σ and n.

Modular well-formed executions, essentially, permit havoc transitions in addition to call transitions. Intuitively,
a havoc transition allows to safely overapproximate the only e�ect that an object o may observe from the
invocation of a method on an object o′; technically, a havoc transition allows to replace a call transition with
a transition that justi�es any return value for the call, without actually executing the call. It has the form
〈(o, x B o′(e), ρ) · Γ,σ 〉 〈(o, done, ρ[res 7→ n]) · Γ,σ 〉.

When we permute a trace such that a callback invocation is removed from its original place, we replace the
call transition leading to the callback with a havoc transition. An example can be seen in Figure 9, showing all
legal permutations of a trace that has a callback-free execution with havoc transitions.

Using modular well-formed executions, we can formally de�ne the ECFc property for executions, dECFc:

De�nition 4.3. An execution π is con�ict-equivalently e�ectively callback-free (dECFc) if there is a modular
well-formed callback-free execution π ′ which is con�ict-equivalent to π :

π � dECFc := ∃π ′.¬
N O
π ′ ∧ π 'C π ′

Con�ict equivalence implies �nal-state equivalence (Bernstein et al. 1987). Thus, it can be concluded that ECFc
implies ECFfs as we can use the same witness of dECFc of π for proving π is dECFfs.

Theorem 4.4. Let π be a dECFc execution. Then π is an dECFfs execution.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 • Shelly Grossman et al.

Finally, as we are also interested in ECF as a property of objects (sECF), we extend the de�nitions of ECFfs and
ECFc to objects (sECF) instead of executions (dECF). To do this, we utilize the fact that objects are encapsulated
to de�ne projected executions, which include only transitions that pertain to a single object.

De�nition 4.5. Let π be an execution and o be an object which is the current object of a state s ∈ States(π).
The projected execution of o is an execution πo whose trace contains only events e ∈ T (π) such that o(e) = o.

De�nition 4.6. An object o is sECFfs if every complete projected execution πo of o is also dECFfs. An object o
is sECFc if every complete projected execution πo of o is also dECFc.

5 DECIDABILITY
This section discusses the decidability of verifying ECF. Using Rice Theorem (see, e.g., Hopcroft et al. (2006)), it is
easy to show that verifying sECF, namely, statically verifying whether all executions of an object are ECFfs or
ECFc, is an undecidable problem. Interestingly, Rice Theorem can also be used to show checking ECFfs for a
single execution (dECFfs) is clearly undecidable. In contrast, checking ECFc for a single execution (dECFc) is
obviously decidable, as we can enumerate all of the permutations of a particular input trace.

Thus, we focus on verifying sECF, namely, statically verifying whether all executions of an object are ECFfs or
ECFc, where the domains of the object variables are restricted to �nite sets. Hence, such objects can be modeled
with a pushdown-automaton (PDA). We begin with a rather simple lemma that shows ECFfs of objects is indeed
decidable in this model. We assume that the code of all objects is available and that their variables may take
values coming from a �nite domain.

Lemma 5.1. Let o be an object, assuming a �nite domain for variables. Then there is an algorithm that decides if o
is sECFfs.

Proof. The lemma follows from the decidability result for reachability in deterministic pushdown automata
with a �nite state (Bouajjani et al. 1997).

Let A be the automaton realizing the code of o. We denote the �nite state space of o by Σ and the �nite set of
arguments with which o can be called with by Arд. Each quiescent state will have a non-deterministic transition
to one of the starting states of the object’s contract method, determined by the argument choice of arд ∈ Arд. A
transition from the quiescent state to a start state adds a frame to the stack, as well as a transition from a call to a
start state. A transition from a �nish state is removing an element from the stack.

We consider A′, an automaton realizing the code of o that does not permit invocations to other objects. Such
invocations are replaced with a non deterministic choice of a return value of the invocation (analogous to havoc
transitions as mentioned in Section 4). The language recognized by A′ is regular, as the stack is not used.

We denote by R ⊂ Σ the set of all reachable states of A. R is �nite since Σ is �nite. To �nd R, we run A from its
initial (quiescent) state s0 to �nd a set of �nal (quiescent) states S1. We then run A again from all the states in S1
to another set of quiescent states S2. We continue running A like this until we reach a �xpoint containing all
reachable states: R = ∪ni=1Si The number of states of A is �nite, hence R must be a �nite union of sets of reachable
states.

Each complete execution of A starts in a state si ∈ R ∪ {s0} and �nishes in a state sf ∈ R. It su�ces to �nd
then if sf is reachable from si in A′ for each such pair of states si and sf . As the language recognized by A′ is
regular, this is decidable. In case sf is reachable from si in A′ we conclude there is a �nal-state equivalent callback
free execution in A for every complete execution π that starts in si and �nishes in sf . If we are able to prove
reachability for each pair of states si and sf , then o is sECFfs.

As the number of choices of such pairs is �nite, it can be concluded that it is decidable to check if an object is
sECFfs in a PDA. �

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:13

Showing the decidability of sECFc of objects is not that easy, because it requires reasoning on permutations of
events, which is not a regular property, even in the case of �nite-state machines.

However, we show that we are able prove the decidability of sECFc in the �nite-state case by using induction,
Let PDAk (o) be a PDA realization of the code of o with a constraint on the maximal length of the stack, set to

be k . Longer stacks are rejected. We omit standard details on the building of the PDA, as given in Hopcroft et al.
(2006). An external call in o is a non-deterministic transition to either a new invocation of o (enabling simulation
of all possible callbacks), or either to no callback. In addition, we have a non-deterministic choice of the return
value of the external call. All these non-deterministic choices are �nite.

Our plan to prove the decidability of sECFc is by starting with showing its decidability in PDA2. We then show
that if an object is sECFc in PDAn , then it is also sECFc in PDAn+1. From this inductive claim, we will be able to
conclude that it is decidable for the general PDA as well.

We show a decision procedure for the sECFc of PDA2(o):

Lemma 5.2. Let o be an object with a �nite state, realized by PDA2(o). There is a decision procedure that decides if
o is sECFc.

Proof. We denote the �nite state space of o by Σ and the �nite set of arguments with which o can be called by
Arд. o is sECFc if all its complete executions are dECFc. We consider complete executions (from a quiescent state
to a quiescent state without any quiescent states in-between). The number of complete executions in PDA2(o)
is �nite: we have |Σ| |Arд | choices to begin an execution in depth 1, each such execution has a �nite number
of transitions in which it performs a call, and in each of these transitions, there are |Arд | options to begin an
execution of o in depth 2, and one additional option to not have a callback to o at all. For each external call, there
is a �nite number of options to choose the return value. Calls in higher depths are not allowed in PDA2(o).

Checking dECFc for a �nite number of complete executions is done as follows: For each complete execution π
with maximal depth 2, we can write it as:

π = π1π
′
1π2π

′
2 · · · π

′
nπn+1

π contains a single invocation in depth 1, given as a series of subexecutions πi such that ∀i .Depth(πi) = 1; and
multiple callback invocations π ′i v π such that ∀i .Depth(π ′i) = 2. Finding an ECFc equivalent execution involves
�nding a permutation φ on the events in T (π) such that there is a modular well-formed execution π ′ such that
T (π ′) = φ(T (π)). There is a �nite number of φ permutations. Speci�cally, that number is equal to n!(n + 1) where
n! is the number of internal orderings of the callback invocations {π ′i }

n
i=1; and (n + 1) is equal to the number of

options to partition the callbacks to callbacks that will execute before the outer invocation π1 · . . . · πn+1 and
callbacks that will execute after it. All these permutations can be checked to be modular well-formed and for
retaining the ordering of the con�icts.

