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Abstract

Sequent calculi constitute a prominent proof-theoretic framework, suitable for a vari-
ety of logics. These include classical and intuitionistic logic, modal logics, paraconsistent
logics, and many-valued logics, including fuzzy logics. The most important property of
useful sequent calculi is analyticity, whose most common instance is the subformula prop-
erty. When a calculus is analytic, a certain limitation on the search space of derivations
is achieved. In the case of propositional sequent calculi, this often leads to a finite bound
on the search space, and decidability immediately follows. This limitation may also be
useful for proving the consistency of a sequent calculus (the fact that the empty sequent
is not derivable).

The most standard way to prove analyticity is via cut-admissibility, that is: the
redundancy of the cut rule, which is usually the only rule whose premises may include
a formula that is unrelated to the conclusion. Indeed, when cuts can be eliminated, and
all other rules include in their premises only syntactic material from their conclusions, a
simple induction on derivations entails that the end sequent can be derived using only
its own syntactic material. Another major motivation for the elimination of the cut rule
is the adequacy of cut-free calculi for efficient proof-search procedures.

Despite the usefulness of cut-admissibility, relying on it alone for proving analyt-
icity leaves out various useful sequent calculi that are analytic, but do not enjoy cut-
admissibility. Moreover, even when it is possible to obtain cut-admissibility, it might
be easier to prove analyticity directly, rather than to go through complicated and error-
prone proofs of cut-admissibility. In addition, a great deal of ingenuity is required for
developing efficient proof-search algorithms for cut-free sequent calculi.

The main subject of this thesis is the notion of analyticity of sequent calculi discussed
above. Our main contribution is a general analysis of it in several wide families of calculi.
This analysis includes the following:

e We provide several sufficient criteria for analyticity, that are easy to check either
“by hand” or in an automated way. These simple criteria can replace complex
proofs of analyticity that go through cut-admissibility. In fact, many analyticity
results from the literature are obtained as particular instances of this result. The
value of these criteria is also demonstrated by several new useful calculi that we

introduce in this work.

e We study the connection between analyticity and cut-admissibility, and prove that



v

in a wide variety of calculi, the two properties are equivalent. Besides theoretical
interest, this result can be used to simplify proofs of cut-admissibility, whenever
analyticity has already been established. Using this result, we show that some
of the sufficient criteria for analyticity that we propose are also sufficient for cut-

admissibility.

We utilize analyticity to construct a uniform decision procedure for a wide family
of sequent calculi. Our decision procedure relies only on analyticity, regardless of
the admissibility of cut. Moreover, it is based on an efficient reduction to SAT,
and thus all heuristic considerations are shifted to the mechanisms of off-the-shelf

SAT-solvers. An implementation of this decision procedure is also described.

Finally, we study the framework of non-deterministic matrices (Nmatrices) as a
tool for constructing analytic sequent calculi for logics that are already given in
some other form. A fundamental operation on Nmatrices is introduced, called
rexpansion, and is shown to be a crucial (though so far implicit) ingredient in
applying Nmatrices for the construction of analytic sequent calculi for non-classical

logics.
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Chapter 1

Introduction

1.1 Background

Gentzen’s seminal paper from 1934 [54] begins with the introduction of the first two
natural deduction calculi: system NK for classical logic and system NJ for intuitionistic
logic[| The calculus NJ admits the subformula property: whenever a hypothesis can
be derived from a set of assumptions, there is a derivation of the same hypothesis that
contains only subformulas of the hypothesis and the assumptions. However, this property
fails for NK. For the purpose of providing a calculus with the subformula property for
both intuitionistic and classical logic, Gentzen introduced two alternative systems: LK
and LJ. The main formal entities that are manipulated in LK and LJ are called sequents.
These have the form I' = A, where ' and A are finite lists of formulad’] and “ = ”
is a meta-symbol. This more complex data structure provides a good mechanism for
keeping track of the current premises in the derivation (the formulas that appear in I'),
as well as the current possible conclusions of these premises (the formulas that appear
in A). And indeed, the intuitive reading of a sequent I' = A is that the conjunction
of the left side implies the disjunction of the right side. The manipulation of sequents
instead of formulas allowed Gentzen to replace all elimination rules of natural deduction
with rules that introduce formulas on the left side of the sequent. This way, the rules
of the logical symbols admit the local subformula property: in each rule, the premises
only include subformulas of the conclusion. In addition to the right-introduction and
left-introduction rules (that correspond to introduction and elimination rules in natural
deduction, respectively), LK and LJ also include several structural rules, that operate on

the sequent level. Most of the structural rules also admit the local subformula property,

!The same year, Jaskowski’s similar notion of natural deduction was independently published [62].
2In this thesis we consider a variant in which I" and A are finite sets of formulas.
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with the single exception being the cut rule:

[ =9, A Ty, = Ay
[, T = Ay, Ay
This is the only rule in LK and LJ that does not have the local subformula property.

For this reason, a major portion of Gentzen’s paper is devoted to the “Hauptsatz” (Main

Theorem):

Theorem ([54]). Every derivation of a sequent in LK (LJ) can be transformed into a

derivation of the same sequent in LK (LJ), in which the cut rule is not used.

As a corollary, Gentzen obtains the desired subformula property for the intuitionis-
tic case (LJ), and unlike natural deduction, also for the classical case (LK). From this

property, two additional characteristics of LK and LJ follow:

1. Consistency: the empty sequent is not derivable. This is true, as if it were derivable,
the subformula property would have ensured a proof of it that includes no formulas
at all. This is only possible if the empty sequent was one of the rules of the systems,

which is not the case.

2. Decidability: when considering propositional classical and intuitionistic logics, each
formula has finitely many subformulas. The subformula property of LK and LJ
then provides a decision procedure for both logics, as it reduces the search space of

possible derivations of a given sequent to a finite one.

Since then the framework of sequent calculi (as well as its extensions, like hyperse-
quential calculi) is widely applied in proof theory and automated reasoning. In addition to
classical and intuitionistic logics, many important non-classical logics were investigated
and implemented through this framework and some of its variants. Examples include
modal logics [85], [101], conditional logics [55], many-valued and fuzzy logics [25] [79] and
paraconsistent logics [27, 28, 29).

For each of them, the process can be roughly described as follows:
1. A sequent calculus is designed for a particular logic.
2. The cut rule is shown to be admissible in this calculus.

3. The subformula property (or some natural generalization of it) is obtained as a
corollary, and ensures that the calculus is consistent and decidable (in the proposi-

tional case).

4. In some cases, a proof-search procedure is designed for this particular calculus.
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There are two main disadvantages in the process just described. First, the traditional
route to the subformula property derives it as a corollary of cut-admissibility. However,
there are several important logics for which a cut-free ordinary sequent calculus seems
to be beyond reach, while a calculus that admits the subformula property was found.
Examples for such logics include the modal logics B (of symmetric Kripke frames) and S5
(of universal Kripke frames) [85] 96|, [101], and also bi-intuitionistic logic [84]. Moreover,
even when a calculus admits both properties, it is sometimes much easier to prove the
subformula property than cut-admissibility. Second, developing an efficient proof-search
decision procedure for a given calculus requires a great deal of ingenuity (see, e.g., [45]).
Efficiency is often gained by heuristics that are calculus-specific, which makes them hard
to be generalized for other calculi.

Aiming for alternative routes than the one described above, this thesis focuses mainly
on the subformula property and some of its natural generalizations, in most cases without
relying on cut-admissibility, and utilizes some useful characteristics of it in order to design

uniform decision procedures.

1.2 This Thesis

On Analyticity

Gentzen describes the subformula property concisely by: “No concepts enter into the
proof other than those contained in its final result” [54]. Now, the obvious interpretation
of this description identifies the notion of “containment” simply with the subformula
relation. However, such a reading leaves out various calculi for non-classical logics, that,
while not admitting the subformula property, do admit simple variants of it, that still
ensure decidability and consistency. For example, in several calculi for many-valued and
paraconsistent logics, every derivation of a sequent can be transformed into a deriva-
tion in which not only subformulas of the sequent occur, but also their negations (see,
e.g., [13, 27]). Such variants of the subformula property are just as useful as the usual
one to achieve decidability and consistency. Thus, in this thesis we consider several in-
terpretations of what “containment” means, and introduce a parametrized notion of a
subformula. We call the various variants of the subformula property that we propose

analyticity, and say that a calculus is analytic if it admits one of them.

Main Results

Our main contribution is a systematic analysis of analyticity in three general families of

propositional sequent calculi:
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Pure Calculi These are propositional sequent calculi that include all the usual struc-
tural rules (id, cut, weakening, contraction and permutation), and whose logical
derivation rules do not enforce any limitations on the context sequentsﬁ While
the most dominant example of a pure calculus is the propositional fragment of
LK, pure calculi are suitable for various non-classical logics, including three and
four-valued logics, and also many paraconsistent logics. For this family, we provide
simple and decidable sufficient criteria for analyticity, that can be easily checked
by either a logic researcher or practitioner, or in an automated way. Many an-
alyticity results from the literature, as well as analyticity of new calculi that we
introduce, are obtained as particular instances of this result. Further, we study the
connection between analyticity and cut-admissibility in pure calculi, and show that
for a wide sub-family, these properties are equivalent. We then provide a generic
decision procedure for analytic pure calculi, that is based on a uniform reduction to
SAT, thus leaving all logic-specific heuristics and optimizations that are common in
proof-search algorithms to the realm of off-the-shelf SAT solvers. The final chapter
of this thesis studies methods to construct pure calculi for logics that are defined by
other means (e.g. by a Hilbert-type calculus or using a semantic deﬁnition)f_f] The
resulting calculi are subject to the reduction to SAT, as well as to the extension of

pure calculi with modal operators, that is described next.

Pure Calculi with Modal Operators Usual sequent rules for modal logics are im-
pure, as they operate on the context sequents and have several constraints on them.
However, when a calculus can split into a pure part and a separate impure part that
consists solely of modal rules, and these parts do not share any logical connectives,
it is possible to lift some of the properties of the pure part to the whole calculus.
This is the case, for example, for classical modal logics like K and S5, whose pure
part is simply the propositional fragment of LK, and the modal part consists of a
single rule for [J. We study such calculi in a multimodal setting, and prove that the
analyticity of a pure calculus is preserved when adding several well-known impure
rules for modal operators. We then extend the decision procedure for analytic pure

calculi to modal calculi of a certain form.

Intuitionistic Calculi Gentzen’s calculus for intuitionistic logic LJ is not pure, as it
employs only single-conclusion sequents. In particular, all right-introduction rules

restrict the right side of the context sequent to be empty. In [97], Takeuti described

3We follow [11] and use the name pure for such calculi.
4In case the logic is given by a Hilbert calculus, we obtain proper sequent rules that are different
from the original axioms.
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Maehara’s equivalent calculus for this logic [77], LJ’, that relaxes this requirement.
LJ’ employs ordinary multiple conclusion sequents, and requires that the right side
of the context sequent is empty only for the right introduction rules of implication
and negation. Other calculi for constructive logics such as Nelson’s N3 and N4 (see,
e.g., [100]) employ a similar restriction. We identify a family of calculi, that we call
intuitionistic calculi, and includes, among others, the aforementioned examples.
We then prove that similarly to the case of pure calculi, cut-admissibility and

analyticity are equivalent for a wide sub-family of intuitionistic calculi.

Main Tools

Gentzen’s original method for proving analyticity (through cut-admissibility) is syntactic:
it uses double induction on derivations, and constructively eliminates cuts, by replacing
them with other rules that produce a derivation with a smaller inductive measurement.
Since then, many analyticity proofs go through the same route, with the details changing
according to the investigated calculus. While this approach is constructive — an algorithm
can usually be extracted, that transforms a derivation with cut into a derivation without
it — such syntactic proofs are very hard to verify, and are error-prone. The main issue is
the vast number of (sub-)cases that need to be considered, and the fact that some cases
that look similar to previously proven cases in the proof (and are therefore usually left
to the reader), are actually different.

Another approach, that we adopt in this work, is the semantic approach. According
to this approach, proving analyticity (and/or cut-admissibility) for a particular calculus
amounts to a completeness proof of analytic (and/or cut-free) derivations in the calculus
with respect to some semantics for which the full calculus is sound. Proofs in the semantic
approach are easier to verify, and, more importantly in the context of this thesis, to
generalize. Therefore, they are much more suitable for investigating families of calculi.

While each of the aforementioned results is purely syntactic, almost all of their proofs
are semantic, but in a way that is invisible to the “end-user”, that does not need to know

that the semantics even exists. The general recipe for proving our results goes as follows:
1. Formalize a syntactic hypothesis about a certain family of sequent calculi
2. Prove a general soundness and completeness theorem for this family

3. Using soundness and completeness, find a semantic hypothesis whose validity entails

that of the syntactic one (often the two hypotheses will actually be equivalent)

4. Prove the semantic hypothesis using semantic tools
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5. Conclude the validity of the syntactic hypothesis

But what semantic frameworks or principles should be used? An important desired
feature of a semantic framework for the investigation of proof systems is modularity. The
connection between the derivation rules and their semantics should be local, such that
small changes in the derivation rules only have a local effect on the semantics, preferably
only relating to the connectives that were changed in the proof system. For this reason,
the main principle that is common to all the frameworks that we utilize in this thesis
is the principle of non-determinism, that has proven useful in the analysis of families
of sequent calculi (see, e.g., |21, 27, [70]). According to this principle, that is borrowed
from automata and computability theory, the truth value of a compound formula is not
uniquely determined by the truth values of its direct subformulas, but is only constrained
by them. Further, more complex constraints may be incorporated, that do not only
rely on the values assigned to immediate subformulas. The meaning of the connectives
is thus not represented by functions (e.g. “—(z) = 1 — 27, like in the case of classical

¢

negation). Instead, it is represented by relational constraints (e.g. “z =0 — -z = 17,
like in the case of the CLuN negation [33] and other paraconsistent negations). This
relaxed notion of a semantic framework is very flexible, and allows for a great amount of
modularity. Such an approach is particularly useful for a semantical analysis of sequent
calculi, by reading each derivation rule as a semantic constraint on the “legal” models.
Unlike deterministic frameworks (such as many-valued matrices), each derivation rule
has only a local effect, and thus its inclusion (or exclusion) is handled without the need
to propagate any changes to the general semantics. The following is a list of the non-

deterministic semantic frameworks that we use in this work:

Two-valued valuation functions These are functions that assign binary truth values
to formulas, and generalize the bivaluation semantics of [35]. They are mainly used
to study analyticity in pure calculi, and also to provide a uniform decision procedure
for analytic pure calculi. By translating the rules of a given pure calculus into
semantic constraints, one obtains a subset of such functions, for which the calculus
is sound and complete. An important feature of these functions is that they may
be partially defined, and in many cases, the ability to extend partial functions into

full ones corresponds to analyticity.

Three-valued valuation functions This semantic framework is used to study cut-
admissibility in pure calculi. It is obtained from two-valued valuation functions
by the addition of a third truth value, whose purpose is to make the cut rule un-
sound (an idea that goes at least as far back as Schiitte’s work on cut-admissibility

[90]). In such a framework, it is possible to obtain a semantics for which a pure
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calculus without cut is sound and complete. By relating the third truth value to
the undefined elements in two-valued valuation functions, we are able to show the
equivalence between cut-admissibility and analyticity in a wide sub-family of pure

calculi.

Two-valued Kripke models This semantic framework is a particular instance of the
Kripke valuations from [70], and it allows us to import the syntactic separation
between pure rules and modal rules to the semantics: pure rules are represented by
local constraints on the truth values in each world, while modal rules are represented
by global constraints according to the usual meaning of [J. Similarly to valuation
functions, we consider Kripke models that are partially defined, and are thus able
to generalize some of the results of pure calculi to their augmented version with
modal operators. In particular, this semantic framework enables us to show that
the analyticity of a pure calculus survives the addition of modal operators (by
showing that the ability to extend partial valuations can be used to extend partial
Kripke models). The similarities between Kripke models and valuation functions

also allows us to extend the above decision procedure to certain modal operators.

Three-valued Kripke models These are obtained from two-valued Kripke models by
the addition of a third truth value, and are a particular instance of the quasi-
valuations from [70]. This framework is used to study the connection between
cut-admissibility and analyticity in intuitionistic calculi. Unlike two-valued Kripke
models, whose global constraints depend on modal operators, we utilize three-
valued Kripke models for intuitionistic calculi, that do not employ modalities. In-
stead, the impure rules of intuitionistic calculi impose other (global) constraints on
the valuations of each world. In the spirit of the semantics for intuitionistic logic,
these models are persistent, which means that truth is hereditary in accessible

worlds.

Non-deterministic matrices The above frameworks are very restrictive with respect
to the number of truth values that are allowed to be used (either two or three), but
are permissive with respect to the minimal semantic restrictions on the models that
are employed. Non-deterministic matrices (Nmatrices) [21, 22], a natural general-
ization of ordinary many-valued matrices [99], are of a dual character: they are not
restricted to any number of truth values; but, they are much more restrictive in the
minimal requirements from the models of the framework. Nmatrices are obtained
from ordinary matrices by allowing a non-deterministic choice of a truth value for
a compound formula out of a set of possible values, determined by the values of

its immediate subformulas. While the aforementioned semantic frameworks are
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mainly applied for studying existing sequent calculi, the framework of Nmatrices
is useful for constructing sequent calculi for existing logics, and even for families of
logics. And indeed, many sequent calculi for non-classical logics were constructed
using the method of [25], by first finding a finite Nmatrix for the logic and then
translating it to a sequent calculus (see, e.g., [26]). Using similar techniques, in-
finite Nmatrices are also useful for this task (see, e.g., [27, 29]). When studying
families of logics, this method often requires some transformations on a certain
basic Nmatrix, and then each logic of the family naturally induces some variant of
the transformed Nmatrix. We introduce a fundamental operation on Nmatrices,
that we call rezpansion, and show that many transformations on Nmatrices from
the literature are actually, though implicitly, particular instances of this operation.
We study the properties of rexpansion, and make explicit its usage in the construc-
tion of sequent calculi for non-classical logics. In addition, we introduce a method
for conservatively extending a given logic or sequent calculus with new connectives
that have several desired properties. The most important demonstration of this
method that we present is a novel technique for the construction of paraconsistent

fuzzy logics.

Outline

The structure of this thesis is as follows. Chapters [2| and [3| are devoted to the family
of pure calculi. After explicitly defining this family and providing several examples in
Section[2.2] their semantics, that is based on two-valued valuation functions, is introduced
in Section [2.3] Then, a generalized analyticity property is defined in Section [2.5] where
we also provide sufficient criteria for identifying and constructing analytic calculi. In
Section [2.6] analyticity is proven to be equivalent to cut-admissibility in a wide sub-
family of calculi. Chapter (3| presents a SAT-based decision procedure for analytic pure
calculi. In particular, Section describes an implementation of this procedure.

In Chapter [4] we investigate the extension of pure calculi with impure rules for well-
known modal operators. Section 4.3 shows that analyticity survives the addition of such
rules to a pure calculus, and Section [4.4] extends the reduction from Chapter|3|to a certain
type of modal operators that we call Next operators. The results of this chapter are based
on an extension of two-valued valuation functions to two-valued Kripke models.

Chapter 5| introduces the family of intuitionistic calculi, and extends the equivalence
of Section between cut-admissibility and analyticity to this family. This result is
proved using a semantic view of intuitionistic calculi, that is based on three-valued Kripke

models.
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Chapter [0] is dedicated to rexpansions of non-deterministic matrices and their appli-
cations in the construction of pure sequent calculi. Section [6.2|introduces the rexpansion
operation and study its important properties, as well as its effects on semantically-defined
consequence relations. In particular, it includes a method for obtaining conservative
extensions of a given logic with new connectives that are expected to admit several
properties. Section demonstrates the usefulness of rexpansion in the construction of
sequent calculi for non-classical logics. Section [6.5| uses rexpansions for the construction
of paraconsistent fuzzy logics.

Finally, in Chapter [7] we conclude with a discussion of some directions for further

research.

Related Work

Avron and Lev [21] introduced the family of canonical sequent calculi, a very restricted
sub-family of pure calculi, and provided a sufficient syntactic criterion, called coherence
for analyticity and cut-admissibility in them (see also [22]). Here we generalize this
criterion in order to cover a much wider family of calculi. The general framework of [81]
allows one to encode all pure calculi in linear logic, and use linear logic to reason about
them. Among the pure calculi, it is again only the canonical ones for which a decidable
criterion for analyticity is given in [81].

While most of the work in decision procedures for non-classical logics is done for
specific logics, some tools focus on families of logics, that share the same syntax and
basic structure of derivation rules. Examples of such tools include the Logic WorkBench
[61], the Tableau Workbench [1], LoTREC [53], focusing on modal-like logics, and COOL
[57], focusing on modal and hybrid logics. The decision procedure that we introduce
here and its implementation are completely generic, and are applicable to all analytic
pure calculi (and some of their extensions), without any restriction on the syntax itself.
Another project with a similar goal is MetTeLi [98], which incorporates a generic decision
procedure for tableau calculi, and thus uses a different approach from the one taken here.
We compare between the two approaches in Section [3.3]

Finally, some of the semantic frameworks that we employ here are either variants or
particular instances of the general framework given in [70]. In particular, some of our
completeness theorems, which we prove directly, can be also obtained using the method
given there. However, in some cases, direct completeness proofs turn out to be simpler,
and better targeted for the purposes of this thesis. While one of the main purposes of
[70] is to provide semantic methods to prove syntactic properties, this thesis aims to take

these methods to the next step, by building techniques and algorithms on top of it.
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Publications Related to this Dissertation

Most of the contributions described in Chapters [2| to [5| are based on [711 [72, [73], [74], 103,
104]. The material of Chapter [] is based on [23, 24]. The connection between each

publication and its related chapters is described at the beginning of each chapter.



Chapter 2
Pure Sequent Calculi

In this chapter we define the family of pure sequent calculi [9], and provide a uniform
semantic interpretation of such calculi, that will be the main tool for our investigation.
Roughly speaking, pure sequent calculi are propositional calculi that include all the
usual structural rules: exchange, contraction, cut, identity and weakening, and whose
derivation rules do not enforce any limitations on the context formulas. As will be
evident by our examples, this family is a prominent proof-theoretic framework, adequate
for many propositional logics, including classical logic, many-valued logics, and various

paraconsistent logics.

We start with Section [2.1] that is a section of preliminaries for this chapter, as well as
for the chapters that follow. Section explicitly defines the family of pure calculi and
provides examples. In Section we introduce a semantic framework for pure calculi,
that will be the main tool for our investigation. Section [2.4]includes several useful trans-
formations of sequent calculi that are used in later sections. In Section [2.5| we introduce
a generalized notion of a subformula, that induces a parametrized notion of analyticity
in sequent calculi, and provide method for identifying and constructing analytic calculi.
Section [2.6| studies the connection between our general notion of analyticity and cut-
admissibility. Finally, section Section studies derivations in pure calculi that are

restricted to single-conclusion sequents.

Publications Related to this Chapter

This chapter is mainly based on [71],[73, [74]. However, the results of [73] are strengthened

here to apply on arbitrary languages and a more general notion of analyticity.

11
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2.1 Preliminaries

A propositional language L consists of a countably infinite set of atomic variables
At = {p1,p2,...} and a finite set {, of propositional connectives. For every n > 0,
the set of all n-ary connectives of £ is denoted by (7. Well-formed formulas in a propo-
sitional language £ are defined as usual. Given a set F C L, we say that a formula 1) is
an F-formula it ¢ € F.

A substitution is a function from At to some propositional language. A
substitution o is extended to formulas of a propositional language L by
o(o(t1, ..., y)) = o(o(1y),...,0(1,)) for every connective ¢, and to sets of formulas
by o(F) = {o(¥) | v € F}.

A propositional logic is a pair L = (£, 1) such that £ is a propositional language and
-, is a binary relation between subsets of £ and formulas of £, which is: (i) reflexive: if
@ € T then T Fr, ¢; (4) monotone: if Ty, ¢ and T C 77 then 7' by, ; (dit) transitive:
if Ty eand 7', Fr ¢ then T, 77 Fr, 95 (iv) structural: if T Fr, ¢ then o(7T) b o(p);
(v) non-trivial: there exist § # 7 C £ and ¢ € £ such that T /g, ][]

A sequent is a pair (I', A), denoted I' = A, where I' and A are finite sets of for-
mulas. For a sequent I' = A, frim(I' = A) = I’ U A. This notation is extended
to sets of sequents by frm(S) = [J,cqfrm(s). A sequent I' = A is called an F-
sequent if frm(I" = A) C F. We employ the standard sequent notations, e.g., when
writing expressions like I';v0 = A or = 1. The union of sequents is given by
(I = AU [Ty = Ag) = (T UTy) = (A1 UAy). A sequent I'y = Ap is a subse-
quent of a sequent I'y = Ay, denoted (I'y = Ay) C (I'y = Ay), if '}y C 'y and A C As.
Substitutions are also extended to sequents by o(I' = A) = o(I') = o(A) and sets of
sequents by o(S) = {o(s) | s € S}.

Henceforth, £ denotes an arbitrary propositional language. We sometimes identify
L with its set of well-formed formulas (e.g., when writing “¢» € L£”), or with its set of
connectives (e.g., when writing “the language {A,V,—}”". The correct reading of such
expressions will always be clear from the context. Whenever £ can be inferred from the

context, we may call L-formulas formulas.

2.2 What Are Pure Calculi?

We start by defining pure rules and their applications, namely the steps that form deriva-

tions in pure calculi.

I This requirement is not always demanded in the literature, but we find it convenient (and natural)
to include it here.
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Definition 2.2.1. A pure rule is a pair (S, s), denoted S /s, where S is a finite set of
sequents and s is a sequent. The elements of S are called the premises of the rule and s

is called the conclusion of the rule.

An application of a pure rule is obtained by applying a substitution to the rule, and

then adding a context-sequent.

Definition 2.2.2. An application of a pure rule {sq,...,s,} /s is a pair of the form
{o(s))Ucy,..,o(s,)Ucp},o(s)Ucy U...Uc,) where o is a substitution, s} is a subse-
quent of s; for every 1 < ¢ < mn and ¢y, ..., ¢, are sequents (called context sequents).

The sequents o(s}) U ¢; are called the premises of the application and the sequent
o(s)Uep U...Ug, is called the conclusion of the application. We often denote an appli-
cation ({o(s))Ucy,...,a(s))Uc,},o(s)Uci U...Uc,) as a derivation step:

o(s))Uer,...,o(s)) Ucy

o(s)Uc U...Ug,

Example 2.2.3. The following is a pure rule:
p1L=Dp2/ = p1Dpe

Applications of this rule have the following forms:

[ = 19, A L= A I'= s, A
I'= 1 Dy, A I'= 1 Dy, A I'= 1 Dy, A
Applications of the following rules
=p1ip2=> /pOp2= / = p1DOm

have respectively the forms:
[y = 1, Ay A

', Dot Dapy = Ay, Ay =YDy

In contrast, the usual rule for introducing implication on the right side in intuitionistic

logic is not a pure rule, since it allows only left context formulas.

We make three brief remarks regarding the above definition, that relate it to more

common definitions of sequent rules from the literature:

1. Following [21], we use the object propositional language for specifying derivation
rules, instead of meta-variables which are often used to present derivation schemes.
Accordingly, applications of rules are obtained by applying a substitution on the

premises and the conclusion of the rule, and freely adding context formulas.

2. We allow applications of pure rules to make use of subsequents of the premises,

and not necessarily the full premises. While this is technically convenient (see, e.g.,
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Section [2.4), it does not change the derivability relation induced by a given sequent

calculus.

3. Applications of rules are multiplicative—allowing a different context sequent in each
premise. Since all usual structural rules are assumed, one may equivalently consider

additive applications, that require the same context sequent in all premises.

In turn, pure sequent calculi are finite sets of pure rules. To make them fully-structural
(in addition to defining sequents as pairs of sets), the weakening rule, the identity axiom

and the cut rule are allowed to be used in derivations. This is defined as follows:

Definition 2.2.4. A pure calculus is a finite set of pure rules. A derivation in a pure
calculus G is defined as usual, where in addition to applications of the pure rules of G,

the following standard application schemes may be used:

I'=A F1:>¢,A1 FQ,¢:>A2
(WEAK) ——————— (D) ——— (cuT)
F/,F:>A,A/ F,@ZJ@@ZJ,A Fl,F2:>A1,A2

In (cuT), ¢ is called the cut formula.

Henceforth, unless stated otherwise, we consider only pure rules and pure calculi, and
may refer to them simply as rules and calculi. By an L-rule (L-calculus) we mean a rule
(calculus) that includes only connectives of £. In what follows, unless stated otherwise,

every calculus is an L-calculus for some fixed propositional language L.

Notation 2.2.5. For an L-calculus G, a set F C L of formulas, a set S of F-sequents
and an F-sequent s, we write S & s if there is a derivation of s from S in G consisting
only of F-sequents. For S & s (ie., F = L), we may also write S g s. When S is
finite, we usually omit the curly braces (writing, e.g., = p1, = p2 F& = pa).

Given a pure calculus G, its associated derivability relation Fqg is defined between
sets of sequents and sequents. This relation induces two consequence relations between

sets of formulas and formulas.
1. T Fg @ if there exists finite I' C T such that Fg I' = ¢
2. Theoiff {=¢|veT}kg =

In the case of pure calculi, these two definitions are easily seen to be equivalentﬂ

2The notation Fg here is overloaded: it is used to denote both a relation between sequents and a
relation between formulas. This overloading does not pose a problem, as the correct interpretation is
always clear from the context.
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Remark 2.2.6. Since pure sequent calculi manipulate multiple-conclusion sequents, they
also naturally induce consequence relations in the sense of Scott [91] (see also [93]) be-
tween sets of formulas. For sets 7 and S of formulas, such a relation is defined by T g S
iff there are finite I' C 7 and A C 7 such that Fg ' = A.

Next, we present several examples of pure sequent calculi. The most fundamental one
is Gentzen’s system for classical logic [54]:

Example 2.2.7 (Classical Logic). The propositional language CL consists of three bi-
nary connectives A, V, D, and one unary connective =. The propositional fragment of
Gentzen’s fundamental sequent calculus for classical logic [54] can be directly presented
as a pure CL-calculus, denoted LK, that consists of the following C/L-rules:

(==) =p1/ P = (=) pr=/="m

(A=) P12 = [ p1Ap2= (=A)  =p;=>p/=>pAp
(V=) m=;ip=>/mVp= (= V) = p1,p2/ = p1V D2
O=) =pip=/pndp= (= D) p1=p2/ = p1 DD

Note that there are several differences between Gentzen’s original calculus from [54]
and our presentation of it. First, instead of taking sequents to be lists of formulas, and
including structural rules for manipulating lists, we consider sequents to be pairs of sets.
Second, the rules (A =) and (= V) were split in [54] to two rules each. For instance

(= V) was given by two separate derivation schemes:
I'= @ A I'=1y, A
_ and _
'=spVvy A '=spVvy A
Nevertheless, our notion of an application of a rule, that allows for partial sequents

to occur, considers these two application schemes as applications of (= V).
Besides classical logic, pure calculi are useful for a wide variety of non-classical logics,
as demonstrated by the following examples.

Example 2.2.8 (Many-valued Logics). The paper [I3] provides pure sequent calculi for
well-known many-valued logics. For example, a calculus for Lukasiewicz three-valued
logic L3 [76], which we call Gy, , is obtained from LK by replacing the rules (> =),
(= D) and (= —) with the following rules:

(== =) p= /- = (=) =p/ =P

(A=) p1= 5 p2= /(L Ap) = (= =A) = 1, P2/ = —(p1 A p2)
(=V =) —p1, P2 = [ —(p1V pa) = (=-V) = pi; = w2/ = (p1 V)
(m2>=) p1,7p2 = [ ~(p1 D p2) = (=-2) =p;=>-p/=(pDp2)



16 CHAPTER 2. PURE SEQUENT CALCULI

(O =), “p1 = ;pe = ; = p1, P2/ D p2 =

3

(= D, PL=D2; P2 = —p1/ = p1 D po

A pure calculus for the CL-fragment of the logic of bilattices [3] (whose implication-
free fragment coincides with the logic of first-degree entailments [2]), that we call Gy,
is obtained in a similar manner, by augmenting the positive fragment of LK with the

above rules, excluding (D =)y, and (= D)y,

3

Example 2.2.9 (Paraconsistent Logics). The paper [27] provides sequent calculi for
many paraconsistent logics. For example, a pure calculus for da Costa’s historical para-
consistent logic Cq, which we call G¢,, consists of the rules of LK except for the left-
introduction rule of negation, that is replaced by (== = ), together with the following
pure CL-rules:

= p1; = o/ (o Apr) = —p1 =5 pe = /(1 Ap2) =
“p1 = P2, P2 = /(1 V p2) = p1, 1 =5 pe = /(i Vp2) =
p1 = P2, P2 = /(P D p2) = p1, P = e = /—(p1 D pa) =

Example 2.2.10 (Logic for efficient access control). Primal infon logic [44], that we
denote by PIL, was designed to efficiently reason about access control policies. While
expressive enough for this purpose, it can be decided in linear time. The quotations-free
fragment of its sequent calculus [34] can be presented as a pure calculus, which we denote
by Gpi. It is obtained from the positive fragment of LK by adding the rules ) / = T
and () / 1 = | dismissing the left introduction rule of disjunction, and replacing the right

introduction rule of implication with the following weaker rule:

=p2/ =p1 Do

To conclude, the following lemma shows that derivability in pure calculi admits closure

under substitutions and context sequents.
Lemma 2.2.11. If S F§ s, then:
1. o(S5) I—Cé(f) o(s) for every substitution o.

2. {dUc|s e€8}FE™ sUcfor every sequent c.

2.3 Semantics

In this section we introduce a semantic interpretation of pure calculi, based on (possibly

non-deterministic) two-valued valuation functions. This semantics will be the main tool



2.3. SEMANTICS 17

that we use to characterize analyticity, and to provide a decision procedure for analytic
pure calculi.

Our semantics follows [35] and uses bivaluations—functions assigning a binary truth
value to each formula. The simple framework of bivaluations is applicable to a wide
variety of propositional logics. The price for its simplicity and generality is the loss
of truth-functionality: the truth value assigned to a compound formula is not always
uniquely determined by the truth values assigned to its subformulas. Accordingly, it is
insufficient to define bivaluations over atomic formulas, and hence they are defined in
[35] over the entire language.

Here we extend the bivaluation framework by considering also partial bivaluations
that assign truth values to some formulas. This allows us to have finite models which are
essential in semantic decision procedures. Next, we precisely define (partial) bivaluations,
and provide a general soundness and completeness theorem, relating each pure calculus G
and set F of formulas to a set of partial bivaluations for which G is sound and complete,

when only F-formulas may appear in derivations.

Definition 2.3.1. A bivaluation is a function v from some set of propositional formu-
las, denoted dom(v), to {0,1}. A bivaluation v is extended to dom(v)-sequents by:
v(I' = A) = 1iff v(p) = 0 for some ¢ € I' or v(p) = 1 for some p € A. v is ex-
tended to sets (of dom(v)-formulas or sequents) by v(X) = min{v(z) | z € X}, where
min{) = 1. Given a set F of formulas, by an F-bivaluation we refer to a bivaluation v
with dom(v) = F.

To relate sequent calculi to bivaluations, we read pure rules as semantic constraints

on bivaluations. This is formally defined as follows:

Definition  2.3.2. A bivaluation v  respects a rule = s,..,s,/s if

v({o(s)),...,a(s))}) < w(o(s)) for every subsequents s),...,s, of si,...,s, (respec-

n ren

tively) and substitution o such that o(frm({s, ..., s, s})) C dom(v). v is called G-legal

’r“n?

for a calculus G if it respects all rules of G.
This definition captures many well-known semantic frameworks in a modular way.

Example 2.3.3 (Semantics of Classical Logic). It is easy to see that a CL-bivaluation
v is LK-legal iff it respects the classical truth tables. For example, the first line of the
truth table for conjunction is obtained as follows: Suppose v(p;) = v(p2) = 1. Then
v({ = p1, = p2}) = 1. Since v is LK-legal, it respects (= A), and so v( = p; Aps) = 1.
Therefore, v(p; A pa) = 1.

The generality of partial bivaluations allows them to go beyond classical logics, and

thus to include some less standard examples:
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Example 2.3.4. A bivaluation v respects the rule py = /—-—p; = iff either
v(p) = v(——p) = 0 or v(p) = 1, for every formula ¢ such that ¢, =—p € dom(v).
Indeed, let o be a substitution such that o(p;) = ¢. If v(o(p1) = ) = 1, then we have
v(p) = v(o(p1)) = 0, and hence also v(o(——p1)) = v(-—¢) = 0, which means that
v(o(==p1) = ) = 1. The converse is shown similarly. Note that every bivaluation v such

that =—¢ ¢ dom(v) whenever ¢ € dom(v) (trivially) respects this rule.

We prove a general soundness and completeness theorem, that ties the domain of

bivaluations to the set of formulas that are allowed to appear in derivations.

Theorem 2.3.5 (Soundness and Completeness). S F§ siff v(S) < v(s) for every G-legal

F-bivaluation v.

Proof.
Soundness: Let v be a G-legal F-bivaluation. Suppose v(S) = 1. We prove that
v(s) = 1 by induction on the length of the derivation of s from S in G (which consists
only of F-sequents). If s € S, or s is the conclusion of an application of (ID), (cuT), or
(WEAK) then this is straightforward.

Suppose now that s is the conclusion of an application of some rule

S1y.-38n [/ Spe1 € G. Then there are subsequents sp,...,s, of si,..,s, (respec-

tively), a substitution o and F-sequents ci, ..., ¢, such that s = o(s,41) U U ... cp,
o(frm({s},..., s, Sn11})) C F, c1,...,cn € F, and S F& o(s)) U for every 1 <i < n
with a shorter derivation. By the induction hypothesis, v(o(s]) U ¢;) = 1 for every
1 <i<mn Ifo(g)=1for some 1 < i < n then v(o(sps1)Ucy,...,¢,) = 1. Other-
wise, for every 1 < i < n, v(o(s})) = 1. Since v is G-legal, v(o(sp+1)) = 1 and hence
v(o(spy1)Uct, ..., ) = 1.

Completeness: Assume S /& s. We construct a G-legal F-bivaluation v such that
v(S) > v(s). Since F may be infinite, this construction requires the following general-
ization of sequents: An w-sequent is a pair (L, R), denoted L = R, where L and R are
(possibly infinite) subsets of £. We write S F§ L = R if there exist finite I' C L and
A C R such that S FE T' = A. Other definitions and notations involving sequents are
adopted to w-sequents in the obvious way. Call an w-sequent L = R maximal unprovable

if the followings hold:
e LURCUF
e SHLL=R

e SFL Lo = Rforevery p € F\ L, and S+§ L = ¢, R for every p € F \ R.
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It is routine to extend s to a maximal unprovable w-sequent L = R. Then, a counter-

1 €L
model v is defined as follows: v = Ap € F. 4 . From the fact that L = R is
0 peR
maximal unprovable, using (cuT) and (ID), we have that L W R = F, and so v is well-
defined. Clearly, v(s) = 0. In addition, for every I' = A € S, we have that S F& T' = A,

which means that either I' Z L or A € R. Either way, v(I' = A) = 1.

It is left to show that v is G-legal. Let T'y = Ay,....T, = A, /Ty = Ay be a
rule of G, I} = Al,...,T = Al respective subsequents of I'y = Aq,...,[', = A,
and o a substitution, such that o(frm({I"} = A},...,I], = Al .Ty = A¢})) € F and
v(o(I', = Al)) =1 for every 1 < i < n. We prove that v(c(I'y = Ay)) = 1. By our
assumption, for every 1 < i < n there exists either ¢ € I", such that v(o(¢)) = 0 (and
then o(p) € R) or ¢ € Al such that v(o(¢)) =1 (and then o(p) € L). We construct a
sequent ' = A as follows. For every 1 <i < n, we include in I" a formula o(¢) for some
¢ € A} such that v(o(p)) = 1, or, if such ¢ does not exist, we include in A a formula
o(¢) for some ¢ € I'; such that v(c(¢)) = 0. Then, we have (I' = A) C (L = R).
In addition, using (ID), we have S F§ o(I),I' = o(Al), A for every 1 < i < n. By
applying I'y = Aq,....,T, = A, /Ty = Ay with I' = A as a context sequent, we
obtain that S +§& o([y), T = (Ap), A, and therefore, S +§ o(Ty), L = 0(Ay), R. Since
SHE L= R, wehave 0(Ty = A¢) € L = R, and so either v(¢)) = 0 for some 9 € o(Tp)
or v(y) =1 for some ¢ € 0(Ay). Either way, we have v(a(I'y = Ay)) = 1. O

Various soundness and completeness theorems from the literature are obtained as
particular instances of Theorem [2.3.5] by taking F to be the entire propositional lan-
guage. For instance, Example [2.3.3] shows that classical propositional assignments co-
incide with LK-legal CL-bivaluations. Theorem thus provides proof of soundness
and completeness of LK with respect to the usual semantics of propositional classical
logic. Using a similar argument, soundness and completeness of Gpyr, with respect to

the non-deterministic semantics from [44] is also obtained as a particular instance of

Theorem 2.3.5]

Alternative semantics for well-known logics are also obtained. For example, GLg—legal
bivaluations provide an alternative semantics to Lukasiewicz three-valued logic (Exam-
ple 2.2.8). This semantics is two-valued, but not truth-functional. In Figure we list
the semantic constraints for Gy -legal CL-bivaluations. On the left of each such con-
straint we include the derivation rule that induces it. Another two-valued semantics for
this logic was presented in [95], and was then used to construct a different calculus for it
in [35].
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- = if v(¢) =1, then v(—p) =

- =) ifv(p) =0, then v(=—¢) =0

= ) ifu(p) =1, then v(——p) =1

A=) if v(p) =0 or v(yp) =0, then v(p AY) =0
= N) if v(p) =1and v(¢) =1, then v(p Ay) =1

=0 and v(—) = 0, then v(=(p A1) =0

J
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A) ifu(=p) =1 or v(—) =1, then v(=(p A1) =1
) if v(p) =0 and v(¢p) = 0, then v(p V) =0
) if v(p) =1orv(y) =1, then v(p V) =1
-V =) ifv(-p) =0 or v(—y) =0, then v(=(¢ V1)) =0
= -V) ifv(-p)=1and v(—) =1, then v(=(p V) =1
D =), ifv(mp)=0,v(y)=0,and (v(p) =1orv(-¢)=1), then v(p D) =0
= D), if (v(¢) =0orv(y)=1) and (v(-¥) =0 or v(—p) = 1), then v(p DY) =1
- D =) ifv(e)=0o0rv(-)=0,then v(=(p DY) =0
= -D) ifv(p)=1and v(-) =1, then v(=(p D)) =1

Figure 2.1: Semantic constraints induced by Gy,

2.4 Streamlining, Equivalence, and

Gentzen’s Axioms

After presenting his calculus for classical logic, Gentzen mentions that there are some
simplifications possible for the sequent rules (see Section III, 2.2 of [54]). Following
Gentzen’s simplified variants, we present a calculus, denoted Az(LK), that consists of

the following axioms (rules with no premises):rf]

0/ p1,p2 = p1 A2 0/p1 Np2=p1 0/ pr Ap2 = po
0/p1V 2= p1,p2 0/p1=p1Vpa 0/p2=p1Vpe
0/ p2 = p1 D p2 0/ = p1,p1 D p2 0/ pi,p1 D p2 = p2
0/ = p1,—p 0/p1,—p1 =

In this section we show that such equivalent simplifications are not peculiar for LK,

and are possible for every pure calculus. The results of the current section have several

3For some reason, Gentzen did not include the simplification of (= D) to = pi1,p1 DO p2 and
P2 = p1 O p2.
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applications. The different manipulations that transform one calculus into another cal-
culus which is equivalent will be proven useful for the construction of analytic calculi in
Section [2.5.3] Also, the “axiomized” versions of sequent calculi make it simpler to reduce
derivability in them to SAT, as we do in Chapter [3

We present several useful streamlining principles that transform one calculus into

another, without affecting the induced derivability relations.

Definition 2.4.1. Two calculi G and G are called equivalent if F§ =H§,_ for every
F C L. Equivalence is naturally defined also between single rules (and between a rule

and a calculus) by identifying a rule r with the calculus {r}.
Lemma 2.4.2. The following holds:

1. S/T' =, Ais equivalent to S ;¢ = /"= A.

2. S/T ¢ = Aisequivalent to S; = ¢ /I = A.

3. {S;s1/s, S;sa/s}isequivalent to S;s;Usa/s.

Proof. We show only the left-to-right direction of the third case. All other cases are
handled similarly. Using Theorem [2.3.5] it suffices to show that every bivaluation that
respects the rule S ; s; U sg /s also respects the rules S ;s1/s and S ;s9/s. Let v
be a bivaluation that respects the rule S'; s; U sy / s. We prove that it respects the rule
Sis1/s(S582/s). Let S ={q1,...,aq}, d}, .-, ¢, respective subsequents of q1, ... , g, s’ a
subsequent of s1 (s2), and ¢ a substitution such that o(frm({q, ..., ¢,, s, s})) C dom(v).
Suppose v(o(q;)) = 1 for every 1 < i < n, and also that v(c(s")) = 1. Clearly, s C s;Uss.

Since v respects S ; s1 U sy / s, we have that v(o(s)) = 1. O

Going back to Gentzen’s axioms, we point out a useful application of Lemma [2.4.2]
Call a rule aziomatic if it has an empty set of premises. In turn, call a calculus aziomatic
if it consists solely of axiomatic rules. Lemma [2.4.2] allows us to convert every calculus

to an axiomatic one, in a similar manner to the calculus Az(LK).
Theorem 2.4.3. Every calculus is equivalent to an axiomatic calculus.
Proof. Consider the following transformations of pure rules:

1. S;5¢9= /T=A+—S/T=9 A

2.5, =2y /T=A—S/TYv=A

3. S5 T=¢9,A/s—{S;T=A/s, S; =1/s}

4. ST =A/sr—{S;T'=A/s, S;v= /s}
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The first two are taken from items 1 and 2 of Lemma [2.4.2) (read from right to left). The
last two are particular instance of item 3 of Lemma (also read from right to left).
Given a calculus G, we apply these four transformations on the rules of G as
long as it is possible. By Lemma [2.4.2] each step in this process results in a calcu-
lus which is equivalent to G. Observing that at least one transformation is applicable
to any non-axiomatic rule, it remains to establish termination. For each rule S /s, let
1S/ 5] = > roaes(IT] + |A]). For every set R of rules, we associate the multiset Mg,
given by Mp = An € N. |{r € R | ||r|| =n}|. We prove that if Ry is obtained from
R; by one of the transformations, then Mp, < Mpg,, where < is the Dershowitz-Manna
well-founded ordering over multisets of natural numbers [46]. Clearly, Ry = Ry \ {r}UR
for some set R that is obtained from r by one of the transformations. If the transfor-
mation is 1 or 2 then, w.l.o.g., r has the form S W {¢y = } /T = A and R has the
form {S /T = ¢, A} with T UA # (). This means that Mg, is obtained from Mp, by
replacing one copy of ||S;1¢ = /' = Al with a new copy of ||S;¢ = /I = Al — 1,
and thus Mgz, < Mpg,. If the transformation is 3 or 4 then, w.l.o.g., » has the form
Sw{l = ¢,A} /s where v ¢ A, and R has the form {S;I'= A/s,S; = ¢ /s}.
This means that Mg, is obtained from Mg, by replacing a copy of [|S;T' = ¢, A/ s||
with a copy of ||S;'= A/s|| and a copy of ||S; =1 /s||. Both are smaller than
1S5 =, A/ s|, and therefore Mg, < Mg,. O

This method for obtaining axiomatic calculi is applicable to every pure calculus, not
only LK.

Example 2.4.4. The rule =py = :p» = ; = pi,7p2/p1 D p2 = of Gy (Ex
ample 2.2.8)) transforms into the equivalent axiomatic rules () / p1, p; D p2 = —p1, p2 and
0/ =p2, p1 D p2 = —p1, pa.

2.5 Analyticity

Roughly speaking, analyticity of a calculus provides a computable bound on the formulas
that may appear in derivations of a sequent s from a set S of sequents. For propositional
calculi, such a bound usually entails decidability and consistency (unprovability of the
empty sequent). The special case of the subformula property is obtained when the
set of subformulas of (formulas of) S U {s} serves as this bound. Many useful calculi,

however, do not admit this strict property, while still allowing some other effective bound.

For example, in Gg, and Gy, (Examples |2.2.9| and |2.2.8p, there are sequents whose

derivations require not only subformulas, but also negations of subformulas of the derived

sequent.
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In this section we provide a generalized definition of analyticity, that is parametrized
by a distinguished set of unary connectives and a natural number. This generalized
notion holds for a larger family of calculi, and still suffices to ensure decidability and
consistency.

After defining this notion of analyticity and providing a semantic counterpart for
it in Section [2.5.1] we introduce methods to identify and construct analytic calculi in
Sections[2.5.2]and 2.5.3] Section proves that these methods are indeed correct, that
is, that the criteria that underlie them suffice for analyticity.

2.5.1 A Generalized Subformula Property

We start by generalizing the subformula relation between formulas, and prove that this
generalized relation inherits the crucial properties of the usual one. This relation nat-
urally induces a parametrized notion of analyticity, defined in Definition 2.5.5] After
studying the properties of this new notion of analyticity, we provide it an equivalent
semantic condition in Theorem [2.5.9] which, in addition to providing another viewpoint
of this property, turns out to be very useful: first, it is the main tool for identifying and

constructing analytic calculi in Sections [2.5.2] and [2.5.3; second, it has an important role

in the decision procedure that we provide in Chapter [3|

In what follows, ©® denotes an arbitrary subset of unary connectives in {} and k
denotes an arbitrary positive integer. We denote the set of strings over © of length at most
k by ®=F (e.g., {—, o}S2 = {€,7,0,77, 00, 70,0}, where € denotes the empty string).
For convenience, we use the following notations: oF = {op | ¢ € F} for any unary
connective o, ©@p = {op | o € ®} for any set @ of unary connectives, ®F = (J ., oF,
©=Fp = {op | o € @'}, and ©=FF = U, ©=F0.
Definition 2.5.1. A formula ¢ is an immediate ©@-k-subformula of a formula ¢ if one of

the followings hold:

o ) =0(1y,...,1,) and ¢ € ©=F1; for some n-ary connective ¢ € $, \ ©, formulas
W1y ey Uy, and 1 <4 < m.

e Y€ Ep.

The ©-k-subformula relation is the reflexive transitive closure of the immediate ©-k-
subformula relation. We denote the set of @-k-subformulas of a formula 1 by suby (v).
This notation is naturally extended to sequents, sets of sequents, etc. When ¢ is a
(@-k-)subformula of ¢ and ¢ # 1, we call ¢ a proper (©@-k-)subformula of 9.

When ©® = ) (and so ©@=F = {€}), the @-k-subformula relation amounts to the usual

subformula relation. In such a case we call ¢ a subformula of v and denote sub;’ by sub.
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Example 2.5.2. subiﬁ}(ﬁ(p1 D p2)) = {p1,p2,—p1,P2,p1 D p2,~(p1 D p2)} and
SUbé_\}(opl) = {plv —P1, _'_'plaopl}'

We now explore the properties of this generalized relation. The first step is to define
an adequate decreasing complexity measure cc on formulas. For every ¢ € L, denote
by 6, the longest (possibly empty) prefix of ¢ that consists of ©@-elements, and by by
the formula for which ¢ = oyby. Let ¢ : £L — N be a usual complexity measure for
formulas (so that c¢(p) < ¢(1)) whenever ¢ is a proper subformula of ). The function
cc: L — (N x N) is then given by cc(y)) = (c(by), |04]), where |6,| denotes the length of

6w.
Proposition 2.5.3. cc(¢) < ce(y) whenever ¢ is a proper ©@-k-subformula of ¢ (where

< is the standard lexicographic order over N x N).

Proof. We consider only the case that ¢ is an immediate ©-k-subformula of 7). The claim
then follows by standard induction. First, if ¢ = o(¢1,...,1,) and ¢ € @=F); for some
1 <i<mnando¢®,then c(b,) = c(by,) < c(¢;) < c(¥) = c(by), and so cc(p) < cc(v).
Second, if ¢ € @y, then ¢ = oy for some o € ©, o, = 00,, and by = b,. Hence,
c(by) = c(by), but [64] = |0,] + 1, and so cc(p) < cc(v). O

Using this complexity measure, it easily follows that the ©@-k-subformula relation is
anti-symmetric. Also, since every formula has finitely many immediate ©-k-subformulas,
it also follows that suby (v) is finite for every ¢ € L.

In addition, we have the following useful property of the generalized relation:
Lemma 2.5.4. o(suby (1)) C suby (o(1))) for every formula 1) and substitution o.

We now define our generalized notion of analyticity. It is obtained from the usual

subformula property by replacing the role of subformulas with ©@-k-subformulas.

Definition 2.5.5. A calculus G is called ©-k-analytic if S g s implies S l—gbg(su{s}) s

for every set S of sequents and a sequent s.

Note that for every k, (-k-analytic calculi are calculi that enjoy the usual subfor-
mula property. We call such calculi @-analytic. Also note that whenever two calculi are
equivalent (Definition , one is @-k-analytic iff the other is.

We shall use the terms “analyticity” and “analytic” without any prefix whenever the
prefix is clear from the context, or when describing calculi that are ©-k-analytic for some
© and k.

Just like the usual subformula property, ©-k-analyticity of a pure calculus entails its

decidability. Formally:
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Definition 2.5.6. The derivability problem for an L-calculus G is given by:
Input: A finite set S of L-sequents and an L-sequent s.
Question: Does S ¢ s7

Obviously, one cannot expect to have decision procedures for the derivability problem
for all pure calculif| However, decidability is guaranteed whenever the calculus is ©-k-

analytic.

Proposition 2.5.7. The derivability problem is decidable for every ©@-k-analytic pure

calculus.

Proof. For every ©-k-analytic calculus G, finite set S of sequents, and sequent s, we
subP (SU{s})

have that S g s iff S Fg s. Since suby (S U {s}) is finite, the latter can
be checked by an exhaustive search of derivations of s from S in G, that include only
suby (S U {s})-formulas. O

Moreover, ©@-k-analyticity guarantees the consistency of the calculus, whenever the

calculus is not trivial:

Proposition 2.5.8. The empty sequent is not derivable in any ©@-k-analytic calculus,
that does not include the rule ) / = .

Proof. A proof of the empty sequent in a ©-k-analytic calculus would entail the existence
of a proof that includes no formulas at all. This is only possible in the presence of the
rule ) / =, which cannot be included. O

Analyticity of sequent calculi is traditionally proved as a corollary of cut-admissibility.
Indeed, if every rule in a pure calculus (except for (cuT)) admits the local @-k-subformula
property (i.e., the premises consist only of ©-k-subformulas of the formulas in the conclu-
sion), then cut-admissibility implies ©-k-analyticity. For example, the calculi LK, Gpyy,,
Gc,, G, and Gy (Examples admit cut-admissibility. Taking into account
the structure of their logical rules, this directly entails that LK and Gpyy, are (-analytic,
and that Gg,, G, and Gy are {~}-1-analytic.

There are cases, however, in which a sequent calculus does not enjoy cut-admissibility,
although it is analytic. Examples include, e.g., sequent calculi for the modal logics S5
and B [85] 96l [101], bi-intuitionistic logic [84], and several calculi for paraconsistent
logics [16]. Other ways are thus needed for proving ©-k-analyticity, independently from

cut-admissibility.

4Example below shows how to translate propositional Hilbert-type calculi to pure calculi. In
particular, the undecidable Hilbert-type calculus from [80] translates to an undecidable pure calculus.
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Next we provide a semantic characterization of analyticity which is independent of
cut-admissibility. To apply this criterion, one has to consider bivaluations that are defined
only on ©-k-subformulas of the derived sequent and the assumptions, and show that the
existence of a countermodel in the form of such a partial bivaluation entails the existence

of a full countermodel. Formally:

Theorem 2.5.9. An L-calculus G is @-k-analytic iff every G-legal bivaluation v can
be extended to a G-legal L-bivaluation, provided that dom(v) is finite and closed under

©-k-subformulas.

Proof. Suppose that S g s but S I#& s for F = subg (S U {s}). By Theorem [2.3.5
there exists a G-legal F-bivaluation v such that v(S) =1 and v(s) = 0, but u(S) < u(s)
for every G-legal L-bivaluation u. Therefore, v cannot be extended to a G-legal L-
bivaluation. In addition, dom(v) = F is finite and closed under ©@-k-subformulas.

For the converse, suppose that v is a G-legal bivaluation, dom(v) is finite and closed
under ©-k-subformulas, and v cannot be extended to a G-legal L-bivaluation. Let
s =1 = A, where I' = {¢ € dom(v) | v(¢) = 1} and A = {¢ € dom(v) | v(¢) = 0}.
Then, dom(v) = frm(s) = sub(s) and v(s) = 0. We show that u(s) = 1 for every
G-legal L-bivaluation u. Indeed, every such u does not extend v, and so u(y) # v(v)
for some ¥ € dom(v). Then, u(¢)) =0 if ¢ € ', and u(yp) = 1 if » € A. In either case,
u(s) = 1. By Theorem [2.3.5] b‘gbg(s) s and g s. O

Often, a slightly weaker notion of analyticity is employed, by considering only cases
where S = (). We say that a calculus G is weakly ©-k-analytic if Fg s implies I—Zlbg(s) S
for every sequent s. The proof of Theorem [2.5.9 shows that this seemingly weaker notion
is actually equivalent to the stronger one: given that a calculus G is weakly ©-k-analytic,
the second part of the proof shows that every G-legal bivaluation whose domain is finite
and closed under @-k-subformulas can be extended to a full G-legal bivaluation. The
first part of the proof then establishes that G is ©@-k-analytic, and not only weakly

©-k-analytic.

Example 2.5.10. A particular instance of Theorem [2.5.9|is the ability to define full clas-
sical assignments based only on the values that are assigned to atomic formulas. This fact
is taken for granted, however in this general semantic framework it does not always hold.
Recall the axiomatic version of LK, described in Section , and denoted by Az(LK).
In [54], Gentzen only presents this calculus as a simplification, but does not actually use
it, and even restricts the attention to it for the case where “we attached no importance
to the Hauptsatz” (see Section III, 2.2. of [54]). And indeed, as Gentzen mentions, while
equivalent to LK, Az(LK) does not admit cut-admissibility. Nevertheless, Az(LK) is
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(-analytic, as can be proved using Theorem [2.5.9} similarly to Example [2.3.3], it can be
shown that a bivaluation is Ax(LK)-legal if and only if it assigns values to compound
formulas according to the classical truth tables. Since partial classical assignments can
be extended to full ones, Theorem ensures that Az(LK) admits (-analyticity.

Theorem is also useful for proving that a certain calculus is not analytic:

Example 2.5.11. Consider a pure calculus, denoted here by G, that consists of the

following rules:

n=/op= p=/=op
The G-legal bivaluation v whose domain is {p; }, such that v(p;) = 0 cannot be extended
to a full G-legal bivaluation: according to the first rule, v(op;) = 0 must hold, and
according to the second, v(op;) = 1 must hold. Indeed, G is not analytic, as the sequent

= p; is derivable in it, but only using a cut on op;.

While the semantic characterization of @-k-analyticity from Theorem [2.5.9| provides
meaningful insights on this property, it is not effective for determining ©-k-analyticity,
as in order to use it, one needs to go over all bivaluations whose domains are closed under
©@-k-subformulas, and check whether they can be fully extended. Therefore, a decidable
syntactic criterion for ©@-k-analyticity is desired. In the next section we generalize the
result of [21] in order to provide a sufficient syntactic criterion for @-k-analyticity for a
wider family of calculi. Calculi that admit this criterion are then used in Section [2.5.3

for providing a method to construct ©@-k-analytic calculi.

2.5.2 Sufficient Criterion for Analyticity

In this section we generalize the coherence condition from [21], that was given for canoni-
cal calculi, and show that the generalized condition ensures analyticity. Unlike the ability
to extend partial bivaluations, which is semantic in nature, the coherence property (as
well at its generalization that we introduce here) is syntactic and decidable. Roughly
speaking, canonical calculi are pure calculi in which each rule introduces exactly one
connective in the conclusion, and all premises include only atomic formulas. Here we
relax these requirements, and allow several connectives to be introduced at once, and not
only from atomic formulas, as long as all premises include only ©@-k-subformulas of the

conclusion. This is defined as follows:

Definition 2.5.12. A rule r is called ®-k-ordered if every formula in its premises is
a proper ©-k-subformula of some formula in its conclusion. Further, r is called ©-k-

directed if it is ©-k-ordered, and its conclusion has the form = ¢ or ¢ = for some
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formula . A calculus is called ©-k-ordered (©-k-directed) if it consists of ©-k-ordered
(@-k-directed) rules. For every k, we call (-k-ordered ((-k-directed) rules and calculi
0-ordered (0-directed).

Example 2.5.13. The calculi LK and Gpyy, are (-directed, while Gg,, GL3 and G4 are
{=}-1-directed.

In [21], the coherence property was defined for canonical calculi, and was used for
proving analyticity in them. Roughly speaking, a canonical calculus is coherent if when-
ever two rules share the same formula in their conclusion, but on different sides, the
empty sequent is derivable from their premises using only (cuT). We generalize this

requirement for the case of @-k-directed calculi:

Definition 2.5.14. A ©-k-directed calculus G is called coherent if for every two rules of
G of the forms S; / = 1 and Sy / 2 = , and two substitutions o1, o9, if 01 (1) = 02(ps2),
then the empty sequent is derivable from oy (S;) U 02(S2) using only (cuT).

Note that for canonical calculi, this definition coincides with that of [21]. Also, it is
decidable whether a given calculus is coherent or not: for each pair of rules S; / = ¢ and
Sy /w9 =, one can first rename the atomic variables so that no atomic variable occurs in
both rules, and then it suffices to check the above condition for the most general unifier
of p; and 9. Finally, it is useful to notice that if a calculus G is coherent, @-k-directed,
or @-k-ordered, then the same holds for any sub-calculus of G (i.e. any calculus that is

obtained from G by deleting some of its rules).

Example 2.5.15. LK, Gpj, GL3 and G, are coherent, while G¢, is not. Indeed, for
therulesp; = / = —prand p; = /—~—p; = of Gg,, if 01(p1) = —p1 and o3(p1) = p1, we
have oy (—p1) = 02(—=—p1), but the empty sequent cannot be derived from —p; = ;p; =
using only (CUT).

Our notion of coherence, which generalizes that of [21I], together with ©-k-

directedness, suffices for ©-k-analyticity:
Theorem 2.5.16. Every coherent ©-k-directed calculus is ©-k-analytic.

This theorem is obtained as a corollary of Theorem [2.5.21] (see Section below),
which will be proved in Section [2.5.4L We now present some examples and applications.

Example 2.5.17. LK and Gpyy, are coherent and (-directed, and hence they are ()-
analytic. Gy, is coherent and {—}-1-directed, and hence it is {—}-1-analytic. Similarly,
every canonical system (as defined in [21]) is (-directed, and hence every coherent canon-

ical system is ()-analytic.
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Example 2.5.18 (Hierarchy of double negations). The paper [63] studies an infinite
family, denoted {L2"™ | n € N}, of pure sequent calculi for non-classical logics that
admit the double negation principle as well as its weaker forms (e.g., === < —).
For example, the calculus L4 is the same as the calculus G, presented in Example [2.2.8]
This calculus is coherent and {—}-1-directed, and hence, by Theorem it is {—}-
l-analytic. Moreover, it can be easily observed that for every n, L2""2 is coherent and

{=}-(n + 1)-directed, and thus by Theorem [2.5.16} it is {—}-(n + 1)-analytic.

Example 2.5.19 (Dolev-Yao intruder deductions). In [42], a formal deductive system
for the Dolev-Yao intruder model was presented. Its language consists of two binary
connectives: pairing, denoted (-, -), and encryption, denoted [-]. (where the argument in
the subscript is the encryption key). Formulated as an Hilbert-type calculus, which we

call H, this system includes the rules of the first column in the following table:

H G(H) Gpy
Pairing prip2/ (p1p2) | = pr; = p2/ = (p1,p2) | = p1s = p2/ = (P1,p2)
Unpairing | (p1,p2) /1 = (p,p2) / = ;1 pr =/ (p1,p2) =
(p1,p2) /P2 = (p1,p2) /| = D2 p2 =/ (p1,p2) =
Encryption | pisp2/ [pil,, |=p1; =p2/ = [pil,, |=p; =p/ = [,
Decryption | [p1],, ;p2/p1 | = [P, = p2/ =010 1= =p/[nl, =

The middle column of the table provides a pure sequent calculus, denoted G(H),
that is obtained from H by applying the method sketched in Example below. The
right column includes a third sequent calculus, that we call Gpy, obtained from G(H)
by performing the streamlining rules of Lemma All three calculi define the same
logic. Gpy is coherent and (-directed, and thus by Theorem [2.5.16] it is ()-analytic.

2.5.3 Constructing Analytic Calculi

Sequent calculi provide a wide range of possibilities for non-classical logics, and in par-
ticular, for sub-classical logics (logics that are contained in classical logic). By choosing
a subset of derivation rules that are derivable in LK, one easily obtains a (system cal-
culus for a) sub-classical logic. Various important and useful non-classical logics can
be formalized in this way, with the most prominent example being intuitionistic logic.
In general, the resulting logics come at first with no semantics, and might be unusable
for computational purposes, since the new calculi might not be analytic. Indeed, even
though LK is analytic, there is no guarantee that an arbitrary collection of classically
derivable sequent rules constitutes an analytic sequent calculus.

While Theorem allows us to prove that many calculi are ©@-k-analytic (by ob-

serving that they are ©-k-directed and coherent), some calculi are left out. For example,
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Gc, is {—}-1l-analytic, but it is not coherent (see Example [2.5.15)). To capture G¢, and

other useful calculi, we introduce a more general method to prove ©@-k-analyticity. More

1

precisely, in this section we present a method for obtaining calculi that are analytic by
construction.

As a motivating example, consider Sette’s atomic paraconsistent logic Py from [02],
that allows contradictions on atomic formulas, but forbids them on compound ones. In
P; we have that every ¢ follows from {p, —p}, but not from {+, =)} when 1) is compound.
Since the explosion principle is manifested in LK through the rule (- =), a natural way
to design a sequent calculus for Py is to allow applications of (= =) only on compound
formulas. We introduce a calculus which naturally achieves this goal, denoted Gp,. It is
obtained from LK by replacing (— =) with several weaker variants of it, namely, with

its following applications:
= —p1 [ pr = = p1 Apa/(pr Ap2) =
= p Ve /(P V) = = p1 D p2/ (1 Dp2) =

As we shall see in what follows, this type of construction is subject to the criterion that we
propose in this section. Thus, the (-analyticity of our calculus is established in Example
2.5.23] below.

The general method for constructing ©@-k-analytic calculi that we present is obtained
by joining applications of rules of a certain basic coherent ©@-k-directed calculus. The
derivable rules that are collected to create new calculi will all have the form of applica-
tions of existing rules. For this, it is useful to observe a duality between rules and their
applications: every pure rule is an application of itself (using the identity substitution
and the empty context sequent), and every application of a pure rule constitutes a new,
perhaps weaker, pure rule. In particular, we may apply Definition to applications
of rules, and have ©-k-ordered applications (i.e., applications in which every formula that
occurs in the premises is a proper ©-k-subformula of some formula that occurs in the con-
clusion). Also observe that an application (o(s1) Ucy,...,0(s,) Uc, /o(s) Uep U...Uc,)
of a ©-k-directed rule sy, ..., s, /s is itself @-k-ordered iff every formula of the context

sequent ¢; U ... U ¢, is a proper @-k-subformula of the formula that occurs in s.

Example 2.5.20. The following are ()-ordered, {—}-1-ordered and {—}-2-ordered appli-
cations of the rule (D =) of LK (respectively):

P1 = p1 A D2 P1,P2 = p1 = P1 A\ P2 —p1, P2 =
p1, (P1 Ap2) D pr = —p1, (p1 Ap2) D p2 =

—=ps = p1 A pa, —(p1 A p2) —p3, P2 D p3 = —(p1 A D2)
=3, (p1 A p2) D (p2 D p3) = —=(p1 A p2)
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Our main result for this section is the following theorem, that provides a method for

obtaining calculi that are @-k-analytic by construction.

Theorem 2.5.21. Let Gg be a ©-k-directed coherent calculus. Then, every calculus

that consists of @-k-ordered applications of rules of Gg is ©-k-analytic.

This theorem is proved in Section [2.5.4, We devote the reminder of the current section

for presenting applications and consequences of Theorem [2.5.21

Simple Consequences
First, observe that Theorem [2.5.16|is obtained as a corollary of Theorem [2.5.21}

Proof of Theorem |2.5.160] Every rule of Gg is a trivial @-k-ordered application of itself,
and, by Theorem [2.5.21] Gg itself is @-k-analytic. m

Also, for calculi that are constructed this way, ©-k-analyticity is preserved when

omitting a rule:

Corollary 2.5.22. Suppose that G consists of ©@-k-ordered applications of rules of some
©-k-directed coherent calculus. Then every calculus G’ C G is @-k-analytic.

Analyticity for our calculus Gp, is now obtained using Theorem [2.5.21}

Example 2.5.23 (Atomic paraconsistent logic). The calculus Gp, described above for
Sette’s atomic paraconsistent logic can be constructed using the method of Theorem
2.5.21] Begin with LK\ {(= =)}, and add the above (-ordered applications of (= =) to
allow left-introduction of negation only for compound formulas. By Theorem this
calculus is (-analytic. Alternatively, since Gp, is directed and coherent, its analyticity
also follows from Theorem Note that Gp, is equivalent to the calculus given in [4]
for this Sette’s logic.

More Examples

In some cases, when adding a new rule r to an existing calculus G, some premises of
r are already derivable in G. For example, consider augmenting Gpr, with the rule
1 = p1/ = L D p1, which is an application of (= D). Since L = p; is derivable in
GpiL, it is a redundant premise: one can equivalently add the rule ) / = L D p;. The

next proposition is used for omitting such redundant premises in the following examples.

Proposition 2.5.24. Let Gg be a @-k-directed coherent calculus, G a calculus consist-
ing solely of @-k-ordered applications of rules of Gg, and s a conclusion of a ©-k-ordered
application of some rule of Gg, all premises of which are derivable in G. Then, GU{() / s}
is @-k-analytic.
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Proof. Let S be a set of sequents such that S /s is a @-k-ordered application of some
rule of Gg, and for every s’ € S, Fg §'. Denote GU{S / s} by G; and GU{0 / s} by Ga.

By Theorem [2.5.21], G is ©-k-analytic. We prove that so is G. Suppose that Sy kg, so.

su © S . . .
We prove that S I—GQb’“ (So{s0}) so. First, we show that Sy Fg, So, by induction on the

length of the proof of sy from Sy in Go. If sy is not the conclusion of an application of
() / s then this is straightforward by the induction hypothesis. Otherwise, sy = o(s) U ¢
for some substitution o and context sequent c. Since g ¢ for every s’ € S, by Lemma

2.2.11} we have g o(s) U c for every s’ € S, and in particular, Sy g, o(s") U c. Now,

su © S
apply S/ s and obtain Sy g, So. Since G is ©-k-analytic, we have Sy l_Gfk: (SoU{so}) %0.

By taking the proof of sy from Sy in G; and deleting every premise in every application
of S/ s, we obtain a proof of sy from Sy in Gy in which only suby (Sy U {so})-formulas

©
occur, which means that Sy l—sélf’“(sou{%}) Sg. O

Remark 2.5.25. The requirement in Proposition [2.5.24]that both G and s originate from
the same calculus Gg is crucial. Consider, for example, the case in which G consists of
the rule 1 = = p;/ = p1Tps, Gp consists of the rule ro = py = /p1Tpy = , and s is
TP = po. s is the conclusion of the (-ordered application (py = po, p1Tpa = p2) of 74,
whose premise is derivable in G. Also, G and Gp are ()-directed and coherent (and thus
also (-analytic). However G U {0/ s} is not (~analytic, as it raises the “Tonk” problem
[87] (see also [17]).

Example 2.5.26. In [27], it was shown that G¢, is {—}-1-analytic, as a corollary of cut-
admissibility. Using the methods of this section, we provide a simpler proof of the {—}-1-
analyticity of G¢,. For this purpose, we construct a calculus which is equivalent to G¢,,
that we call Gg,’. Take Gp to be LK, and G to be LK \ {(= =)}. By Theorem [2.5.16]
G is {—}-l-analytic. Gg,’ is obtained by augmenting G with the following axiomatic
rules:

0/ ==p1 =

0/ pr,—p1, ~(p1 A —p1) =

0/ =(p1Vp2) = —p1,pa

0/ =(p1Vp2) = p1, P2 =(p1 D p2) = p1, 12

0/ =(p1 D p2) = p1,p2 /=(p1 D p2) = —p1, P2

Every rule here has the form () / s, where s is the conclusion of a {—}-1-ordered appli-

=(p1 A p2) = —p1, P2

0/~(
0/ =(p1V p2) = —p1, —p2
0/=(
0

cation of the rule (= =) of Gg, whose premises are all derivable in G. For example,

—(p1 A p2) = —p1, p2 is the conclusion of the following {—}-1-ordered application of
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(= =), whose premise is derivable in G:
= P1/\ P2, 7P1, P2
=(p1 A p2) = —p1,—p2

By Proposition [2.5.24] G¢,’ is {—}-1-analytic. Using Lemma [2.4.2] it is easy to see that
Gg,' is equivalent to Gg,, and furthermore, the {=}-1-analyticity of Gg,’ entails the

{=}-1-analyticity of G¢;.

Example 2.5.27 (Extended Primal Infon Logic). The calculus Gpyy, is (-analytic, as
was shown in Example [2.5.17] One of the most attractive properties of Gpry, is the fact
that its derivability problem is solvable in linear time. It is possible to augment Gpyy,
with additional rules in order to make it somewhat closer to LK, without compromising
its ()-analyticity nor its linear time complexity. For this, we introduce an extended logic,
called EPIL, which is defined by the following calculus, called Ggpry, (that is, 7 FgpiL ¢
iff I' Fggpy @ for some finite I' € 7). Ggpir, is obtained from Gpyr, by the addition
of the following set of rules. These rules recover some natural properties of the classical

connectives (none of them is derivable in Gpyy,):

0/ =1>p 0/p1Vpr=p 0/ =piDOm

0/ LVpr=p 0/p1,—p1 = 0/ = (p1Ap2) D,
O/p1vL=p O/p1V (p1 Ap2) = m 0/ = (p1 Ap2) D po
0/ (p1 Ap2) VL= m 0/ = p2> (p1Dp2)

Each of these rules has the form () / s, where s is the conclusion of a ()-ordered application
of a rule of LK, whose premises are all derivable in Gpy,. By repeatedly applying
Proposition [2.5.24) augmenting Gpy, with these axiomatic rules results in a (-analytic
calculus. The fact that the extended calculus also has linear time complexity will be
proved in the next Chapter (see Example [3.2.2)).

2.5.4 Proof of Theorem [2.5.21]

Let G be a calculus that consists of ©-k-ordered applications of rules of a ©@-k-directed
coherent calculus Gg. We prove that G is ©-k-analytic. Using Theorem [2.5.9] it suffices
to prove that every G-legal bivaluation v can be extended to a G-legal L-bivaluation,
provided that dom(v) is finite and closed under @-k-subformulas. Thus, in what follows,
we fix an arbitrary G-legal bivaluation v such that dom(v) is finite and closed under
©-k-subformulas.

We extend v iteratively: in each step we add a single formula to the domain of v. Thus,
we construct a sequence of G-legal bivaluations that extend v, and use this sequence in

order to define a G-legal L-bivaluation that extends v.
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Since the ©-k-subformula relation is a partial order, suby (1) is finite for every ¢, and

dom(v) is finite, there exists an enumeration 1, 1s, ... of £ such that:
1. If ¢; € dom(v) and ¢; ¢ dom(v) then i < j.
2. If ¢; is a ©-k-subformula of 1; then i < j.
We define a sequence vy, vy, ... of bivaluations inductively by:
1. vog = .
2. For every i > 0, v; is defined over dom(v) U {ty, ..., ¢;} as follows:

(a) vi(¢) = vi_1(p) for every ¢ € dom(v;_1).
(b) If ¢; ¢ dom(v;—1), then v;(v);) = 1 iff there exists a rule of the form

S1,.,8,/ = @ in Gg, sequents s} C si,...,8, C s,, and a substitution

ren

o such that o(frm({s},...,s),})) C dom(vi_1), o(p) = ¥; and v;_1(0(s))) =1
for every 1 < j < n. Otherwise, v;(¢;) = 0.

We show that each bivaluation in the sequence is G-legal. For this, the following

lemma is needed:

Lemma 2.5.28. Let ({o(s])Uecy,...,0(s,) Uc,},o(s)Uci U...Uc,) be a ®@-k-ordered
application of a @-k-directed rule r = sq,...,5, /s, and let ¢, be the single formula in
frm(s). Then, all formulas in suby (o (s}) U ¢;) are proper ®@-k-subformulas of o () for

every 1 <1 < n. In particular,

suby (frm({o(s}) Ucy,...,0(s,) Ucp,a(s)Ucy U...Uc,})) C subp(o(s)).