By repeating the process of checking ECFc on all complete executions in PDA2(o) we can determine if o is
sECFc with maximal stack depth equal to 2. �

We continue with a lemma, from which we conclude that sECFc is decidable in a a general PDA, if and only
if it is decidable in PDA2, which we already proved in Lemma 5.2. One direction is trivial: Clearly, if sECFc is
found to be decidable in a PDA, then it is decidable in a PDA2. To prove the other direction, we continue with an
inductive claim, that if PDAn(o) is sECFc, then PDAn+1(o) is also sECFc.

Lemma 5.3. Let o be an object, and n ≥ 2. We denote Pn = PDAn(o) be the realization of o up to a stack of depth
n, and Pn+1 = PDAn+1(o) be its realization up to a stack of depth n + 1. Then, if Pn is sECFc, Pn+1 is also sECFc.

Proof. Let π be a complete execution of Pn+1. If maxDepth(π) = 1, namely, π has no callbacks, then there is
nothing to check. Otherwise, π can be written as:

π = π1π
′
1π2π

′
2 · · · π

′
kπk+1

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 • Shelly Grossman et al.

where πi are subexecutions such that all transitions start in depth 1: ∀j .D(() src(πi (j))) = 1. and π ′i are all
callbacks, or more formally, subexecutions such that ∀i .minDepth(π ′i) = 1. We consider a speci�c i ∈ {1, . . . ,k}.
Because minDepth(π ′i) = 1, we may denote the bottom element of the stack in all states States(π ′i) by γi . By
ignoring γi , we can �nd a complete execution π ′′i realizable in Pn with the exact same transitions, in which all
states have the same stack as in π ′i , only with the bottom element γi removed. Because Pn is sECFc, then π ′′i is
dECFc. Therefore, there is a con�ict equivalent execution of π ′′i , denoted π ci , which has maxDepth(π ci) = 1 and
is also con�ict equivalent to π ′i . From π ci , we can �nd an execution π c ′i in Pn+1, which is con�ict equivalent to π ′i .
We get π c ′i by modifying the stack of all states in States(π ci) to include γi , the bottom element removed from π ′i ,
as the bottom element of each state’s stack.

By replacing all π ′i with π c ′i , we get an execution

π ′ = π1π
c ′
1 π2π

c ′
2 · · · π

c ′
k πk+1

It is easy to see that π is con�ict equivalent to π ′. Each pair of con�icting transitions within a speci�c πi has the
same order in both π and π ′. Each pair of con�icting transitions within a speci�c π ′i retained its order in π c

′

i
because π ′i 'C π c

′

i . Finally, each pair of con�icting transitions between di�erent subexecutions of which π are
comprised must also appear in the same order in π ′ because each subexecution that was replaced, was replaced
with a subexecution of the same length.

In addition, π ′ has maxDepth(π ′) = 2, because in each πi we have maxDepth(πi) = 2 by de�nition, and each
π c
′

i also has maxDepth(π c ′i) = 2 as it is based upon a π ci which has maxDepth(π ci) = 1, but with an additional
single stack element γi in all states.

We already know that o is sECFc in Pn , and n ≥ 2, thus π ′ is an execution in P2 and thus must be dECFc. By
transitivity of the con�ict equivalence relation, π is also dECFc, as the same callback-free execution which is
con�ict equivalent to π ′ is also con�ict-equivalent to π . �

We can immediately conclude for a general PDA, that if an object is sECFc in a PDA2, then it is sECFc when
we realize it in a PDA which has unbounded stack.

Corollary 5.4. Let o be an object. Then, if PDA2(o) is sECFc, PDA(o) is also sECFc.

Proof. Assume towards a contradiction that PDA(o) is not sECFc. Then, there is a complete execution π
which is not dECFc. We denote n = maxDepth(π). Thus, π is a path in PDAn(o). We saw in lemma 5.3, that if
PDAn(o) is sECFc, then so is PDAn+1(o). As it is given that PDA2(o) is sECFc, then so is PDAn(o), by induction.
Thus, π must be sECFc, contradiction. �

sECFc is decidable in a PDA as an immediate corollary of the combination of Lemma 5.2 and Corollary 5.4.

Corollary 5.5. sECFc is decidable in a PDA.

6 OBJECT-LEVEL ANALYSIS
While the ECF property is capable of detecting unwanted executions which do not satisfy it, it can be further
used for modular analysis of objects. We will show that in environments in which objects are encapsulated, we
can consider ECF for executions of a single object only, to help simplify object-level analysis.

We de�ne the notion of a most general client (MGC) in our model. The most general client for an object o,
MGCo , is an external program that works on a system that includes a single object in the store. The store σ of
MGCo contains a single object NoCB(o), which is built based on the original object o. Every invocation of an
object of the form x B o′(e) in o is replaced with a non-deterministic choice of the value of x as returned by
the call, in correspondence with the de�nition of havoc transitions in Section 4. Furthermore, MGCo is allowed
to repeatedly call NoCB(o) with any parameter and in any order. As such, the semantics of MGCo soundly

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:15

approximate all executions of the object o (see, e.g., Gotsman and Yang (2011)), while every execution in MGCo is
in fact a projected, callback-free execution of o.

We show that, if the object o is ECF in the general model, then any object-level assertion can be soundly
veri�ed on MGCo . This is because, all reachable states of an object o in a given system with a store σ ∈ Store, are
reachable in the system containing only NoCB(o).

Theorem 6.1. Let R be the set of all states of the object o in a quiescent state, and let R0 be the set of all states of
the object o in a run ofMGCo . If o is sECFfs then R0 ⊃ R.

Clearly, the theorem holds if the object is shown to be sECFc, since this implies it is also sECFfs (see Theorem 4.4).
This analysis is not overly imprecise, since in real environments, such as Ethereum, we could simulate such

behaviors. This is particularly correct since in Ethereum the store of the objects is updateable, and new objects
may be added to the system.

Importantly, the analysis simply assumes ECF, and does not require to prove it: An alternative formulation of
Theorem 6.1 is assuming that the runtime system enforces dECF on all executions. In that case, the analysis is
still sound. It is not unreasonable to assume such a dynamic analysis of dECF, because we found out an e�cient
method to verify it, presented in Section 7.

We illustrate Theorem 6.1 using the example shown in Figure 1. We implemented Dao as a class in Dafny (Leino
2010) with two methods: deposit and withdrawAll, whose pre- and post- conditions capture the object invariant
which should be valid after every execution of the Dao object. Primarily, we wish to ensure that the data elements
in the credit map are not negative, and that the sum of all these elements is equal to the balance of the Dao. We
model the pay method without the recursive call to withdrawAll, but annotate it as possibly modifying (any
�eld of) the Dao object. This annotation generalizes the possible behaviors of the Dao object without the ECF
property. With such weak assumptions, and perhaps unsurprisingly, Dafny fails to verify the postconditions for
both the original and the �xed versions of the Dao object. In contrast, when we assume that the ECF property
holds, technically by adding a postcondition to pay which ensures that the previously read �elds of the Dao
object, i.e., balance and credit[o], are not modi�ed, Dafny is able to establish the post condition. Theorem 6.1
implies the �xed Dao contract respects the given speci�cation when executed using the original runtime system
and the original DAO object respects the speci�cation if it is executed on a runtime system which enforces ECF.