Proof. Denote ({o(s})Ucy,...,0(s))Ucp},o(s)Ucy U...Uc,) by 7. Suppose that 1 is
a ©-k-subformula of some ¢ € o(frm(s})) U frm(c;). We show that ¢ is a proper ©-k-
subformula of o(yp). Since v is a ©-k-subformula of ¢, it would then follow that v is
also a proper ©-k-subformula of o(ps). If ¢ = o(¢’) for some ¢' € frm(s,), then since
r is ©-k-directed, ¢’ is a proper ©-k-subformula of ¢,. By Lemma [2.5.4] ¢ is a proper
©-k-subformula of o(ps). Otherwise, ¢ € frm(¢;), and since 7 is @-k-ordered, ¢ is a
proper ®-k-subformula of some formula in frm(o(s)Uc; U...Uc,). If ¢ is a proper ®-k-
subformula of some formula in frm(o(s)), then this formula must be o(p;). Otherwise,
let 6 be a formula in frm(cy, ..., ¢,) such that ¢ is a proper ®@-k-subformula of 8, and 6
has a maximal number of connectives. Since 7 is @-k-ordered, # must also be a proper ©-
k-subformula of some formula 6’ € frm(o(s)Ucy, ..., ¢,). By the maximality of 6, we have
that ¢ € frm(o(s)), which means that ' = o(gs). Since ¢ is a proper ©-k-subformula
of 0, we also have that ¢ is a proper @-k-subformula of o(y5). O
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We show by induction on ¢ that each v; is G-legal. For ¢« = 0, this holds by

our assumption regarding v. Let ¢+ > 0, and r be a rule of G. Then, there exist

a rule sq,..,s,/s of Gg, sequents s C si,...,5, C s,, a substitution «, and
sequents ci,...,¢, such that r = a(s)) U cp,...,a(s)) Uc,/a(s) Uc U ... U cp.
Let sf C s,..,s8 C s, ¢ C c,...,d, € ¢, and o be a substitution

such that o(frm({a(s))Uc),...,a(sh)Ud,,a(s)Uci U...Uc,})) - dom(v;).
We show that v;({o(a(s))Udc))[1<j<n}) < wlolals) U e, ... ca)). If
v ¢ o(frm({a(s))Ud,...,a(sh)Ud,a(s)UcU...Uc,)}) or ¢, € dom(v_y),
then  o(frm({a(sf)Ud,...,a(si)Ud,,a(s)Uc U...UCc,})) C dom(v;—1),
and hence this holds by the induction hypothesis. Assume now that
v € o(frm({a(s)Ud,...,a(s)Ud,,a(s)UcU...Uc,)}) and ¢; ¢ dom(vi_q).
Let s be the single formula in frm(s). We first prove that 1; = o(a(ps)). Otherwise,
o(a(ps)) € dom(vi—1). By Lemma the set of formulas that occur in r is
contained in suby (a(p,)), and by Lemma , we also have that for every formula ¢
that occurs in r, o(¢) € a(suby (a(ps))) C suby(o(a(ps))). dom(v;_y) is closed under
©-k-subformulas, and o(a(ps)) € dom(v;—1). Thus we have v¢; € dom(v;_1), which is a
contradiction.

Similarly, we show that o(frm(a(s]) U c})) C dom(v;—y) for every 1 < j < n. In-
deed, let ¢ € o(frm(a(s]) U c))) and let ' € frm(a(s]) U c}) such that ¢ = o(¢').
By Lemma ¢' is a proper ©-k-subformula of a(ys), and hence by Lemma
2.5.4) ¢ is a proper @-k-subformula of ¢; = o(a(yps)). In particular, ¢ # ;. Since
o(frm(a(s}) U c))) C dom(v;), it follows that » € dom(v;_1).

Now, suppose that v;(o(a(s]) Uc})) = 1 for every 1 < j < n. We prove that
vi(o(a(s) Uep U...Uc,)) = 1. If vi(o(c; U...UCd,)) = 1, then we are clearly done.
Assume otherwise. Hence, we have v;(c(a(s”))) = 1 for every 1 < j < n. Since

J

o(a(frm(s}))) € dom(v;_y) for every 1 < j < n, we have v;_1(o(a(s]))) = 1 for ev-

ery such j. Distinguish two cases:

* s = = @, Since o(a(frm(s]))) C dom(v;_y) for every 1 < j < n, o(a(ps)) = ¥,
1

and v;_1(o(a(s]))) = 1 for every 1 < j < n, by the definition of v; we have
v;(¥;) = 1, and so v;(o(a(s))) = 1.

e s =, =: To prove that v;(c(a(s))) = 1, we show that v;(¢;) = 0. By the defini-
tion of v;, it suffices to prove that for every rule of the form ¢1, ..., ¢, / = ¢’ in Gg,
sequents ¢; C qi, .-, ¢, € ¢, and substitution o’ such that o'(frm(q})) € dom(v;—1)
for every 1 < j < m and o'(¢') = v, we have v;_1(0'(¢j)) = 0 for some
1 <j<m. Let ¢1,...,qm/ = ¢ and o' as above. Since Gg is coherent,
the empty sequent is derivable from {o(a(s1)),...,0(a(s,)),0'(q1), ..., 0" (qm)} us-

ing only (cur). It can be shown by induction on this derivation that the same
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holds for {o(a(s))),...,0(a(s)),d'(q}),-.-,0'(q,,)}, and in particular, we have
(), e (), 0/}, e ' (ql) FE™@=D = By Theorem [2.3.3] since
vi—1 is G-legal and v;_; (0 (a(s}))) = 1 for every 1 < j < n, we have v;_1(0’(¢})) =0

for some 1 < j < m.

Finally, let ©" be the L-bivaluation given by v'(;) = v;(1;) for every i > 0. Clearly,
v' extends v. To see that it is G-legal, let s1,...,s,/s € G, s} C s1,...,8, C sp,

’)“n —

and o be a substitution. Let j = max{i|v; € o(frm({s},...,s),s}))}. Then,

V() = vi(y) for every ¢ € o(frm({s
|

( .,8h,8})). Since v; is G-legal, we have
v'({o(s;) [ 1 <4 <n}) = min{v;(o(s;))

1<i<n} <uylo(s) =v'(o(s)). =

2.6 Cut-admissibility

The most well-studied property of sequent calculi is the admissibility of the cut rule.
When cut is admissible, the calculus is generally considered well-behaved, and reasoning
about the calculus becomes much easier. Moreover, proof-search algorithms have no need
to “guess” the cut formulas.

The purpose of this section is to study the connection between cut-admissibility and
our generalized notion of analyticity. We show that for a wide sub-family of pure calculi,
these properties are equivalent. After explicitly defining the property of cut-admissibility,
we provide a semantic framework for pure calculi without the cut rule in Section [2.6.1]
Then, Section [2.6.2] presents our main result, which is proven in Section [2.6.5. Sec-
tions [2.6.3] and [2.6.4] include examples and generalizations.

We now precisely define cut-admissibility.

Definition 2.6.1. A derivation of s from S in a calculus G is called cut-limited if in every
application of (cuT), the cut formula is in frm(S). We write SF&s if such a derivation

exists. A calculus G enjoys cut-admissibility if Fg= I—‘:Gf.

Note that what we call here cut-admissibility is actually known as strong cut-
admissibility, in which cuts are allowed, but they are confined to apply only on formulas
that appear in the set of assumptions [12]. Usual cut-admissibility, that we call here weak
cut-admissibility, only requires that Fq s iff i—‘és for every sequent s. For pure calculi,

however, the two notions turn out to be equivalent (see [12]).

2.6.1 Semantics in the Absence of Cut

In this section we prove a soundness and completeness theorem for cut-limited derivations

in pure calculi, with respect to a variant of the bivaluation semantics from Section [2.3]
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We then obtain a sufficient semantic criterion for cut-admissibility, that will be used
in order to prove the equivalence between cut-admissibility and analyticity in a wide
sub-family of calculi.

Theorem establishes a strong connection between derivations in pure calculi and
bivaluations. When considering derivations without cut, however, bivaluations fall short,
as the cut rule is sound for them. In order to obtain a semantics in which (cuT) is
unsound, it must be possible that both = ¢ and ¢ = are satisfied. This is obtained
by the addition of a third truth value, /2, so that every sequent in which some formula
is assigned 1/2 is satisfied. This way, when assigning ¢ the value 1/2, both sequents above
are satisfied.

Thus, the semantics for cut-limited derivations is based on three truth-values: “false”,

“true”, and “indeterminate”, represented as 0, 1, and /2, respectively.

Definition 2.6.2. An L-trivaluation is a function v from £ to {0,1/2,1}. A trivaluation
v is extended to sequents by: v(I' = A) = 1 iff v(p) < 1 for some ¢ € ' or v(p) > 0
for some ¢ € A. Otherwise, v(I' = A) = 0] For a set S of sequents, by v(S) we mean
min {v(s) | s € S}.

Definition  2.6.3. A trivaluation v  respects a rule  $1,..,s,/s if

v({o(s)),...,ao(s))}) < w(o(s)) for every subsequents s,...,s, of si,...,s, (respec-

tively) and substitution o. v is called G-legal if it respects all rules of G.
Note that unlike bivaluations, we only consider trivaluations that are totally defined.

Example 2.6.4. Consider a trivaluation v such that v(p;) = v(p2) = /2, v(p1 A p2) = 1,
and v(p; V p2) = 0. For every other formula, v(¢) = 1/2. v respects neither of the rules
= p1,p2/ = p1Vps and py,ps = /p1 Aps = . However, v does respect their axiomatic
counterparts pi A pa = p1, p1 Ap2 = p2, p1 = p1 V p2 and pa = p1 V pa.

When semantically describing the existence of a cut-limited derivation of a sequent
s from a set S of sequents in a calculus G, we should take into account that (CuT) is
sound when the cut formula is in frm(S). Thus, frm(S)-formulas must be assigned either

1 or 0. For this requirement, we introduce the following definition:

Definition 2.6.5. The support of a trivaluation v, denoted supp(v), is the set
{p € L] v(p) #1/2}. vis called:

o F-determined (for F C L) if F C supp(v); and

o fully determined if it is L-determined.

°Note that trivaluations never assign 1/2 to a sequent.
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Remark 2.6.6. It might seem that there is no real difference between trivaluations and
(partial) bivaluations: given a trivaluation v, a bivaluation v* can be obtained from it
simply by taking v* = Ay € supp(v).v(p). Moreover, if v is G-legal for some calculus
G, then so is v*. The converse, however, does not always hold, and there lies the
difference between these two formalisms. Consider, for example, the trivaluation v from
Example 2.6.4 The domain of v* would then be supp(v) = {pi Ap2,p1 Vpa}. v* is
(trivially) LK-legal, as for every substitution o and rule r of LK, o(frm(r)) € dom(v).

However, as seen in Example [2.6.4] v itself is not LK-legal.

Note that every trivaluation is (-determined, and also that £-bivaluations are actually
fully determined trivaluations, and thus they will be called this way in the reminder of
this section.

For cut-limited derivations, we have the following variant of Theorem [2.3.5f

Theorem 2.6.7. SF& s iff v(S) < v(s) for every frm(S)-determined G-legal trivaluation

V.

Proof.

Soundness: Soundness is proved analogously to the proof of Theorem [2.3.5 The only
difference is that (CUT), in general, is unsound for trivaluations. However, assuming
Sk¢ s, we have that cuts are limited to formulas in frm(S) C supp(v). For such formu-
las, v assigns either 1 or 0 and thus (cuT) is valid.

Completeness: Recall the definitions related to w-sequents from the proof of Theo-
rem Let S be a set of sequents and s a sequent such that S}‘Cés. Call an w-sequent
L = R maximal unprovable if the followings hold:

e S FEL=R
e SFEL, o= Rfor every ¢ ¢ L, and SF&GL = ¢, R for every ¢ ¢ R.

It is routine to extend s to a maximal unprovable w-sequent L = R.
Define a trivaluation v as follows:
1 el
v=XAp€L. S0 pER
/2 otherwise
First note that v is well defined, as LN R = § (otherwise, SFGL = R). Clearly,
v(s) = 0, and for every I' = A € S we have that SFET = A, which means that either
' Lor AZ R, and sov(I'= A) =1.
v is shown to be G-legal as in the proof of Theorem [2.3.5] using the extensions

of trivaluations to sequents. It is left to show that v is frm(S)-determined. Assume
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otherwise. Then we have some ¢ € frm(S)\ (LUR). Since L = R is maximal unprovable,
we must have Sl—‘éL = p, R and Sl—éL, ¢ = R. Applying (cuT) (which is allowed, as
¢ € frm(S)), we obtain SF& L = R, which is a contradiction. O

Note that only completeness of cut-limited derivations with respect to frm(S)-
determined trivaluations is used in the proof of Theorem [2.6.20

Remark 2.6.8. The three valued semantics for the cut-free fragment of LK that is
obtained from Theorem is equivalent to the Nmatrix semantics in [68].

Theorem gives rise to a sufficient semantic criterion for cut-admissibility, which

is based on the following notion of determination:

Definition 2.6.9. We say that a trivaluation v’ is a determination of a trivaluation v
(alternatively, we say that v' determines v) if v(p) = v'(p) for every ¢ € supp(v). v’ is
called an F-determination of v if, in addition, it is F-determined. If v’ is fully determined

we call it a full determination of v.
It immediately follows from our definitions that:

Proposition 2.6.10. Suppose that v" determines v. Then for every sequent s, if v/(s) = 1

then v(s) = 1. The converse holds as well when v is frm(s)-determined.

The sufficient semantic criterion for cut-admissibility is given in the following corol-

lary:

Corollary 2.6.11. If every G-legal trivaluation has a G-legal full determination, then
G enjoys cut-admissibility.

Proof. Suppose SF&s. By Theorem m, there exists some frm(S)-determined G-legal
trivaluation v such that v(S) =1 and v(s) = 0. Let v’ be a G-legal full determination of
v. By Proposition 2.6.10} v/(S) = 1 and v'(s) = 0. By Theorem [2.3.5] (and the fact that

fully determined trivaluations are actually L-bivaluations), we have S ¥qg s. O

2.6.2 From Analyticity to Cut-admissibility

In this section we identify a sub-family of calculi in which analyticity and cut-admissibility

are equivalent. First, note that analyticity may not imply cut-admissibility in general:

Example 2.6.12. Consider the calculus Az(LK) from Section It was shown in Ex-
ample [2.5.10|that this calculus is (-analytic. However, it does not admit cut-admissibility.
For instance, the derivable sequent p; A ps = p1 V po has no derivation without cut. This

is proved using Theorem [2.6.7} recall the bivaluation v from Example 2.6.4, Clearly,
v(pLApa = p1Vps) = 0. Also, v is Az(LK)-legal. By Theorem [2.6.7, F&pi Aps = p1Vpo.
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However, for the family of ©@-k-directed calculi, these two fundamental properties

coincide:

Theorem 2.6.13. Every @©-k-analytic @©-k-directed pure calculus enjoys cut-
admissibility.

This theorem is a particular instance of Theorem below, that will be proved in
Section 2.6.5]

For all the calculi mentioned above (except Az(LK)), this theorem allows one to
obtain cut-admissibility as a consequence of @-k-analyticity for some © and k. This also
includes every calculus in the hierarchy of weak double negations (Example .

2.6.3 Some Applications

We outline two possible applications of Theorem [2.6.13|in cut-admissibility proofs:

Simpler Semantic Proofs of Cut-admissibility

Theorem reduces the burden in proving cut-admissibility to establishing only ana-
lytic cut-admissibility. An application of (CUT) in a derivation of s from S is called a ©-k-
analytic cut if the cut formula is in suby (SU{s}). In turn, ®-k-analytic cut-admissibility
concerns only the admissibility of non-@-k-analytic cuts. Proving this property is often
easier than showing full cut-admissibility. For example, it is straightforward to prove that
LK is complete for the classical truth tables, when applications of (CUT) are restricted
to be (-analytic. Indeed, assuming s is not derivable from S in LK using (-analytic cuts,
one extends s to a maximal unprovable sequent s* that consists solely of sub(S U {s})-
formulas. Then, a countermodel v can be defined simply by setting v(¢) = 1 for every
¢ on the left side of s*, and v(¢)) = 0 for every ¢ on its right side. Using (-analytic
cuts, it immediately follows that frm(s*) = sub(S U {s}), which makes it easy to prove
that v respects the classical truth tables, and can therefore be extended to a full classical
countermodel. By Theorem [2.6.13] we may conclude that LK enjoys cut-admissibility.
Providing a semantic proof of cut-admissibility without going through @-analytic cuts is

possible, but more complicated.

Sufficient Criterion for Cut-admissibility

Theorem [2.6.13| extends the sufficient criterion for analyticity from Theorem [2.5.16|to be

also sufficient for cut-admissibility.

Corollary 2.6.14. Every pure ©-k-directed coherent calculus enjoys cut-admissibility.
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Proof. Let G be such a calculus. By Theorem [2.5.16] G is ©-k-analytic. By Theo-
rem [2.6.13] it admits cut-admissibility. ]

2.6.4 Strengthening The Result

Actually, Theorem holds for a more general notion of analyticity, as the internal
structure of the ©-k-subformula relation is not important to the proof of the theorem.
The crucial properties of the @-k-subformula relation that are actually needed to obtain
Theorem are the fact that it is an effective order relation (in the sense that it
induces an enumeration of formulas) that conforms with substitutions. We thus further
generalize the ©-k-subformula property, by assuming a given ordering of L-formulas,

denoted <, which has to satisfy certain properties, as defined next.

Notation 2.6.15. Given a binary relation R on L, we denote by R[yp| the set
{v € L] (¢,9) € R}. This notation is naturally extended to sets (R [I'] = U, e 22 []),
sequents (R [I' = A] = R[I'JUR[A]), and sets of sequents (R [S] = |J,.q R[s]). By order

relation we mean an irreflexive and transitive binary relation.
Definition 2.6.16. An order relation < is called:

e safe if it is prefinite (< [¢] is finite for every ¢ € L), and the function \p € L.<[p] is
computable.

e structural if p < 1 implies o(p) < o(1)) for every substitution o.

Example 2.6.17. The usual proper subformula relation over CL is a structural safe
order relation. The proper {—}-1-subformula relation is also an example of a structural
and safe order relation. Moreover, for every ® and k, the proper ©-k-subformula relation

is a structural and safe order relation.

In what follows, < denotes an arbitrary safe and structural order relation over £, and
=< denotes its reflexive closure.
The above definition allows us to further generalize @-k-analyticity, to a property

that we call <-analyticity.

Definition 2.6.18. A calculus G is called <-analytic if S kg s iff S l—é[SU{SH s for every

set S of sequents and sequent s.

It is left to accommodate the definition of ©-k-directedness (Definition [2.5.12)) to the

generalized notion of analyticity that we consider in this section:
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Definition 2.6.19. A rule S/s is called <-ordered if frm(S) C <[s]. It is called <-
directed if, in addition, s has the form = ¢ or ¢ = for some formula ¢. A calculus G
is called <-ordered (<-directed) if all its rules are <-ordered (<-directed).

Generalizing Theorem [2.6.13| we get that cut-admissibility follows from <-analyticity

in the family of <-directed pure calculi, for any structural and safe order relation <.

Theorem 2.6.20. Every <-analytic <-directed pure calculus enjoys cut-admissibility.

2.6.5 Proof of Theorem [2.6.20

We now prove Theorem [2.6.20, by utilizing Corollary Thus, given a <-analytic
<-directed pure calculus, we show that every G-legal trivaluation has a G-legal full
determination. This is done in two steps: Lemma below shows that it is possible
to add a single formula to the support of a G-legal trivaluation. Then, Lemma [2.6.22

makes an iterative usage of this fact, thus obtaining a full determination.

Lemma 2.6.21. Let G be a <-analytic <-directed calculus, v a G-legal trivaluation
and ¢ a formula such that <[y C supp(v). Then v has a G-legal supp(v) U {¢}-

determination.

Proof. 1f ¢ € supp(v), then this is trivial, as v determines itself. We therefore assume
that ¢ ¢ supp(v). Let I'y = {¢ € <[¢] | v(p) =1} and A, = {p € <[¥] [ v(p) =0}
We first show that ¥g T, = A,: Consider the <X[I', = A,]-bivaluation u de-
fined by u(p) = v(p) for every ¢ € <X[[',=A,]. wu is indeed a bivaluation, as
<[, = A, € <[¢] C supp(v). Clearly, u is G-legal, and u(I', = A,) = 0. By
Theorem m, %é[r”:}A”] I, = A,, and since G is <-analytic, ¥g ', = A,. We define
a trivaluation v/, and show that it is a G-legal supp(v) U {¢}-determination of v. v’ is

obtained from v by setting

o) = 1 Fg Pv’? = A,
0 otherwise

Clearly, v" is a supp(v) U {¢}-determination of v. We prove that it is G-legal. Let
S1,...,5n /s be arule of G, s, ..., s/, respective subsequents of si,...,s, and o a substi-
tution. Suppose v'(o(s)) = 0. We prove that v'(o(s;)) = 0 for some 1 < i < n. By our
assumption, frm(o(s)) C supp(v’) = supp(v)U{¢}. If frm(o(s)) C supp(v), then this fol-
lows from the fact that v is G-legal and v’ determines v. Otherwise, frm(o(s)) € supp(v).
Since G is <-directed, we have frm(o(s)) = {¢}. Also, for every 1 < i < n, we have
frm(s}) C < [s], and in particular, frm(o(s})) C o(<[s]) C <[o(s)] = < [¢].

To show that there exists 1 < i < n such that v'(c(s})) = 0, we first prove that
Va o(s) U (', = A,): by the above, either o(s) = (¢p = ) or o(s) = ( = ). In the
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first case, v'(¢)) = 1, which means that Fg I'y,? = A,. In the second, v'(1)) = 0, which
means that Fg ', = A,. Using (cuT), we have ¥g I', = ¢, A,. Either way, we have
Fgo(s)U (T, = A,).

Since g o(s) U (I'y = A,), we must have some 1 < i < n such that
Ve o(s;) U (I, = A,). Suppose s; = I = A; and s, = [, = Al Then using the
fact that frm(o(s))) € <[] C I';, U A, we have o(I)) C T', and o(A]) € A,. Thus

1

v(o(s})) =0, and therefore v'(o(s})) = 0. O

)

Lemma 2.6.22. Let G be a <-analytic <-directed calculus and v a G-legal trivaluation.

Then there exists a G-legal full determination of v.

Proof. For every trivaluation w and formula %, u, denotes an arbitrary G-legal
supp(u) U {¢ }-determination of w, if such exists (otherwise, u, is undefined). Note that
whenever u is G-legal and <[¢] C supp(u), Lemma provides us with such a
determination, in which case u,, is defined.

Let 11,19, ... be an enumeration of the formulas of £, such that ¢ < j whenever
¥; < ;. Such enumeration exists by the safety of <. For every ¢, denote the set
{1, ...,¢i} by @<, (in particular, <o = 0).

Define a sequence oY, v, ... of trivaluations as follows: v
) )

7 1—1

= v, - We prove by induction on ¢ that v' is defined, and is a G-legal ®;-

0 = v, and for every i > 0,

v
determination of v, and also of v*~1 (for 7 > 1).

For + = 0, this trivially holds. Now let « > 0. By the induc-
tion hypothesis, v*~! is G-legal and is a ®; j-determination of v. By the
enumeration, <[¢;] C P C  supp(v'l). Thus, ©v' is defined, and is
a G-legal supp(v'™!) U {¢;}-determination of v*~!, and thus also of v. Now,
Oy = Doy U {th} C supp(v'™!) U {¢;} C supp(v'), and therefore v* is actually a
P ;-determination of v*~! and of v.

We now define v/, a G-legal full determination of v. For every ¢ € L, let i, be the

index of ¢ in the enumeration (that is, ¢ = 15 ). Define v = Ap € L.v*(p).

For every ¢ € L, v'(p) = v (p) # 12, as v'¢ is ®; -determined. Also, for
every ¢ € supp(v), v'(p) = v*(p) = v(p), as v¢ determines v. Finally, let
S1,...,8, /s be a rule of G, s|,..., s/ respective subsequents of si,...,s,, and o a
substitution. Let &k = min{i | frm(c({s},...,s),s})) C ®<;}. Then v'(p) = v*(yp)
for every ¢ € frm(o({s},...,s,,s})). Therefore, if v'(o({s),...,s,})) = 1, then
vH(o({s),...,s,})) = 1 as well. Since v* is G-legal, v*(c(s)) = 1, and therefore
v'(o(s)) = 1. O

Putting all pieces together we have proved Theorem [2.6.20f Assuming that G is <-
analytic and <-directed, by Lemma [2.6.22 every G-legal L-trivaluation has a G-legal
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full determination, and cut-admissibility follows by Corollary [2.6.11 [

2.7 Single-conclusion Pure Calculi

Gentzen’s calculus for propositional intuitionistic logic from [54], called LJ, is obtained
from LK by an additional requirement according to which all sequents are single-
conclusion sequents (sequents I' = A with |A| < 1). Obviously, LJ cannot be presented
as a pure calculus due to this restriction. While there is no known analytic pure calculus
for intuitionistic logic, we identify a sub-family of calculi in which such a restriction on
context sequents turns out to be redundant.

We start by defining the family of single conclusion calculi, and their associated

consequence relations:

Definition 2.7.1. A single-conclusion pure rule is a pure rule that consists only of
single-conclusion sequents. A single-conclusion pure calculus is a pure calculus whose
rules are all single-conclusion pure rules. A (strict) single-conclusion derivation of a
(strict) single-conclusion sequent in a calculus G is defined as a usual derivation, in
which only (strict) single-conclusion sequents occurE] A (strict) single conclusion sequent
' = Ais (strictly) single-conclusion derivable from a set S of (strict) single-conclusion
sequents in a calculus G if it has a (strict) single-conclusion derivation from S in G. We
denote the latter by S Fg' s (S g s).

To identify a sub-family of calculi G in which Fg' (Fg') and ¢ are equivalent, we

introduce the following definitions:

Definition 2.7.2. A pure rule is called definite if at least one of its premises has an
empty right side whenever the conclusion has an empty right side. A calculus is called

definite if each of its rules is definite.

Example 2.7.3. Both (V =) and (= V) of LK are definite (all sequents of the former
have empty right sides, and the right side of the conclusion of the latter is not empty).

However, the rule (= =) is not definite.

Definition 2.7.4. A rule is called a Horn rule if the sum of the number of formulas in
the right side of the conclusion and the number of premises with a non-empty left side

is at most one. A calculus is called a Horn calculus if each of its rules is a Horn rule.

Example 2.7.5. The rule (= V) of LK (see Example [2.2.7)) is Horn. In contrast, the

rule (V =) is not Horn, as both its premises have a non-empty left side.

6A strict single-conclusion sequent is a sequent I' = A with |A| = 1.
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For the family of single-conclusion calculi that are Horn and definite, we show that one
can consider only derivations that contain single-conclusion sequents, without affecting

the induced derivability relation.

Proposition 2.7.6. Let G be a pure Horn definite single-conclusion calculus, S a set
of (strict) single-conclusion sequents and s a (strict) single-conclusion sequent. Then,
Stqsiff SFE s (SFG s).

Proof. The left-to-right direction is obvious. To show right-to-left direction of the non-
strict version, we prove by induction on the length of the derivation in G that if
Ste ' = A then § l—él I' = & for some singleton or empty set &€ C A. We con-
sider here only the case of an application of some rule of G. The other cases are easy.
Suppose that I' = A is the conclusion of an application of a single-conclusion rule r of
G, whose conclusion is I'g = Ay. Then, there exist subsequents I'1 = Aq,.... [, = A,
of the premises of r, a substitution o and sets I'}, ... , I/ Al ..., A/ of formulas, such that
F=clo)Ulu..ull, A=0(Ag) UATU...UA! and S g o(1;), [ = o(A;), Al for

every 1 <1 < n with shorter derivations. Since G is Horn, one of the following holds:

e I'; = () for every 1 < i < n. In this case, we have S Fq I'; = o(A;), Al for every
1 <4 < n. The induction hypothesis entails that for every 1 <i < n, S l—él I = &
for some singleton or empty set & C o(A;) UAL If & C Al for some i, then we
obtain S k&' T' = & using (WEAK), and & C A} C A} U...U A/, Otherwise, for
every 1 <1i¢ <n, we have S l—él I, = & for some singleton &; C o(4A;). Since G is
a single conclusion calculus, for every 1 < i < n there exists a formula ¢); such that
& = a(A;) = {o(1;)} . Hence for every 1 <4 < n, we have S kg I", = o(i;). In
this case, we can apply r with (trivial) subsequents = o(v;) and context sequents
I, = , and obtain S F5' T'= 0 (Ag) (|A¢| < 1 since r is a single-conclusion rule).

o I, # 0 for asingle ] <i<n and Ay = 0. Since G is definite, A; = ) for some
1 <j < n. Now, if j # i then since I'; # § and G is Horn, IT'; = 0 as well. In
this case, S Fg I, = Al and by the induction hypothesis, S l—él I = & for
some & C Al C A such that |€;| < 1. Using (WEAK) we get that S F&' T = &
Hence we may assume that A; = (). Now, the induction hypothesis entails that
for every j # i, S l—él I, = &; for some singleton or empty set & C o(A;) UA’,
and S F3' T, o(T;) = & for some singleton or empty set & C AL If £; C A for
some j # i, then we obtain S I—él I' = & using (WEAK) and & C A. Otherwise,
for every j # i, we have S Fg' I, = &; for some singleton & C o(4;). Since G
is a single conclusion calculus, for every j # i there exists a formula v; such that
£ =o(A;) = {o(;)} . Hence for every j # i, we have S Fg' [y = o(¢;). In this
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case, we can apply r with context sequents I'; = & and I'; = for j # i and obtain

SFEE' T = &, where & C A, C A.

The proof of the right-to-left direction of the strict version is similar: one proves by
induction on the length of the derivation in G that if S g ' = A then SFG' ' = &
for some singleton € C A U {1}, where v is the formula on the right side of s. n

Example 2.7.7. The single-conclusion calculus Gpyy, is both Horn and definite, and

hence S kg, siff S l—élpm s whenever S U {s} consists of single-conclusion sequents.

Example 2.7.8. The paper [20] studies the family of canonical single-conclusion sequent
calculi, by adjusting the theory of canonical calculi [21] to a single-conclusion setting. For
canonical calculi that are Horn and definite, there is no difference between the ordinary

version and the single-conclusion version.

Example 2.7.9. Any Hilbert-type calculus H (without side conditions on rule appli-
cations) can be translated to a pure sequent calculus Gy, by taking a rule of the form
= 11 ;...; = 1,/ = 1 for each Hilbert-type derivation rule v, ..., %, /1 (where n = 0
for axioms). For example, the axiom ¢ D (¢ D ¢) is translated to the axiomatic rule
/ = ¢ D (¥ D ), and modus ponens is translated to the rule = ¢; = ¢ DY/ = .
It is easy to show that 1 is derivable from I' in H iff l—a[ I' = 4. Since Gy is always
Horn and definite, the latter holds iff kg I'= 4.



Chapter 3

SAT-based Decision Procedure

As shown in Section the derivability problem of a given pure calculus is decidable
whenever the calculus is ©-k-analytic for some @ and k. However, the mere decidability
of this problem does not provide any efficient decision procedure. Moreover, a great deal
of ingenuity is often required for developing proof-search algorithms for sequent calculi
(see, e.g., [45]). In this chapter we show that for ©-k-analytic pure calculi, it is possible
to replace proof-search by SAT solving. This is done using a polynomial-time reduction
from the derivability problem to the complement of SAT. While SAT is NP-complete, it
is considered “easy” when it comes to real-world applications. Indeed, there are many
off-the-shelf SAT solvers, that, despite an exponential worst-case time complexity, are
considered extremely efficient (see, e.g., [56]). The reduction that we propose here is
uniform, and does not employ any calculus-specific optimizations. Instead, it shifts all

heuristics and optimizations to the realm of SAT-solvers.

In Section we present a reduction the derivability problem in a given ©-k-analytic
pure calculus to the complement of SAT, and prove its correctness, as well as its poly-
nomial time complexity. In Section we identify a subfamily of @-k-analytic pure
calculi for which the reduction induces a linear time decision procedure. Finally, in Sec-

tion we describe an implementation of the reduction, and discuss its performance in

Section [3.3.3]

Publications Related to this Chapter

This chapter is mainly based on [72], 103, [104]. However, the results of [72] are generalized
here to the notion of analyticity used in Chapter [2]

47



48 CHAPTER 3. SAT-BASED DECISION PROCEDURE

3.1 A Polynomial Reduction from Derivability to
UNSAT

We utilize the semantic view of pure sequent calculi (see Section , and reduce the
derivability problem in a given analytic sequent calculus to small countermodel search,
which can be be easily given in terms of a SAT instance.

SAT instances are taken to be CNFs represented as sets of clauses, where clauses
are sets of literals (that is, atomic variables and their negations, denoted by overlines).
The set {zy | ¥ € L} is used as the set of atomic variables in the SAT instances. The

translation of sequents to SAT instances is naturally given by:
SAT'(I'= A) = {{7y | v € T} U{zy | ¥ € A}
SAT™(I'= A) = {{ay} [ eTHU{{Ty} [ € A}

This translation captures the semantic interpretation of sequents. Indeed, given an L-
bivaluation v and a classical assignment w that assigns true to zy iff v(y)) = 1, we have
that for every L-sequent s: v(s) = 1 iff u satisfies SATT(s), and v(s) = 0 iff u satisfies
SAT (s). Now, for a bivaluation to be G-legal for some calculus G, it should satisfy
the semantic restrictions arising from the rules of G. These restrictions can be directly
encoded as SAT instances (as done, e.g., in [67] for the particular case of the classical
truth tables).

In the reduction that we present, we assume that the given calculus is axiomatic. If it
is not, it can be transformed into an equivalent axiomatic calculus (see Theorem .

Definition 3.1.1. The SAT instance associated with a given axiomatic L-calculus G,
a subset © of {L, a natural number k > 0, a set of L-sequents S and an L-sequent s,
denoted SAT (G, S, s), consists of the following clauses:

1. SAT™(s') for every s’ € S
2. SAT(s)

3. SAT"(o(s)) for every sequent s’ and substitution o such that ) /s’ € G and
o(frm(s')) C suby (S U {s})

Example 3.1.2. Consider the {—}-1-analytic calculus Gy, for Lukasiewicz three-valued
logic. Its axiomatic version, Ax(GLg), contains the rules 0 / p1,p1 D p2 = —p1, p2 and
0 / =p2,p1 D p2 = —p1,pa (see Example [2.4.4). Accordingly, SAT?}(Ax(GLg),S, s) in-
cludes the clauses {Ty;, Ty oum» Ty s Ty b ANA {Tg, T s Ty, Tupy  fOr every formula
of the form ¢y D 1y in sub‘l{ﬁ}(S U {s}).

Next, we prove the correctness of this reduction.
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Theorem 3.1.3. For any ©-k-analytic axiomatic L-calculus G, we have S g s iff
SATY(G, S, s) is unsatisfiable.

Proof. Suppose that S I/5 s. By Theorem there exists a G-legal L-bivaluation v
such that v(S) > v(s). The classical assignment u that assigns true to a variable x,, iff
v(1)) = 1 satisfies SATY (G, S, s).

For the converse, let u be a classical assignment satisfying the SAT instance
SATY (G, S, s). Consider the sub; (SU{s})-bivaluation v defined by v(¢)) = 1 iff u assigns
true to zy. v is G-legal, and v(S) > v(s). By Theorem [2.3.5, we have S bﬁébg(su{s}) s.
Since G is ©-k-analytic, we may conclude that S I/ s. m

We show that this reduction is computable in polynomial time. The exact exponent

is of course constant, and is determined by the structure of the given calculus.

Definition 3.1.4. The ®-k-complexity of an axiomatic rule {) / s, denoted ¢ (0 / s), is the
minimal cardinality of a set I' C frm(s) such that frm(s) C suby (T'). The ®-k-complezity
of an axiomatic calculus G, denoted ¢ (G), is given by max{c(r) | r € G}. If ® = 0,

we denote ¢ by c.

Example 3.1.5. ¢(0/p1,p2 = p1 Ap2) = 1, ¢(@/p1,p1 D p2 = —p1,p2) = 2 and
ciﬂ}(@ /p1,P1 D p2 = —p1,p2) = 1. By repeating these calculations on the other rules of
LK and Gy, , we obtain that c(Az(LK)) = 1, c(Az(Gy,,)) = 2, and c‘l{ﬁ}(/M(GLS)) =1.

Theorem 3.1.6. Let G be an axiomatic L-calculus. Given S and s, the SAT instance
SAT? (G, S, s) is computable in O(n™) time, where n is the length of the string represent-
ing S and s, and m is the ©@-k-complexity of G.

Proof. The following algorithm computes SAT (G, S, s):

1. Build a parse tree for the input using standard techniques. As usual, every node

represents an occurrence of some subformula in S U {s}.

2. Using, e.g., the linear time algorithm from [37], compress the parse tree into an
ordered dag by maximally unifying identical subtrees. After the compression, the
nodes of the dag represent subformulas of S U {s}, rather than occurrences. Hence

we may identify nodes with their corresponding formulas.

3. Traverse the dag. For every 6 € ®<* and node v that has a parent that is labeled
with an element from <, \ ©®, add a new path ending with v, such that the con-
catenation of the path is o, if such a path does not exist. To do this it is possible
to maintain in each node v a constant-size list of all elements of ®<F that end with

v. Note that after these additions, the nodes of the dag one-to-one correspond to

suby (S U {s}).
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4. SAT™(s) is obtained by traversing the dag and generating {z,} for every ¢ on the
left side of s and {Zy} for every ¢ on the right side of s.

5. For every s’ € S, SATT(s') is obtained similarly.

6. U {SAT"(c(s)) | 0/5 € G,o(fim(s')) C subg(SU{s})} is generated by looping
over all rules in G. For each rule 00 /s') let ¢1,..., 0, (m' < m) be formulas
such that frm(s’) consists only of ©-k-subformulas of ¢y, ..., @,. Go over all m/-
tuples of nodes in the dag. For each m’ nodes vy, ..., v, check whether vy, ..., v,
match the pattern given by 1, ..., ¢, and if so, construct a mapping h from the
formulas in suby (s') to their matching nodes. Then, construct a clause consisting of
a literal Ty, for every ¢ on the left side of s’, and a literal xy(,) for every ¢ on the
right side of s’. Note that only a constant depth of the sub-dags rooted at vy, ..., v,
is considered—that is the complexity of ¢1, ..., ¢, in addition to nodes on paths
that represent elements of ©@=*. These are independent of the input S U {s}. To
see that we generate exactly all required clauses, note that a substitution o satis-
fies o(frm(s')) C suby (S U {s}) iff a({¢1, ..., om}) C subg (S U {s}). Thus, there
exists a substitution o satisfying o(frm(s")) C subg (S U {s}) iff there are m’ nodes

matching the patterns given by 1, ..., Y.

Steps 1,2,3,4 and 5 require linear time. Each pattern matching in step 6 is done in
constant time, and so handling a rule r with ¢ (r) = m takes O(n™) time. Thus step 6

requires O(n™) time. O

Remark 3.1.7. We employ the same standard computation model of analysis of al-
gorithms used in [44]. An efficient implementation of this algorithm cannot afford the
variables x, to literally include a full string representation of 1. Thus we assume that
each node has a key that can be printed and manipulated in constant time (e.g., its

memory address).