7 DYNAMIC VERIFICATION
We describe a sound procedure for verifying the dECFc property dynamically. More precisely, for each execution,
it will check for every object that participates in the execution, if the subsequence of the transitions that pertain
only to that object (the projected execution) is ECFc. We assume the existence of an interpreter or virtual machine
implementing the semantics de�ned in Section 3. Below is a description of the data structures used by the
algorithm, as well as the instrumentation of the object code to maintain these data structures. We then present
a higher-level description of the algorithm, followed with pseudo-code and a complexity analysis. We use the
example presented in the overview section in Figure 1 to explain the procedure.

The general structure of the procedure is that the instrumentation step starts every time we exit a quiescent
state, and ends when we reach the next quiescent state. Once instrumentation has completed, the algorithm
runs on the instrumented structures and returns a result, of whether all projected executions derived from the
execution were ECF. The procedure repeats each time we enter an active state.

7.1 Data structures
A segment is a data structure that captures metadata about a portion of the execution’s states. This portion
consists of a sequence of adjacent transitions, whose top stack frames have the same active object. That is, an
invocation of a di�erent object marks the beginning of a new segment, as well as returning from an invocation to

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 • Shelly Grossman et al.

a caller invocation which is executed in the context of a di�erent object. However, a call from one object to itself
does not break the current segment (This is motivated by the de�nition of callbacks in Section 4). In simpler
terms, a new segment is de�ned each time the active object changes, either when we push a stack frame with a
di�erent object, or pop a stack frame such that the new top frame has a di�erent active object. We show how
segments are determined in the instrumentation in Figure 10, using hooks on calls and returns.
Example 7.1. In the example DAO contract in Section 2, an attack execution consists of 6 segments: (1) the

�rst invocation of withdrawAll, lines 1-3; (2) an invocation of pay, lines 3-5; (3) the second invocation of
withdrawAll, lines 1-3; (4) a full invocation of pay, lines 3-4,7; (5) the second invocation of withdrawAll, line 5;
(6) the �rst invocation of withdrawAll, line 5;

De�nition 7.2 (Segments). A segment t is representative of a maximal sequence of adjacent transitions pertaining
to the same object. A segment t = (R,W ,D, Idx) contains information about �elds accessed in the segment,
denoted R(t) andW (t) for the read- and write- sets, respectively. In addition, a segment contains information
about the depth of the invocation (denoted D(t)), which is equal to the depth of the transitions’ states. Last, the
index in the execution (denoted Idx(t)), is strictly increasing according to order of creation of the segments.

The primary metadata saved in each segment is the read and write sets of the �elds of the object that were
accessed by commands executed in the transitions that pertain to the segment. Other metadata includes the
depth of the invocations in the stack, and an index to maintain the order of the segments in the execution.

Example 7.3. We write down the segments that pertain to the DAO object in the overview example of the attack
execution, in the same order as they appear in the execution:

t1 = ({credit[Attacker], balance}, {balance}, 0, 1) t2 = ({credit[Attacker], balance}, {balance}, 1, 2)
t3 = ({}, {credit[Attacker]}, 1, 3) t4 = ({}, {credit[Attacker]}, 0, 4)

An execution can be represented as a linear sequence of segments. Furthermore, from these segments we can
determine the invocations that the execution contains.

Remark 7.1. Segments can be used as an alternative representation of executions and invocations, that generalize
data saved by a sequence of transitions. In this section only, we rede�ne the notions of executions and invocations to
refer to segments instead of transitions.

De�nition 7.4 (Executions, Invocations, and Callbacks). An execution can be represented using a sequence of
its instrumented segments π = (t1, . . . , tn). We can access the j’th segment of the execution using π (j) = tj . We
trivially have that Idx(tj) = j . An invocation is a sequence of segments I = (tI1, . . . , t

I
k) such that there is a number

d for which:
(1) ∀t ∈ I .D(t) = d (all segments of the invocation are in the same depth).
(2) d > D(π (Idx(t I1) − 1)) (the �rst segment before the �rst segment in the invocation has lower depth,

proving it is indeed the beginning of an invocation).
(3) d > D(π (Idx(t Ik)+1)) (the �rst segment after the last segment in the invocations has lower depth, proving

it is indeed the end of an invocation).
(4) ∀j .Idx(t I1) < j < Idx(t Ik) =⇒ D(π (j)) ≥ d (the invocation does not end before the last segment, that is

all segments of depth d in the given range belong to the same invocation).
As all segments included in the invocation has the same depth d , we denote the depth of an invocation by
D(I) = d. We say that an invocation I is a callback in another invocation I ′ (denoted I v I ′) if Idx(I (1)) >
Idx(I ′(1)) ∧ Idx(I (1)) < Idx(I ′(|I ′ |)).

Remark 7.2. Unlike the de�nition of invocations in Section 3, here invocations capture only the transitions in the
same depth as the depth of its �rst transition, and not transitions in higher depth. This allows to de�ne D(I) for an
invocation I .

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:17

Example 7.5. In the attack execution presented in Section 2, the �rst invocation of withdrawAll is Iwd1 = (t1, t4),
and the second invocation is Iwd2 = (t2, t3). Iwd2 is a callback of Iwd1 : Iwd2 v Iwd1 .

We associate with each segment in depth > 1 a pre�x-set and su�x-set of all segments in the caller that precede,
or respectively, proceed it:

De�nition 7.6 (Pre�x and Su�x segments). Let a set of segments representing an invocation I = (ticaller), and a
single segment tcb with D(tcb) > D(I) and Idx(tcb) ∈ {Idx(I (1)), . . . , Idx(I (|I |))}. We de�ne for tcb its pre�x and
su�x sets relatively to a caller I by partitioning the segment in I to segments whose index in the execution is
smaller than the index of the callback segment tcb (pre�x), and segments whose index in the execution is larger
than it (su�x):

pre�x(I , tcb) = {tcaller ∈ I | Idx(tcaller) < Idx(tcb)}
su�x(I , tcb) = {tcaller ∈ I | Idx(tcaller) > Idx(tcb)}

Example 7.7. The pre�x and su�x segments of t2 and t3 with respect to Iwd1 are:

pre�x(Iwd1 , t2) = pre�x(Iwd1 , t3) = {t1}
su�x(Iwd1 , t2) = su�x(Iwd1 , t3) = {t4}

The instrumentation process creates the segments and the invocations. We show pseudo-code of the instru-
mentation procedure in Figure 10.

The basic check on segments is the commutativity check. We de�ne segment commutativity using read and
write sets. We will show that we actually check commutativity of a segment with either a pre�x or su�x segment.
As the pre�x/su�x segments are sets of segments, the read and write sets of pre�x/su�x segments are a union of
the respective read and write sets of all the segments contained in the pre�x or su�x segment.

De�nition 7.8 (Commutative Segments). Segments t1 and t2 commute, denoted by t1 ⇄ t2, if:

t1 ⇄ t2
def
= R(t1) ∩W (t2) = ∅ ∧ R(t2) ∩W (t1) = ∅

If segments t1 and t2 do not commute, we denote this by t1 � t2.

Example 7.9. In the attack execution presented in Section 2, indeed we have that t2 � t1, as R(t1) ∩W (t2) =
{balance}. Similarly, t3 � t1 because of credit[o], as R(t1) ∩W (t3) = {credit[o]}, and therefore also t2 � t4.
However, t3 does commute with t4: t3 ⇄ t4.

7.2 Algorithm
We start with a high-level description of the algorithm. The algorithm is called every time the system reaches a
quiescent state, working on the last complete execution. The algorithm generates a relation of invocations that
de�nes constraints on the ordering of invocations in di�erent stack depths, similar to a ‘happens-before’ (Lamport
1978) relation. We name this relation the invocation order constraint (IOC) graph. For example, if a segment t of a
callback invocation Icb is not commuting with its pre�x with respect to one of its calling invocations tcaller (i.e.,
t � pre�x(Icaller , t)), then we add the constraint that the invocation of the caller has to occur before the callback:
Icaller ≺Inv Icb. The IOC relation of invocations is thus de�ned as:

I ≺Inv I ′
def
= (I ′ v I ∧ ∃t ∈ I ′.t � pre�x(I , t))
∨(I v I ′ ∧ ∃t ∈ I .t � su�x(I ′, t))

Example 7.10. The IOC relation of the attack execution in Section 2 can be easily calculated with the previous
metadata given in examples 7.7 and 7.9. We have that Iwd1 ≺Inv Iwd2 as Iwd2 v Iwd1 and for t2 ∈ Iwd2 , t2 �
pre�x(Iwd1 , t2). Similarly, Iwd2 ≺Inv Iwd1 as for t2 ∈ Iwd2 , t2 � su�x(Iwd1 , t2).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 • Shelly Grossman et al.

Segment { Obj , Caller , R, W, D, I }

Invocation { Caller , Obj }

Init ():

execution := ()

curSegment := ⊥

invocations := Map <Invocation -> Segment>

UponInvocation(object):

if fromQuiescent // Procedure starts

Init()

if object != curSegment.Obj

caller := fromQuiescent ? TopInvocation : curSegment.Caller

inv := Invocation(caller , object)

AddSegment(object , inv , curSegment.D+1, curSegment.I+1)

UponReturn(object):

caller := toQuiescent ? TopInvocation : curSegment.Caller.Caller

if caller.Obj != object

AddSegment(object , caller , curSegment.D-1, curSegment.I+1)

if caller == TopInvocation // End of instrumentation step

CheckECFForAllObjects () // Run the algorithm , and finish procedure

AddSegment(object , caller , D, I):

segment := Segment(object , caller , {}, {}, D, I)

Append(execution , segment)

Append(invocations[caller], segment)

curSegment := segment

UponObjectVarRead(object , F):

curSegment.R[F] := 1

UponObjectVarWrite(object , F):

curSegment.W[F] := 1

Fig. 10. Instrumentation procedures, implemented as hooks called upon call commands, return commands, and object
variable read/write access command. Generates the execution, which is a list of segments, and invocations, a map of
invocation identifiers to an invocation object keeping the caller of an invocation and the list of segments that are part of the
invocation in the same depth. The top-level invocation is identified as TopInvocation.

After the IOC relation is de�ned, the algorithm considers the graph induced by this relation, and checks it
has no cycles. A cycle in the graph could appear if, for example, there is a callback invocation and some caller
invocation that contains it, for which there is both (1) a segment that does not commute with its pre�x with
respect to the caller; and (2) a segment that does not commute with its su�x with respect to the caller. As each
vertex in this graph represents an invocation, the topological sorting returns an ordering of the invocations,
which is ECFc. We are merely interested if there is such a topological sorting, that is, if the IOC relation does not
contain a cycle.

Theorem 7.11. Let π be an execution and let Inv be a map of the instrumented invocations to their segments. We
denote by ≺Inv the IOC on Inv. If ≺Inv has no cycle, then π is ECFc.

Proof. We assume ≺Inv has no cycle. We take a total order ≺tInv of Inv induced by the transitive closure on ≺Inv .
From ≺tInv we build a run π ′ such that every invocation in Inv starts in a quiescent state in the order determined
by ≺tInv . π ′ is con�ict-equivalent to π . To show this, we consider two transitions τ1 and τ2 which con�ict in π . If

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:19

τ1 and τ2 are both captured in the same segment during instrumentation, then their ordering is kept in π ′ which
only reorders invocations. In particular, the program order of invocations is kept. The same argument applies
when τ1 and τ2 are not captured by the same segment, but their respective segments are both part of the same
invocation. In the general case, τ1 and τ2 each belong to di�erent segments, pertaining to di�erent invocations.
In that case, their ordering in π ′ is kept as ≺tInv respects that con�ict. �

Example 7.12. In continuation to our running example, it is immediate that the IOC relation of the attack
execution on the DAO object has a cycle: Iwd1 ≺Inv Iwd2 ≺Inv Iwd1 . Therefore, the algorithm cannot determine the
attack execution is ECFc. But indeed, the attack execution is not ECF, thus it cannot be ECFc.

We already saw in Section 6 that due to state encapsulation, ECF is a modular property. Therefore, the
procedure may either check ECF for the entire execution, by searching for a cycle in the full IOC relation, or
to check ECF for one object at a time. A modular ECF check can be done by projecting the relation only on
invocations of the object under examination. To align with the actual implementation of the algorithm, we chose
to present it in its modular version here as well.

We give the complete pseudo-code of the algorithm in Figure 11. It begins with an additional step of prepro-
cessing which is calculating the commutativity matrix of all segments against all pre�x and su�x segments of
all their enclosing invocations (invocations that directly or indirectly call the invocation in which the segment
is included). The commutativity matrix assists in calculating the IOC relation. We then iterate over all objects
encountered in the execution, project the IOC relation on a single object in each iteration, and check if it has a
cycle. If the check returns that it is a DAG, then we veri�ed the projected execution is ECF. Otherwise, the cycle
describes the invocations which cannot be moved, and helps identify the callbacks that cause the violation of
ECF.

7.3 Complexity
7.3.1 Time. The instrumentation step adds a constant factor of work to the runtime. To analyze the algorithm,

we begin by looking at the preprocessing steps �rst. Let n denote the number of invocations andm the number
of segments (n < m). In addition, let k denote the maximal number of object variables accessed in an object
participating in the execution (k < m). The CalculateCommutativityMatrix procedure loops on all invocations
and all segments. For each pair of an invocation and a segment, the encloses predicate can be implemented to
take constant time. The calculation of the pre�x set and su�x set is taking time linear in the number of segments
in an invocation, bounded bym. The time to calculate the read and write sets of the pre�x and the su�x set is
linear in k . Commutativity check, which involves checking set intersection, where our sets are implemented as
associative arrays, is linear in k . Thus the time of CalculateCommutativityMatrix is O(nm(m + k)) = O(nm2).
For CalculateIOCRelation, we have a loop over pairs of invocations, and another pair of non-nested loops over
segments in an invocation, giving O(mn2). Projecting the IOC relation is linear in its size which is O(n2). The
isDAG check is linear in the size of the projected relation, which is bounded byO(n2). (The graph it represents has
O(n) vertices and O(n2) edges, and checking for a graph to be a DAG is O(|V | + |E |)). In total, we have O(nm2).

7.3.2 Space. The instrumentation adds O(m) space for keeping the segments, and O(nm) for keeping the
invocations. The commutativity matrix takes O(nm) space, and the IOC relation takes O(n2) space. Therefore,
the space complexity of the algorithm is O(nm).

8 EVALUATION
We developed a prototype implementation for a dynamic monitor verifying ECF for Ethereum.6 For each execution,
it checks if any of the participating contracts has a non-ECF (projected) execution, and outputs all detections of
6The source code is available at https://github.com/shellygr/ECFChecker.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://github.com/shellygr/ECFChecker

1:20 • Shelly Grossman et al.