Corollary 3.1.8. For any ©-k-analytic pure calculus G, the derivability problem for G

is in co-NP.

3.2 Linear Time Decision Procedure

Theorem shows that when ¢?(G) = 1, the SAT instance SATy(G,S,s) can be
generated in linear time. In such cases, it is natural to identify calculi whose SAT
instances can be also decided in linear time. This is the case, for example, for SAT
instances consisting of Horn clauses [47] — clauses with at most one positive literal. Tt is

routine to verify that for every Horn calculus (see Definition [2.7.4), its axiomatic version
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consists solely of single-conclusion sequents. In this case, the semantic constraints that
are induced by the calculus produce Horn clauses in the reduction above. When such
calculi also have a @-k-complexity of 1, the entire decision procedure (reducing + solving)

can be done in linear time. Formally:

Proposition 3.2.1. Let G be a @-k-analytic Horn £L-calculus such that ¢ (G) = 1. The
derivability problem for G can be decided in linear time using a HORNSAT solver, for

the case where the set of premises consists of single-conclusion sequents.

Proof. By Theorem [2.4.3] there exists an axiomatic calculus G’ that is equivalent to G.
It is easy to verify that G’ consists of single-conclusion sequents, and that when S also

consists of single-conclusion sequents, SAT (G, S, s) consists of Horn clauses for every
s. O

Example 3.2.2. [34] presents a reduction from the derivability problem for Gpyr, to
HORNSAT. This reduction is a particular instance of the reduction presented above. The
derivability problem for Ggpr, (see Example [2.5.27)) is also decidable in linear time, as
Ggpiw is a (-analytic Horn calculus and ¢(Ggprr,) = 1. We may also require that the dis-
junction of Gpyy, is symmetric by adding the pure axiomatic rule r = 0 / p; Vps = pa Vp1.
Obviously, the resulting calculus is still Horn. In addition, using the semantic criterion of
Theorem m, it is possible to show that it is (-analytic. However, ¢(r) = 2, and so the
resulting calculus will no longer have a complexity measure of 1, but of 2. The algorithm
described in Theorem [3.1.6| will then require quadratic time, and thus the entire decision

procedure will also require quadratic time.

Example 3.2.3. The calculus Gpy (Example [2.5.19) is Horn, and the complexity of its
axiomatic version is 1. and ¢(Gpy) = 1. Thus, the reduction to SAT induces a linear

time decision procedure for it.

Example 3.2.4. The linear time fragment of dual-Horn clauses can be utilized as well.
For example, consider the ((-analytic) calculus Gpyrg that consists of the rules (V =),
(= V), (A =) of LK and the following rules for “dual primal implication”:

(<=) p= /P <p2= (= =) =p1ip2= | =p <P
This calculus is coherent and (-directed. By Theorem [2.5.16] it is #-analytic. Also, the
complexity measure of its axiomatic version is 1, and the SAT-instance generated by
Definition consists of dual-Horn clauses. Thus the derivability problem for Gpyy,g

can be decided in linear time.



52 CHAPTER 3. SAT-BASED DECISION PROCEDURE

3.3 Implementation of The Decision Procedure

In this section we describe our implementation of the decision procedure, in a tool called
Gen2sat, available in [102]. GenZ2sat is implemented in Java, and uses the SAT-solver
sat4j [75]. For a given calculus G and an input sequent s, Gen2sat decides whether s is
derivable in G. If s is not derivable, the tool provides a countermodel. If it is derivable,
the tool provides a sub-calculus in which s is already derivable (using the explanation
for the lack of a countermodel given by sat4j).

We start with a high-level description of the Gen2sat and its usage in Section [3.3.1}
Section includes some implementation details. We conclude with Section [3.3.3]
where we compare the performance of Gen2sat to that of MetTeL, which is another

generic tool for non-classical logics.

3.3.1 Features and Usage

There is a variety of tools developed in the spirit of logic engineering, such as MultLog
[30], TINC [40], NESCOND [83], LoTREC [53], and finally MetTeL [08], which generates
a theorem prover for a given logic, as well as a source code for the prover, that can be
further optimized. The aim of Gen2sat is similar, allowing the user to specify the logic and
automatically obtain a decision procedure. In contrast to MetTel. which uses tableaux,
in Gen2sat the logic is given by a sequent calculus. Moreover, the core of Gen2sat is
the above reduction to SAT, thus it leaves the ”hard work” and heuristic considerations
of optimizations to state of the art SAT solvers, allowing the user to focus solely on
the logical considerations. The current implementation of Gen2sat supports ©-k-analytic
pure calculi for k£ = 1, and derivation problems with no premises (e.g., does g s7).
Gen2sat can be run both via a web interface and from the command line. In
the web-based version the user fills in a form; in the command line a property
file is passed as an argument. From the command line, Gen2sat is called by:

java -jar gen2sat.jar <path>. The form has the following fields:

Connectives A comma separated list of connectives, each specified by its symbol and

arity, separated by a colon.

Rules Each pure rule is specified in a separate line that starts with ”rule:”. The rule
itself has two parts separated by ”/”: the premises, which is a semicolon separated

list of sequents, and the conclusion, which is a sequent.

Analyticity For the usual subformula property this field is left empty. For ©-1-

analyticity, it contains a comma separated list of the elements of ©.
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Input file Tnput file

connectives: P:2, E:2 connectives: AND:2,0R:2,IMPLIES:2,TOP:0
rule: =>a; =>b / =>aPb rule: =>pl; =>p2 / =>pl1 AND p2

rule: a=> / aPb=> rule: pl,p2=> / pl AND p2=>

rule: b=> / aPb=> rule: =>pi1,p2 / =>pl OR p2

rule: =>a; =>b / =>aFb rule: =>p2 / =>pl IMPLIES p2

rule: =>b; a=> / aEb=> rule: =>pl; p2=> / pl IMPLIES p2=>
analyticity: rule: / => TOP

inputSequent: (((ml1 P m2 ) E k) E k),k=>ml analyticity:

inputSequent: =>p IMPLIES p

Output Output

provable unprovable

There’s a proof that uses only these rules: Countermodel:

[=>b; a=> / a E b=>, a=> / a P b=>] p=false, p IMPLIES p=false

Figure 3.1: Examples for inputs to Gen2sat

Input sequent The sequent whose derivability should be decided.

The web-based version includes predefined forms for some propositional logics (e.g. clas-
sical logic, primal infon logic and more). In addition, it allows the user to import sequent
calculi from Paralyzer!]

If the input sequent s is unprovable in the input calculus G, Gen2sat outputs a
countermodel, in the form of a G-legal suby-bivaluation v such that v(s) = 0. If it is
provable, Gen2sat recovers a sub-calculus in which the sequent is already provable (the
full proof is unobtainable due to the semantic approach of Gen2sat). Thus, for a provable
sequent Gen2sat outputs a subset of rules that suffice to prove the sequent.

Figure presents examples for the usage of Gen2sat. In the left example, the input
contains a sequent calculus for the Dolev-Yao intruder model (Example 2.5.19). The
connectives E and P correspond to encryption and pairing. The sequent is provable,
meaning that given two messages m, and ms that are paired and encrypted twice with &,
the intruder can discover my if it knows k. In the right example, the input file contains a
sequent calculus for primal infon logic (Example[2.2.10)), where the implication connective
is not reflexive, and hence the input sequent is unprovable. Both calculi are (-analytic,
and hence the analyticity field is left empty.

3.3.2 Implementation Details

Gen2sat is implemented in Java and uses sat4j [75] as its underlying SAT solver. Since

its algorithm is a “one-shot” reduction to SAT, no changes are needed in the SAT solver

IParalyzer is a tool that transforms Hilbert-type calculi of a certain general form into equivalent
analytic sequent calculi. It was described in [4I] and can be found at http://www.logic.at/people/
lara/paralyzer.html.


http://www.logic.at/people/lara/paralyzer.html
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Gen2sat sadj

SequentCalculus DecisionProcedure PartialBiValuation specs
-~

-sequentCalculus: SequentCalculus |

_ = T+decide(s: Sequent ~o
| Sequent |A +decide(s: Sequent) A| Satinstance |_ N m
Figure 3.2: A partial class diagram of Gen2sat

itself. In particular, sat4j can be easily replaced by other available solvers. Figure |3.2
includes a partial class diagram of Gen2sat. The two main modules of sat4j that we
use are specs, which provides the solver itself, and xplain, which searches for an unsat
core. The main class of Gen2sat is DecisionProcedure, that is instantiated with a
specific SequentCalculus. Its main method decide checks whether the input sequent
is provable. Given a Sequent s and a calculus G, decide first transforms G to an
equivalent axiomatic calculus, and then generates a SatInstance stating that s has a
countermodel, by applying the rules of the calculus on the relevant formulas, as described
in Theorem SatInstance is the only class that uses sat4j directly, and thus it is
the only class that will change if another SAT solver is used.

For satisfiable instances, the specs module returns a satisfying assignment, which
is directly translated to a countermodel in the form of a PartialBivaluation. For
unsatisfiable instances, the xplain module generates a subset of clauses that is itself
unsatisfiable. Tracking back to the rules that induced these clauses, we are able to recover
a smaller sequent calculus in which s is already provable. Note however, that the smaller
calculus need not be analytic, and then the correctness, that relies on Theorem [3.1.3might
fail. Nevertheless, correctness is preserved in this case, as the ”if” part of Theorem [3.1.3
holds even for non-analytic calculi. Thus, although Gen2sat does not provide a proof of

the sequent, we do obtain useful information about the rules that were used in it.

3.3.3 Performance

Gen2sat is generic, as the sequent calculus in which derivability should be checked is a
part of the input, and not a part of the code of the tool. The purpose of this section
is to check whether the approach that underlies its implementation is efficient. For this
purpose, we compared the performance of Gen2sat with that of another tool that has a
similar purpose, called MetTeL [08]. Like Gen2sat, MetTeL is a generic prover for non-
classical logics. However, the approach undertaken in MetTeL is completely different.
First, it operates on tableau calculi, rather than on sequent calculi. Second, in the core
of MetTeL there are efficient implementations of useful techniques for tableau proof-

search, that are applicable for a wide variety of tableau calculi. This is in contrast to
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Gen2sat’s underlying semantic approach, that goes through a reduction to SAT.

We describe an evaluation performed on Gen2sat and MetTel,, aimed at checking to
what extent these two generic tools can be used in practice. The results, as we shall
see, are encouraging, as both tools perform well on relatively large problem sets. Also, it
seems that some improvements can be utilized to get even better running times, without
sacrificing genericity. Another general goal of this evaluation is to identify families of
logics, or logic problems that are executed better in each of the tools.

As a case study, we consider Lukasiewicz three-valued logic L3 from Example [2.2.8]
that employs three truth values: ¢, f, and u (for “true”, “false” and “undetermined”,
respectively). Valid formulas in L3 are the formulas that are always assigned the truth
value t. Its implication-free fragment is identical to Kleene’s three-valued logic [66]. As a
consequence, it does not have implication-free valid formulas. Lj is decidable, like every
propositional logic that is defined using a finite-valued logical matrix.

We start by describing the different implementations of this logic in both tools. This
is followed by a description of the problems that were tested. Then, we provide the actual
results of this case study, and discuss the various differences that were observed between
the tools.

Calculi

The paper [59] presents a tableau calculus for L3 (henceforth denoted T for “Tableau”),
which is available in the online version of MetTeL.. The sequent calculus GL3 for this logic
from Example m (henceforth denoted S for “Sequent”), can easily be implemented
in Gen2sat, as it is {—}-1-analytic and pure. The most straightforward comparison
would be between MetTeL’s implementation of the first and Gen2sat’s implementation
of the second. However, since our goal is to compare the underlying approaches rather
than specific calculi, we believe that it is important to use the same calculus in both
frameworks. For this purpose, we have translated the sequent calculus S to a tableau
calculus (henceforth denoted ST for “Sequent—Tableau”), using the general technique

outlined in [12]. To summarize, we have considered three implementations of Ls:

T the tableau calculus from [59], implemented in MetTel.. Its specification in
MetTeL is shown in Figure 3.3

S the sequent calculus from [13], implemented in Gen2sat. Its specification in
Gen2sat is shown in Figure .

ST a translation of S to a tableau calculus, implemented in MetTeL. Its specifica-
tion in MetTeL is shown in Figure

Note that the calculus T is three-valued (corresponding to the three values of Ls). In
order to check the validity of a given formula ¢, one needs to apply 7 both on F : ¢ and
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specification Lukasiewicz;
syntax Lukasiewicz{
sort valuation;

sort formula;

valuation true = ’T’ formula;
valuation unknown = ’U’ formula;
valuation false = ’F’ formula;
formula true = ’true’;

formula false = ’false’;
formula negation = ’7’ formula;

formula conjunction = formula ’&’ formula;
formula disjunction = formula ’|’ formula;
formula implication = formula ’->’ formula;
}
tableau Lukasiewicz{
T F P/ priority 0 $;
P / priority O $;
P / priority 0 $;
P / priority 0 $;
F P priority 1 $;
U P priority 1 $;
T P priority 1 $;
Q /TP TQ priority 1 $;
Q / F P $| FQpriority 2 $;
Q / TP UQ$IUP TQS$lI UP UQ priority 3 $;
Q / TP $|l TQ priority 2 $;
Q) / FP FQ priority 1 $;
Q) / FP UQ$IUP FQ$lUP UQ priority 3 $;
Q / TP F Q priority 1 $;
Q /UP FQ$l TP UQ priority 2 $;
(P->Q /TQ¢$l FP$l UP UQ priority 3 $;
false / priority O §$;

2
av]
— — — & & &fF NN N T mc

~

o 9
| |
vV Vv

false / priority O $;
true / priority 0 $;

Mmoo acmacmAHa " AaAmaAAagaacHd
~
o

true / priority 0 $;

Figure 3.3: Definition of 7 in MetTeL
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connectives: &:2,[:2,->:2,1:1
rule: =>pl; =>p2 / => pl & p2
rule: pl,p2=>/ pl & p2 =>
rule: =>p1,p2 / => pl | p2

rule: pl=>; p2=> / pl | p2 =>
rule: a=> / !l a=>

rule: =>a / => !l a

rule: !A, !B=>/ I(A | B)=>
rule: =>!A; =>!B / => !(A | B)
rule: 'A=>; IB=> / (A & B)=>
rule: =>!A, !B / => (A & B)
rule: /! A, A=>

rule: ! A => ; B=>; => A,! B/ A -> B=>
rule: A=>B; ! B=>! A / => A -> B
rule: A, ! B=> /! (A -> B)=>
rule: =>A; =>!B / => | (A -> B)
analyticity: !

details: false

Figure 3.4: Definition of S in Gen2sat
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on U : ¢. Only if both turn out to be unsatisfiable, then the formula is valid. Obviously,

once one of them is found satisfiable, there is no need to check the second. In contrast,

when using S, checking the validity of a formula ¢ amounts to applying the calculus once

on the sequent = ¢.

Taking performance rather than verbosity in Gen2sat for this evaluation, we have

compiled a non-verbose version of the tool, that does not include any information besides

a final answer of whether the sequent is derivable or not. The reason for this is that when

profiling Gen2sat, we noticed that the bottleneck is in the specs module of sat4j, which

is only needed to explain the result of the tool, but not to decide derivability. These

considerations lead to a total of five variants of the implementations that we consider:

Sm the implementation of S in the non-verbose version of Gen2sat.

S the implementation of S in the usual (slower) version of Gen2sat.

ST  the implementation of 87 in MetTeL.

T-F  the implementation of 7 in MetTeL, applied on inputs of the form F : .
T-U  the implementation of 7 in MetTeL,, applied on inputs of the form U : .

Problem Classes

We have generated instances of different sizes from two classes of problems. The first

is a class of random problems, generated by MetTeL itself. The second class is more
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specification ST;
syntax ST{
sort valuation;

sort formula;

formula negation =
formula conjunction
formula disjunction

formula implication

tableau ST{

valuation true = T’

formula;
valuation false = ’F’ formula;

’17 formula;

formula ’&’ formula;
formula ’|’ formula;

formula ’->’ formula;

TP F P/ priority 0 $;

TP&Q /TP TQ priority 1 $;
F®P&Q / FP$|FQ priority 2 $;
T®I|IQ /TP $|l TQ priority 2 $;
F®I|Q / FP FQ priority 1 $;

F (1('(P))) / F P priority 1 $;

T (1('(P))) / T P priority 1 $;

F '(P) / TP priority 1 $;

T (1P | Q) /T !P T !Q priority 1 $;
FQOM®I Q) /F!'P$|F !Q priority 2 $;
TU®&Q) /T!'P$IT!Q priority 2 $;
F (((P&Q) /F P F !Q priority 1 $;
T®E>Q) /FP F!Q$I FP TIPS/ TQ F!Q$l TQ T !'P priority 3 $;
F®E>Q /TP FQ F!'P $/ T!'Q FQ F !P priority 2 $;

TI!(P->Q) /TP T !Q priority 1 $;

F I (P->Q) / F P $| F IQ priority 2 $;

Figure 3.5: Definition of S7 in MetTeL,
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structured, and provides more control on the derivability of sequents.

e Random Problems: Using the random problem generator included with MetTeL,
we have generated random formulas of depths 10, 15 and 20, with 50 formulas for
each depth. Most random formulas turned out to be not valid in Lj, and so this

benchmark mainly tests the tools for non-valid formulas.

e Rothenberg’s Problems: In order to gain more control on the derivability of
formulas, we have used the four problem classes from [88]:

(1) (A"v B") D> (AV B)" (2) (AV B)" D (A"Vv B")

B) (n-(AAB)) D ((n-A)A(n-B))  (4) (n-A)A(n-B)) D (n-(AAB))
where: A = T, A" = A0A", 0-A =1, (n+1)-A= A& (n-A),
A®B = ~(mA& -B) and A® B = -A D B. We have only considered the
language {A,V,D,}, and so we have defined T as p D p and L as = T. We pro-
duced formulas for 0 < n < 300 of intervals of 5. These problems were designed
to test provers for infinite-valued Lukasiewicz logic [76], and are all valid in it, as
well as in L. We generated non-valid formulas simply by adding a negation. In
[88], problems of the first and third class are said to be easy, while problems of
the second and forth class are considered hard. There are several explanations to
this classification in [88] (e.g., hard problems require cuts and branching proofs),
that are backed by experimental results of several implementations of calculi for

infinite-valued Lukasiewicz logic.

Results

The experiments were made on a dedicated Linux machine with four dual-core 2.53 Ghz
AMD Opteron 285 processors and 8GB RAM. The Java heap limit was 4GB. Figures
to [3.8 exhibit the main results. A timeout of 10000 ms was imposed on all problems, and

anything higher appears in these figures as ‘11000’

¢ Random Problems: We generated problems of depth 10, 15, and 20. For each
depth, 50 problems were generated, and their running times were measured on the
five different implementations. For each formula depth and implementation, the
median running time over the 50 problems was calculated, along with the lowest
and highest 25%. For example, when measuring the performance of S,, on the 50
problems of depth 10, the lowest 25% of running times were all below 14ms, and
the highest 25% of them were above 33ms. The median was 22ms. The results
are presented in Figure [3.6] that includes a boxplot for each formula depth and

implementation, in which the rectangle marks the range between the lowest and
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Random Problems
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Figure 3.6: Running times on random problems

highest 25% of running times, and the middle line marks the median. Every dot
above the segments is considered an outlier. For example, for depth 20, the medians

of the aforementioned implementations are 1042ms, 964ms, 70ms, 40ms, and 160ms.

Rothenberg’s Problems: Figures and present running times on Rothen-
berg’s problems. The x-axis shows the size of the problem (ranging from 0 to 300),
and the y-axis shows running times in ms (ranging from Oms, through 5000ms to
10000ms). Each of the 5 implementations is represented by its own line chart on the
graphs. For example, on provable problems of class 1, S has reached the timeout
around N = 150, and the running time for N = 100 was almost 5000ms.

Discussion

¢ Random Problems: On random problems, S7 outperformed all other imple-

mentations of L3. In particular, it performed better than S, thus showing that
when considering random problems with this particular calculus (recall that ST
is a translation of S to tableau), MetTeL. outperformed Gen2sat. It was also ob-
served, however, that MetTeL. implementations were less stable. Thus, although
having a better result on most of the inputs, some inputs reached the timeout. As
for depths that are not presented in Figure [3.6, we note that for depths higher than
20, Gen2sat always reached the timeout, while MetTeL. almost never did. We stress

that these results do not necessarily indicate any downside of Gen2sat’s approach,
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Figure 3.7: Running times on provable and unprovable instances of classes 1-2 from

Rothenberg’s problems. N is the size of the Rothenberg problem.

but may indicate a room for improvement in its implementation. Indeed, most of
the running time was not inside the SAT-solver, but in the preprocessing done by
Gen2sat. The reduction implemented in Gen2sat does not produce too many SAT
clauses (recall that according to Theorem [3.1.6] the SAT instance for this calculus
is linear in the size of the problem), but preliminary review of the code showed that
the process of producing them can be improved. As an example for one of these
possible improvements, we describe the effect of the hashCode () function in Java.
A crucial point in the reduction that Gen2sat implements is that each variable cor-
responds to a formula of the input, but not to an occurrence of a formula. For this
reason, Gen2sat employs sets rather than lists. Manipulating sets in Java involves

many calls to the hashCode () function of each object. Since logical formulas are
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Figure 3.8: Running times on provable and unprovable instances of classes 34 from

Rothenberg’s problems. N is the size of the Rothenberg problem.

essentially trees, each such call to hashCode () initiates a recursion. Our prelim-

inary profiling shows that by caching these hash codes, a significant performance

improvement could be gained.

¢ Rothenberg’s Problems: Here the implementation of S in Gen2sat performed
better than all other implementations. In every problem class, both Gen2sat im-
plementations of S (verbose and non-verbose) performed better than the MetTeL
implementations of ST and 7. Notably, there was a big difference between the
performances of the verbose and non-verbose versions of Gen2sat (S and S,,, re-

spectively), but only on provable instances. The reason is that on such instances,
the largest amount of computation time is spent on calls to the xplain module

of sat4j, that is disabled in the non-verbose version. On

unprovable problems,
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for which this module is not called, the running-time difference between the two

versions of Gen2sat was negligible.

Comparing the different implementations of MetTel. between themselves, we did
not get consistent results. Focusing on 7 however, we did see that problems of
the form U : ¢ are processed slower than problems of the form F': ¢, whenever ¢
was not valid. In all these formulas, it was possible to assign F' to the Rothenberg
formula, but not U. This is not surprising, as the rules for U in T involve three-
way branching, that significantly increases the search space for MetTel.. When ¢
was valid, however, F-problems and U-problems either performed similarly, or U-
problems were processed faster. Thus, when using the prover generated by MetTeLs
for T, it is better to first use it with an F-label and only if it was not satisfiable,

run it again with U.

On the other hand, almost all the rules in S7 have one premise, which explains
the better performance of this calculus over 7. Moreover, few fine grained priority
values improved the performance for this calculus. For example, raising the priority
value of T (P->Q) from 3 to 4, and that of F (P->Q) from 2 to 3 resulted in some

improvement in running times.

Note that both MetTelL and Gen2sat performed better on unprovable problems
than on provable ones. When using the non-verbose version of Gen2sat, however,

the difference was negligible.

A plausible explanation to the gap between Gen2sat’s performance on random
problems and its performance on Rothenberg’s problems is that the textual repre-
sentation of the random problem was much longer (mainly due to the number of
variables used in them, which is almost always much larger than the number of vari-
ables in Rothenberg’s problems). Since Gen2sat’s bottleneck was the pre-solving

stage, we suspect that the actual input size has such a distinguished effect.

On Easy and Hard Problems

Figure|3.9 shows that Rothenberg’s original classification of hard vs. easy problems
does not hold for the provers MetTeL. and Gen2sat generate for Lukasiewicz three-
valued logic. In &, §,, and T-U, we have that classes 3 and 4 were easier than
classes 1 and 2. In ST, the differences were minor. Only in T-F, the classification

of [88] survived, and classes 1 and 3 were easier than classes 2 and 4.

The fact that the original classification did not survive the transition from infinite-
valued Lukasiewicz logic to the three-valued one, is not surprising. First, these

are two different logics, and second, the calculi for them are much simpler than
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the calculi for the infinite-valued version. For example, the sequent calculus that
we consider here is cut-free, while only hyper-sequent calculi that are cut-free are
available in the infinite case. In the three-valued case, however, we uncovered a
different classification, according to which classes 1 and 2 are harder than classes
3 and 4. This is consistent with the fact that the problems of classes 3 and 4 are
less complex than those of 1 and 2. At least in Gen2sat, where the complexity of

the input has a big effect on the parsing stage, this is to be expected.
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Chapter 4

Extending Pure Calculi with Modal

Operators

As we have seen, the framework of pure sequent calculi is a very powerful one. When
paired with the general definition of analyticity (Definition [2.5.5]), effective calculi for
many propositional non-classical logics are obtained. Even more, the reduction of Chap-
ter [3| provides a concrete, uniform decision procedure for each of them. However, there
are useful non-classical logics that seem to go beyond the reach of ©@-k-analytic pure
calculi. For example, the usual sequent rules for the modal operators [J and ¢ in various
modal logics (e.g. K, KTB, S5 etc.) operate on the context sequent, and thus are not
pure.

In this section, we consider the extension of pure sequent calculi with impure rules
for introducing box-like modal operators. Our investigation is not limited to a single
modal operator, and thus the systems that we study are multimodal. Moreover, the base
logic need not be classical, and can be any logic that is described by a pure calculus. We
prove a soundness and completeness theorem for the resulting calculi with respect to a
Kripke-style semantics, that generalizes the bivaluations of Section This semantics
is then used in order prove the following result: if a pure calculus is ©@-k-analytic, then
it remains so after the addition of the considered rules for modal operators, excluding
some degenerate cases (to be described below). The semantics is also used to extend the
reduction of Chapter [3|to pure calculi that are augmented with a special kind of modal
operators.

Figure |4.1]in Section 4.1|includes well-known modal rules, whose addition to arbitrary
pure calculi are studied in this chapter. Section elevates the bivaluations semantics of
pure calculi from Section [2.3]to Kripke-style semantics, thus obtaining a strong soundness
and completeness theorem. In Section this theorem is used in order to prove that
analyticity of a pure calculus survives the addition of the modal rules. Section
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generalizes the reduction from Chapter 3| to a special kind of modal operators. Finally,

in Section [4.5] we study some equivalences between some of the modal rules of Figure [4.1]

Publications Related to this Chapter

This chapter is mainly based on [72]. However, the results of [72] are generalized here to

the notion of analyticity from Section and to more modal operators.

4.1 Impure Rules for Modal Operators

In what follows, £ continues to denote an arbitrary propositional language, and & denotes
a finite set of unary connectives, called modal operators, such that @ N <, = 0. We
denote by L, the propositional language obtained by augmenting £ with the modal
operators in E. The notations OF and EF are adaptations of the similar notations from
Section , and are extended to sequents and sets of sequents in the obvious way (e.g.
Of=A)=0l=0A,masS={0s| O0€m@,seS}.

Unlike the connectives of £, that may appear in any pure rule, the modal operators
are manipulated according to a predefined set of rules, as given in Table [4.1 These rules
are known to correspond to several classical modal logics [64], I0T]. The upper part of
Figure includes the rules (K), (4), (45), (B), (B4), and (PF) (The rule (PF) is less
common, and corresponds to the modal logic of functional Kripke models). The middle
part of the table includes rules that correspond to the seriality axiom D. Each rule (X)
of the above six rules is given a “serial version” (Dx). The bottom part of the table
includes the rule (T), that corresponds to reflexive Kripke models. Note that, with the
exception of (T), these are not pure rules, as their applications do not allow arbitrary
context sequents. The table also includes the semantic property that corresponds to each
rule. This will be used in Section [4.2] where we prove soundness and completeness.

To keep the discussion modular, we assume a given function M specifying the deriva-
tion rules that manipulate each O € @. For every O € @, M(O) is either a singleton
consisting of one of the rules from the upper part of Table 4.1 or a pair consisting of
such a rule (X) together with either (T) or a matching (Dx) rule. (Note that there is no
need to consider the combination of both (T) and a (Dx)-rule, since all (Dx)-rules are
derivable in the presence of (T).) We exclude the combination of (PF) and (T), as their

combined frame conditions do not correspond to the derivations they allow/T]

I'Note that if classical negation is definable, the meaning of [J becomes trivial in this combination: on
the one hand, the inclusion of (T) immediately entails the derivability of Oy = ¢. On the other hand,
the ¢ = O can be proven using the rules (- =) and (= —) of LK, together with (T), (PF) and (cuUT).
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I'= o I'=p A
(K) — (PF) (FUNCTIONAL)
Ol' = Oy o' = Op, 0A
aly, I's = Oy, Iy = ¢, 0A
(4) LT (TRANSITIVE) (45) L 2Ty (TRANSTTIVE )
DFl, DFQ = DSO DFl, DFQ = DQD, DA
I'= o, 0A Oy, Iy = o, 0A, 0A
(B) —— T (svanmhic) (ma) o T U (SYMMETIG )
Ol = Op, A O, Ol = Op, 0A, Ay
Additional seriality rules:
I'= '=A oy, Iy =
(Dx) (Dpr) ———— (D4) —/———F—
al' = ol = 0OA aly,al’y =
o'y, I'y = 0OA I'=0A o'y, 'y = 0A1, 0A,
(Das) (Dp) —— (Dp4)
DF17 o'y = OA ol = A DFI, ol'y = DAl, AQ
Additional reflexivity rule:
L= A
(T) ———
Iop=A
Figure 4.1: Application schemes of sequent rules for a modal operator O
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Given a pure calculus G for £, we obtain the calculus Gy for £, by augmenting G
with the rules determined by M(O) for each O € @. For a set F C L of formulas, we
write S g s (or S kg, s when F = Lg) if there is a derivation of a sequent s from a

set S of sequents in Gy consisting only of F-sequents.

Example 4.1.1. The following is an application of (= A) in Lg:
ps = Up1, 00ps  ps = Opo, OOPs3

p3 = (Op1) A (Op2), OOps
The context sequent in both premises is p3 = OOps.

Example 4.1.2. Sequent calculi for classical modal logics are obtained by taking
@ = {0}, and augmenting LK with the appropriate rules for the modal operators.
For example, calculi for the modal logics K and KD are obtained by respectively tak-
ing M(O) = {(x)} or M(O) = {(K), (Dk)}. The logics S4 and S5 are captured by
respectively taking M(O) = {(4), (T)} and M(O) = {(B4), (T)}.

Example 4.1.3. The quotations employed in primal infon logic [44] are unary con-
nectives of the form ¢ said, where ¢ ranges over a finite set of principals. Sequent
rules for quotations are obtained by taking @ to include these connectives, and setting
M(q said) = {(PF), (Dps)} for every principal q. Augmenting the calculus Gpyy, (Exam-
ple with M, we get that g, "= 4 iff ¢ is derivable from I in the Hilbert-type
system for primal infon logic given in [44]. This can be shown by induction on the lengths
of the derivations. By augmenting Ggpr, (Example with M, we obtain the cal-
culus GgprLy, which augments primal infon logic (with quotations) with some natural

classically valid tautologies, without compromising the linear time algorithm (see Exam-

ple below).

4.2 Semantics

In this section we generalize the semantics from Section and elevate it to a Kripke-
style semantics. Given a pure L-calculus G and a specification M of rules for the modal
operators [@, there is a complete syntactic separation between the connectives of the
original calculus and the modal operators: first, these are disjoint sets; and second,
the rules of G contain no modal operators, and the rules of the modal operators from
Figure do not contain any elements from <»,.. We keep this separation also in the
semantics. Semantics of the connectives from <, is local: it will be governed by the
bivaluation semantics in each possible world separately. In contrast, semantics of the
modal operators is global: it will be governed by their usual meaning in Kripke models.

Similarly to what has been done for bivaluations, we consider partial Kripke models,

in order to achieve a semantic counterpart of analyticity for the augmented calculi.
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Definition 4.2.1. A biframe for M is a tuple W = (W, R, V) where:

1. W is a set of elements called worlds. Henceforth, we may identify W with this set
(e.g., when writing w € W instead of w € W).

2. R is a function assigning a binary relation on W (called accessibility relation) to
every 0 € B. We write Ry instead of R(0O), and Rg[w] for {w' € W | wRyw'}.
For every every O € (@, the relation R should have particular properties according

to M(O) as indicated in Table [£.1]P]

3. V is a function assigning a bivaluation to every w € W, such that for every
w e W, O € @ and formula ¢: if OY € dom(V(w)) and ¢ € dom(V(w')) for
every w' € Rplw] then V(w)(Oy) = min {V(w')(¥) | w' € Ry[w]} [ We write V),
instead of V(w).

Furthermore, if dom(V,,) = F for every w € W, we call W an F-biframe for M.

Example 4.2.2. When M(O) = {(B4), (T)}, every biframe W = (W, R, V) for M must
have that Ry is reflexive, symmetric and transitive. If (Dx) € M(0O) for some (X) then
Ry is serial. If (T) € M(O) then Ry is reflexive.

Notation 4.2.3. Let W = (W, R, V) be a biframe for M. For a set W C W we denote
min {V,/(¢) | w' € W'} by Vi (¢). This notation is extended to sequents and sets of
sequents in the natural way (e.g., Vu(S) = min{Vy(s) | s € S,w’ € W'}). We denote
by dom (W) the intersection of all sets dom(V,,) for every w € W. In particular, we have
Vi (OV) = Vrgw)(¥) for every w € W and ¢, 0¢ € Ly such that Oy € dom(V,,) and
¥ € dom(V,) for every w' € Rylw].

Remark 4.2.4. There are two main differences between our definition of biframes and
the usual definition of Kripke-style models. First, since we are in a multimodal setting, we
have a separate accessibility relation for every OO € E. Moreover, the semantic properties
of Ry may be different for each 0. Second, for each world w, V,, may have a different
domain. Accordingly, the semantics of O is only enforced when the relevant formulas are
in the appropriate domains. While the first difference was made to obtain generality, the

second is crucial for the success of the decision procedure that we present in Section [£.4]

Next, we adopt the semantic viewpoint of pure rules in order to retain the connection

between sequent calculi and their semantics, that was given in Definition [2.3.2]

2An accessibility relation Ry is called transitive if wRu and uRv imply wRv; symmetric if wRu
implies uRw; functional if wRu and wRv imply u = v; euclidian if wRu and wRv imply uwRv; reflexive
if wRw for every w € W; and serial if for all w € W, we have wRu for some u.

3Recall that min @ = 1.
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Definition 4.2.5. A biframe (W, R, V) for M is called G-legal for an L-calculus G if V,,
is G-legal for every w € W (see Definition [2.3.2)).

We turn to proving soundness and completeness. Note that the rule (4) and its
two variants (45) and (B4) are not sound for every partial biframe, even with the
necessary frame conditions. For example, the sequent Oy = OOy is derivable from
(4) using only these two formulas. However, this sequent is not valid in the follow-
ing {Op, 00¢}-biframe W = (W, R,V), in which Ry is transitive: W = {w, ws},
Ro = {{wy,ws) , (we, wa) }, Vi, () = 1, Ve, (OOp) = 0, Vyu, (Op) = 0, V,, (OO¢) = 0.
Thus, in the presence of any one of the rules (4), (45) and (B4), we require that F is
“closed” with respect to @, that is, ¢ € F whenever Op € F. Note that this requirement

is needed only for soundness.

Theorem 4.2.6 (Soundness). Let G be an L-calculus, F a set of Lg-formulas,
S a set of F-sequents and s an JF-sequent. Suppose that for every O € @, if
{(4),(45),(B4)} N M(O) # 0 then ¢ € F whenever Oy € F. If S F§ s then
Vw (S) < Vw(s) for every G-legal F-biframe (W, R, V) for M.

Proof. Let W = (W,R,V) be a G-legal F-biframe for M. Suppose that Vy (S) = 1.
We prove that Vy/(s) = 1 by induction on the length of the derivation of s from S in
G (that consists only of F-sequents). If s € S, or s is the conclusion of an application
of a non-modal rule, then this is shown like in the proof of Theorem [2.3.5 If s is the
conclusion of an application of some rule in M(0), then the proof carries on according
to the identity of this rule. We explicitly prove the cases of (K), (4) and (T). The other

cases are handled similarly.

1. If s is the conclusion of an application of (K) for some O € [E, then s has the
form OI' = Oy for some I' C F and ¢ € F, and S l—éM I' = ¢ with a shorter
derivation. Suppose for contradiction that V(O = O¢) = 0 for some w € W.
Then, V,,(0O¢) = 0, and V,,(0¢) = 1 for every ¢ € T'. In particular, there must
exist a world w' € Rg[w] such that V,(p) = 0, and V,y(¢)) = 1 for every ¢ € T,
which contradicts the induction hypothesis, according to which V,,(I' = ¢) = 1.

2. If s is the conclusion of an application of (4) for some O € [, then s has the
form Oy, Oy = Oy for some I'y C F, ¢ € F and I'y such that OI';y C F, and
S +§, O, Ty = ¢ with a shorter derivation. In addition, since (4) € M(0O), we
have I'y C F as well. Suppose for contradiction that V,,(0OT, Oy = Op) = 0 for
some w € W. Then, V,,(0¢) = 0, and V,,(O¢) = 1 for every ¢ € Iy UT;. In par-
ticular, there must exist a world w’ € Rg[w] such that V() = 0, and V() = 1
for every ¢p € T's. Now, let ¢ € 'y and w” € Rg[w']. Since (4) € M(O), we
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have that Ry is transitive, which means that w” € Rg[w]. Therefore, V,»(¢) = 1
for every such w”, and hence V,,(0v) = 1 for every such ¢. We therefore have

Vo (O, Ty = ¢) = 0, contradicting the induction hypothesis.

3. If s is the conclusion of an application of (T) for some O € @, then s has the form
I'yOp = A for some '/ A C F and ¢ € F, and S l—éM I',o = A with a shorter
derivation. Let w € W. By the induction hypothesis, V, (I, = A) = 1, which
means that either V,,(¢) = 0 for some ¢ € T', V,(¢) = 1 for some ¢ € A, or
Vuw(p) = 0. In the first two cases, we have V,(I';dp = A) = 1 as well. In the
third case, since (T) € M(O) we have that Ry is reflexive. This, together with the
fact that V,,(¢) = 0, means that V,,(O¢) = 0, and hence V,,(I',0p = A) =1. O

We turn to completeness. Similarly to Theorem [2.3.5] we follow the canonical con-
struction of a countermodel, whose worlds are maximal unprovable sequents, but adjust
it to the case where only formulas from a certain set F are allowed in derivations. When
F is infinite, this requires the use of w-sequents (defined as in the proof of Theorem
2.3.5)).