CheckECFForAllObjects ():

commute_matrix := CalculateCommutativityMatrix ()

hbRelation := CalculateIOCRelation ()

for each unique object in execution:

if not CheckECF(object):

Print "Object " object " is not ECF"

CheckECF(object):

// It is guaranteed that IOC applies only to invocations of the same object

hbRelationO := project hbRelation on invocations of object only

return isDAG(hbRelation)

CalculateCommutativityMatrix ():

matrix := new Map <Invocation , Segment -> Bool , Bool >

for each inv in invocations , segment in execution

if encloses(inv , segment)

prefix := (s for s in inv where s.I < segment.I)

suffix := (s for s in inv where s.I > segment.I)

prefixRS , prefixWS := Union(s.R for s in prefix), Union(s.W for s in prefix)

suffixRS , suffixWS := Union(s.R for s in suffix), Union(s.W for s in suffix)

prefixCommute := isCommutative(prefixRS , prefixWS , segment.R, segment.W)

suffixCommute := isCommutative(suffixRS , suffixWS , segment.R, segment.W)

if prefixCommute == False && suffixCommute == False

Abort("Not ECF")

matrix[inv , segment] := prefixCommute , suffixCommute

return matrix

encloses(inv , segment):

return inv.Obj = segment.Obj

&& segment.I between first segment and last segment in inv

CalculateIOCRelation(commute_matrix):

rel := new Map <Invocation , Invocation -> Bool >

for each inv1 , inv2 in invocations

if encloses(inv1 , first segment in inv2)

for each segment in inv2

if commute_matrix[inv1 , segment] == False , True

rel[inv1 , inv2] := True

if encloses(inv2 , first segment in inv1)

for each segment in inv1

if commute_matrix[inv2 , segment] == True , False

rel[inv1 , inv2] := True

Fig. 11. Algorithm for verifying ECF of an execution. The code of isDAG and isCommutative is not given. The definition of
isCommutative is given according to Definition 7.8.

non-ECF executions7. We ran our experiments by importing the entire blockchain from its inception in July 30,
2015 until March 30, 2017 8. The host we used is a 64-bit Ubuntu 16.04 with two 2.2 GHz Intel Xeon E5-2699

7The monitor was implemented on top of the Go (Pike 2012) client for Ethereum, called geth (Ethereum Foundation 2017a), version 1.5.9.
8Without delving into the speci�cs of the blockchain paradigm, executions are organized in a structure called blocks. Our primary experiment
was to import the �rst 3,444,354 blocks of the main Ethereum blockchain.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:21

processors (22 cores each with 2 threads per core) and 256 GB of RAM. Both the instrumentation and the algorithm
were integrated directly into the Ethereum Virtual Machine (EVM) module using hooks, as described in Section 7.

Our monitor worked in ‘detect-mode’ as to not a�ect the results, and for statistics gathering only. However,
it is trivial to make it work in ‘prevent-mode’, that actively invalidates and reverts complete executions which
are not ECF. Had all the Ethereum clients used such a monitor by design, the DAO incident would have been
avoided, along with the controversial hard-fork. As our experiments described below prove, the false-positive
rate of the monitor is miniscule: only 10 executions out of about 100 million were legitimately non-ECF. There is
also no concern of performance impact, as the measured overhead of running the monitor was less than 3.5%.
Furthermore, the benchmarks of the monitor were performed in an ideal environment that actually makes the
overhead larger than it is in a normal environment. The reason behind it is that normal environments have
additional overheads such as networking and disk accesses, which we disabled in order to scale our experiments.

Experiments. In Figure 12, we show a short list of experiments conducted. We also included the number of
contracts created as an additional metric of the blockchain. The primary experiment was checking for ECF in all
executions since the creation of blockchain until March 30, 2017. Of note, is that less than 0.01% of the executions
were non-ECF. In the second experiment, we processed all executions starting from March 30, 2017 until June 23,
2017 9.

It is interesting to compare the results of the �rst experiment, conducted on a snapshot of the Ethereum
blockchain taken in Mar. 30th, 2017, which we used for benchmarks, to the second experiment, in which we let
our modi�ed client to process all newer executions, until June 23rd, 2017. The number of non-ECF contracts
decreased in both absolute quantity and in percentage of total executions. The newer executions expose the
maturity of the network, expressed in both the number of total contracts created (almost 150% more contracts
created in less than 3 months than in the entire existence of the blockchain, from August 2015 till the snapshot
date), and the number of executions10. Moreover, the number of executions with callbacks increased signi�cantly,
indicating more complex contracts. In the �rst experiment there were 128, 670 executions that contained callbacks,
and in the second experiment there were 155, 668 executions with callbacks. This amounts to a 641% increase in
the number of callbacks in the later period compared with the earlier period. While the percentage of executions
with callbacks is still only 1% of all executions, the absolute number of executions with callbacks is large enough
to indicate that callbacks are inevitable, either because they are useful, or necessary. This means contracts show
an increasing use of callbacks, and thus more complex code, that may be prone to bugs resulting from unintended
interaction between contracts. In both experiments, the overall percentage of non-ECF executions out of the
executions with callbacks, is 1.17%, and less than 0.01% out of all executions.

Discussion of non-ECF examples. We present a list of all contracts that demonstrated non-ECF executions in
Figure 14. Contracts C2, C4 are related to the DAO. C2 is the original DAO (Buterin 2016). C4 is known as
‘The Dark DAO’ (Pfe�er 2016), an object containing a copy of the DAO’s code, as created by the attack (The
mechanism of the DAO was such that, every withdrawal of funds, manifested in the form of a new object whose
code is a copy, or ‘split’, of the DAO code). Contract C1 is an unrelated contract which su�ered a vulnerability
very similar to the DAO’s. The vulnerability, also stemming from non-ECF behavior, was discovered during a
security audit and disclosed a short time before the attack on the DAO (Ethereum Reddit 2016; Vessenes 2016).
Contract C5 is an exercise published on the blockchain to demonstrate the DAO attack (B9Lab 2017), and indeed
a non-ECF execution was detected. In some contracts it is di�cult to pinpoint the exact cause of the existence of
non-ECF executions, as the only available code is EVM bytecode, which is not trivial to analyze and reverse. We

9The second experiment processed all blocks from block no. 3,444,355 to block no. 3,918,380.
10Assuming a new block is generated at an almost constant rate, there were 32 executions per block on average in the second experiment,
compared with 23 executions in the �rst.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 • Shelly Grossman et al.

Blockchain Date Contracts Executions Callbacks Non-ECF (%)
Ethereum 30.VII.2015-30.III.2017 138,457 81,097,421 128,670 3,315 (0.004%)
Ethereum 30.III.2017-23.VI.2017 203,859 15,311,650 155,662 6 (<0.001%)
Eth. Classic 30.VII.2015-29.VI.2017 91,191 32,494,464 81,731 2,288 (0.007%)

Fig. 12. Experimental results. We use dates to mark the portion of the blockchain checked in the experiment. The Contracts
column shows how many contracts were created (but not necessarily executed) in the relevant time period. The Executions
column records the number of method invocations and the Callbacks column shows how many of these invocations were
callbacks. Non-ECF column counts how many non-ECF executions were detected, and their percentage out of the total
number of executions.

Object C
Object Sender
Method call(data, sender)
if (Sender != nil) throw
Sender = sender; ret = this.do(data); Sender = nil

Method do(data)
... // read Sender

Fig. 13. Pa�ern used by contracts C6, C8 and C9. Sender is initialized to nil. call is a method that throws when Sender is
not nil, and otherwise sets it, calls method do, and nullifies Sender a�erwards.

were trying to connect these incognito contracts with their creators or users. We found evidence that C3 is also
related to the DAO (p-s-dev 2016).

The contract at C7 (Etherscan 2017) was traced back to Validity Labs (Val 2017). We contacted the authors and
they provided us with the Solidity source-code of the contract (Validity Labs 2017). It was deliberately designed
to have a DAO-style callback exploit, and was used in their training workshops to demonstrate its dangers.

The same high-level Solidity code of contracts C6, C8, and C9, were provided to us by their creators at
Ambisafe (Ambisafe 2017). The pattern used by these contracts gives rise to behaviors that are purposefully
non-ECF. We show a snippet illustrating the pattern in Figure 13. This pattern is inherently non-ECF.11 The
method do assumes the value of Sender is not nil, but this only occurs in the context of an invocation of call.
The purpose behind this behavior, is to have Sender act as a lock, protecting against unexpected callbacks. Such
a design may be avoided in presence of a monitor that allows only ECF executions.

The bottom part of the table in Figure 14 shows non-ECF contracts found in Ethereum Classic (2017). Ethereum
Classic (or ETC) is the continuation of the original Ethereum blockchain following the controversy of the hard-
fork due to the DAO bug. Until July 20, 2016, both blockchains, Ethereum and Ethereum Classic, contain the
same executions, and thus the same non-ECF executions. Our result and investigation show that all non-ECF
executions discovered in the Ethereum Classic network are of copies of the DAO (Bok Consulting 2016a).

Generally, it is important to stress that: (1) there may be other non-ECF contracts, as crafting and deploying
contracts that exploit non-ECF entails investment of real money, thus requires a strong incentive to do so; (2)

11In the formal de�nition, it actually is ECF, because a call of a contract to itself is not a callback. The contracts under examination were
discovered due to a deviation of our monitor’s implementation from the full de�nition of ECF. However, this example can be �tted into a
slightly modi�ed pattern which is not-ECF even according to the full de�nition, by adding an intermediary contract between call and do.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:23

Name Contract address Execs. Execs. w. cbs. Non-ECF Stack depth
Ethereum Network (ETH)

C1 0xd654bdd32fc99471455e... 924 143 10 3
C2 0xbb9bc244d798123fde78... 274,820 103,064 3,296 2-146
C3 0x34a5451ef61a567ee088... 91 8 1 46
C4 0x304a554a310c7e546dfe... 13,223 2,812 1 3
C5 0x59752433dbe28f5aa59b... 15 6 1 3
C6 0x97361ea911d6348cf2af... 44 42 6 2
C7 0xbf78025535c98f4c605f... 25 22 3 3-9
C8 0x232f3a7723137ced12bc... 144 142 1 2
C9 0x7c525c4e3b273a3afc4b... 35 33 2 2

Ethereum Classic Network (ETC)
C1 0xd654bdd32fc99471455e... 850 143 10 3
C2 0xbb9bc244d798123fde78... 195,428 86,573 805 2-146
C3 0x34a5451ef61a567ee088... 18 9 1 46
C4 0x304a554a310c7e546dfe... 14,150 3,064 1 3
C10 0xf4c64518ea10f995918a... 428 177 11 42-122
C11 0xb136707642a4ea12fb4b... 2,582 305 201 17-20
C12 0x0e0da70933f4c7849fc0... 5,330 3,992 1,259 12-57

Fig. 14. A sample of interesting Non-ECF contracts in Ethereum. Contracts are given a name C1, . . . ,C12, and are ordered
chronologically, by the date of the first non-ECF execution. The Executions and Executions with callbacks columns show
statistics on usage style. The Non-ECF column shows how many executions were detected as non-ECF. Stack depth column
indicates the range of the depths of the non-ECF subexecutions.

attacking is harder as Ethereum employs (not bullet-proof) heuristics to limit callbacks; (3) a better playground
may be the Ethereum TestNet on which we did not run the experiment, but may provide insight as a future work.

The actual overhead measured by enabling the ECF monitor is given in Figure 15. We used the �rst experiment,
where the blocks were imported, as a benchmark. Normally, there is an additional overhead of network download
times, which can vary signi�cantly. The measured overhead is about 3.5%, when calculating the di�erence in time
of importing the blockchain with the monitor o�, and importing it with the monitor on. We believe the actual
overhead is even smaller in most realistic scenarios. First, most clients import the blockchain using the network,
which may cause unexpected latencies, unrelated to the monitor. Additionally, the process was pointed to a
directory created on a 200 GB RAM disk to improve the scalability of the experiment.12 Most clients use a physical
disk and not a RAM disk. Even if the physical disk is an SSD drive, the experiment slows down signi�cantly, and
takes about 20h (18% more than with a RAM disk).

The additional memory footprint measured in the end of the import is about 140MB, or 17%. It should be
noted, that as the implementation is written in Go, which includes automatic garbage collection, the memory
consumption varies between tests. The relative di�erence with the monitor on or o� was consistent across
repeated tests. The maximal memory used by the process is 5.5GB and is not related to the monitor. High memory
consumption occurred during the processing of one of the DoS attacks on the blockchain.

12The Ethereum blockchain su�ered a DoS attack (Bok Consulting 2016b; StackExchange 2017) a�ecting the blockchain in the range of
block numbers 2.2M-2.7M, causing all peers participating in the blockchain to make frequent accesses to disk. Running on a RAM disk was
necessary to minimize the runtime of experiments.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 • Shelly Grossman et al.

Time Memory (max) Memory (end)
Monitor o� 16h 17m 5.5GB 803MB
Monitor on 16h 50m (3.38% overhead) 5.5GB (0%) 940MB (17% overhead)

Fig. 15. Performance statistics. Benchmark experiment was importing the Ethereum main network blockchain, from its
creation in July 30, 2015 until March 30, 2017. Compares the import with monitor on or o�.

9 RELATED WORK

9.1 Modular Reasoning
Modular reasoning is a topic which has been studied extensively with the seminal works of Hoare (1972)
and Dijkstra (1976). For more recent studies on modularity we refer the readers to Banerjee and Naumann (2005);
Leino and Müller (2005).
Averroes (Ali and Lhoták 2013) is a tool for generalizing call-graphs of applications by leaning on a separate

compilation assumption to generate a general stub library for applications. This allows analysis tools to be modular,
as generating full call-graphs is both expensive and imprecise. They show how encapsulation assumptions and
proofs can be leveraged to improve the feasibility and the precision of analyses. In our work, we give a su�cient
condition, ECF, for the ability to soundly reason about a single object in isolation from any other object.

The work of Leino and Nelson (2002) presents an idiom for verifying if an object behaves as expected in the
presence of callbacks, called Valid/state speci�cation idiom. Every object o maintains a ‘valid’ bit that indicates if its
state is valid, i.e., satis�es its object invariants. The bit should be true in every �rst invocation of o in an execution.
When o calls a method of another object o′, o turns o� its ‘valid’ bit. This way, if the execution of o′ leads to
another method call of o, before the original call to o completed, the code of o can take into account the fact that
its object invariants do not necessarily hold. The existence of such a ‘valid’ bit is helpful to achieve modular
soundness, that is the ability to reason about an object in isolation. This paper achieves modular soundness by
relying on the encapsulation of the object’s state. Essentially, an ECF object is an object for which the ‘valid’ bit
is always turned on, as it is guaranteed that the object state changes only from within the object’s methods, and
that those methods too are only executed where originally the ‘valid’ bit would be turned on. Thus, with the
assumption on all executions being ECF, there is no need to de�ne a separate behavior of the code for when the
‘valid’ bit is turned on or o�. To enable sound modular reasoning, we simply ignore external calls and assume any
return value returned from any such external call. We note that the absence of shared state drastically simplify
our life.