Theorem 4.2.7 (Completeness). Let G be an L-calculus, F a set of Lg-formulas, S a
set of F-sequents and s an F-sequent. If St/ s then Vi (S) > Vi (s) for some G-legal
F-biframe (W, R, V) for M.

Proof. We say that an w-sequent L = R is M-S-F-mazximal unprovable if the followings
hold:

e LURCF
° Sb‘éMLéR
o SKE,, L, = Rfor every ¢ € F\ Land SFE L= 1, R for every ¢ € F\ R.

We denote the set of M-S-F maximal unprovable w-sequents by W (M, S, F). Using (ID)
and (CUT), it is easy to see that LUR = F and LNR = () for every L = R € W(M, S, F).
In addition, it is a routine matter to show that every w-sequent L = R such that
LURC Fand S /5, L = R can be extended to a M-S-F-maximal unprovable w-
sequent.

For every L = R € W(M, S, F) and O € M, define the following sets:
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LP={peF|Opel}

LS = ’ {(4),(45),(B4)} N M(O) =0
2 O{e € F|Ope€L} otherwise

RP = 0 {(45), (BA)} NM(O) =0
1 O{¢ € F| Op € R} otherwise

RS = 0 {(B), (B4)} NM(O) =0
2 FNOR otherwise

RD = 0 (PF) & M(D)

{p € F | Op € R} otherwise
A%;\R = {L/ =R eWM,S,F)| LY, LY = RY, RS, RY C L' = R/}
Using these sets, we define the following countermodel W = (W, R, V), where:

1. W =W(M,S,F).

2. for every O € @, we define Ry by specifying the set Rg[L = R] for every
L= RecW:

(a) if (PF) ¢ M(O) then Rp[L = R] is A7_ L.

(b) If (pF) € M(O) then Rg[L = R] consists of a single arbitrary element from

AT L unless A7 p is empty, in which case so is Rg[L = R].

3. For every v € Fand L = R € W, V_r(¥) = 1if p € L and V(1) =0

otherwise.

We first show that Vi (S) > Vi (s). For every I' = A € S and L = R € W, since
St&, = Aand SH L= R, there exist some ¢ € I'\ L (and then V,—p(¢)) = 0)
or ¢ € A\ R (and then Vo r(¢) = 1). Either way, V,oz(I' = A) = 1. In addition,
since s C Ly = R, for some Ly = R, € W(M, S, F), we have V[ _g.(s) = 0.

It remains to prove that W is a G-legal F-biframe for M.

e G-legal: For every L = R € W, the bivaluation V;_ g is shown to be G-legal
similarly to the proof of Theorem [2.3.5

e biframe: let O € @, ¢,0¢ € F, and L = R € W. If V,_p(Oy) = 1 and
L' = R' € Rg|L = R], then we have Oy € L, which means that ¢ € L', and
hence Vp—r(¢) = 1. For the converse, suppose that V;—g(0Oy) = 0. Then
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O¢ € R. We prove that S V]GEM LY, LY = ¢, RT, RS, Ry, extend this sequent
to an element L' = R’ of Rg[L = R], and then obtain that Vp_r () = 0
(as ¢ € R'). Assume for contradiction that S F§ LY, LY = v, RY, R}, RY.
Then there exist finite Iy € LY, T'y C L3, Ay € RY, Ay C RY and A3z C RY,
such that S F&  T1,Ts = ©,A; Ay Az, Let Ay = {peF|Ope A}
By applying the only rule in M(O) N {(x),(4),(45),(B), (B4), (PF)},
we obtain § I—éM o'y, Iy = Oy, Ay, AL, OAs. Clearly,
O,y = 09, AL, A, 0A; € L = R, and so S F§ L = R, which is a
contradiction. Now, LT, LY = ¢, RT, RY, RY can be extended to some element

L' = R of W, and every such extension is an element of A7 ,. Thus we have
some L' = R’ € Rg[L = R] such that ¢ € R, and so Vy,—r (1)) = 0.

for M: let O € @. We show that Ry has the properties that are induced by M. We

separately consider each of the cases:

— Suppose (Dx) € M(0O) for some (X). We show that Ry is serial. Similarly
to the proof above that S t/5 LY, L5 = ¢, RY,RY, RS, it can be shown
that S /g, LT, L5 = RT, RY, R3, by applying (Dx) rather than (X), for the
only (Dx) € M(O), and that LT, LY = R, RY, R} can be extended to some
element L' = R’ in W such that (L = R)R5(L' = R').

— Suppose (T) € M(0O). We show that Ry is reflexive. Let L = R € W. We
show that (L = R)Rg(L = R), that is, LY, LY = RY, RS, Ry C L = R.
Let ¢ € LT, and assume for contradiction that ¢ ¢ L, that is, ¢ € R. Since
¢ € LT, we have that Oy € L, and therefore, Oy = ¢ C L = R, which is
impossible, as (T) € M(0O). The proofs that L5 C L and RY C R are trivial.
Now let 1 € RS, and assume for contradiction that ¢ ¢ R, that is, ¢ € L.
Since ¢ € RS, we have that 1 = 01’ for some ¢’ € R, and that ¢ € F. This
means that ¢ = ¢ C L = R, which is again impossible by the presence of
(T) in M(O). Finally, since (T) € M(0O), we must have that (PF) ¢ M(O),
which means that R§ =0 C R.

In the following cases, L, = R,, L, = R, and L. = R. denote arbitrary elements
of W.

— Suppose (4) € M(O). We show that Ry is transitive.  Suppose
that (L, = RJ)Ro(Ly = Ry) and (L, = R)Ro(L. = R.).
We prove that (L, = R.)Ru(Le = R.), that is,
(La)Ts (La)s = (Ra)T,(Ra)3, (Ra)s € Lo = R Since (4) € M(D),
we must have (R,)T = (R,)5 = (R,)5 = 0. Now, let ¥ € (L,)T. Then both
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¢ € F and Oy € L,, which means that Oy € (L,)5 C L. Together with
the fact that ¢ € F, we have ¢ € (L)T C L.. Next, let ¢ € (L,)}. Then
Y = 0Oy’ for some ¢ € F, and ¢ € Ly. Therefore, ¥ € (L;)5 C L.

— Suppose (45) € M(0O). We show that Ry is transitive and euclidean.

« Transitivity:  suppose that (L, = R,)Rp(ls = R,) and
(Ly = Rp)Ro(L. = R.). We prove that (L, = R,)Rg(L. = R.), that
is, (La)T, (L) = (R.)T, (R.)Y, (R.)§ C L. = R.. Since (45) € M(O),
we must have (R,)} = (R,)§ = 0. Similarly to the case of (4),
(L)Y, (La)5 € (L.). Now let v € (R,)Y. Then ¢ = O for some
Y € F and ¢ € R,. Therefore, ¢ € (Ry)T C R..

* Euclideaness:  suppose that (L, = R,)Rg(Ly, = Ry) and
(Lo = R.)Rpo(Le = R.). We prove that (L, = Ry)Rg(L. = R.), that
is, (L0)7, (LG = (Ry)7, (RS, ()5 C Lo = R.. Since (45) € M(1),
we have (Rp)5 = (Ry)S = 0. Let v € (Ly)7. Then Oy € Ly and ¢ € F.
Hence 0¢Y ¢ Ry, and therefore Oy ¢ (R,)T. Since we have ¢ € F, this
must mean that 0y ¢ R,, and hence Oy € L,. Again, since ¢ € F,
Y € (L,)7 C L. Next, let ¢ € (L)5. Then ¢ = Ov' for some ¢/ € F
and ¢ € L. In particular, ¢ ¢ R,. Since (R,)T C Ry, we also have
Y ¢ (R,)T. Together with the fact that ¢’ € F, we have ¢ ¢ R,. This,
in turn, means that ¢» € L,, which, together with ¢ € F, means that
¥ € (L,)5 C L. The fact that (R,)T C R. is proven symmetrically.

— Suppose (B) € M(O). We show that Ry is symmetric. Suppose that
(Lo = R.)Rp(Ly = Rp). We prove that (L, = Ry)Rg(L. = R,), that
is, (Ly)T, (Ly)5F = (Ry)T, (Ry)5, (Ry)S € L, = R,. Since (B) € M(O), we
have (Ly)5 = (R)T = (R)5 = 0. Let ¢ € (Ly)Y. Then Oy € L, C F, and
hence O0vY ¢ Ry, and in particular, Oy ¢ (R,)5. Since Oy € F, we have also
Y ¢ R,, which means that ¢ € L,. Next, let ¢ € (Rp)5. Then ¢ = O¢/
for some ¢’ € R, C F. Hence ¢/ ¢ L, and in particular, ¢’ ¢ (L,)T. Since
Y € F, we also have ¢ ¢ L,, which means that ) € R,.

— Suppose (B4) € M(0O). We show that Ry is transitive and symmetric.

« Transitivity: ~ suppose that (L, = R,)Rp(Lls = R,) and
(Ly = Ry)Ro(L. = R.). We prove that (L, = R.)Rg(L. = R.),
that is, (La)T, (Le)5 = (Ra)T, (R.)5, (R.)5 € L. = R. First, note that
(R.)5 = 0. Second, (L,)T, (La)f € L. and (R,)T C R. are shown simi-
larly to the case of (45). Let ¢ € (R,)5 C R,. Then ¢ € F, and ¢ = O¢/
for some 1’ € F. Hence ¢ € (R,)T C R..
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* Symmetry: suppose that (L, = R)Rg(Ly = Ry).
We prove that (L, =  Ry)Rp(l. = R,), that Iis,
(Ly)T, (Lp)s = (Ry)T, (RS, (Ry)y € L, = R,. First, note that
(R.)5 = 0. Second, (L) C L, and (Ry)5 C L, are shown similarly to
the case of (B). Let ¢ € (Ly)5. Then ¢ € Ly, and ¢ = O’ for some
¢/ € F. In particular, 1 ¢ R, and hence also ¥ ¢ (R,)T. Together with
the fact that ¢/ € F, we have that ¢» ¢ R,, which means that ¢ € L,.
The fact that (R)T C R, is shown symmetrically.

— Suppose (PF) € M(0O). By the definition of R in this case, R is functional.
O

4.3 Analyticity

The definition of a ©-k-subformula (Definition applies also for the language £,
which is a propositional language. Thus, the elements of @ are taken to be additional
propositional connectives. It is important to note, however, that @ N <, = (), and in
particular, @ N © = (.

Example 4.3.1. Considering the language CLg, with @ = {O}.
subi YT A q)) = {p.a,p.~a.p Aq.~(p A q). O(p A g)}-

Thus, also in L, the ©-k-subformula property induces the ©-k-analyticity property
for pure calculi that are augmented with the above rules for modal operators: just like
in the pure case, a calculus Gy is ©@-k-analytic if S l—sclfbg(su{s}) s whenever S k¢ s.

In this section we show that, excluding some degenerate cases (to be described below),
©@-k-analyticity is preserved when augmenting a pure calculus with the above rules for
modal operators. Semantics will play a major role here, as what will actually be shown
is how to use the possibility to extend partial bivaluations in order to extend partial
biframes.

For this, we focus on a slightly restricted sub-family of calculi, namely standard calculi,
thus ruling out some degenerate cases. Roughly speaking, a calculus is called standard
if whenever an atomic formula occurs in one of its rules, it also occurs as a subformula

in the same rule. This is formally defined as follows:

Definition 4.3.2. An atomic variable p is called shared in a rule r if at least one of the

followings hold:

1. pis a proper subformula of some formula in the conclusion of r.
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2. p is a proper subformula of every ¢ € frm(s) for some non-empty premise s of r.

A rule is called standard if all atomic variables that occur in it are shared in it. A calculus

is called standard if each of its rules is standard.

Example 4.3.3. All calculi considered in examples above are standard. In contrast,
ps is not shared in the rule = py,ps/ = p1 V ps, and so every calculus that includes
this rule is not standard. Aside from such tailored examples, we are not aware of any

non-standard calculus from the literature.
The main result of this section is:
Theorem 4.3.4. Let G be a standard L-calculus. If G is @-k-analytic then so is Gy.

Note that if Gy is @-k-analytic, then G must also be ©-k-analytic: given that S and
s do not include any symbol from @, we have that if S kg s then also S g, s. The
©-k-analyticity of Gy then ensures that there is a derivation of s from S in Gy that
consists only of suby (S U {s})-formulas. This derivation cannot contain applications of
M(O) for any O € @, and hence it is also a derivation in G.

We now present some examples for applications of Theorem [4.3.4] before turning to

its proof.

Example 4.3.5. All sequent calculi for classical modal logics that are obtained from LK
by the adding the rules of Table are known to be (-analytic. Theorem makes
this fact a direct consequence of the (-analyticity of LK.

Example 4.3.6. Gpyy, and Ggpyy, are standard. Since they are @-analytic, so are Gpypy
and Ggpirym (see Example 4.1.3)). In contrast, the Hilbert-type system for primal infon
logic in [44] admits a similar property that concerns local formulas (see Definition m

below) rather than subformulas.

Example 4.3.7. One can add modal operators to the paraconsistent logic C; (see Ex-
ample [2.2.9), by augmenting G, with one of the rules for modal operators. The {—}-1-
analyticity of the calculus G¢, then entails the {—}-1-analyticity of the extended calculus.

Example 4.3.8. The paper [89] augments Lukasiewicz three-valued logic (Exam-
ple [2.2.8) with several modal operators. Proof-theoretically, [89] focuses on Hilbert-type
calculi, that are rarely analytic. In contrast, such a goal could be achieved by aug-
menting G with some of the modal rules from Figure . Using Theorem the
{—}-1-analyticity of Gy, entails the {—}-1-analyticity of the resulting calculi.
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Next, we prove Theorem [£.3.4, We use Theorems [4.2.6] and [£.2.7] and show how to
extend partial biframes into full ones. The general notion of biframes (that allows for

different domains in each world), and the enforced semantics of the connectives from
@, all make the extension of partial biframes more challenging than partial bivaluations.
The following definitions are therefore needed. First, we introduce a more delicate notion

of closure under ©@-k-subformulas.

Definition 4.3.9. A set of L -formulas is called ©-k-closed if whenever it contains a
formula of the form oy for some o € @, it also contains ¢, and whenever it contains a
formula of the form (i1, ..., p,) for some o € .\ ©, it also contains ©®=F; for every
1< <n.

Every set that is closed under ©@-k-subformulas is also @-closed. However, the converse
may not hold. For example, the set {(Op1) A (Op2), Op1, Opa} is O-k-closed for any k,
but it is not closed under (-k-subformulas, as p; and p, are missing.

Next, we generalize this property from sets of formulas to biframes.

Definition 4.3.10. A biframe (W, R, V) for M is called ®-k-closed if the followings hold
for every w € W:

e dom(V,) is ®-k-closed and finite.
e For every O € @, if Oy € dom(V,), then ¢ € dom(V,) for every w’' € Rgw].

Similarly to the case of pure calculi, the ability to extend partial models is essential
also when introducing modal operators. We thus explicitly define what does it mean to

extend a biframe.

Definition 4.3.11. A biframe (W, R,V) for M estends a biframe (W', R, V') for M if
W=W'"R=TR and V, extends V,, for every w € W.

Finally, the main part of the proof of Theorem is the following lemma, that is
proven in the next section. From this lemma, the theorem immediately follows, with the
help of Theorem [4.2.7|

Lemma 4.3.12. Let G be a standard ©-k-analytic L-calculus, and W a G-legal ©-k-
closed biframe for M. Then, W can be extended to a G-legal Lg-biframe for M.

Before proving the lemma, we show how it is used to prove Theorem 4.3.4

Proof of Theorem[{.3.4, Suppose that G is @-k-analytic. Assume S g s for a set S
of Lg-sequents and an Lg-sequent s. Let S” C S be a finite set such that S' g 5. We
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sub®(S'U{s sub® s .
prove that S’ I—GS’“ (§"01sh) s, and conclude that S I—GS’“ (894D ¢ Assume otherwise. By

Theorem [4.2.7] there exists a G-legal suby (S’ U {s})-biframe W = (W, R, V) for M such
that Vi (S) > Vu(s). W is also @-k-closed, and by Lemma [£.3.12] it can be extended
to a G-legal Ly -biframe W = (W, R,V’) for M. After this extension, we still have
Viy (S) > V. (s). Theorem implies that " I/ s, which is a contradiction. O

Remark 4.3.13. The proof of Theorem |4.3.4]only considers biframes with a domain that
is closed under ©-k-subformulas. Lemma [4.3.12] however, holds also for biframes that
are ©-k-closed, even if they are not closed under ©@-k-subformulas. This strengthening is
needed in Section [1.4, where we extend the reduction of Chapter

4.3.1 Proof of Lemma [4.3.12

Lemma is basically an extension lemma. It ensures the ability to extend partial
biframes into full ones. For the extension method that we propose here, the following

property of @-k-closed sets is useful:

Lemma 4.3.14. If F C L, is ©-k-closed, ¢,¢ € L, and ¢ is a @-k-subformula of 1,
then o (1)) € F implies o(yp) € F.

We add all formulas of the language to the domain of the biframe, not one by one
— but many at a time. For each formula, we need to know the value of other formulas
(usually, its @-k-subformulas) in order to determine its value. In each step, we add to
the domain of the biframe all the formulas for which we are able to determine this value.

The following lemma shows that every step in this process is possible:

Lemma 4.3.15. Let G be a standard @-k-analytic L-calculus and W = (W, R,V) a
G-legal ©@-k-closed biframe for M. Then:

1. Given p € At, W can be extended to a G-legal ©-k-closed biframe W' for M, such
that p € dom(W').

2. W can be extended to a G-legal ©-k-closed biframe W' for M, such that
sldom(W) C dom(W').

3. W can be extended to a G-legal ©-k-closed biframe W' for M, such that
©@dom(W) C dom(W'), and for every ¢ € {1\ ©, o(¢1, ..., on) € dom(W') when-
ever ©<F {1, ..., 0, } C dom(W).

Proof.
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1. Let W = (W,R,V’), where V' is the function assigning to every w € W, the

dom(V,,) U {p}-bivaluation V! obtained by extending V,, with the value 0 (say)
for p if p ¢ dom(V,). Clearly, W' is a ©-k-closed biframe for M that ex-
tends W, and p € dom(W'). It remains to show that W' is G-legal. Let
w € W, s1,...,8,/s € G, s),...,s respective subsequents of sq,...,s,, and

o a substitution such that o(frm({s},...,s,,s})) € dom(V.). We prove that
Vi(o({s),...,s0})) < Vi(o(s)). If p ¢ o(frm({s},...,s,,s})) or p € dom(V,),
then this follows from the fact that V,, is G-legal. We show that these are actually
the only two options for p. Indeed, if p € o(frm({s}, ..., s, s})), then p = o(p’) for
some atomic variable p’ € frm({s}, ..., s}, s}). Since G is standard, p’ is a proper
subformula of some ¢ € frm({s}, ..., s, s}). Since o(p) € dom(V!) and o(p) # p,

’r“n?

we have o(p) € dom(V,,). By Lemma 4.3.14) p € dom(V,,).

. For every w € W, let F,, = dom(V,,) U @dom(W). Let W = (W, R, V'), where V'

is the function assigning to every w € W, the F,-bivaluation V! defined by:
V(1) Y € dom(Vy)

VRD[w](QO) v =0p € Fy \ dom(Vy,)

We show first that W’ is a biframe for M. Let w € W. Let Oy € dom(V.)
such that ¢» € dom(V!,) for every w' € Rpw]. If Oy € dom(V,), then
since W is ©@-k-closed, » € dom(V,) for every w' € Rp[w]. Hence since
W is a biframe for M, V,(O¢) = Vu(OY) = Vrow(¥) = Vi @) I
Oy ¢ dom(V,), then ¢ € dom(W), and by the definition of V" in this case,
Vi(OV) = Vrow)(¥) = Ve (V)

Obviously, W' extends W and @dom (W) C dom(W'). It remains to show that W’
is ©-k-closed and G-legal.

V() =

(a) @-k-closed: For every w € W, dom(V,,) is ®-k-closed and finite. Since we
only added a finite number of formulas, all from EL,, dom(V),) is also ©-k-
closed and finite for every w € W. Now, suppose that Oy € dom(V)). If
Oy € dom(Vy), then ¢ € dom(V.,) for every w' € Rpfw] since W is ©-k-
closed. If Oy ¢ dom(V,), then » € dom(W) C dom(W'), and in particular
Y € dom(V!),) for every w' € Rp[w].

(b) G-legal: Let w € W, s1,...,8,/s € G, s,..., s, respective subsequents of

’ n

S1,...,Sn, and o a substitution such that o(frm({s},...,s,,s})) C dom(V.).
We prove that o(frm({s},...,s,,s})) <  dom(V,), and then
Vi (o({s], ., sh}) < V/(o(s)) follows from the fact that W is G-legal.

Indeed, let ¥ € o(frm({s},...,s,,s})). If ¥ ¢ BLy, then ¢p € dom(V,,). If
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Y € @BLy, then ¥ = o(p) for some atomic variable p € frm({s},..., s, s}).
Since G is standard, p is a proper subformula of some compound L-formula

/

¢ € frm({s},...,s,,s}). Since ¢ is a compound L-formula, we have

o(p) ¢ BLg, and hence o(p) € dom(V,). By Lemma [4.3.14} since dom(V,,)
is ©@-k-closed, ¥ € dom(Vy,).

3. We define W' in several steps.

Embedding £ in L,: Let oy be some bijection from At to At U EL,. As a sub-
stitution, oy is naturally extended to apply on all L-formulas. It is straight-

forward to verify that its extension is a bijection from £ to L.

Translating V: For every w € W, let F, = {¢ € L |oo(p) € dom(V,)}.
By Lemma and the fact that W is ®-k-closed, we have that F,
is closed under ©-k-subformulas for every w € W. Since o is a bijec-
tion, we also have that F, is finite for every w € W. Now, for every
w € W, let u, be the F,-bivaluation given by w, = Ap € Fy. Viu(oo(p)).
We show that wu, is G-legal for every w € W. Let w € W,
S1yy8n /s € G, s),..,s respective subsequents of si,...,s,, and o

r n

a substitution such that o(frm({s},...,s,,s})) € F,. We prove that
up(o({s),--,9,})) < wup(o(s)). Consider the substitution ¢/ = og o 0.
It is easy to see that o'(p) = oo(0o(p)) for every formula ¢. Therefore,
o' (frm({s}, ..., s, s})) = oo(o(frm({s},...,s.,s}))) C oo(Fu) C dom(Vy).
Since W is G-legal, we have
(0 ({1, - 5, })) = V(o' ({51, -, 5, })) < Vu(0'(s)) = uw(o(s)).
Extending the translation: Let w € W. Then, u, is a G-legal bivaluation
whose domain F,, is a finite subset of £ closed under ©-k-subformulas. Since
G is @-k-analytic, by Theorem [2.5.9] wu, can be extended to a G-legal L-

bivaluation wuy,.

Defining W': For every w € W, let F/, be the following set:
dom(V,,)U@dom(W)U{o(p1, ..., 0n) | © € O2\®, ©=F {1, ..., pu} C dom(W)}.
Let « be the inverse of 0. « is a bijection from Ly to £. Let W' = (W, R, V'),

where V' is the function assigning to every w € W, the F, -bivaluation V,,
defined by:

Vi (¥) ¥ € dom(Vy)

u,(a(¥)) ¥ € F,\ dom(Vy)

First, we prove that W is a biframe for M. Let w € W and ¢, 0¢y € L.
Suppose that Oy € dom(V)) and ¢ € dom(V),) for every w' € Rplw].

V() =
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Then, since Oy € EBLy, we have Oy € dom(V,). Since W is ©-k-
closed, ¥ € dom(V,) for every w' € Rp[w]. Since W is a biframe,
Vo (O9) = Vo (O) = Vrpu) (V) = V()

Clearly, W' extends W, @dom(W) C dom(W'), and for every ¢ € %\ @,
(@1, ., pn) € dom(W') whenever ©=F {1, ..., p,} T dom(W).

It remains to show that W is @-k-closed and G-legal.

(a) @-k-closed: Let w € W. First, dom(V))) is finite since dom(W) and <, are
finite. Second, let op € dom(V,) for some o € ®. If op € dom(V,,), then since
W is ®-k-closed, ¢ € dom(V,,) C dom(V)). Otherwise, op € F,, \ dom(V,,),
which means that ¢ € dom(W) C dom(V,) C dom(V,). Third, let
o1, ..., ) € dom(V.). We show that ©®F); C dom(V)) for every
1 < i < n If ot,..,v,) € dom(V,) then this holds since W is ©-
k-closed.  Otherwise, o(¢1,...,%,) € F,, \ dom(V,), which means that
©=F); C dom(W) C dom(V,) C dom(V.) for every 1 < i < n. Finally,
let Oy € dom(V),). Then, since Oy € BL,, Oy € dom(V,). Since W is
©-k-closed, ¥ € dom(Vy) C dom(V.,) for every w' € Rgfw].

(b) G-legal: Let w € W, s1,...,8,/s € G, s},..., s, respective subsequents of
S1, ..., Sn, and o a substitution such that o(frm({s},..., s, s})) € dom(V.).
We prove that V) (o({s},....,s,})) < V.(o(s)). For that, we first prove
that V! (¢v) = ul(a(y)) for every v € dom(V),). If ¥ ¢ dom(V,),

w

then this holds by definition.  Suppose that @ € dom(V,). Since
(@) = v, a() € Fp Hence ui(a(y) = uwn(a(®)). By def
inition, u,(a(v)) = V(oo(a(v))) = V(). Since ¥ € dom(V,),
ui(a(v)) = V. (). Now, consider the substitution ¢/ = aoo. It
is easy to see that o'(¢)) = a(0(¢)) for every ¢ € frm({s},..., s, s}).
Clearly, o'(frm({s},...,s,s})) C Since wu! is G-legal, we have that
Vi(o({s1,,803) = up(alo({s), ..., n}))) Uy (0" ({81, -+, 5, })) Is less than
or equal to 3, ('(s)) = ut (a(0(s))) = Vi (0(s). .

To complete the proof of Lemma [4.3.12, we use Lemma repeatedly, and con-
struct a full biframe from a partial one.

First, recursively construct an infinite sequence
WO = (W, R, V%) Wl = (W, R, V') | ..., such that:

o WO =W.
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e For every i, W' is a G-legal ©-k-closed biframe for M.
e Each Wit extends W',
e For every ¢ € Ly, 1 € dom(W?) for some i > 0.

We begin with W° = W. Given W¢ Wil is obtained as follows. By Lemma
[4.3.15, W can be extended to a G-legal ®@-k-closed biframe Wi for M such that
pi € dom(W)). In turn, Wi can be extended to a G-legal ©-k-closed biframe W
for M such that @dom(Wi) C dom(W;). Finally, Wi can be extended to a G-
legal ©-k-closed biframe W} for M such that @dom(Wi) C dom(Wi), and for every
o € OB\ ©, o(p1, ..., 0n) € dom(W?i) whenever ©=F {1, ..., 0.} C dom(W5). We take
WL = (W, R, V') to be Wi.

Clearly, for every i > 0, Wit! is a G-legal ©-k-closed biframe for M that extends W".
We prove that for every ¢ € L, there exists some i > 0 such that ¢ € dom(W?), by

induction on the complexity of :

1. If ¢ € At then ¢ = p; for some ¢ > 1. By our construction, p; € dom(W;j) and
hence p; € dom(W'HH).

2. If ¢ = Oy then by the induction hypothesis, ¢ € dom(W?) for some i > 0. By our
construction, Oy € dom(W3) and hence ¢ € dom(W'H).

3. If 1) = oy, then by the induction hypothesis, there exists 7 such that ¢ € dom(W?).
By our construction, op € dom(W5), and hence op € dom(W*1).

4. If ¢ = o(1)1,...,1,) then by the induction hypothesis, there exist iy, ..., such
that ¢; € dom(W?%) for every 1 < j < n. Let i = max{iy,...,i,}. By our
construction, there exists ig > 7 such that ©=*); C dom (W) for every 1 < j <n
(in each step we add oy for every ¢ € dom(W?) and o € ®. Since ®=F is finite,
we exhaust it at some point). Hence o(11, ..., 1,) € dom (W), which means that
(W1, ..., ) € dom (WOt

We now define W = (W, R, V'), a G-legal L,-biframe for M that extends W. For
every ¢ € Ly, let i, denote the first ¢ such that ¢ € dom(W?). For every w € W, V!, is
defined by V., (1) = Vi (¢).

We prove that W' is a G-legal L -biframe for M that extends W. Clearly,
dom(W') = L, and W’ extends W. We prove that W' is a biframe: Let w € W
and ¢¥,0¢ € L,. Let & = max{iy,igy}. Since W' extends W' for every i,
we have V/, () = V¥ () and V', (O¢) = VE(Oy) for every w' € W. Since W*
is a biframe, V) (Ov) = Vi(Oy) = V;%D[w](w) = Vi (). 1t remains to show
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that W' is G-legal. Let w € W, sq,...,8,/s € G, s),...,s,, respective subsequents
of s1,...,8,, and o a substitution. We prove that V! (c({s},...,s,})) < V. (o(s)).
Let & = max{iy | ¥ € o(frm({s},...,s),s}))}. Since W' extends W' for every i,

we have V! (¢) = VF(y) for every o € o(frm({s},...,s,s})). Since V* is G-legal,
Vi(o({sh, . 8.}) = Va(o({sh, .., s,})) < Vy(o(s)) =V, (0(s)). 0

4.4 Extending The Decision Procedure

In this section we extend the reduction from Chapter [3| to standard pure calculi with
modal operators, that are defined by (PF) and (Dps). We call such operators Next
operators. These are often employed in temporal logics. In primal infon logic, they play
the role of quotations (see Example . We start by defining a variant of the ©-k-
subformula relation in Section [£.4.1] In Section we make the necessary adjustments
to the reduction from Chapter [3| and prove the correctness of the extended reduction.
For the modal case, correctness is more challenging, and heavily relies on Lemma
above. In Section we briefly describe how Next-operators are incorporated into our
tool Gen2sat.

In what follows, we denote the specification function that assigns {(PF), (Dpp)} to
every O € @ by Next. In turn, we call biframes for Next totally functional (as their

accessibility relations are functional and serial).

4.4.1 Local Formulas

While the reduction in Chapter 3| was based on ©-k-subformulas, the current general-
ization of it is based on ®-k-local formulas. This notion generalizes the local formulas
relation from [58], that preserves prefixes of E-elements between formulas. A sequence
O=0;... 0, (m > 0) of elements of @ is called a E-prefiz. For any formula ¢ € £, O
is a @-prefix of Op. The notation OF is naturally extended to prefixes O.

Definition 4.4.1. Denote by O, the longest (possibly, empty) @E-prefix of ¢, and by by,
the formula for which ¢ = Oyby,. A formula ¢ is immediately ®-k-local to a formula v if
¢ = Oyy' for some immediate ©@-k-subformula ¢’ of by,. The ©@-k-local formula relation
is the reflexive transitive closure of the immediate ©-k-local formula relation. We denote
the set of ©-k-local formulas of a formula v by Iocf’@(@b). This notation is naturally

extended to sequents, sets of sequents etc. When © = (), we say that ¢ is local to 1.
Note that for @ = (), we have loc;"® () = subj () for every formula .

Example 4.4.2. For @ = {{J,X}, we have
loc! P (O(Rpy O p2)) = {0 py, 0 B py, Ops, O-ps, O(Epy O p2) -
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The following lemma provides an alternative, inductive definition of the ©-k-local

relation between formulas:

4.

Lemma 4.4.3.

. loc®(p) = {p} for every p € At.

locy"® (o)) = {otp} U loc, ™ (v) for every o € ®.

o B (o(hy, o, 0n)) = {o(r, o 0} UUlgign @<k, UUlgign loc,™® (1) for every

<>€<>£\©

locy"®(Ov) = Olocy™ ().

Proof.

1. p does not have any immediate ©@-k-local formulas.

2.

(C): Let o € loc,™®(oth). If ¢ = oy, then this trivially holds. Otherwise, by the
definition of the @-k-local relation as the reflexive transitive closure relation of the
immediate one, either o = 1 or ¢ € loc,"™ (1)).

(2): Obviously, 01,1 € locy"™(ot)). From transitivity, locy"™(v) C locy"™ (o1).

(C): Let ¢ € loc,™® (o(W1, ..., ). If @ = o(¢h1, ..., 1b,), then we are done. If ¢ is
immediately ©@-k-local to (i1, ...,1,), then p € ®<F1; for some 1 < i < n, and
so we are also done. Otherwise, by the definition of the @-k-local relation as the
reflexive transitive closure of the immediate one, ¢ is ©@-k-local to ov; for some
6 € ®<F and 1 <i < n. So, either ¢ = &'1); for some suffix &’ of 5, or ¢ is @-k-local
to ¢;. In the first case, ¢ € |J, <o, @=*1);, and in the second, ¢ € loc,"® (¢;).

(2): Obviously, o(, ... ,wn)_é loc,™®(o(¢1, ..., 1,)).  In addition, for every
5 € ©<F oy is immediately ©-k-local to o(¢1,...,1,), and hence it is in
locy"®(o(t1, ... ,1,)). The same holds for v; for every i, and from transitivity,

it also holds for every element in loc, "™ (1;).

. (Q): Let ¢ € loc,"®(O%). Tt is routine to show that ¢ = Oy’ for some ', such that

¢ is ©-k-local to . Hence ¢’ € loc;™ (1) and therefore ¢ = O’ € Oloc, "™ (¢)).

(2): Similarly to the previous direction, let ¢ € Oloc;"®(¢)). Then, ¢ = O¢' for
some ¢’ that is @-k-local to ¢. Therefore, ¢ = O¢' is ©-k-local to Oy and hence
¢ € loc®(OY). O
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Similarly to the @-k-subformula relation, since every formula has finitely many im-
mediate ©-k-local formulas, it follows that loc;,"™ (1)) is finite for every ¢ € L.

4.4.2 Extending The Reduction

For the case that the set S of assumptions is empty, it is possible to extend the reduction
from Chapter |3| to pure calculi with Next operators. Like in the reduction for the non-

modal case, we assume that the calculus G is axiomatic.

Definition 4.4.4. The SAT instance associated with a given axiomatic L-calculus G, a
subset ® of ¢k, a natural number k > 0, and an £,-sequent s, denoted SAT,"™(G, s), is

given by the union of the following SAT instances:
1. SAT(s)
2. U{SAT™(Do(s) | 0/ € G,O0(frm(s')) C loc;"®(s), 0 is an @-prefix}
The following theorem establishes the correctness of the extended reduction.

Theorem 4.4.5. Let G be a standard axiomatic @-k-analytic L-calculus and s an L-
sequent. Then bg s iff SAT"®(G, s) is unsatisfiable.

Proof. For a totally functional biframe (WW,R,V) and a world w € W, we denote by
Rg(w) the world w’ such that (w,w’) € Ry (w' always exists since (W, R,V) is to-
tally functional). Then, we have V,(0v) = Vr,w)(¥) whenever Oy € dom(V,,) and
Y € dom(Vrgw))-

(=): Suppose that /g s. By Theorem we have V,,(s) = 0 for some G-legal
Ly-biframe W = (W, R,V) for Next and w € W. Consider the classical assignment u
that assigns true to zy iff V,(¢) = 1. Since V,(s) = 0, u satisfies SAT™(s). It remains
to prove that V,,(0o(s")) = 1 for every () /s’ € G, substitution o and E-prefix O such
that Do (frm(s')) C loc;™(s). Suppose that O = O ... O, and let wy, wy, ..., w, be a
sequence of worlds of W such that wy = w, and Ry, (w;—1) = w; for every 1 < i < n.
Then Vy, (O ... Opt) = Vi, (Oz ... Op0) = ... = VW, (¥) for every 1 € L. Since W is
G-legal, the bivaluation V,,, is G-legal, and therefore, V,, (0o (s')) = V,, (o(s')) = 1.
(<=): Suppose that SAT;"® (G, s) is satisfiable and let u be a satisfying assignment. Define
the following biframe W = (W, R, V):

1. W is the set of all @-prefixes.

2. Forevery O €@ and O € W, Rn(O) = O0O.
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3. Vg is defined by induction on the length of 0O: dom(V.) = loc;"®(s) and
V() = 1 iff u satisfies xy; dom(Vg,. . g,) = {90 | Onp € dOm(Vul..,Dn_l)} and
Vo,..0.(¥) = Vo,..0,_: (Ont)).

Clearly, Ry is a total function for every O € E. Since u satisfies SAT(s), V.(s) = 0. We
prove that W is a G-legal ©-k-closed biframe for Next (see Definition 4.3.10)).

1. biframe for Next: By the definition of V.

2. G-legal: We prove that Vg, o, is G-legal for every O0;..0, € W. Let
0/s € G and o a substitution such that o(frm(s")) < dom(Vg, . o,)-
We prove that Vo, o (o(s')) = 1. We actually prove a stronger claim,
namely that Vg, o (Oo(s’)) = 1 for every @-prefix O (including €) such that
Oo(frm(s’)) C dom(Vg,.g,)- We do so by induction on n. For n = 0
we have V.(Oo(s")) = 1 because u satisfies SATT(Oo(s')). Now, let n > 1.
Since Oo(frm(s")) € dom(Vg,..q,), we have 0,00 (frm(s")) € dom(Vq,. o, ,)-
By the induction hypothesis, Vg, o, ,(0,00(s")) = 1. By V’s definition,
Vao,.o,(0o(s')) = 1.

3. ®-k-closed: dom(Vg) is finite for every O since dom(V.) = loc;"™(s) is finite. In
addition, if 0y € dom(Vg) then by our construction, b € dom(Vag). It remains
to prove that for every O € W, dom(Vg) is @-k-closed. First, note that every set
which is closed under ©-k-local formulas is also ©@-k-closed. This holds since v is
©-k-local to ot for every o € ®, and ov; is ©-k-local to o(¢1,...,1,) for every
1 <i < nando e ©F Therefore, it suffices to prove that dom(Vg) is closed
under ©-k-local formulas for every O € W. We do so by induction on the length
of O. First, we have that dom(V.) = loc,"®(s) is closed under ®-k-local formulas.
Now, let O;...0, € W (n > 1). We prove that loc,"®(¢)) € dom(Vg,. g,) for
every ¢ € dom(Vg,..n,). Let ¢ € dom(Vg,. g,). Then, 0,9 € dom(Vg,. .o, ,)-
By the induction hypothesis, dom(Vg,. o, ,) is closed under ©-k-local formulas.
Therefore, loc,"®(0,¢) € dom(Vg, .o, ,). Now, let ¢ € loc,"®(1)). Then, by
Lemma m, One € Oplocy ™ (v) = loc,™(O,v). Hence O,¢ € dom(Vg, .o, _,)-
By V’s definition, ¢ € dom(Vg, . q,).

Now, since G is ©-k-analytic, By Lemma W can be extended to a G-legal Lg-
biframe (W, R, V') for Next. By Theorem m, since V/(s) = 0, we have I/ s. O

Note that Theorem [4.4.5] is restricted to derivability problems with an empty set of
assumptions. The main difficulty with encoding a countermodel for the derivability of a

sequent s from a set .S of sequents, is that every element of S must hold in every world of
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the countermodel. This is in contrast to the rules of G, that are required to hold only in
worlds whose domains include the instances of the rules. We leave the inclusion of sets
of assumptions for future work.

For the case that ©® = () and S = (), the polynomial time algorithm from Theorem
can be modified to accommodate Next operators. We denote SAT%’@ by SAT?® for

every k.

Theorem 4.4.6. Let G be an axiomatic L-calculus. Given an L -sequent s, the SAT
instance SAT®(G, s) is computable in O(n™) time, where n is the length of the string

representing s, and m = ¢(G).

Proof. The algorithm from the proof of Theorem [3.1.6] is reused with several modifica-
tions. As in [44], an auxiliary trie (an ordered tree data structure commonly used for
string processing) for E-prefixes is constructed in linear time, and every node in the
input parse tree has a pointer to a node in this trie. Now, each node in the parse tree
corresponds to an occurrence of a formula that is local to s. The tree is then compressed
to a dag as in the proof of Theorem [3.1.6, The nodes of the dag one-to-one correspond to
the local formulas of s. The rest of the algorithm is exactly as in the proof of Theorem
B.1.46l O

Following Section , we note that when G is a Horn calculus, SAT®®(G, s) consists
of Horn clauses. When, in addition, ¢(G) = 1, a linear time decision procedure for the

derivability problem for G ey is obtained by applying a HORNSAT solver.

Example 4.4.7. Example|3.2.2| works also after adding Next operators: the derivability
problem of Gprp,next ad GepiLyext Can be solved in linear time using a HORNSAT

solver.

4.4.3 Implementation

Our tool Gen2sat (see Section supports (-analytic pure calculi that are augmented by
a finite set of modal operators &, with the specification Next. In order to use the tool with
such operators, an additional field should be added to the form described in Section |3.3.1}
“Next Operators”. This field contains a comma-separated list of unary connectives that
do not occur in the field “connectives”. Their arities are not mentioned, as they are
assumed to be unary. Moreover, the rules (PF) and (Dpy) should not be specified, as
they are assumed by Gen2sat to be the rules that correspond to the operators in this list.
In case the sequent is derivable, a sufficient subset of rules will be generated, excluding
the modal rules (these are not encoded in any way to the SAT-solver, but only exist in

the background of the reduction, and are the reason it is based on Kripke models). If
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the sequent is not derivable, Gen2sat outputs the truth values in the first world of the
countermodel.

For example, adding quotations to the input file for primal infon logic from Figure 3.1}
would result in the following input and output:

Input file

connectives: AND:2,0R:2,IMPLIES:2,TOP:0
nextOperators: ql said, 92 said, gq3 said
rule: =>pl; =>p2 / =>pl AND p2

rule: pl,p2=> / pl AND p2=>

rule: =>p1,p2 / =>pl OR p2

rule: =>p2 / =>p1l IMPLIES p2

rule: =>pl; p2=> / pl IMPLIES p2=>
rule: / => TOP

analyticity:

inputSequent: =>ql said (p IMPLIES p)

Output

unprovable

Countermodel:
qlsaid p=false, qlsaid(p IMPLIES p)=false

4.5 Equivalence and Admissibility of Modal Rules

4.5.1 Functionality vs. Seriality

In this section, we show that the specifications {(PF), (Dpp)} and {(K), (Dx)} are equiv-
alent when added to a pure Horn calculus (see Definition [2.7.4)).

This is proven using a similar technique to the one used in the proof of Proposi-
tion 2.7.61

Lemma 4.5.1. If G is a Horn calculus and M(0O) = {(K), (Dx)} for every O € @, then
for every set S of single-conclusion Lg-sequents and Lg-sequent I' = A if S g T'= A,
then S kg, I'= &€ for some singleton or empty set £ C A.

Proof. By induction on the length of the derivation of I' = A.

1. fI' = A € SorI' = A is the conclusion of an application of (ID) or (WEAK)

then this is obvious.

2.If ' = A is the conclusion of an application of (cuT), then
' A=T,Ty= A, Ay and S kg, I'' = ¢,A; and S kg, 'y, 0 = Ay with
shorter derivations. By the induction hypothesis, there are singletons or empty
sets &1 and & such that S kg 'y = &, S kg, T2,0 = &, & € AU {p} and
E C Ay If o ¢ & then using (WEAK) we obtain S g I' = &. If & = {¢}, then
using (CUT), we get S g, I' = &.
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3.f I' = A is the conclusion of an application of some rule
Iy = Ay, T, = A, /Ty = Ag of G, then there is a substitution ¢ and
sequents I} = A}, T = A7, ... )T, = Al T = Al such that for every 1 <i <n,
I'= A CTI;, = A, T = A =T.1"cly) = o(A),Al,...,;A” and
S kg, I'i o) = o(A}), A} with shorter derivations for every 1 < i < n. Since
G is Horn, one of the following holds:

(a)

For every 1 <4 < n, I'; = 0. In this case, S kg, I'/ = o(A]), A for every
1 <i < n. By the induction hypothesis, for every 1 <i <n, Stqg, IV = &
for some singleton or empty set & C o(A}) U AY. If & C AY for some
1 <7 < n, then using (WEAK) we are done. Otherwise, for every 1 <i < mn,
there exists ¢; € o(A]) such that & = {¢;}. Hence for every 1 < i < n,
S kg, Ii = o(gi). Using (WEAK), we get that S Fq T = o(A)).
Now, we may apply the rule with context sequents I'/ = and get that
S kg, Il Th,0(l0) = 0(Ag), which means that S kg T' = o(Ao).
Since G is Horn, |0(4A)] < 1.

There exists a single 1 < ¢ < n such that I, # (. By the induction hy-
pothesis, there exists a singleton or empty set & C o(Al) U A? such that
Sta, I7,0I5) = &. Also by the induction hypothesis, for every j # i, there
exists a singleton or empty set £ C A7 U o (A}) such that S kg, I = &
(I'; = 0 since @ # j, I'i # 0 and G is Horn). If & C A for some j # i,
then using (WEAK), we get that S g I' = & (and & C A). Otherwise, for
every j # i there exists ¢; € o(A}) such that & = {¢;}. Using (WEAK) we
get S'bg,, '] = o(A}) for every j # i. Moreover, using (WEAK) we get that
S kg, Ui o}) = o(A}),&. Apply the rule with context sequents I'} = &
and I'} = for every j # i and get S g T, ...,I,0(l0) = 0(Ay), & Since
G is Horn and () # T C Ty, Ag = 0. Hence we actually get that S kg I' = &
(and & C A).

4. If T' = A is the conclusion of an application of (K) or (Dg) then it is clearly a single

conclusion sequent. O

Corollary 4.5.2. Let G be a pure calculus, S a set of (strict) single-conclusion sequents
and s a sequent. If G is Horn then S bg,, s iff S kg , s, where M(O) = {(PF), (Dpr)}
for every O and M'(0) = {(K), (Dx)} for every 0.

Proof. The right-to-left directions are trivial. Suppose that S g, s. We prove that

S kg, s by induction on the number of applications of (Dp) in the derivation of s from
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S in Gy (all applications of (PF) are also applications of (Dpg)). If this number is 0 then
the claim trivially holds. Otherwise, let (I' = A, O = OA) be the last application of
(Dpr) in the derivation. By the induction hypothesis, S Fg,, I' = A. Since G is Horn,
by Lemma W, there exists a singleton or empty set £ C A such that S Fg, I'= E.
Apply either (K) or (Dg) and get S kg , OI' = 0OE. Now, use weakening and get
Stg, O = DA, O

Example 4.5.3. Since Gpyy, (Example [2.2.10) is Horn, by Corollary |4.5.2] we may use
either {(K), (Dk)} or {(PF), (Dpr)} as the rules for its said operators (see Example 4.1.3)).
The same holds for Ggprr,.

4.5.2 On the Admissibility of D-rules

Figure [4.1] associates each modal rule (X) with its own (Dx)-rule, that essentially allows
it to be applied with an empty right side. This is needed, for example, in the following
derivation of the sequent [JL = | which is valid in the modal logic KD, but not in K:

1l =
0L =

For definite calculi (see Definition [2.7.2]), however, we have that the addition of any
of (Dk), (Dy), (Dys) and (Dpy), is redundant:

Proposition 4.5.4. Let G a definite calculus, S a set of sequents with non-empty right
sides, and s a sequent such that S g 5. Let M’ be obtained from M by removing (Dx)
from M(O) whenever X € {(K), (4), (45), (PF)} and (Dx) € M(O). Then, Stg , s.

Proof. First, since G is definite, using induction on the length of the derivation of s from
S in Gy, it can be shown that all sequents in this derivation have a non-empty right
side. Next, we induct on the number of applications of (Dx). Let (I' = A, s) be the last
application of (Dx). Then, A # (), and in particular, X cannot be (K) or (4). By the
induction hypothesis, S Fg , I' = A. If X = (45) then I' = OI' UT, and A = DA
for some I'y, 'y, A’. Since () # A = OA’, we have OI'y, I’y = O, OA’ as the premise for
some ¢ € A'. Using (WEAK), we may obtain OI'y, I's = ¢, 0, OA’ and now using (45),
we get Oy, 00 = Oy, A, which is s. If X = (PF) then since A # 0, (I' = A, s) is
also an application of (PF). O

Note that (Dg) and (Dg,) are not admissible under the conditions above. Indeed, the
sequent OOp = p is derivable using either (Dg) or (Dg,), while it is not derivable using
(B) or (B4).
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Example 4.5.5. Following Example [4.5.3, when augmenting the definite calculus Gpyy,
with (K) ((PF)), one can either include (Dy) ((Dpp)) or not, and the resulting calculi

would be equivalent.



Chapter 5

Intuitionistic Calculi

We have seen that while pure sequent calculi form a useful and prominent framework for
non-classical logics, some logics seem to require impure calculi. This was indeed the case
in Chapter 4] where multimodal logics were studied. In this section we tackle another
family of logics that seem to go beyond the scope of pure calculi, whose proof-theory
resembles that of intuitionistic logic. The propositional fragment of Gentzen’s original
calculus for intuitionistic logic, LJ, is not pure, as it does not meet the requirement of
allowing arbitrary context formulas in applications of rules: it manipulates only single-
conclusion sequents. An equivalent cut-free sequent calculus, which we call L)Y, was
presented in [77, 97]. This calculus employs multiple-conclusion sequents, and restricts
only the right introduction rules of implication and negation to apply on single-conclusion
sequents. In other words, LJ' is obtained from LK by adding the requirement that in
applications of (= D) and (= —), the context sequent has an empty right side. Such
applications have the forms:
e=vy o=
F=epD2vY I'= —p

Taking LJ’ as a prototype, we consider a family of calculi that have similar structural
properties. We call the calculi of this family intuitionistic calculi. The main result of
this chapter is a variant of Theorem for intuitionistic calculi, which identifies a
sub-family in which cut-admissibility and analyticity coincide. Our proof has a similar
general structure to the proof for pure calculi, but is more challenging, because valuation
functions do not suffice to characterize the calculi of this family. Instead, we modify the
Kripke semantics from Chapter [4] and accommodate it to intuitionistic calculi.

In Section we explicitly define intuitionistic calculi, by restricting derivations in
pure calculi. Section provides a semantic counterpart for derivability in intuitionistic
calculi. This semantics is then used in Section in order to derive cut-admissibility

from analyticity in a wide sub-family of intuitionistic calculi, as was shown in Section
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for pure calculi.

Publications Related to this Chapter

Most of the results of this section appeared in [71), [74].

5.1 Intuitionistic Derivations

In Chapter 2| we studied the family of pure calculi, that can be seen as a generalization
of LK. Just like LK, pure calculi employ all structural rules, and do not enforce any
limitation on the context sequents. In this section we study a family of calculi that
generalizes LJ'. We first identify the structural characteristics of LJ": LJ’ is obtained
from LK by forbidding right context formulas in all premises with a non-empty left side
of right-introduction rules. Another well-known calculus that follows this pattern, which
we call G/, is obtained by extending the positive fragment of LJ" with the rules for
negation of Gy (see Example2.2.8). G}, investigated in [14} [100], is sound and complete
for Nelson’s paraconsistent constructive logic N4 [82].

We precisely define a wide family of impure calculi, that we call intuitionistic calculi,
of which LJ" and G/, are particular examples. Note that both LJ" and G/, employ pure
rules: LJ' is based on the rules of LK, and G/ is based on the rules of G4. The difference
lies in the allowed applications of the rules: both calculi forbid right context formulas
in premises of the form I' = A with I # () of applications of rules that introduce some

formula on the right side. This is formalized as follows:

Definition 5.1.1. A pure rule is called positive if its conclusion has the form I' = A for
some A # ). A derivation in a pure calculus G is called intuitionistic if in every applica-
tion ({o(s))Ucy,...,o(s,)Uecn},0o(s0) Uep U...Uc,) of a positive rule sy, ..., s, / So, for
every 1 <i < n we have that if s; has a non-empty left side then ¢; has an empty right

side.

Example 5.1.2. Consider the rule (= D) of LK: p; = p2/ = p1 D pe. (= D) is
positive, and its only premise has a non-empty left side. Applications of this rule in
intuitionistic derivations will have a context sequent with an empty right side, and will

therefore have one of the following forms:
Lip=1 I'=4y L=

I'=sepD9y I'=sepD9y '=eDvy
Note that in the second application, only the subsequent = py of the premise p; = ps is

used, and therefore the premise of the application has an empty left side. Nevertheless,
since the premise of the rule has a non-empty left side, the context sequent still must

have an empty right side.
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In contrast, (O =) is not positive, and therefore applications of it in intuitionistic

derivations have the same form as in ordinary derivations.

Remark 5.1.3. If G is Horn (see Definition [2.7.4), then every derivation in it is intu-
itionistic, simply because positive rules with a non-empty left side of a premise do not

exist.

Derivability, cut-admissibility and analyticity are adopted to intuitionistic derivations

as follows.

Definition 5.1.4. For a pure calculus G, we write S Fq,,, s if there is an intuitionistic
derivation of a sequent s from a set S of sequents in G. We write S l—‘élnts if there is such
a derivation which is also cut-limited, and S kg, s if there is such a derivation which
contains only F-formulas. We say that G enjoys Int-cut-admissibility if Fq,,= l—‘élm,
and is Int-©-k-analytic if S kg, s iff S I—S(;IIDE(SU{S}) s for every set S of sequents and

sequent s. If G is Int-(-k-analytic for some k, we call it Int-0-analytic.

The difference between pure and intuitionistic calculi is not in the rules, but rather
in the allowed applications. Thus, any pure calculus has an intuitionistic counterpart,

obtained by considering only intuitionistic derivations.

Example 5.1.5. Derivations in LJ’ are exactly the intuitionistic derivations of LK.
Indeed, for a finite set I' of formulas and a formula ¢, ¢ follows from I' in intuitionistic
logic iff Frk,,, I' = ¢. In contrast, ¢ follows from I' in classical logic iff Frx I' = .

Similarly, derivations in G/ coincide with intuitionistic derivations of Gy.
Our main theorem concerning intuitionistic calculi is presented next.

Theorem 5.1.6. Every Int-©@-k-analytic ©-k-directed pure calculus enjoys Int-cut-
admissibility.

Theorem [5.1.6] which we prove below, allows one to derive the fact that cut is ad-
missible in LJ’ from the fact that LJ’ enjoys the subformula property. More precisely,
Int-cut-admissibility of LK follows from its Int-(-analyticity. Such entailment also holds
for the pure calculi presented in the examples of Chapter [2, as well as for the calculi of

the next example.

Example 5.1.7 (Constructive Negations). The paper [14] includes sequent calculi for
logics that replace classical negation with several non-classical negations. One of the
families investigated there consists of calculi that are obtained from the positive fragment

of LJ by augmenting it with pure rules for negation. All calculi of this family, except
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those described in Example below, allow only intuitionistic derivations, and are {—}-
1-directed and Int-{—}-1-analytic. From these facts, Theorem [5.1.10allows us to conclude
that cut is admissible in them. These calculi include a calculus for Nelson’s constructive

logic N3 [82], as well as the calculus G/, presented above for its paraconsistent variant
Ny.

Intuitionistic derivations disallow right context formulas in premises of positive rules,
in which the left side is not empty. A natural question that arises regarding Theorem|5.1.6
is: Does it still hold if we allow right context formulas for certain premises of a right
introduction rule with a non-empty left side, and forbid them in others? The answer is

negative as the next example demonstrates.

Example 5.1.8 (Beyond Intuitionistic Derivations). Following Example we note
that [14], 16] investigate also several calculi that include both the single-conclusion right-
introduction rule of implication and the multiple-conclusion right-introduction rule of

negation, namely:
Lo=7v Fe=A

I'=> 9Dy ['= —p, A
The first conforms with the restriction to intuitionistic derivations, as right context
formulas are forbidden. The second allows for non-intuitionistic derivations, as it allows
right context formulas in a premise of a positive rule, that has a non-empty left side.
Such calculi are therefore left out from the scope of Theorems and [5.1.10] And
indeed, as was shown in [I6], all of them are {—}-1-analytic, but none of them enjoys

cut-admissibility.

Similarly to Section [2.6] we prove a stronger version of Theorem [5.1.6] for a more
generalized notion of analyticity. Thus, in what follows, < denotes an arbitrary safe and
structural order relation (see Definition [2.6.16]).

Definition 5.1.9. We say that a pure calculus G is Int-<-analytic if S kg, s iff
g L2Isuls)]

Gr. S for every set S of sequents and sequent s.
Theorem 5.1.10. Every Int-<-analytic <-directed pure calculus enjoys Int-cut-
admissibility.

Theorem is obtained as a particular instance, as the ©@-k-subformula relation is
a safe and structural order relation for every ©® and k.

The rest of this chapter is devoted to the proof of Theorem [5.1.10] Similarly to the
case of pure calculi, we go through a semantic interpretation of intuitionistic derivations,
that is defined next.
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5.2 Semantics

Similarly to the case of modal operators (see Chapter , the syntactic restrictions on
context sequents that are enforced in intuitionistic derivations can be naturally captured
by a Kripke-style semantics.

While many of the results in previous chapters relied on two-valued (partial) models,
the models that were used in Section [2.6, whose results are generalized here to intuitionis-
tic calculi, were three-valued. Therefore, in this chapter we use three-valued models from
the beginning, without going through partial two-valued models. This way, we gain a
more direct connection between the semantics of cut-limited derivations and derivations
that include only (generalized) subformulas of the derived sequent.

We start by defining the three-valued Kripke-style models that will be used.

Definition 5.2.1. An L-triframe is a tuple W = (W, R, V) where:
1. W is a set of elements called worlds.
2. R is a transitive and reflexive relation over W.

3. V is a function assigning a trivaluation V,, to every w € W (see Definition [2.6.2)),
such that V is persistent: for every p € L and w € W, if V,(¢) = 1 then V,(p) =1

for every u such that wRu.

We adopt the notations for biframes (see Definition and notation {4.2.3)
to triframes.  For example, we denote the set {u € W | wRu} by R[w] and
min {V,(s) | w e W', s € S} by Vy(S5).

Remark 5.2.2. Aside from being based on three truth values, there are several other

differences between triframes and biframes:

1. Triframes are totally defined — every formula is assigned a value in every world. In

contrast, every world in a biframe has its own domain.

2. While biframes are defined over an extended language which includes modal op-
erators, triframes are defined on the same language as trivaluations. The global
semantics (used for modal operators in biframes) is used for a subset of the con-

nectives of the language.
3. There is only one accessibility relation, and it must be transitive and reflexive.

4. The persistency condition of triframes is not enforced in biframes (although it may

be seen as a counterpart of the semantics of [J in biframes).
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We turn to the semantic reading of pure rules in triframes. Given a triframe
W = (W, R,V) and a world w in it, the interpretation of a pure rule in w may involve

not only w itself, but also the elements of R[w]:

Definition 5.2.3. A triframe W = (W, R, V) respects a pure rule r = $1,...,8, /s if
one of the following holds for every w € W, substitution o, and respective subsequents

Sy ey shoof s1,., Spe
e 1 is positive, and V,,(0(s)) = 1 whenever both of the followings hold:

— Vu(o(s})) =1 for every 1 < i < mn such that s; has an empty left side; and

— Vrw(o(s;)) = 1 for every 1 < i < n such that s; has a non-empty left side.

e 1 is not positive, and V,,(o(s)) whenever V,(o(s})) =1 for every 1 <i <mn.

Definition 5.2.4. For a pure calculus G, a triframe W is called G-legal if it respects
the rules of G.

Finally, the notion of determined trivaluations (Definition [2.6.5) is generalized to

apply on triframes in a natural way:

Definition 5.2.5. For a set F C L, a triframe W = (W, R, V) is called F-determined
if V,, is F-determined for every w € W. W is called fully determined if V,, is fully
determined for every w € W.

The semantic reading of derivation rules in Definition [5.2.3] conforms with the essence
of Kripke’s semantics for intuitionistic logic, according to which “constructive truth” is
more demanding than “classical truth”. Thus, when introducing a formula on the right
side, the premises should be satisfied not only in the particular world in question, but

also in all its accessible worlds.

Example 5.2.6 (Semantics of Intuitionistic Logic). Recall that LJ’ is obtained by con-
sidering only intuitionistic derivations in LK. Accordingly, Definition [5.2.4]associates LJ’
with LK-legal triframes. It is easy to see that a fully determined triframe W = (W, R, V)
is LK-legal iff it respects the usual truth conditions of the intuitionistic connectives. For
example, the truth condition for implication is obtained as follows: Let w € W, and
suppose that for every v € W such that wRu, we have that if V,(p;) = 1 then also
Vu(p2) = 1. Then Vgp(p1 = p2) = 1. Since W is LK-legal, V,,( = p1 D p2) = 1,
which gives us V,,(p1 D p2) = 1. For the converse, suppose there exists some u € W such
that wRu, V,(p1) = 1 and V,(p2) = 0. Then V,( = p1) = Vu(p2 = ) = 1. Since W is
LK-legal, V,(p1 D p2) = 0. By the persistency requirement, V,,(p1 D p2) = 0 as well.
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After setting all required adjustments in definitions, we prove soundness and com-

pleteness theorems for intuitionistic derivations.
Theorem 5.2.7.

1. Skgp, s iff Vw(S) < Vy(s) for every fully determined G-legal triframe
W= (W,R,V).

2. Sl—‘élnts iff Vw(S) < Vw(s) for every frm(S)-determined G-legal triframe
W= (W,R,V).

3. If S I—é[f:{s}] s then Vi (S) < Vw (s) for every < [S U {s}]-determined G-legal triframe
W = (W,R,V). The converse also holds, provided that G is <-ordered (see Defini-

tion [2.6.19)).

Proof.

Soundness:

1. Suppose S g, s, and let W = (W, R, V) be a fully determined G-legal triframe.
Assume Vy/ (S) = 1. We prove that V,,(s) = 1 for every w € W, by induction on
the length of the intuitionistic derivation of s from S in G. The cases where s € S

or s is the conclusion of an application of (ID) or (WEAK) are trivial.

If s is the conclusion of (cuT), then there are I'y, Iy, Ay, Ay and ¢ such that
s =TI'1,T's = Ay, Ay, and both S kg, I't = ¥, Ay and S Fg,,, 2,9 = Ay
with shorter derivations. Let w € W. By the induction hypothesis,
V(1 = 0, A1) =V, (Fa, ¢ = Ay) = 1. Since W is fully determined, V,,(¢)) # /2,
and so V,,(I'1, Ty = A1, Ag) = 1.

o(s))Ucy...o(s)) Uc,

o(sp)UciU...Ug,
7= S1,..., 8,/ S0 of G. Then s = o(sp)Uc1U...Uc,, and S Fq,,, o(s;)Uc; for every

Now suppose s is the conclusion of an application of a rule

1 < < n, with shorter derivations. By the induction hypothesis, V,,(o(s;)Uc;) =1
for every 1 < ¢ < nand w € W. Let w € W. Assume for contradiction that
Vw(o(so) Uecp U...U¢,) = 0. In particular, V,,(c(so)) = 0, and V,,(c(¢;)) = 0 for
every 1 <1 <n.

Assume first that r is positive. Then, since W is G-legal, we have some 1 <i < n
such that either s; has an empty left side and V,,(o(s})) = 0, or s; has a non-empty
left side and V,y(0(s})) = 0 for some w’ € R[w]. In the first case, V,,(o(s;)Uc;) =0,
contradicting the induction hypothesis. In the second, ¢; must have the form Q) = .

Hence, for every ¢ € Q; we have V,,(¢)) = 1. Since W is a triframe, we also have
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Vw (1) = 1 for every such 1. Hence, V(o (s)) Uc¢;) = Vi (o(sh) U (2 =) =0,
contradicting the induction hypothesis.

Now assume that r is not positive. Then since W is G-legal, we have some 1 <7 < n
such that V,,(c(s;)) = 0, and thus V,(o(s}) U¢;) = 0 for that ¢, which contradicts
the induction hypothesis.

. For l—glnt, the proof is similar. The only difference is in the case where s is the con-

clusion of (cuT). In such a case, the cut formula 1) is guaranteed to be an element
of frm(S). Since W is assumed to be frm(S)-determined, we have V,, (1)) # 1/2. The
proof then carries as in the previous item, also for the case that s is the conclusion

of a rule of G.

Denote the set <[SU{s}] by F. Suppose S ¥§ s, and let W = (W, R, V) be
an F-determined G-legal triframe. Assume Vi (S) = 1. We prove that V,(s) =1
for every w € W, by induction on the length of the intuitionistic derivation of s
from S in G, that only includes F-formulas. The proof is similar to that of q,,,,
with the only difference being the cut rule. If s is the conclusion of (cuT), then
the cut formula v, as a formula that occurs in the derivation, is guaranteed to be
an element of 7. Since W is assumed to be F-determined, V,,(¢) # /2. The proof

carries as before, also for the case that s is the conclusion of a rule of G.

Completeness:

1. Recall the definitions concerning w-sequents from the proof of Theorem [2.3.5 and

adapt them to kg, ,. We say that an w-sequent L = R is maximal unprovable if
the following holds:

o S¥Fg,., L=R
e Sta,, L, = Rforevery ¢ ¢ L and S tq,,, L = 9, R for every ¢ ¢ R.
It is routine to extend any w-sequent L = R such that S Fqg,, L = R to a

maximal unprovable w-sequent. In particular, s can be extended to such an w-
sequent L, = Rq.

Define a triframe W = (W, R, V) as follows: W is the set of all maximal unprovable
w-sequents; (L = R)YR(L' = R') iff L C L'; and for every L == R € W and ¢ € L,
Vi—r(p)=1if o € L, Vior(p) =0if ¢ € R, and Vi~ r(p) = /2 otherwise.

W is indeed a triframe, as R is transitive and reflexive, and if ¢ € L and
(L= R)R(L' = R') then ¢ € L'. The fact that Vi (S) > Vi (s) is shown similarly



5.2.

SEMANTICS 101

to the proof of Theorem [2.3.5] using the fact that Vi g (s) = 0. We show that
W is fully determined. Let L = R € W and assume for contradiction that there
exists a formula ¢ ¢ LU R. Then Stg,, L = ¢, R and S Fq,,, L,¢ = R. Using
(cut), we get that S Fq,,, L = R, which is a contradiction.

It is left to prove that W is G-legal. Let I'y = Aq,...,T, = A, /Ty = Ag be a
positive rule of G, o a substitution, I} = A, ..., IV, = A/ respective subsequents
of 1 = Ay,....,T,, = A,, and L = R € W. Suppose Vi~ g(c(ly = Ap)) =0. We
prove that there exists 1 <4 < n such that either I'; = ) and Vo g(c( = Al)) =0
or I'j # 0 and Vo pr(o(l'; = Al) = 0 for some L'’ = R € W such that
(L = R)R(L' = R'). By our assumption, Vi~ g(c(¢)) = 1 for every ¢ € I'y, and
Vi-r(o(¥)) = 0 for every ¢ € Ag. This means that S ¥q,,, L,o(Iy) = (D), R.
Thus, we must either have S Fqg,, L,0(I';) = o(Al) for some 1 < i < n with
I #0, or S¥ag,, L= o(A),R for some 1 <i <n with I'; = 0. In the first case,
extend L,o(I"}) = o(A]) to a maximal unprovable w-sequent L' = R’. Clearly,
LC L' and V(oI = Al)) =0. In the second, the fact that L = R is maxi-
mal unprovable ensures that o(A}) C R, which means that V,_ g(c( = Al)) = 0.

Next, let I'y = Ay, ...,y = A, /Ty = be a non-positive rule of G, o a substitu-
tion, I} = A, ...,/ = Al respective subsequents of 'y = Ay, ..., I, = A,, and
L= R e W. Suppose V. r(c(I'g) = ) = 0. We prove that Vi (o (I, = A})) =0
for some 1 < ¢ < n. By our assumption, Vo r(c(p)) = 1 for every ¢ € I'y. This
means that o(I'g) € L, and so S Fqg,, L,0(I'g) = R. In particular, we have
S Fap, L,o(I)) = o(A)), R for some 1 < i < n. By the fact that L = R is
maximal unprovable, we have that o(I'}) C L and o(A}) C R, which means that
Vier(o(l = Al)) =0.

. We say that an w-sequent is cf-maximal unprovable if SJ?‘CCEML = R,

Sl—élntL,@b = R for every ¢ ¢ L, and Sl—‘élntL = 9, R for every v ¢ R. It is
routine to extend any w-sequent L = R such that S}“élntl) = R to a ¢f-maximal
unprovable w-sequent. Define a triframe W = (W, R, V) such that W is the set
of all ¢f-maximal unprovable w-sequents, and R and )V are defined as in the proof
for Fg,,,. The proofs that W is a triframe, Vi (S) > Vw(s), and that W is
G-legal are similar. However, VW need not be fully determined, but only frm(S5)-
determined. Indeed, let L = R € W, and assume for contradiction that there
exists ¢ € fim(S) \ (LU R). Then Skg L = ¢, R and SFE Lo = R. Since
¢ € frm(5), it is allowed to be a cut formula in cut-limited derivations from S.

Using (CUT), we get that S I—CémL = R, which is a contradiction.

3. Denote the set <[S U {s}] by F. We say that an w-sequent is F-maximal unprov-



102 CHAPTER 5. INTUITIONISTIC CALCULI

ableif LUR C F, S¥FL L= R, St . Ly = Rforeveryy € F\L,
and S '_ém L = ¢,R for every ¢ € F \ R. It is routine to show that every
w-sequent L = R such that S %émt L = R can be extended to an F-maximal
unprovable w-sequent, provided that frm(L = R) C F (including s). Define a
triframe W = (W, R, V) such that W is the set of all F-maximal unprovable w-
sequents, and R and V are defined as before. The proof that W is a triframe
and Vi (S) > Vi (s) stays the same. We prove that supp(Vi—g) = F for every
L = R € W, that is, LU R = F. In particular, this would mean that W is
F-determined. Let L = R € W. By definition, L U R C F. Now assume for
contradiction that there exists ¢ € F\ (LU R). Since L = R is F-maximal un-
provable, we have that S l—élnt L= ¢, Rand S '_éh.t L,p = R. Since p € F, it
is allowed to appear in proofs that are restricted to F-formulas. Using cut with ¢,

we have S g L = R, which is a contradiction.

We show that W is G-legal. Let r = I'y = Ay,...,T, = A, /Ty = Ap be
a rule of G, o a substitution, I}, = Al,..., I, = A/ respective subsequents of
Iy = A, = A,,and L = R € W. Suppose Vi—r(c(I'y = Apy)) = 0.
Then o(I'y) € L and o(A¢) C R. L = R is F-maximal unprovable, and therefore
S F&,.. L,oTy) = o(Ag),R. Also, o(frm(ly = Ag)) € F, and since G is
<-ordered and <[F] C F, we also have that o(frm(I"; = A!)) C F for every
1< <n.

First suppose r is a positive rule. Then, we must either have
S¥E, . Lo(l}) = o(A]) forsome 1 <i < nwith[; #0,0or SKE L= 0(A),R
for some 1 < i < n with I'; = (). In the first case, extend L,o(I) = o(A})
to an JF-maximal unprovable w-sequent L' = R'. Clearly, L C L' and
Vior(o(l, = Al)) = 0. In the second case, the fact that L = R is F-maximal
unprovable and o(frm(I"; = A!)) C F, ensures that o(A}) C R, which means that
Vier(o(= A])) =0.

Next, suppose 7 is not positive. Then Ay = @, and we must have
S W&, L,oT}) = o(A]), R for some 1 < i < n. Since L = R is F-maximal

unprovable and o(frm(I"; = A})) C F, we have that o(I}) C L and o(A}) C R,
and thus Vi g(o(I;, = Al)) = 0. O

Remark 5.2.8. The completeness part of the third item in Theorem holds for <-
ordered calculi, but not necessarily for all calculi. To see this, we consider intuitionistic
(and also ordinary) derivations in the calculus G¢, (see Example [2.2.9), which is not
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()~ordered. Consider the following sequent s, that was used in [69] in order to prove that

G, is not (-analytic:

=1, TP2, 7P1 A T2, (—p1 A Tp2) = pr, P2, TP

frm(s) is closed under subformulas, and thus sub(s) = frm(s). Denote this
set by F.  Consider the following F-bivaluation v (see Definition [2.3.1), de-
fined by v(-p1) = wv(=p2) = v(=p1 A —p2) = v(=(=p1 A =p2)) = 1, and

v(p1) = v(pa) = v(—=—=p1) = 0. It is routine to verify that v is Gg,-legal, and that

v(s) = 0. By Theorem [2.3.5] we have that Vécl s, which means that there is no deriva-

tion of s in Gg, that consists solely of F-formulas. In particular, there is no such
intuitionistic derivation, and thus b‘écllnt s. However, we show that V,(s) = 1 for every
F-determined Gg,-legal triframe W = (W, R, V) and w € W. Assume otherwise. Then
there exists an F-determined Gg,-legal triframe W = (W, R, V) and w € W such that
Vw(s) = 0. In particular, V,(¥) = v(¢)) for every v € F. Since W is Gg,-legal, it
respects the following non-positive rules:

“p1= ;w2 = /(p1 Ap2) = and = /"=
According to the first, since V,,(=(=p1 A =p2)) = 1 and V,,(——p1) = 0, we must have
that V,,(=—py) = 1. However, according to the second, V,,(——p2) = 0, as V,(p2) = 0,
which is a contradiction. Therefore, such W cannot exist, and so s is satisfied by every
F-determined Gg,-legal triframe, although Jr‘écl 5.

Int

Note, however, that Gg, is {—}-l-ordered, and indeed, if we set
F' = F U{~p} = subl™(s), we do have H& s.

Ge, Int

Theorem gives rise to a sufficient semantic criterion for Int-cut-admissibility, that
is a variant of Corollary [2.6.11}

Definition 5.2.9. We say that a triframe W' = (W', R, V') is a determination of a
triframe W = (W, R,V) (or that W' determines W) if W = W/, R = R, and V) is
a determination of V,, for every w € W. W' is called an F-determination of W if, in

addition, it is F-determined. If W' is fully determined, we call it a full determination of

W.

Corollary 5.2.10. If every G-legal triframe has a G-legal full determination, then G

enjoys Int-cut-admissibility.

Proof. Suppose S}‘Ccﬁlms. By Part 2 of Theorem m, there exists some frm(S)-
determined G-legal triframe W such that Vi (S) > Vw(s). W has a G-legal full de-
termination W = (W, R,V’). For W' we also have V},(S) > Vj,(s). By part 1 of
Theorem [5.2.7], S ¥g,,, - O
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5.3 Proof of Theorem 5.1.10

The semantic view of intuitionistic derivations via Kripke-style semantics enables us to

provide proper variants of Lemmas [2.6.21] and [2.6.22] and then, together with Corol-
lary [5.2.10} to derive Theorem [5.1.10] We start by showing that a single formula can be

added to the support of a given triframe.

Definition 5.3.1. The support of a triframe W = (W, R, V), denoted supp(W) is the
set () {supp(Vw) | w € W}.

Lemma 5.3.2. Let G be an Int-<-analytic <-directed calculus, W a G-legal triframe,
and 1 a formula such that < [¢)] C supp(WV). Then W has a G-legal supp(W) U {¢}-

determination.

Proof. Suppose W = (W, R, V). For every w € W, define the following sets:

o I'y ={pe <[] | Vulp) =1}

o Ay ={p € <[] | Vulp) =0}; and

= {s | frm(s) C <[¢], Vrpw)(s) = 1}.

We start by proving that for every w € W, S, Fagp, ['v = Aw. Let w € W. De-
fine the following triframe W* = (W* R* V*): W* = R[w], R* = RN (W* x W*),
and V! =V, for every u € W*. W* is clearly a G-legal triframe, V}j.(S,) = 1
and Vi = A,) = 0 (and thus Vj.(Sw) > V(LW = Ay)). W* is also
= [Sw U{l'y = A, }]-determined, as <[S, U{l'y, = A,}] € <[¢] C supp(W*). By
part 3 of Theorem [5.2.7, S,, }‘GISTU{Fw;sAwH ', = A, and since G is Int-<-analytic,
Sw ¥ G, Tw = Ay

Define a G-legal supp(W) U {t}-determination W' = (W, R, V') of W as follows. For
every w € W and ¢ € L, V. () is defined by:

o if ¢ # 1 or ¢ € supp(Vy), then V), () = Vu(0);

o if o =1, ¢ ¢ supp(Vy), and either V,(p) = 0 or S, Fagy, Tu. = A, for some
u € Rlw], then V! (¢) = 0;

e otherwise, V, (p) = 1.

Clearly, W' is a supp(W) U {¢}-determination of W. Let us show that W' is a
triframe. Suppose V! (¢) = 1 and let u € R[w]. We prove that V. (p) = 1. If ¢ # ¢
or ¢ € supp(V,), then V,(¢) = 1 as well. Since W is a triframe, V,(¢) = 1. Thus,
¢ € supp(V,) and hence V/(p) = 1. Otherwise, ¢ = 9 and ¢ ¢ supp(V,). Since
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V! (¥) = 1, by the definition of V', we have that V.(¢) # 0 and S, Fqg,, ., ¥ = A,
for every z € R[w] (including u). R is transitive, and therefore the same holds for every
z € Rlu]. Since V, (1) # 0, we are left with two options: either V,(¢) = 1 or V,(¢) = 1/2.
In the first, ¢ € supp(V,), and thus V. (¢) = V,(¢) = 1. In the second, the definition of
V' ensures that V! (¢) = 1

It is left to prove that W' is G-legal. Let sy,...,s,/s be a rule of G, s/,...,s

ren

respective subsequents of sy, ..., s,, 0 a substitution and w € W. Suppose V! (o(s)) = 0.
Then frm(o(s)) C supp(V,) U {¢}. First assume that frm(o(s)) C supp(V,). In this
case, Vy,(o(s)) = 0 as well. If sq,...,s, /s is positive, then since W is G-legal, there

exists 1 < i < n such that either s; has an empty left side and V,,(o(s})) = 0, or s; has
a non-empty left side, and V,(o(s})) = 0 for some u € R[w]. Now, W' determines W.
Thus, in the first case we have V) (0(s;)) = 0, and in the second, V(o (s})) = 0 for the
same u. If s1,...,s, /s is not positive, then similarly, V! (o(s})) = 0 for some 1 < i < n.