Logozzo (2009) presents a method for modular inference of class invariants. Speci�cally, it is shown that the
trace semantics of an isolated class are sound and complete with respect to the trace semantics of a whole
program. The goal is to �nd the strongest state-based sound class invariant, that holds in both the isolated and
non isolated cases. Abstraction is used in order to compute such an invariant. If it the class invariant matches the
speci�cation of the class, then it is ensured that the class itself matches the speci�cation even in the context of
a whole program. The mentioned work enables modular reasoning by using abstraction. Our work does not
attempt to �nd such a sound class invariant, but rather to satisfy the necessary conditions for being able to
statically verify any speci�cation of an object in isolation of other objects. The bene�t here is that we do not
depend on the precision of an abstraction, which may output an invariant that overapproximates the speci�cation,
and thus does not meet it.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:25

9.2 Verification of Smart Contracts
Even before the events surrounding the bug in the DAO, there were discussions in the Ethereum community
about formal veri�cation of smart contracts. Following the extreme measures taken to avert the e�ects of the
attack on the DAO by hard-forking the blockchain and e�ectively rewrite its history of executions, the discussion
became more wide-spread.

Luu et al. (2016) characterized a class of security bugs in smart contracts called Transaction-Ordering Dependence
(TOD). A contract in�icted with TOD bugs may behave unexpectedly when there is more than one client using
the system and the e�ect of the execution of one client depends on whether the other client already executed or
not. In both TOD and ECF the bugs arise from the fact that the execution is performed in an unexpected state
of the contract. However, TOD bugs arise when there is more than one execution (since smart contracts are
executed in a distributed environment), whilst non-ECF arises even in a single execution which contains callbacks.
One of the solutions suggested for TOD bugs is guarded transactions. The idea is to allow contract writers to
de�ne guard conditions which are veri�ed by the virtual machine executing the contract code. The execution
must satisfy the guard condition, otherwise it fails without any e�ect. However, by enabling modular reasoning
on contracts by proving or asserting at runtime that the executions are ECF, we can verify similar conditions
statically. The only addition that may be required for the virtual machine is the online ECF check, which we
found to be inexpensive in practice. Checking arbitrary conditions at runtime may either be ine�cient, or not
expressible enough to specify fully correct contract behavior. In addition, by verifying at runtime that executions
are ECF, we are already able to detect and prevent executions which are, with high probability, unwanted or
unexpected.

Luu et al. (2016) presents a tool called Oyente (Melonport 2017), based on symbolic execution of contracts. The
tool’s web version reports on the existence of ‘reentrancy bugs’, which is how the family of bugs such as the bug
in the DAO were dubbed by the Ethereum community. We attempted to verify both ECF and non-ECF contract
variations based on the DAO object presented in Figure 1. We received a report on a ‘reentrancy bug’, even on
ECF contracts. We reported the false positives to the web Oyente team, and will submit the issue request by the
camera-ready deadline.

The Why3 (Filliâtre and Paskevich 2013) tool was also applied to verify smart contracts written in Solidity.
This requires whole code analysis and user supplied loop invariants.

Bhargavan et al. (2016) translate a subset of the high-level Solidity language for Smart Contract development
to F*, enabling using F*’s veri�cation framework on Smart Contracts. They also presented a decompiler for EVM
bytecode to F*. Similarly to the Why3 approach, the authors faced the issue of translating peculiar syntactic
features of the smart contract language Solidity to F*.

It should be noted that both F* and Oyente are successful in detecting other bugs, such as mishandled exceptions.
For technical clarity, we omit discussion of the semantics of exceptions and rollbacks in Ethereum. Primarily, to
arrive at general results that can be applied in domains other than Ethereum, and secondly, to not overbear the
reader with technical details on the myriad ways Ethereum contracts may be invoked, and how exceptions may
be handled in each of these ways.

Delmolino et al. (2015) discuss their insights from an educational smart contracts lab they held, and published
example contracts used in the lab. We manually analyzed one such contract, implementing a rock, paper, scissors
game (Delmolino et al. 2016). We identi�ed several control paths in which a non-ECF execution might manifest.
Speci�cally, there are two control paths in registration to the game (in which players provide a sum as bounty),
and three additional paths in the collection of the prize. However, the authors put a constraint on the ability to
execute callbacks by limiting to a minimum the amount of gas available to the execution. gas is a novel concept
in Ethereum that e�ectively bounds the runtime by associating with each low-level opcode a cost. If an execution
is not provided with enough gas when called, it throws a special out-of-gas exception.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26 • Shelly Grossman et al.

Sergey and Hobor (2017) o�er an analogy between the nomenclature of Smart Contracts and that of concurrent
objects. Speci�cally, the scenario of a contract calling another contract is compared to cooperative multitasking,
in which contract invocation is analogous to the case where the caller yields control. One of the main challenges
mentioned is that of being able to verify contracts in isolation of other contracts. The ECF property brings us
closer to that goal, by allowing to check properties that can be speci�ed as ‘contract invariants’ in a modular
way.

10 CONCLUSION
In this paper we have presented a simple generic correctness condition for callbacks called E�ective Callback
Freedom and studied its usefulness. We have shown that it enables modular reasoning in environments with
local-only mutable states like Ethereum. We have also shown that in Ethereum it can be used to prevent bugs
without drastically limiting programming style, and that it can be checked dynamically with low runtime overhead.
In the future, we expect to apply the concept of ECF and prove its usefulness in other environments such as
Microservices and Amazon λ.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Online Detection of E�ectively Callback Free Objects with Applications to Smart Contracts • 1:27

REFERENCES
2017. Validity Labs. https://validitylabs.org. (2017). [Online].
Karim Ali and Ondřej Lhoták. 2013. Averroes: Whole-program Analysis Without the Whole Program. In Proceedings of the 27th European

Conference on Object-Oriented Programming (ECOOP’13). Springer-Verlag, Berlin, Heidelberg, 378–400.
Ambisafe. 2017. Ethereum Asset Platform. https://www.ambisafe.co/. (2017). [Online; accessed 1-July-2017].
B9Lab. 2017. ING hack challenge. (2017). [Online].
Anindya Banerjee and David A. Naumann. 2005. Ownership con�nement ensures representation independence for object-oriented programs.

J. ACM 52, 6 (2005), 894–960.
Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database Systems. Addison-Wesley.
Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova,

Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. Formal Veri�cation of Smart Contracts: Short
Paper. In Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security (PLAS ’16). ACM, New York, NY,
USA, 91–96.

Bok Consulting. 2016a. The DAO ETC Drains. https://github.com/bokkypoobah/TheDAOETCDrains. (2016). [Online; accessed 2-July-2017].
Bok Consulting. 2016b. Ethereum Network Attacker’s IP Address Is Traceable. https://www.bokconsulting.com.au/blog/

ethereum-network-attackers-ip-address-is-traceable/. (2016). [Online; accessed 30-June-2017].
Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability analysis of pushdown automata: Application to model-checking.

CONCUR’97: Concurrency Theory (1997), 135–150.
Vitalik Buterin. 2016. CRITICAL UPDATE Re: DAO Vulnerability. https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/.