We therefore assume that frm(o(s)) € supp(V.), which means that ¢ € frm(o(s)) and
¥ ¢ supp(V,). By the fact that G is <-directed, frm(o(s)) = {1}, and frm(o(s})) C < [¢/]
for every 1 <i < n.

First suppose that sy, ...,$, /s is not positive. Then o(s) = ¥ = . We prove that
V! (0(s})) = 0 for some 1 < i < n. By our assumption, V/ (¢) = 1. This in par-
ticular means that S, ¥q,, ['w,¥ = A, and so there exists 1 < ¢ < n such that
Sw ¥ar (Tw = Ay)Uo(s)). Since frm(o(s;)) C <[¢] = frm(T'y, = A,), we must
have o(s}) C (I'y, = A,), which means that V,(o(s})) = 0. V., determines V,,, and so
V,(a(s)) = 0.

Next, suppose that sy, ..., s, /s is positive. We prove that there exists 1 < ¢ < n such
that either s; has an empty left side and V! (0(s})) = 0, or s; has a non-empty left side
and V.(o(s})) = 0 for some z € R[w]. By our assumption, o(s) = = 1, and V, (¢)) = 0.
According to the definition of V', there exists some u € R[w]| such that either V,(v)) = 0,
or Sy Fape Tus ¥ = A,. We first show that there exists 1 < i < n and z € R[w| such

that V,(o(s})) = 0, by considering each of these two cases:

1. Vu(¢) = 0: Then V,( = ) = 0. Since W is G-legal, we must have some 1 <i <n
such that either s; has an empty left side and V,,(c(s;)) = 0, or s; has a non-empty
left side and V,(o(s};)) = 0 for some z € Rlu] C R[w].

2. Sy kg Tu, ¥ = Ay Using cut, since S, Fa,,, I'v = Ay, we must have that
Su ¥ G v = ¥, Ay, and thus there exists some 1 <14 < n such that either s; has
an empty left side and S, ¥g,,, (I'u = A,) Ua(s)), or s; has a non-empty left side
and S, ¥g,,, (I'n = )Uao(s)). Either way, o(s;) ¢ S,. Since frm(o(s})) C < [¢], we
have that V,(o(s;)) = 0 for some z € R[u] C Rlw].
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Now, fix some 1 < i < n and z € R[w] such that V,(o(s})) = 0. Since W' determines
W, we also have V.(o(s})) = 0. If s; has a non-empty left side, then we are done, as we
have found some 1 < i < n such that s; has a non-empty left side and V. (o(s})) = 0 for
some z € Rlw]. Otherwise, we show that V/ (c(s})) = 0. Let ¢ be a formula in the right
side of si. Then V.(o(¢)) = 0. Since W' is a triframe, we have V/ (c(p)) # 1. Since
o(p) € frm(o(s))) C < [¢] € supp(W) C supp(W'), we also have V, (o(¢)) # /2. Thus
V! (0(¢)) = 0 for every such ¢, which means that V! (c(s;)) = 0. O

Next, an iterated application of Lemma allows us to fully determine triframes,

in a similar manner to the determination of trivaluations:

Lemma 5.3.3. Let G be an Int-<-analytic <-directed calculus and W a G-legal triframe.
Then there exists a G-legal full determination of W.

Proof. For every triframe U and formula 1, U, denotes an arbitrary G-legal
supp(U) U {1 }-determination of U, if such exists. Otherwise, U, is undefined. Whenever
U is G-legal and < [¢)] C supp(Uf), Lemma provides us with such a triframe, in
which case Uy, is defined. Let 11,19, ... be an enumeration of £ satisfying ¢ < j when-
ever 1; < ;. Such an enumeration exists since < is safe. For every i, denote the set
{1, i} by @< (<o = 0).

Let W = (W, R,V) be a G-legal triframe. We show that it has a G-legal full deter-
mination. Define a sequence W°, W', ... of triframes as follows: WY = W and for every
i>0, W= Wfpjl We prove by induction on i that W* is defined, and is a G-legal
P ;-determination of W, and also of W™ (if W'~ exists).

For ¢+ = 0, this holds by our assumption on W. Now let ¢+ > 0. By the induc-
tion hypothesis, W=! is G-legal and is a ®; ;-determination of W. By the enu-
meration, <[¢;] € @<y C supp(W''). Thus, W' = Wi' is defined, and is a
G-legal supp(W'™') U {1;}-determination of W=! and therefore also of W. Also,
d-; C supp(W'), and thus W is actually a ®<;-determination of W~! and of W.

We now define W = (W, R,V’"), a G-legal full determination of W. Suppose
Wi = (W RV for every . Then W' = W and R' = R, as W' determines W.
For every ¢ € L, let i, be the index of ¢ in the enumeration. For every w € W, define
V= \p € LV (o).

First, we show that W' is a triframe. Suppose V. (p) = 1 and let u € Rlw].
Then Vif (¢) = 1, and since W is a triframe, Vi?(p) = 1. Therefore, V. (¢) = 1.
Next, we show that W’ fully determines W. For every ¢ € L and w € W,
Vi(p) = Vir(p) # Y2, as Wi is ®; -determined. Also, for every ¢ € supp(W)
and w e W, V.(p) = Vie(p) = Vu(p), as Wi determines W. Finally, let
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S1,.,8, /s be arule of G, s, ..., s/ respective subsequents of si, ..., s,, and ¢ a substi-
tution. Let k = min {i | frm(c({s},...,s,,s})) € ®<;}. Then V! (¢) = VE(p) for every

¢ € frm(c({s},...,s,,s})) and w € W. Also, W* is G-legal. Suppose V!, (c(s)) = 0 for
some w € W. Then we must also have V¥ (o (s)) = 0. If S/ s is positive, then there exists
1 < i < n such that either s; has an empty left side and V/,(o(s})) = V¥(o(s})) = 0, or
s; has a non-empty left side and V/(o(s})) = V¥(o(s)) = 0 for some u € Rlw]. If it is

not positive, V/ (a(s})) = V¥(o(s})) = 0 for some 1 <i < n. O

As in the case of pure calculi, Theorem [5.1.10]is now obtained as a direct corollary of
Lemma and corollary [5.2.10 O]



Chapter 6

Rexpansions of Non-deterministic

Matrices

As evident from the preceding chapters, our main tool for investigating sequent calculi is a
semantic interpretation of derivation rules, that is based on various semantic frameworks.
So far, the frameworks that we have used are very restrictive with regard to the number
of truth values that are allowed to be used (either two or three). However, they are
very permissive in the minimal conditions that are imposed on models. As an extreme
example, even the set of all bivaluations is a legitimate set of models, when considering
the empty pure calculus, and a similar situation exists with the other frameworks as well.

In contrast, the framework of many-valued matrices [99], which is widely used in non-
classical logics, does not restrict the number of truth values, which may even be infinite.
Matrices consist of a set of truth values, a subset of designated truth values (that are
considered “true”), and an interpretation function, that can be thought of (in the finite
case) as a set of truth tables. This framework is completely deterministic: the truth
value of a compound formula is uniquely determined by the truth values of its immediate
subformulas. This makes the framework of many-valued matrices less modular, and
therefore inadequate for studying families of proof systems.

A semantic framework that sits in between the determinism of many-valued matrices
and the unrestricted non-determinism of bivaluations and trivaluations is the framework
of non-deterministic matrices (Nmatrices) [21, 22]. These are obtained from matrices
by allowing a set of possible values inside the entries of the truth tables. While this
framework allows for a non-deterministic choice of truth values, it is much more restrictive
than the frameworks used in previous chapters of the thesis, as the semantic constraints
on the truth value that is assigned to a compound formula must be constrained solely by
the truth values of its immediate subformulas.

The modular nature of the use of Nmatrices makes them an important ingredient in
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the construction of proof systems for various non-classical logics. In fact, when searching
for a Gentzen-type system for a logic that is defined in some other form (e.g. by a
deterministic semantics or by a Hilbert-type calculus), it suffices to find a finite Nmatrix
that is characteristic for the logic. If such an Nmatrix is found, the algorithm of [25] can
be employed in order to transform it into an equivalent analytic (generalized) Gentzen-
type system, that also admits cut-admissibility. The resulting system might employ a
more general notion of a sequent, in which more than two sides are used. However, when
some additional expressivity conditions are met, the outcome is ensured to be an ordinary

pure sequent calculus, which is still cut-free.

To apply the method of [25] for a systematic study of families of logics, the Nmatrix
that is found is sometimes not enough, and an equivalent (usually less deterministic)
Nmatrix is constructed from it. Then, characteristic Nmatrices for the various logics
of the studied family are obtained by performing very simple modifications of the truth
tables of the new Nmatrix (see, e.g., [I4] for an example of such a process). It is thus
evident from several constructions of sequent calculi for non-classical logics from the
literature that the manipulation of Nmatrices is tightly related to the construction of
analytic sequent calculi. Are these manipulations systematic in any way? Can they be

formally defined as Nmatrices operations and become an object of independent study?

In this section we provide an affirmative answer, and introduce a useful operation
on Nmatrices, called rexpansion, which is obtained by the composition of two previously
studied operations: expansion and refinement (see [B, [I5]). Properties of this combined
operation are presented, along with its effects on the consequence and derivability re-
lations which are induced by the operated Nmatrices. We then show that many trans-
formations on Nmatrices from the literature, especially in the context of constructing
analytic proof systems, are actually particular instances of rexpansion. This places rex-
pansion as a fundamental ingredient in the already established usefulness of Nmatrices
for the construction of analytic sequent calculi for non-classical logics. In many cases the
calculi that are obtained from the algorithm of [25] are pure, and admit the generalized
notion of analyticity employed throughout this thesis. As such, they are subject to the
reduction to SAT from Chapter [3| as well as to the analyticity-preserving addition of
modal operators from Chapter [4] Thus, while previous chapters of this thesis provided
tools and techniques that are applicable after a calculus is constructed, and also a method
to construct new analytic calculi that induce new logics (with some desirable properties),
the current chapter focuses on the construction of analytic calculi for logics that were

originally introduced in some other manner.

Our investigation also leads to a general method for conservatively extending a given

logic (or calculus) with new connectives which have some desirable properties. An impor-
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tant specific usage of this method provides a new solution to the problem of constructing
paraconsistent fuzzy logics and proof systems for them. These are logics that are useful
for modeling vague propositions, while avoiding the explosion principle. A first solution
to this problem was given in [52], using a completely different approach. However, we
show that this solution has some drawbacks, which are overcome in the solution proposed
here.

The rest of this chapter is organized as follows. In Section we review existing
definitions and results in the theory of Nmatrices, and provide examples. In Section
we combine expansion and refinement into a single operation that is called rexpansion,
and prove several results regarding this operation and its effects on consequence rela-
tions. Section includes basic examples of rexpansions in well-known logics from the
literature. Section shows how rexpansions are (implicitely) used in the construction
of sequent calculi for many non-classical logics. In Section we introduce paraconsis-
tent conservative extensions of Godel fuzzy logic that are obtained by performing various

rexpansions on the Godel matrix.

Publications Related to this Chapter

This chapter is mainly based on [23], 24].

6.1 (N)matrices, Expansions, and Refinements

In this section we review the definitions of matrices and Nmatrices, and provide some
examples of logics that are defined using them. We then review the two fundamental
operations that can be performed on Nmatrices: expansions and refinements, and also

provide some examples of these operations.

6.1.1 Logical Matrices

The most standard way of defining logics semantically is by using matrices [99]:
Definition 6.1.1.
1. A matriz for £ is a tuple (V, D, O) such that:

(a) V is a non-empty set (of truth values).

(b) D is a non-empty proper subset of V (of designated truth values).
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() O : Oy = UV — V) such that for every ¢ € N and ¢ € OF,
O(o) : Vi — V[

2. Let M = (V,D,0) be a matrix for £. An M-valuation is a func-
tion v from £ to V such that for every ¢ € <&} and ¢y,...,¢, € L,
v(o(1, ... ) = O(0)(v(1h1), ... ,v(1y,)). An M-valuation v is an M-model of a
formula 1 (in symbols: v EM ¢) if v(¢)) € D. It is an M-model of a set T of
formulas (in symbols: v EM T) if v EM ¢ for every ¢p € T. A formula v is an
M-consequence of a set T of formulas (in symbols: T Fq v) if every M-model of
T is an M-model of ¢. We say that M induces a logic L = (L,Fr) (or that M is
characteristic for L) if Fy = Fp.

Many well-known non-classical logics are characterized using matrices:

Example 6.1.2. Asenjo—Priest’s three-valued logic of paradox LP [0l 86] and Kleene’s
three-valued logic KL [65] are both defined by matrices that differ only in the set of
designated values. Consider the set V3 = {¢, f,i}, and the interpretation function Os
that is defined by the following tables:

Os(n) |t f i o[t fi | 0s(-)
t t f i t t t t t f
R A S A A N T A (R
1 v f 1 1 t 1 1 1 1

LP is characterized by the matrix Mpp = (V3,{t,i},O3), and KL by the matrix
Mgy, = (Vs, {t}, O3). A matrix for Lukasiewicz three-valued logic L3 (see Example[2.2.8)
is obtained from Mgy, by the extension of O3 with the following table:

O;0) ||t f i
"
t

t t
f t
1 t

SIS )

l

Example 6.1.3. Godel fuzzy logic G [48] is characterized by the following matrix
Mg = <Vc,,Dg, Og> for {/\, V, D, J_}:

1. Vg = [0,1]

2. Dg = {1}

LO(0) is often regarded as the “truth table” of o.
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3. Og(L) =0, Oc(V)(a,b) = max {a, b}, Oc(N)(a,b) = min {a, b}, and
1 a<bd

Oc(2)(a,b) = b agbd

Lukasiewicz fuzzy logic L, [76] is characterized by a matrix that differs from Mg solely
1 a<b

in the interpretation of D, that is changed to: O(D)(a,b) :
l—a+b afhb

6.1.2 Non-deterministic Matrices

Matrices are truth-functional, that is, the truth value of a compound formula is uniquely
determined by the truth values of its immediate subformulas. In [22], matrices are gen-

eralized to allow non-deterministic assignments of truth values to compound formulas.
Definition 6.1.4.
1. A non-deterministic matriz (Nmatriz) for £ is a tuple (V, D, O) such that:

(a) V is a non-empty set (of truth values).
(b) D is a non-empty proper subset of V (of designated truth values).

() O : &y = UV — PH(V)) such that for every i € N and ¢ € {OF,
O(0) : V' — PT(V) (where PT(V) = P(V)\ {0}).

2. Let M = (V,D,0) be an Nmatrix for £. An M-valuation is a func-
tion v from £ to V such that for every o € O} and ¢y,....¢, € L,
v(o(t, ..., ,)) € O(e)(v(th),...,v(1,)). The definitions of M-models and M-
consequences are as in Definition [6.1.1] using the non-deterministic notion of an

M-valuation.

To be considered as a particular instance of Nmatrices, we take matrices to be Nma-
trices in which O(¢)(z1, ..., x,) is a singleton for every ¢ € $% and zy,...,z, € V. In
matrices mentioned above and below we freely interchange truth values with their sin-
gletons, whenever there is no danger of confusion. Unless stated otherwise, or clear from

the context, all Nmatrices below are for L.

Example 6.1.5. Recall the pure calculus Gpyy, for quotations-free primal infon logic
(Example [2.2.10). It is easy to verify that a bivaluation is Gprp-legal iff it is an M-
valuation, for M = ({0,1},{1},0), where O(V)(0,0) = O(2)(0,0) = {0,1}, and all
other entries are defined exactly like in the truth tables for classical logic in the language

{A,V,D L, T}. Note that this Nmatrix is two-valued, and is a proper Nmatrix (meaning
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it is an Nmatrix which is not a matrix). Using Theorem 3.4 of [2I], we conclude that

primal infon logic PIL does not have a finite characteristic matrix.

Like matrices, Nmatrices provide an analytic semantic framework, in the sense that for
every Nmatrix M, every partial M-valuation can be extended to a full M-valuation ]
A useful consequence of this property is the modular character that the framework of

Nmatrices exhibits:

Definition 6.1.6. A logic Ly = (Lo, FL,) is conservative over a logic Ly = (£4,F,) (or:
L; is a conservative extension of Ly) if £; C Lo, and for every 7 C £y and ¢ € L; it
holds that T g, ¢ iff T Fy, ¢.

Definition 6.1.7. Let £; and L, be propositional languages such that £; C L, and
M = (V1,D1,01) and My = (Vy, Dy, Oy) be Nmatrices for £; and L, respectively.
My is an extension of My to Ly if Vi = V,, Dy = Dy, and O;(¢) = Oy(0) for every
o€y,

Proposition 6.1.8. Let £; and Ly be propositional languages such that £; C L,, and
M and My be Nmatrices for £, and Lo, respectively. If M; is an extension of Ms to
Lo then (Lo, Faq,) is conservative over (L1, b, ).

6.1.3 Expansions and Refinements

Next we present two basic operations from [5] and [15], that can be performed on Nma-
trices: expansions and refinements. Loosely speaking, an expansion of an Nmatrix is
obtained by making several distinct copies of each truth value, so that the new desig-
nated values are the copies of the original ones, and each value in the interpretation of

the connectives is replaced by all of its copies. This is formally defined as follows:
Definition 6.1.9.

1. A function F is called an expansion function if for every = € dom(F'), F(z) is a
non-empty set, and F(z)NF(y) = () whenever x # y. We say that F is an expansion
function for an Nmatrix M = (V,D,O) for L if it is an expansion function and
dom(F) = V.

2Following [22], we use the term analytic for this property. Our Theorem also justifies the use
of this term.

3 Note, however, that if M is an ordinary matrix, then every partial M-valuation can be extended
to a single full M-valuation, while there can be several distinct full M-valuations that extend a partial
M-valuation in case M is an Nmatrix.
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2. For every expansion function F' and y € | J Im(F'), we denote by F [y] the unique
element x € dom(F') such that y € F(x).

3. Let M = (V,D,O) be an Nmatrix for £ and F' an expansion function for M. The
F-expansion of M is the Nmatrix Mp = (Vg, D, Of), where:

(a) Vi = U,ey F(2)

(b) D = U,ep F(2)

(©) Or()(W1, 9n) = U.cow) Fipl...Flpn F(2) for every o € Of and
Y1y -y Yn € VF

M is an expansion of My if it is the F-expansion of it for some F.

Nothing but uniformly duplicating all truth values is done in expansions, and hence

the consequence relation remains the same, as was shown in [5]:
Proposition 6.1.10. Let My be an expansion of M;. Then Fa, = Fag,.
Example 6.1.11.

1. Two Nmatrices are isomorphic to one another if and only if one is the F-expansion

of the other for some expansion function F' (in which F(x) is always a singleton).

2. Consider the usual matrix which is characteristic for classical logic, where the truth
values are t and f. By assigning {¢, T} to t and {f} to f, we obtain an ex-
pansion function. The outcome of this expansion would be a non-deterministic

matrix for classical logic, in which, for example, the interpretation of negation is

O(=)(t) = O(=)(T) = {/f} and O(=)(f) = {t, T}

3. The classical matrix can be further expanded by assigning [0,1/2) to f and [!/2, 1] to
t. The outcome would be another non-deterministic matrix which is characteristic
for classical logic. The interpretation of negation would then be O(—)(x) = [0,1/2)
whenever z > 1/2 and O(—)(z) = [Y/2, 1] whenever = < /2.

Next, we define the refinement operation on Nmatrices. Loosely speaking, refining
an Nmatrix means deleting some of its truth values, and then reducing the amount of

non-determinism (each of these steps is optional). This is formally defined as follows:

Definition 6.1.12. Let M; = (V;, D1, O1) and My = (V5, Dy, Os) be Nmatrices for L.
My is a refinement of M if:

1. Vo CV.
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2. D2 — VQ N Dl.
3. Oy(0)(x1, ..., xy) C O1(0)(x1, ..., 2,) for every o € $% and xy, ..., , € Va.
Mo is a simple refinement of M, if in addition, V, = V.

Example 6.1.13. The infinite characteristic Nmatrix for classical logic from Exam-
ple [6.1.11f can be (simply) refined by e.g. redefining O(—) in the following way:
O(=)(z) = {0} whenever x > 1/2 and O(—)(x) = {1} whenever z < 1/2.

Refining an Nmatrix M can only reduce the set of M-valuations. Consequently, we

have the following proposition from [I5]:

Proposition 6.1.14. Let M5 be a refinement of M;. Then Faq, C b py,.

6.2 Refined Expansions

In this section we combine the two basic operations defined above and obtain refined

expansions (in short: rexpansions).

6.2.1 Combining Expansions and Refinements

We start by explicitly defining the combined operation and exploring its properties.

Definition 6.2.1. Let M; = (V1,D1,0;) and My = (V5, Dy, Os) be Nmatrices and F
an expansion function for M;. We say that My is an F-rexpansion of M, if it is a

refinement of the F-expansion of M. It is called:

1. simple if it is a simple refinement of the F-expansion of M;.

2. preserving if F(x) NV, # () for every x € V.

3. strongly preserving if it is preserving, and for every zq,...,x, € Vs, ¢ € $F, and
y € O1(0)(F 1], ..., F [£,]), it holds that the set F(y) N Os(0) (21, ..., 2,) is not
empty.

My is called a rexpansion of M if it is an F-rexpansion of it for some expansion function
F for M;. If M, is a rexpansion of M1, then we may call My “simple”, “preserving”,
or “strongly preserving” (without the suffix “rexpansion of M;”) whenever that is clear

from the context.

Loosely speaking, being a preserving rexpansion amounts to keeping at least one
“copy” of every original truth value. Being strongly preserving means that this property

holds not only for the set of truth values, but also for the interpretation of the connectives.
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Example 6.2.2. The Nmatrix from Example [6.1.13] is a rexpansion of the classical

matrix, which is simple and strongly preserving.

Let us elaborate on the connections between the different properties of rexpansions:

Lemma 6.2.3. Every simple rexpansion is preserving, every expansion is a strongly

preserving rexpansion, and every preserving rexpansion of a matrix is strongly preserving.

Proof. We prove that every preserving rexpansion of a matrix is strongly preserv-
ing.  (The other statements are trivial.) Let M; be a matrix, My an Nma-

trix, and F an expansion function such that My is a preserving F-rexpansion

of My. Let z1,...,2, € Vs, o € OF, and y € O1(0)(F [x1],..., Fz1]). We
prove that F'(y) N Oz(0) (@1, ..., n) # 0. O2(0) (@1, %0) € U.eo, 0)(Flan).... Pl £ (2)
and M; is a matrix. Therefore, Oy(o)(x1,...,z,) < F(y), which means that
F(y) N Oy(0)(x1, ..., xn) = Og(0)(1,...,x,). This set cannot be empty, as M, is an
Nmatrix. [l

Next we provide a necessary and sufficient condition for an Nmatrix to be a rexpansion

of another Nmatrix.

Proposition 6.2.4. My = (V,, Dy, O5) is a rexpansion of My = (Vi, Dy, Oy) iff there is
a function f : Vo, — V; such that:

1. For every x € Vy, x € Dy iff f(x) € D;.

2. For every zy,..,x, € Vo and y € Oz(¢)(z1,...,2,), it holds that
fy) € O1(0)(f (1), -, f(n))-

Proof.

(«<): Suppose such a function f exists. For every subset Y of V;, denote the set
{x €Vy| f(x) €Y} by f71[Y]. Let V be some set such that VNV, = @ and V| = |V4],
and let g : V; — V be a bijection. We show that M, is an F-rexpansion of M; for

S {2} @ e Im(f)
{9(z)} otherwise

F:)\Q?EVL

F' is clearly an expansion function for M;. Now, Vs is the domain of f, and thus it is
contained in (V;)p. Next, by property (1) of f, Dy = f~![D;], which, by the definition
of F'is equal to (Dy)r N V,. Finally, by property (2) of f,



6.2. REFINED EXPANSIONS 117

U F(z) = U F(z) = (0)p(o)(x1, ..., )

z€01(0)(f(z1),.-..f (zn)) 2€01(0)(Flz1],....F[zn])

(= ): If My is an F-rexpansion of M; for some F, then the function Az € Vgﬁ [z]

satisfies the required conditions. O

Remark 6.2.5. In [22], the term ‘simple refinement’ was reserved for what is called here
‘refinement’, while the term ‘refinement’ was related to the functions from Proposition
0.2.41

Another useful property of the rexpansion operation is that it induces some forms of

transitivity:
Theorem 6.2.6.

1. If My is a preserving rexpansion of M; and Mj is a (preserving) rexpansion of

M, then M3 is a (preserving) rexpansion of M.

2. If My is a strongly preserving rexpansion of M; and M3 is a strongly preserving

rexpansion of My, then M3 is a strongly preserving rexpansion of M;.

Proof. Let F' and G be expansion functions such that M, is a preserving F-rexpansion
of My and Mj is a G-rexpansion of My. For every 1 < ¢ < 3, assume that
M; = (V;,D;,0;). Define H = \x € Vl.UyeF(‘,r)m,2 G(y). Using the fact that M, is
preserving, it can easily be shown that H is an expansion function for M;. We first

prove that Ms is a H-rexpansion of Mj:

VsCW)e=JGw= | Gw= U Gly) =

yEV2 yeV1)FrNV2 ye(Uzevl F(m))ﬂVg
U =l U cw|=UH==0Wu
veU, ey, (F(@)NV2) v€V1 \yeF(x)NVs eV,

and
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(D2)e = (U G(y)) = Gy) | = U Gy) | =

y€Do

J U cw| = (IU H<x>> = (D)n

z€D1 yeF(z)NV2
which means that D3 = (Dy)g N Vs = (D) N Vs.
As for Oz, let o € OF, z,.,z, € Vi, and w €  O3(0)(z1,...,2p).

We  show that w e (O1)u(o)(x1,...,z,). Ms is a refinement of
(M32)g, and hence w € (Oy)g(0)(x1,...,2y). Now, there must exists
2 € 0y0)(Glal,...,Glxn]) such that w € G(z), and since M, is a refine-
ment of (My)p, we have z € (O1)p(0)(Gla1],...,G[x,]). Similarly, there exists

u € O(0)(F [é [wl]] o F [é [xl]}) such that z € F(u). So we have that there
exists z € F(u) NV, such that w € G(z). Hence w € H(u). To prove that
w € (O1) (o) (x1, ..., x,), we show that u € Oy(o)(H [x1], ..., H [x,]). That is, we show
that for every 1 < i < n, H[z;] = F [é [xl]] For every 1 < i < nlet y; = H[z,],
=G [;], and w; = F [z;]. We prove that y; = w;: x; € H(y;), and hence there exists
y € F(y;) NV, such that x; € G(y). Since G is an expansion function, y = z;. Hence
y € F(w;). Similarly, F' is an expansion function, and hence y; = w;.

Next, we show that if M3 is a preserving G-rexpansion of My then it is a preserving
H-rexpansion of My, that is, H(x)NV3 # () for every z € V;. Since My is a preserving F-
rexpansion of My, there exists y € F/(z)NV,. And since M3 is a preserving G-rexpansion
of My, there exists z € G(y) N Vs C H(x) N Vs.

Finally, we show that if M is a strongly preserving F-rexpansion of M; and M3 is a
strongly preserving G-rexpansion of Ms, then M3 is a strongly preserving H-rexpansion
of My. Let z1,...,2, € V3 and ¢ € $%. We show that H(x) N O3(0)(21, .., 2n) # 0

for every x € Oy(0)(H [#1],..., H [z4]). Let x € Oi(¢)(H [z1],..., H [2)). For ev-
ery 1 < i < nlet z; = ITI[ZI] Then there exists y; € F(x;) NV, such that
zi € G(y;). Since M, is a strongly preserving F-rexpansion of M, there exists
Yo € F(x) N O2(0)(y1, ..., yn). Since Msy is a strongly preserving G-rexpansion of Mo,

there also exists zp € G(yo) N O3(0) (21, ..., 2n) € H(x) N O3(0) (21, e, 2n)- O

6.2.2 Consequence Relations

In this section we investigate the effect rexpansions induce on semantically defined con-

sequence relations. Our main theorem is the following:
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Theorem 6.2.7. If M, is a rexpansion of M; then Fy, C Fpq,. Moreover, if M, is
strongly preserving then -, = Fay,.

Proof. The first part follows directly from Propositions|6.1.10|and [6.1.14] above. Suppose

M, is a strongly preserving F-rexpansion of M. We prove that -, C Fay,. For this,
it suffices to prove that for every M;-valuation v there exists an Msy-valuation v’ such
that v EM1 ) iff o' EM2 4 for every o € L. Let ¢ : P(V,) \ {0} — V» and suppose that
for every X € P(V) \ {0}, ¢(X) € X [{] Let 1, s, ... be an enumeration of £ such that if
1; is a subformula of 1; then ¢ < j. Now let v be an M -valuation. For the construction
of v/, we first define a sequence vg, vy, ... of partial functions from L to Vy: vy is the

empty function, and for every i > 0, v; is defined as follows. For every ¢ € dom(v;_1),

’Ul(w) = Uifl(w» If 2/12 ¢ dom(vi,l), then:
e If ¢; is atomic and F'(v(1;)) N Vs is not empty, v;(¢;) = c(F(v(¢;)) N Vy).

o If vy has the form o(P1, ey On) for ©1y e s o € dom(v;_q)
and F(v(1;)) N Og(0)(vi1(1)y vy vim1(0n)) is not empty,
vi(ti) = c(F(v(1i)) N Oz(0)(viz1(pn), -, via(@n)))-

We prove by induction on ¢ that:
1. v;(¢) € F(v(y)) for every 1 € dom(v;);

2. dom(v;) = {41, ... ,¢;}; and

3. v satisfies the conditions induced by M, that is:

’Ui(<>(g01, 7@“)) S 02(0)<Ui(gp1)7 7U’L(<pn)) whenever P15 Pn and 0(9017 e @n)
are in dom(v;).

For ¢« = 0, this trivially holds. Let ¢ > 0.

1. Let ¢ € dom(v;). If ¥ € dom(v;_1) then this holds by the induction hypothesis.
Otherwise, 1 = 9;, and then this holds by definition.

2. By the induction hypothesis, dom(v;_1) = {1, ...,%; 1}, and therefore we have
to prove that v; € dom(v;). If ®; is atomic, this amounts to showing that the
set F'(v(v;)) N Vs is not empty, which holds as M is a preserving F-rexpansion
of M;. Otherwise, 1; has the form o(¢1,...,,). By our enumeration and the
induction hypothesis, ¢1, ..., @, € dom(v;_1), and therefore this amounts to show-
ing that F(v(¢;)) N Og(0)(vi—1(®1), .., vi—1(y)) is not empty. By the induction

4The existence of such a function relies on the axiom of choice in case Vs is infinite.
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hypothesis, we have that v;_1(p;) € F(v(p;)) for every 1 < j < n. In other words,

v(p;) = Fvi_1(p;)] for every 1 < j < n. By the fact that v is an M;-valuation,

v(@i) € O1()(v(epr), -, v(@n)) = Or()(F [ica(@1)]; -, F [vica(@n)]), and hence
F(v(1;)) N O2(0)(vi—1(1), -, vic1(pn)) # 0, as My is strongly preserving.

3. Let NP1y eee s )y D1y o s o € dom(v;). We prove that
Vi(O(@1, s 0n)) € Oa2(0)(Vilep1), -, vi(n)).  If o(p1,..., ) € dom(v;—1), then
this holds by the induction hypothesis and our enumeration.  Otherwise,

v; = o(¢1,...,0n), and then this holds by the induction hypothesis and the
definition of v;.

For every ¢ € L, let i, be the index of ¢ in the enumeration. ¢’ is defined
by v'(¢) = v, (¥). First, we show that v is an Mos-valuation. Let o € {F,
©1, - on € L, and k = igpy,.0n)- V(00155 0n)) = vr(0(@1, ..., ¢n)), which belongs
to O2(0)(Vk(©1), -, Ve(0n)) = O2(0) (V' (1), .., V(). Second, we show that v FM1 )
iff v/ EM24). Suppose v FMi ). Then v(¢) € D;. Now, by the construction of v/,
V(1) € F(u(¥)) € (Uyep, F(x)) NVy = Dy, which means that o' £2 ). For the con-
verse, suppose v’ EM2 ). Then v/(¢) € Dy € (U,ep, F(2)). Hence there exists € Dy
such that v'(v) € F(x). Now, by the construction of v/, v'(¢) € F(v(¢)). Since F' is an

expansion function, v(¢)) = o € Dy, which means that v EM! 1. ]

The following corollary immediately follows as a consequence of Lemma and
Theorem [6.2.7

Corollary 6.2.8. Let M5 be a preserving rexpansion of M;. If M; is a matrix then
Fav, =y

An important consequence of Corollary and Proposition (the usefulness of
which is demonstrated in Sections and is a general method for providing a given

logic with an alternative new semantics, and then use it for conservatively augmenting

it with new connectives. This is established in the following corollary:

Corollary 6.2.9. Let £, and L5 be propositional languages such that £; C Lo, My a
(N)matrix for £;, and My an extension to Lo of some (strongly) preserving rexpansion
of My. Then (Lo, 4,) is conservative over (L1, Faq, ).

We conclude this section with a stronger instance of Corollary that applies only
for two-valued matrices:

Corollary 6.2.10. Let £, and L, be propositional languages such that £ C Lo,
My = {t, f},{t},O1) a matrix for L1, and M5 an extension to Ly of some rexpan-
sion of Mj. Then (L, Faq,) is conservative over (L1, F ).
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Proof. By Definition |6.1.4] for every F-rexpansion M’ = (V', D', Q') of M; we must
have F'(t) NV’ # () (as otherwise D’ = () and F(f)N V' # () (as otherwise D' =V’). The
result then follows from Corollary [6.2.9 O

6.3 Some Examples

In this section we present some examples for the usefulness of rexpansion in non-classical
logics. This is done by performing it on fragments of well-known matrices and Nmatrices,
and thus obtaining conservative extensions of their induced logics.

Denote the (propositional) language whose set of connectives is {A,V,D,—, L} by
CL,, classical logic (over CL}) by CL, and the classical two-valued matrix for CL, by
Mey. For any C' C {A,V,D,—, L}, we denote the C-fragment of CL, by CL ., the C-
fragment of classical logic by CLY, and the C-fragment of the classical matrix by MG, .

For example, the language CL used in previous examples is L V24 We start with

a direct consequence of Corollary [6.2.10f

Lemma 6.3.1. Let C' C {A,V,D,—, L}. If £ is a language such that C£,¢ C £, and
M is an extension to £ of some rexpansion of M&;, then (£,F ) is conservative over
CLC.

We shall use Lemma to present conservative extensions of fragments of classical
logic. Some of the resulting logics are paraconsistent, that is: unlike classical logic,
they tolerate contradictions. Here is a formal definition, based on properties that were
investigated in [4, [, 38, [78] f]

Definition 6.3.2. Let L = (£,Fr) be a logic such that — is included in £. —is a
weak megation in L if pty —p and —p ty, p for every p € At. L is paraconsistent if
- is a weak negation in L and —p, p t/f, q for every two distinct atoms p and ¢. It is
boldly paraconsistent if it is paraconsistent, and —p, p t/y, ¢ whenever t/;, p and p € At
does not occur in . Further, = is a negation in L it CL C L (CL, C L) and the CL-
fragment (CL,-fragment) of L is subclassical, that is, T F, ¢ only if T Fcr ¢ for any
subset 7 U{p} of CL (CL,). L is strictly paraconsistent if it is paraconsistent and — is

a negation in L.

Remark 6.3.3. The requirement for being a weak negation is regarded in [5] as a minimal

condition that is expected from a unary connective to be called a negation (see also [78]).

5The term “paraconsistent logic” already appears in previous chapters of this thesis, that included
sequent calculi for logics that are recognized in the literature as paraconsistent. In this chapter, however,
we provide a more concrete analysis of this term, that requires a formal definition.
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This is hardly enough, though, to characterize negation. Therefore, [4] generalizes it to
the requirement of subclassicality, leading to what is called here “strict paraconsistency”.
(In practice, almost all non-classical logics in CL ever studied are subclassical.) Finally,
the requirement of bold paraconsistency connects paraconsistency to (and justifies it by)
the broader principle of relevance: the inconsistency of p should not be a reason for

inferring a formula that is completely irrelevant to p.
We start with (deterministic) finite-valued conservative extensions of classical logic.

Example 6.3.4. The {A,V}-fragments of Mpp and Mgy (see Example [6.1.2)

. . AV . . .
are simple rexpansions of MéL }, as can be witnessed by the expansion functions

{t,i} ==t {t} x=t _
Az e {t, f}. and Az € {t, f}. , respectively. By Lemma
{r} ==f {r.i} =z=f
[6.3.1] LP and KL are both conservative over CL¥*¥?_ Note that neither of the matrices
is a preserving rexpansion of the other: suppose for contradiction that Myp is a preserv-
ing F-rexpansion of Mky,. Then we must have that {¢,i} C F(¢), and so f € F(i)UF(f).
If f e F(i) then F(f)N{t, f,i} =0, and if f € F(f) then F(i)N{t, f,i} = 0. Either way,
Myp is not preserving. Clearly, Mgy, cannot be a preserving F-rexpansion of Myp,
as if this were the case, it would have two designated values. LP is one of the strict

paraconsistent logics studied in [4] (see Section [6.4.1]).
The next example concerns Godel fuzzy logic G and its relation to classical logic.

Example 6.3.5. It is routine to verify that Mg (Example is an extension to
{A,V, D, L} of a simple refinement of the F-expansion of ./\/léAﬁv’L}, for F'(f) =[0,1) and
F(t) = {1}. Consider A, for example, and denote its classical interpretation by O(A).
Let z,y € [0,1] and z = min(z,y), and suppose 2’ = F[z] and y' = F[y]. We show
that z € F(O(A)(2,y')) (recall that in matrices we identify singletons with their unique
elements). If z < 1, then either x < 1 or y < 1, and so either 2’ = f or ¢ = f, which
means that O(A)(2’,y’) = f. In this case, we get z € [0,1) = F(f) = F(O(AN)(2',V)).
Otherwise, z = 1, which means that x = y = 1, and so 2’ = ¢ = t. In this case,
O(2',y') = t, and so we have z € {1} = F(t) = F(O(A)(«',y/)). By Lemma[6.3.1] G is

conservative over CLMV1}

The process described in the above examples need not start with classical logic, as

can be seen by the following example:

Example 6.3.6. Consider the following matrix M = (V,D,0), defined by
V=A{t, f, T,L}, D={t}, and O is given by:
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o[t fTL omtFTL o)

t |t fTL t ettt t|| f
fANfrrs ferTL  f ot
TI\TfTL T |gTTT T| ¢
LoflLfLrt LT oL ot

Its conjunction and disjunction are interpreted as minimum and maximum (respec-
tively) over the ordering f < 1 < T <. Tts {A, V}-fragment is a simple F-rexpansion
of the {A, V}-fragment of My, (Example [6.1.2)), for F(t) = {t}, F(f) = {f,L} and
F(i) = {T}. By Corollary [6.2.9] the logic it induces is conservative over the {A,V}-
fragment of KL. It is a different logic than KL, as it has tautologies (e.g. p V —p).