(2016). [Online; accessed 2-July-2017].
Phil Daian. 2016. (2016). http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
Kevin Delmolino, Mitchell Arnett, Ahmed E. Kosba, Andrew Miller, and Elaine Shi. 2015. Step by Step Towards Creating a Safe Smart

Contract: Lessons and Insights from a Cryptocurrency Lab. IACR Cryptology ePrint Archive 2015 (2015), 460.
Kevin Delmolino, Mitchell Arnett, Ahmed E. Kosba, Andrew Miller, and Elaine Shi. 2016. Ethereum - Serpent Tutorial and Smart Contract

Lab. https://github.com/mc2-umd/ethereumlab/blob/master/Examples/RPS_v2_new.py. (2016). [Online; accessed 2-July-2017].
Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall.
Ethereum Classic. 2017. Ethereum Classic. https://etcchain.com/. (2017). [Online; accessed 2-July-2017].
Ethereum Foundation. 2017a. Geth. https://github.com/ethereum/go-ethereum/wiki/geth. (2017). [Online; accessed 30-June-2017].
Ethereum Foundation. 2017b. Solidity. https://solidity.readthedocs.io/en/develop/. (2017). [Online; accessed 5-July-2017].
Ethereum Reddit. 2016. From the MAKER DAO slack: "Today we discovered a vulnerability in the ETH token wrapper which would let

anyone drain it.". https://www.reddit.com/r/ethereum/comments/4nmohu/from_the_maker_dao_slack_today_we_discovered_a/. (2016).
[Online; accessed 2-July-2017].

Etherscan. 2017. 0xbfBeA57d87E15529a30B6634C1C13F1A12Fa4d09. https://etherscan.io/address/
0xbfbea57d87e15529a30b6634c1c13f1a12fa4d09. (2017). [Online; accessed 1-July-2017].

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 — Where Programs Meet Provers. In Proceedings of the 22nd European Symposium
on Programming (Lecture Notes in Computer Science), Matthias Felleisen and Philippa Gardner (Eds.), Vol. 7792. Springer, 125–128.

Alexey Gotsman and Hongseok Yang. 2011. Liveness-Preserving Atomicity Abstraction. In Automata, Languages and Programming - 38th
International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II. 453–465.

C. A. R. Hoare. 1972. Proof of Correctness of Data Representations. Acta Inf. 1 (1972), 271–281.
J.E. Hopcroft, R. Motwani, and J.D. Ullman. 2006. Introduction to automata theory, languages, and computation. Addison-wesley.
Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (July 1978), 558–565.
K. Rustan M. Leino. 2010. Dafny: An Automatic Program Veri�er for Functional Correctness. In Logic for Programming, Arti�cial Intelligence,

and Reasoning: 16th International Conference, LPAR-16, Dakar, Senegal, April 25–May 1, 2010, Revised Selected Papers, Edmund M. Clarke
and Andrei Voronkov (Eds.). Springer, Berlin, Heidelberg, 348–370. DOI:http://dx.doi.org/10.1007/978-3-642-17511-4_20

K. Rustan M. Leino and Peter Müller. 2005. Modular Veri�cation of Static Class Invariants. In FM 2005: Formal Methods, International
Symposium of Formal Methods Europe, Newcastle, UK, July 18-22, 2005, Proceedings. 26–42.

K. Rustan M. Leino and Greg Nelson. 2002. Data Abstraction and Information Hiding. ACM Trans. Program. Lang. Syst. 24, 5 (Sept. 2002),
491–553.

Francesco Logozzo. 2009. Class Invariants As Abstract Interpretation of Trace Semantics. Comput. Lang. Syst. Struct. 35, 2 (July 2009), 100–142.
Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM, New York, NY, USA, 254–269.
Melonport. 2017. Oyente. https://oyente.melonport.com. (2017). [Online; accessed 6-July-2017].
Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf. (2008).
p-s-dev. 2016. Split DAOs. https://gist.github.com/p-s-dev/e940788a3472fefa1539b327b8628943. (2016). [Online; accessed 1-July-2017].

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://validitylabs.org
https://www.ambisafe.co/
https://github.com/bokkypoobah/TheDAOETCDrains
https://www.bokconsulting.com.au/blog/ethereum-network-attackers-ip-address-is-traceable/
https://www.bokconsulting.com.au/blog/ethereum-network-attackers-ip-address-is-traceable/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://github.com/mc2-umd/ethereumlab/blob/master/Examples/RPS_v2_new.py
https://etcchain.com/
https://github.com/ethereum/go-ethereum/wiki/geth
https://solidity.readthedocs.io/en/develop/
https://www.reddit.com/r/ethereum/comments/4nmohu/from_the_maker_dao_slack_today_we_discovered_a/
https://etherscan.io/address/0xbfbea57d87e15529a30b6634c1c13f1a12fa4d09
https://etherscan.io/address/0xbfbea57d87e15529a30b6634c1c13f1a12fa4d09
http://dx.doi.org/10.1007/978-3-642-17511-4_20
https://oyente.melonport.com
https://bitcoin.org/bitcoin.pdf
https://gist.github.com/p-s-dev/e940788a3472fefa1539b327b8628943

1:28 • Shelly Grossman et al.

Johannes Pfe�er. 2016. The rise of the Dark DAO. https://medium.com/@oaeee/the-rise-of-the-dark-dao-72b21a2212e3. (2016). [Online;
accessed 2-July-2017].

Rob Pike. 2012. Go at Google. In Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity
(SPLASH ’12). ACM, New York, NY, USA, 5–6.

Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart Contracts. In 1st Workshop on Trusted Smart Contracts.
Ethereum StackExchange. 2017. Why is my node synchronization stuck/extremely slow at block 2,306,843? https://ethereum.stackexchange.

com/questions/9883/why-is-my-node-synchronization-stuck-extremely-slow-at-block-2-306-843. (2017). [Online; accessed 30-June-
2017].

Nick Szabo. 1997. Formalizing and securing relationships on public networks. First Monday 2, 9 (1997).
Validity Labs. 2017. Recursive call exploit. (2017). [Online].
Peter Vessenes. 2016. More Ethereum Attacks: Race-To-Empty is the Real Deal. http://vessenes.com/

more-ethereum-attacks-race-to-empty-is-the-real-deal/. (2016). [Online; accessed 2-July-2017].
Gavin Wood. 2016. Ethereum: A Secure Decentralised Generalised Transaction Ledger. http://gavwood.com/paper.pdf. (2016). [Online;

accessed 5-July-2017].

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://medium.com/@oaeee/the-rise-of-the-dark-dao-72b21a2212e3
https://ethereum.stackexchange.com/questions/9883/why-is-my-node-synchronization-stuck-extremely-slow-at-block-2-306-843
https://ethereum.stackexchange.com/questions/9883/why-is-my-node-synchronization-stuck-extremely-slow-at-block-2-306-843
http://vessenes.com/more-ethereum-attacks-race-to-empty-is-the-real-deal/
http://vessenes.com/more-ethereum-attacks-race-to-empty-is-the-real-deal/
http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	2 Overview
	2.1 The DAO Bug
	2.2 Effectively Callback Free Contracts
	2.3 Online ECF Detection
	2.4 Deciding ECF Contracts
	2.5 Verifying Properties of ECF
	2.6 Summary of the rest of this paper

	3 Programming Language
	3.1 Syntax
	3.2 Semantics

	4 Correctness conditions
	5 Decidability
	6 Object-level analysis
	7 Dynamic Verification
	7.1 Data structures
	7.2 Algorithm
	7.3 Complexity

	8 Evaluation
	9 Related Work
	9.1 Modular Reasoning
	9.2 Verification of Smart Contracts

	10 Conclusion
	References