6.4 Applications to Sequent Calculi

In this section we show how Nmatrices, and rexpansions of them in particular, are used
in order to construct analytic sequent calculi for a given (family of) logic(s). We do
so by uncovering the underlying process in the construction of several sequent calculi
for non-classical logics from the literature (see, e.g., [14, 27]), and identifying it as an
implicit sequence of rexpansions. Roughly speaking, the process begins with some basic
logic, whose various extensions form a family of non-classical logics. For this basic logic,
an Nmatrix is found, and then the algorithm of [25] is used to translate it to a cut-free
Gentzen-type system, that admits the generalized notion of analyticity employed in this
thesis. In some cases, this construction can be done directly, without relying on [25].
In order to do the same for the various extensions of the logic, the original Nmatrix
sometimes needs to be transformed into another Nmatrix, using a rexpansion. Then, the
various extensions of the logic are translated into refinements of the new Nmatrix, and
the algorithm of [25] is again used for each of these refinements. We provide detailed
examples of this process for three and four valued logics, as well as for the logics of formal

inconsistency from [38].

6.4.1 Three-valued Paraconsistent Logics

Consider the rules (= =) and (= —) of LK. Their axiomatic counterparts (see Sec-
tion are p,p = and = p,p, respectively. Now, having in mind the intuitive
reading of sequents, that interprets a comma on the left as a conjunction, and a comma
on the right as a disjunction, we see that (= =) corresponds to the law of contradiction,

and that (= —) corresponds to the law of excluded middle. Accordingly, these two rules
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represent the two basic principles that characterize classical negation. For the construc-
tion of sequent calculi for paraconsistent logics, we must give up (= =-). Therefore, in
order for = to still have some properties of a negation, we should at least keep intact
the law of excluded middle. Thus we are left with LK \ {(— =)} as the calculus for
the basic paraconsistent extension of positive classical logic. The induced logic is known
to be identical to the logic CLuN from [32] (see, e.g., [I4]). We denote this calculus
by GerLun. It is routine to verify that a CL-bivaluation v is Ggorun-legal iff it is an
ME n-bivaluation, where Mz n = ({t, f}, {t}, O&pn) is defined like the classical
matrix for A, V and D, while O%; () is given by:

| O2pun ()
tl {t.f)
W

Many well-known paraconsistent logics from the literature are characterized as ax-
iomatic extensions of CLulN, by augmenting it with classically valid axioms that are not
valid in CLulN. Examples include the following axioms for the double negation principle

and for connections between negation and the binary connectives (e.g. De Morgan laws):

() =Dy (€) ¢ D -y

(n),) (@A) D (—p V=) (n}) (— V =1p) D =(p A1)
(n}) ~(p V1) D (~p A=) (n}) (= A=) D =(e V)
(n}) =(¢ D ¥) D (¢ A ) (n%) (o A=9) D =(p D)

For example, the logic Cpin (see, e.g., [38,139]) is the axiomatic extension of CLulN with
(c). In order to obtain corresponding analytic sequent calculi for these various extensions,
appropriate finite Nmatrices should be constructed. Let us examine, for example, the
effect of incorporating (c) into M&q,n- This would mean that if p is assigned f, then
—p must be assigned ¢, and in order for the axiom to be satisfied, we must have that
——p is assigned f. Hence we must set the negation of ¢t to f, which brings us back
to the classical matrix[f] However, the addition of the rules of excluded middle and of
double negation elimination to any Hilbert-type system for positive classical logic does
not result in classical logic. The problem here is that MZ;, is almost deterministic: it
has a single non-deterministic entry that allows for exactly two refinements. One results
in the classical matrix, and the other is equivalent to positive classical logic. Hence

MZ; .~ cannot serve as a basis for extensions of CLulN with more rules that concern

6Obviously, this would not be the case if we were working in the more general framework of bival-
uations (see Definition . In such a case, (c) would simply be translated to a semantic constraint,
namely v(¢) = 0 implies v(——¢) = 0 for any formula ¢. However, for the purpose of constructing
analytic sequent calculi, we would like to generate only Nmatrices, and then the inclusion of (c¢) indeed
leads to the classical matrix.
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negation. A solution to this problem is to perform a rexpansion on MZ; , and obtain
a less deterministic Nmatrix. By the above argument, we need more flexibility with
the negation of f, which is . Thus we shall make two copies of ¢, using an expansion
function F that is defined by F(t) = {t, T} and F(f) = {f}. The resulting expansion

(MErun)r = {t, T, f},{t, T}, OF) is given by:

or(N|| t f T oVt gy T

t{e TH{HE T t{s TH{ETHE T
Fo Ay Ay AR fo{e Ty Ary {6 T
T THAHL TS T THE THE T

or(>) | f T | or-)

{t. 7y {fy {&T} t{e T, f}
{t, Ty {7}y {t, T} f ALTS
To{eTy {5y 6T TIT )

Now, in order to construct an ordinary analytic sequent calculus from an Nmatrix, the

~

Nmatrix should be sufficiently expressive, in the sense that we must be able to distinguish
between the different truth values using the connectives themselves and the disjoint sets of
designated and undesignated values (see [25] for a precise definition). This is not the case
for (M&gun)F, as we cannot distinguish this way between ¢ and T. To be able to do that,
we need to perform a refinement. The minimal refinement that would allow for this dis-
tinction between truth values[] that we denote by Mgp.n = ({t. T, f}.{t, T}, Odrun)
is given by Og¢p.n(¢) = Or(0) for every o € {A,V, D}, while Oy ~(—) is given by:

O?(’:LuN (_‘)

Now, for every M, ~-valuation v, we have the following:
e v(p) =t iff v(p) is designated and v(—p) is not
e v(p) = T iff both v(p) and v(—p) are designated

e v(p) = f iff v(p) is not designated

"There is a second minimal refinement that is dual to this one. It will be described and used in

Section
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As we shall see, this makes Mg n @ good basis for the addition of the most useful axioms
in paraconsistent logics (including the above axioms). Each axiom is first translated into a
semantic condition, that in turn induces a refinement of M¥; . The refinement is then
translated to a Gentzen-type rule. By collecting all the resulting rules that correspond to
a given axiomatic extension of CLulN, we obtain a cut-free {—}-1-analytic pure calculus

for it.

Note that although My  is a non-strongly preserving rexpansion of M%p ., it
can be shown that the two Nmatrices are equivalent, and both induce CLuN (see, e.g.,
[14]).

Let us now examine the effect of (c) on Mgy, rather than on Mg If p is
assigned f, then in order for (c) to be satisfied, we must have that ——p is also assigned
f, which is only possible if —p is assigned ¢. This simply means that the negation of f
should be {t} and not {t, T}. We thus obtain a simple refinement of Mg n, that we
denote by M. = ({t, f, T},{t, T},O,), and is obtained by replacing Og; () with:

By applying the algorithm from [25], we get a calculus G, for k., which is the extension
of Gerun with the rule (== =) of Gy, (see Example . Let us see how we obtain
this rule directly from the semanticsﬁ The only change that was made from Mgy  is
setting the negation of f to be t. This means that if v(p) = f then v(-p) = t. Going
back to the characterization above using designated and undesignated values, we get
that if v(p) is undesignated, then v(—p) is designated and v(——p) is not. Translating
“designated” to being on the right side of a sequent, and "undesignated” to being on the
left, we obtain p = / = —pand p = /——p = . The first is already included in Gcrun,
and the second is the new rule (—— =). This is how the rule (== =) is constructed
from (c). By using similar arguments, we get that the refinement associated with (n!) is
obtained from My by setting O(A)(¢,t) to {t} (instead of {¢, T}), which is similarly
translated to the rule (-A =) of Gy, .

A particularly interesting simple refinement M., = ({¢, f, T},{t, T}, Oca) of M, is
obtained by O (=) = O.(—), and for the rest of the connectives O, is given by:

8 Actually, (== =) could have been “guessed” from (c), without rexpansions. This is not always the
case. Some axioms do not naturally translate into sequent rules, and then the method of [25], that goes
through Nmatrices, is essential. We shall see an example for this in the next section.
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OuM|| t f T OuM)| t f T 0.0 t f T

tof e G TS ol {r {6 TS t {ty {f3{t7}
fo Ay Ay A foq A Ay 6T fo A A {e T}
Toe T Ty T T T Ty T [{E TG T

The Nmatrix M., has a very important role in the family of paraconsistent logics that

are characterized by three-valued matrices. Theorem 42 of [4] characterizes all three-
valued strictly paraconsistent logics in the language CL (see Definition that admit
some natural properties. These logics coincide with the CL-fragments of the family of 8 K
conservative extensions of positive classical logic studied in [38] and [39]. The three-valued
matrices that induce these logics are exactly the deterministic simple refinements of M,,.
When applying the same rexpansion function F' from above on M&V’D} , rather than on
ME N, we see that M., (and also M,) is an extension to CL of an F-rexpansion of
./\/lgﬁv’j}. As a consequence of Lemma , all these logics are conservative over positive
classical logic.

Each of the simple refinements of M,,, including all the deterministic ones studied
in [4], can be given a cut-free {—}-1-analytic pure calculus, using the method of [25], or
by translating the semantic conditions that correspond to each axiom into pure rules.
Calculi for the most important such refinements are explicitly given in [4]. One of these
logics is called PAC, and is the axiomatic extension of CLuN with all the axioms (c),
(e) and (b¥) such that o € {A,Vv,D} and x € {l,r} above. The characteristic matrix

Mpac for PAC is the extension to CL of Myp, obtained by setting:

o) ||t £ T
t |t T
ot ¢ ¢
T e fT

A calculus Gpac for this logic is obtained from the calculus Gy = (see Example [2.2.8) by
replacing the rules (= =), (D =) and (= D), with the rule (= ).

6.4.2 Logics of Formal (In)consistency

Let us revisit the construction of Gg, (Example [2.2.9) in [27]. We shall relate G, to
a calculus that we call Gpg,, (for reasons to be clarified below), obtained from G, by
dismissing the rule

A=)y = pi = /2o Aopn) =
and Gpge are just two of various sequent calculi that were introduced in [27]

Gc
for paraconsistent logics of the family of Logics of Formal Inconsistency (LFIs) [38],39]

1
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(see also [28] 29]). While [27] did not explicitly use rexpansions, we show that they were
actually being implicitly used, and had a very important role in the various constructions
of [27] (and in particular, that of G¢, and of Gpge,). As sketched at the beginning of
this chapter, the calculi of [27] are constructed uniformly, by first finding a characteristic
Nmatrix, and then extracting a sequent calculus from it. The underlying language is
CL° = CL U {o}, where o is a unary connective which is intended to classify a given

13

proposition as consistent (that is, op should be read as “p is consistent”). The most
basic properties of the consistency connective o are represented by the following two

axioms:
(b) 09D ((pA=p) D) (k) opV(pA—yp)

The first means that the law of contradiction is valid for consistent formulas. The second
means that every formula is either consistent or both it and its negation hold. Accord-
ingly, the most basic logic that is investigated in [27] is called BK, and is obtained from
CLuN by the addition of these two axioms. It is proven there to be characterized by the
Nmatrix M g, which is the extension to CL° of the Nmatrix Mgy . from Section [6.4.1]
given by:

Note that if we replace the symbol = in My from Section [6.4.1} we again obtain an
F-rexpansion of Mgy~ (for the same F' that was used there, that is F(t) = {¢, T} and
F(f) ={f}), where in the performed refinement, the roles of ¢t and T are exchanged.
BK serves as a basis for the modular construction of more powerful paraconsistent
logics, that are obtained by including the axioms from Section [6.4.1] as well as basic

properties of the consistency operator, such as:

e Inconsistency: (i) =0 D (p A )
e Propagation laws: (a) (opfior)) D o(pfe)) for € {A,V, D}

Accordingly, a set Ay of well-known axioms for LFIs is considered (that includes, among
others, those just mentioned, as well as the axioms from Section , and is modularly
incorporated into this Nmatrix: each subset of Ag induces a simple refinement of Mpgg.
As we have already seen in Section [6.4.1] the addition of the axiom (c) amounts to setting
O(=)(f) to {t} (instead of {t, T}). The result is the extension to CL® of the Nmatrix
M. from Section with the above table for o. Further, the addition of (a) amounts

to ensuring that ¢t is given a value from {t, f} whenever both ¢ and 1) are given values
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from {¢, f}, for each § € {A,V,D}. Accordingly, the Nmatrix that corresponds to the
logic BK ca, obtained by the addition of (¢) and (a) to BK, is the extension to CL® of
the Nmatrix M., from Section obtained by including the same truth table for o
above. We denote the resulting Nmatrix by Mprea = ({t, T, f}.{t. T}, Opkea):

OBKC(L</\)H t f il OBKca(v)H t f T
t {ty {f3{7} t {ty  {y {7}
f {ry {5y {1} f {ty sy {7}
T {e T T T {eTH{ETHE T}

OBkea(D) H 2 / T H Okea(™) H OBKea(©)
t {t}  {rr {&£ 7} t {f} ) {e T}
f {t}  {t} {&, T} f {t} fl {67}
T {t. 7v {f} {t. 7} T {eT} T {rt

Using the algorithm of [25], a cut-free pure calculus for BKca is obtained from the
calculus G, (see Section by the addition of several rules for the binary connectives.
For example, the additional rule for A is (-A =) from Gy, (see Example 2.2.8). Unlike
the case of (c), the rules that correspond to (a) are not natural translations of it. In fact,
the connective o does not even occur in the resulting rules. To obtain them, the method
of [25], or the translation of axioms to semantic conditions and then to rules, is essential.

Things become more complicated when the following two well-known axioms of LFIs

are added to Ay:

(1) ~(pA=p) Dop and (d) =(=pAp) Doy

It was shown in [I5] that most of the systems in the family induced by Ay U {(1),(d)}
that include at least one of {(1), (d)} cannot be characterized by a finite Nmatrix. This
means that they go beyond the reach of Mgk and its refinements. For this reason, an-
other rexpansion is performed on Mpg (whose o-free fragment is itself a rexpansion of
MZ1 .n), that incorporates infinitely many copies of each of its two designated truth val-
ues. This is done by employing the following three (disjoint) sets: T = {tf |i>0,j> 0},
7= {TZ |1>0,7> O}, and F = {f}. An expansion function G is then defined by

T =t
G=Xre{t,, T} F z=f
T =T

The G-expansion (Mpg)g = (T UZUF,T UZ,Oq) of Mgk is given by:
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F ceForbeF Dy, € Dy, be Dy
Oc(n)(a,h) = e Oc(V)(a,b) = 4 P " = T BT K

D% otherwise F otherwise

F acT Dy ac€FUT

Oc(=)(a) = Oc(o)(a) =14 ™ _
DEx ac€ FUZL F otherwise
Dy a€ Forbe Dy
Oc(D)(a,b) = ¢ " o

F otherwise

Now, (1) and (d) deal with the conjunction of a formula with its own negation. We
thus need to reflect the difference between an atom and its own negation (and not only
negations of formulas that were assigned the same value) in the truth tables. For that, we
do not treat the negation of every copy of T the same way, but distinguish between the
different copies. One way to do this is to set the negation of T‘Z to Tg *1. However, since
we would like to modularly add (1) and (d) to all the logics considered above, our starting
point should be an Nmatrix for the most basic logic BK. We would therefore want to
have a strongly preserving rexpansion of Mpgg. The above choice for the negation of
Tz is not enough, as then there is no copy of ¢ in the negation of Tz, although ¢ is one
of the values in the negation of T in Mpg. We therefore add also the corresponding
copy of t, namely tf“. The result, which is now a strongly preserving G-rexpansion of
Mgk, is denoted by M¥x = Vk, Dk, OFk ), and is defined by Vi, = T UZ U F,
Dy =T UZ, and OF) is obtained from O¢ by setting:

F a€T
Opk(0)(a) = § Dy a€F
{TJ.'“ tﬂ,'“} a=T’

We stress that while this is the actual Nmatrix that was built in [27], it was built there
without explicitly taking into account the arguments concerning strongly preserving rex-
pansions. As we can see, these turn out to be essential. Now, not only M%)} is a strongly
preserving G-rexpansion of Mpgg, but also every subset A of Ay induces a simple refine-
ment of M%), that is a strongly preserving G-rexpansion of the simple refinement of
Mgk that is associated with A. In particular, without (1) and (d), we obtain an infinite
characteristic Nmatrix for each system, equivalent to the three-valued one. Moreover, by
applying the corresponding semantic arguments for the construction of the Gentzen-type
systems on the infinite Nmatrices, we obtain the same rules. For example, going back to

BKca, we obtain the Nmatrix M%... = Vi, Dii: OFkea)» Where OFy., is obtained
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from O%) by setting O%x..(—)(f) = T, and ensuring that ¢f is given a value from
T U F, whenever both ¢ and v are given values from 7 U F, for every § € {A,V,D}:

(

F a€e ForbeF
OoBcha</\)<a7 b) = T a, b € T OoBcha<\/)<a7 b) =

F a,be F
D% otherwise

| Dgx  otherwise

F acT
%cha(_')(a) = T ac JT: %cha(o) (Cl) =
(T a=T]
(T a€FandbeTUF
T acTUFandbeT

F a € Dy and be F

Dy ac€ FUT

F otherwise

O?Kca(a)(ch b) =

| Dyx  otherwise

It is routine to verify that M%., is a strongly preserving G-rexpansion M pg.q. Also,
the calculus for the induced logic can be similarly reconstructed, based on the semantic
conditions of M%.,, that are natural extensions of those of M px,.

When either (1) or (d) are included, however, what is obtained is again a preserving
rexpansion of the corresponding three-valued Nmatrix, but not a strongly preserving one.
For example, the refinement that is associated with (1) amounts to the requirement that
@ A1 is assigned a value from 7 whenever ¢ is assigned Tg and 1) is assigned either
TI or 7!, Thus, the logic BKcal (obtained from BKca by the addition of (1)) is
characterized by the Nmatrix M%¥x.. = (Vik: Poi: OFkear), Which is obtained from
MFkea by setting

(

F a€Forbe F
T a,beT

O%O cal(/\) = 3 . . .
" T a=Tiandbe {TI &*

| Dyx  otherwise

MEea 18 indeed a preserving G-rexpansion of Mpg.q, but not a strongly preserving
one. For example, G(T) N O%et(N)(TL, T/ = 0, although T € Opgea(A)(T, T).
Since M¥y.,; is infinite, it falls out of the method of [25]. However, [27] employs a
similar technique and translates this semantic requirement to the rule (—A =)y above,
in a similar manner to the reconstruction of the rules in Section [6.4.1l This is how a

calculus Gpgeq for BKcal has been constructed in [27]. The calculus G¢, was obtained

T acTandbe T UF
T ac€TUFandbe T
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by simply dismissing the rules for o, as C] is proven in [27] to be characterized by the
o-free fragment of M g cal.

Note that the route that we have taken here started with the Nmatrix Mgy for BK.
Then, a strongly preserving rexpansion was performed to obtain M%), that was refined
according to (c), (a), and (1), resulting with M%y.,- The calculus Gpgeq was built
according to the semantic conditions of the resulting Nmatrix. An alternative route would
be to first refine BK according to (c) and (a), and then perform a strongly preserving
rexpansion to obtain M%.,. Only then, (1) would be added, and the corresponding
refinement would result with exactly the same Nmatrix M gg.qu, and consequently, with

the same sequent calculus.

6.4.3 Conservative Extensions of Sequent Calculi

Suppose that we are looking for a sequent calculus for a logic Ly = (£, Fr,), which is
a conservative extension of a logic Ly = (£4,Fr,), and that we already have a calculus
G, for L;. When this is the case, we can keep all the rules of Gy, and be sure that they
are sound and complete for the £i-fragment of Ly. The task of finding a calculus for Lg

then reduces to finding rules that involve connectives from £, \ £;. In order to make this

intuition more formal, we extend Definitions [6.1.4] and [6.1.6] to sequents.

Definition 6.4.1. Let M be an Nmatrix. An M-valuation v is an M-model of a sequent
I' = A (in symbols: v FM T = A) if v #M ¢ for some ¢ € T or v EM ¢ for some ¢ € A.
It is an M-model of a set S of sequents (in symbols: v EM S) if v FM s for every s € S.
A sequent s is an M-consequence of a set S of sequents (in symbols: Sy s) if every
M-model of § is an M-model of s. We say that a sequent calculus G is sound for
an Nmatrix M it S k5 s implies S Faq s for every sequent s and set S of sequents.
We say that G is complete for M if the converse holds. A pure calculus Gg for L is
conservative over a pure calculus G for £y if £ C L, and for every set S of L1-sequents
and £;-sequent s it holds that S kg, s iff S g, s.

Using these definitions, we obtain the following variant of Corollary for sequents,

rather than formulas:

Corollary 6.4.2. Let £, and £ be propositional languages such that £; C L5, M; a
(N)matrix for £4, and My an extension to £y of some (strongly) preserving rexpansion
of My. Then S Fpy, sift Sy, s for every set S of £i-sequents and L£,-sequent s.ﬂ

Proof. 1t suffices to verify that Proposition and theorem are correct also

for sequents. Proposition [6.1.§8] still follows from the structure of Nmatrices also when

9The left-to-right direction holds for all rexpansions.
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considering sequents. As for Theorem [6.2.7], we have that also for sequents it suffices to
prove that for every M;-valuation v there exists an Ms-valuation v’ such that v EM! s iff
v EM2 5 for every L-sequent s. This follows from the corresponding claim for formulas.

From here the proof carries as before. n

We are now able to lift the sufficient criterion for conservativity of Corollary [6.2.9

from Nmatrices to sequent calculi:

Proposition 6.4.3. Let £; and L5 be propositional languages such that £; C Ls, Gy a
pure L;-calculus and G a pure Ly-calculus. Suppose G is sound and complete for some
(N)matrix M for £, and that Gy is sound for some Nmatrix My which is an extension
to Ly of some (strongly) preserving rexpansion of M;. Then G; U Gy is conservative

over Gj.

Proof. Let S be a set of L£i-sequents and s an L;-sequent. Clearly, if S Fg, s then
S Fe,ue, s. Now suppose S Fg,ug, s- We prove that S g, s.

We start by proving that S kaq, s. Let v be an Ms-model of S. We prove that
v EM2 5 by induction on the derivation of s from S in G; U G,. The cases where s € S,

or s is the conclusion of an application of (ID), (WEAK) or (CUT) are trivial. Suppose
o(sh)Ucr...o(s))Uc,

' o(so)UarU...Uc,
G;. Clearly, s}, ..., s, Fqg, so. Since Gy is sound for My, we have s/, ..., s/ Fq so. By

Corollary we have s, ..., s, Fa, So, and hence o(s)),...,0(s),) Fa, 0(s0). By the
induction hypothesis, v M2 o(s}) U ¢; for every 1 < i < n. Then, either v M2 ¢; for

s is the conclusion of an application of some rule sq, ..., s, / so of

some 1 < i < n or vEM2 g(s)) for every 1 < i < n. Either way, v EM2 5. Tt is left to

o(sy)Ucy,...,o(s)Uc
consider the case where s is the conclusion of an application (1) Uer, ., osn) U e of
U(So) U Cly...,Cp
some rule si,...,5, /sy of Go. By the induction hypothesis, v M2 o(s}) U ¢; for every

1 < i < n. Since G, is sound for My, we must have v EM2 s.

Since S, s and S U {s} consists of £;-sequents, we use Corollary again, and
get that S g, s. And since Gy is complete for M;, we conclude that S ¢, s. O]

Proposition provides a technique to conservatively extend a given sequent cal-

culus, as illustrated in the next example.

Example 6.4.4. The {A,V, D, —~}-fragment of the four-valued logic of bilattices from
[3] (see Example [2.2.8]) is characterized by the matrix My = ({¢, f, T, L}, {T, L}, O4),
where O, is given by:
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tFT L t ettt tFT L t] f
fFlrrrs FolerTL tttt  f| ¢
T |\TFTf T tTT¢ tFTL T T
LollLffLr L kLt 1okttt L) L

oMt fTL oWt fTL 0|trTL  [JOu(-)
¢ ¢
/
-

Let us consider the task of designing a calculus for this logic. What should be our starting
point? It is routine to verify that the {A, D}-fragment of M is a preserving G-rexpansion
of the same fragment of Mpac (see Section [6.4.1)), for G(t) = {t}, G(f) = {f, L}, and
G(T) = {T}. This means that we can start with the {A, D}-fragment of Gpac (or
of LK), and focus on finding rules for V and —. But perhaps there is an even better
starting point? Define an expansion function F' for MEAI;V’D} by F(f) = {f,L} and
F(t)={t, T}. It is easy to see that M, is an extension to {A,V,D,—} of a simple
refinement of (MEAILV’D})F ={t, T,f,L},{t, T},O), where

ot T L oW ¢ f T L

{t, TH{A L 6T AL ¢ {E TH{E TH{E TH{E T}
(AL f e THA LG TS LD
{t. TH{A LT AL T {1 TH{E TH{E T
(£, L0400 041 L e A L TH{f L)
O(D)H t f T s
t{E THUL L T L)
fofe T T T TS

T T Ly THS LY
Lot Ty {6, Ty {6, T} {t. T}

S
NI S

We thus obtain that -4, is conservative over CL{A’V’D}, and that when constructing a
calculus for it, one may focus on rules for negation. There is no need for new rules that
involve disjunction (without negation). And indeed, [3] introduced the calculus Gy (see
Example for this logic, which is obtained from the positive fragment of LK by the
addition of the new rules for Gpac, except for (= —). Thus, Gy is conservative over the
positive fragment of LK. Note that only soundness of the rules from G4\ LK for M, is
needed in order to use Proposition and obtain conservativity.

A similar process to the one described in Example [6.4.4] can be done for the construc-
tion of the other calculi presented in this chapter, by starting with the positive fragment
of LK, and then adding additional rules, according to the particular rexpansion that

was employed. Then, only soundness of the new rules for that rexpansion is needed for
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conservativity. For example, since the extension of CLuN with (c¢) from section [6.4.1]
is conservative over positive classical logic, we may start with the positive fragment of
LK and focus our search on rules that include negation. And indeed, the additional rule
(== =) includes negation, and also, it is sound for M..

As another example, notice that the single connective that causes M pgg.q to be only
a preserving rexpansion of Mpg., (and not a strongly preserving one) is A (see Sec-
tion . Thus, by Corollary , the logic that is induced by M pgcq is conservative
over the A-free fragment of Mpgg.,. Therefore, a calculus for the former logic only re-
quires new rules that manipulate A. And indeed, Gy is obtained from Gpgg., by
the addition of the rule (—=A =), that involves A. By Proposition the calculus
GBrea s conservative over the A-free fragment of Gpg.,. Note again that while Gggeq
is sound and complete for M pgcq, only soundness of (—A =)y is required to establish

conservativity.

6.5 Negations for Godel Logic

The goal of this section is to develop reasonable logics in the language CL | that simul-
taneously have two properties that were discussed in Section [6.3} paraconsistency and
fuzziness, in a way that would then enable the construction of corresponding analytic
Gentzen-type systems. The main problem we face in achieving this goal is that standard
fuzzy logics (like the two described in Example are defined via matrices with a
single designated value. However, it is well known [4] that a logic which is induced by
such a matrix cannot be paraconsistent. Therefore, none of the standard fuzzy logics is
paraconsistent. In order to develop logics that are both paraconsistent and fuzzy, it is
necessary to replace the standard method of defining a fuzzy consequence relation by a
weaker one. An additional step that can be made is to take — as a primitive connective,
and use new semantic interpretations for it. (In the standard fuzzy logics —) is defined
as 1 D L)

The first attempt to achieve the goal of this section according to the above lines
was made by [52]. Its main idea was to follow a recent approach [36] to defining fuzzy
consequence relations, that instead of preserving absolute truth (i.e. the truth value 1),
preserve degrees of truth. Given a matrix M (whose truth values are [0, 1]) which induces
the ordinary (i.e. truth-preserving) fuzzy logic L, this means that a formula 1 follows
from a set of formulas 7 if there is a finite subset {¢1,...,©,} € T such that the truth
value which is assigned to ¥ by some M-valuation v is always greater than or equal to the
minimal truth value that v assigns to ¢4, ..., ¢,. For the standard matrices used in fuzzy

logics, the latter condition is equivalent to demanding the formula (¢ A ... A @,) D ¥ to
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be valid in the corresponding truth-preserving logic L (see, e.g., [36]). This fact implies
that L=, the degree-preserving logic induced by M, has the same set of valid formulas
as the truth-preserving logic L which is induced by M. This makes L= a natural variant
of L.

A good example of the method of [52] is provided by Lukasiewicz logic L, (Example
6.1.3). The interpretation of — there (where — is taken as a defined connective, as
explained above) is: O(=)(a) = 1 —a. As said above, L, itself cannot be paraconsistent.
However, its degree-preserving variant L..S is paraconsistent, as can be seen by any
valuation v such that v(p) = v(-p) = /2 and v(g) = 1. L= is also subclassical (as
it is contained in L., which is subclassical), and thus it is even strictly (though not
boldly) paraconsistent (see Definition [6.3.2). Moreover, it validates some basic classical
equivalences connected with negation, like De Morgan laws and the double negation
laws. Unfortunately, Lfo has some serious drawbacks as well. The main one is that
Modus Ponens (M.P.) for D is not valid in it: ¢ does not necessarily follow from ¢ and
@ D . (This is exemplified by any valuation v in which v(¢) = 0.5, v(¢») = 0.4 and
v(p D) = 0.9.) Thus D cannot be regarded in LS as an implication connective of any

sort.

Is there a standard fuzzy logic L such that M.P. for D is valid in L=? Of the three
basic fuzzy logics (Lukasiewicz logic, Godel logic and product logic), only in Godel logic D
has this property (see, e.g., [60]). Hence it seems better to try to use G= instead of L.=.
However, in its original language (of {A,V, D, 1 }) G= is identical to G. In particular, G=
is not paraconsistent with respect to the official negation of G. To obtain a paraconsistent
variant of G, one should employ also the second idea mentioned above (and used in [52]):
to augment the language with a new negation connective. A particularly appealing choice
is to augment G= with the involutive Lukasiewicz negation. Denote the resulting logic
by G=. As a paraconsistent fuzzy logic, G= has all the nice properties of LS that were
mentioned above. On the other hand it does not have its main shortcoming, because D
is in it a true implication connective: ¢ D 1 follows in G= from T iff ¢ follows in it
from 7 U{¢}. What is more: G= is a conservative extension to a richer language of the
basic fuzzy logic G. However, even G= still has some serious drawbacks. Thus like L=
it is not boldly paraconsistent Even more significant is the fact that (again like Lo<)
©V = is not valid in it. As explained in Section [6.4.1] this is very important, as since we
are seeking here paraconsistency and thus giving up the law of contradiction, we should

keep intact at least the other basic principle of classical negation: the law of excluded
middle.

0Tn both logics ¢ V —q is not valid, but it follows from {p,—p}, as the minimum value assigned to
{p, —p} is at most 1/2, while the value assigned to q V —q is at least 1/2.
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In this section we use rexpansions of the Godel matrix Mg for constructing even
better paraconsistent fuzzy logics which are based on . Based on the ideas described
in previous sections, the use of rexpansions paves the way not only for constructing such
logics, but also for obtaining proof systems for them (see Section below). Before
describing our method, here is the list of properties that we would like a paraconsistent

fuzzy logic L to have:

(i) L should be boldly paraconsistent;
(ii) L should be subclassical (and so, by [(i)] strictly paraconsistent);
(iii) L should be conservative over G;

(iv) D, A, and V should respectively be an implication, a conjunction, and a disjunction
for L. This means that for every T, ¢, ¥, and ¢ we should have:
(iv).A TU{e} FL v it T Fr ¢ D ¥
(iv)BTrFL AT T by pand T by, ¢
(iv).C TU{pV} L o it TU{p} L ¢ and T U {¢} b, ¢;

(v) L should validate ¢ V —¢;

(vi) L should validate the basic classical equivalences concerning —, V, and A: ¢ = ——,
(V) = (- A), and (@A) = (mp vV —));

(vii) L should validate the following connections between negation and implication:

(Vii).A D (= D =(p D ¥))
(vii).B =(¢ D ¢) D -
(vii).C (¢ D %) D (=(p D¥) D y)

A word of explanation is needed for the last item in this list. Ideally, we would have
liked to add to item of the list above also the classical equivalence that connects —
and D: —(p D ) = (¢ A —¢p). This, in turn, is equivalent to the validity of [(vii)| A,
[(vii)| B and

[(VIDIC =(¢ DY) D¢
Unfortunately, we cannot include .C’ in our list, since together with items and
(v)], it immediately entails the validity of ¢ V (¢ D ), contradicting item of our list.
So instead of .C’ we include a weaker version, which is valid in G=, as well as in all
the standard fuzzy logics (in which —) is taken as ¢ O 1).
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6.5.1 The Nmatrix Mg! and Its Refinements

The method of rexpansions allows us to present a better approach to the construction of
paraconsistent conservative extensions of Gddel logic, which stays within the framework
of truth-preservation. This is achieved by relaxing the principle of truth-functionality,
and the preservation of absolute truth. The former is done by basing our construction
on Nmatrices, and the latter by replacing “completely true” with “true enough”, that is,

taking a larger set of designated truth values. Formally:

Definition 6.5.1. Let 0 < t < 1. Mg is the Nmatrix for {A,V, D, L} obtained from
Mg by:
1. Taking [t, 1] as the designated values.
, [t,1] a<borb>t
2. Changing O (D) to O (D) (a,b) = :
{b} a>bandb<t
Mg" is the extension of Mg’ to {A,V,D, L, =}, in which O(=)(a) = 1 — a.

The next theorem shows that Mg, provides a satisfactory basis for constructing

paraconsistent fuzzy logics.

Theorem 6.5.2. Let 0 <t < 1 and let M = (V, D, O) be a simple refinement of Mg".
Then:

1. Fa satisfies |(iii)}, |(iv)lB, |(iv)}C, and (that is, it is conservative over G, A is

a conjunction, V is a disjunction, and De Morgan and double negation laws are
valid) [7]
2. If 1 € O(D)(x, y) whenever either x = 0 or y = 1 then k4 satisfies [(ii)]

3. If t > 1/2 then I, satisfies neither of ()] [(iv)} and [(v)]

4. If t <1/2 then F satisfies ()| and
Proof. Suppose M = (V,D,0) and Mg", = (V!, D!, O).

1. Tt is straight-forward to verify [(iv)| B, [iv)lC and [(vi)] As for[(iii)| one verifies that
t,1]  z=1
{t-z} z< 1
Corollary [6.2.9] every simple refinement of Mg’ induces a logic that is conservative

Mc' is a simple F-rexpansion of Mg, for F' = \r € [0,1]. By

over (.

1'While the left-to-right direction of A may not hold, its right-to-left direction (namely M.P.) does
hold.
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2. Suppose that T F/cr ¢. Then there exists a classical valuation v such that v(¢) = 1
for every ¢ € T and v(p) = 0. v is also an M-valuation, and thus T t/ ¢.

3. If v EM p and v EM —p, we must have v(p),1 — v(p) > ¢, which is impossible
for t > 1/2. Therefore, p, —p k¢ g and |(i)| fails. Moreover, e (p A —p) D q (by
assigning /2 to p and 0 to q), and thus also fails. Finally, v M p Vv —p for

v(p) = v(=p) =v(pV —p) =12

4. We start with[[D)} First we show that = is a weak negation in 4. Since 0 <t < 1/
there exists a < ¢ such that 1 —a > ¢. Any M-valuation v in which v(p) =1—a
satisfies p but not —p, and any M-valuation v in which v(p) = a satisfies —p
but not p. Thus p ¥ —p and —p g p. Second, in any M-valuation v in which
v(p) = v(—=p) = /2 and v(q) = 0, we have v FM {p,—p} and v M ¢q. Therefore
p, P #m q. Next, we show that a4 is boldly paraconsistent. Suppose Faq ¢ and
p ¢ At(p). Then there exists an M-valuation v such that v(p) < t. Define a
function v as follows: /(1)) = v(¢) for every subformula ¢ of ¢ (including ¢
itself), and v'(p) = v/(=p) = /2. Now extend v' to an M-valuation, and obtain
that p, —p t/x @. As for for every M-valuation v, if v(¢) < t then v(—p) >t
and vice verse, and hence F—p V @. O]

The proof of Theorem [6.5.2] actually provides another interesting result regarding the
Godel matrix: the same logic would be obtained if the designated values were taken to

be any interval of the form [t, 1] for any 0 < ¢ < 1.

Proposition 6.5.3. Let 0 <t < 1 and M' = (V', D', 0", where V' = [0,1], D = [t, 1],
and Ot = OG. Then l_MG = I_Mt.

Proof. M! is a simple refinement of Mg', which is a simple rexpansion of Mg. By
Corollary [6.2.8, we have F o = Fase. O

Other negations can be considered for G, and rexpansions can be used in order to

prove that the result is conservative over . This is obtained in a similar manner to

Proposition [6.4.3

Lemma 6.5.4. Let A be a set of axioms in CL,. If A is valid in Mg, then G*, the

axiomatic extension of G with A, is conservative over G.

Proof. Clearly, Fg C Fga. Now let T C CL, \{—~} and p € CL, \ {—}. If T Fga ¢,
then 7 .t . And since - y,.: is conservative over G, we must have 7T Fq ¢. O
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Like before, finding a new semantics for the augmented logic is not required, as only

soundness is needed for the proof.

Example 6.5.5. Let A be a set consisting of the axioms from property above. Then
G* is an axiomatic extension of G with a negation that satisfies the usual double negation

and De Morgan laws, and is conservative over G.

6.5.2 Two Particular Refinements of Mg/

Theorem shows that simple refinements of Mg/? enjoy many desirable properties
one would expect from a paraconsistent fuzzy logic. However, they may lack some of
the properties mentioned above. In particular, the formulas in are not valid in
the logic that is induced by Mg? itself (for example, if v(¢) = 0.7, v(x)) = 0.8, and
v(¢ D ¢) = 0.7, then v does not satisfy[(vii)|B). Moreover,[(iv)]does not hold in the simple
refinement M%7-08 of Mg?, obtained by setting O(D)(a,b) = 0.7 whenever b > 1/2 or
a="b,and O(D)(a,b) = 0.8 whenever b < /2 and a < b. Indeed, v(—(p D ¢)) = 0.3 < /2
for every M7 %8_yaluation v, which means that —(p D ¢) Fyo.7-0s 1. However, the
MO 708 yaluation u in which u(yp) = u(y) = 0 and u(p D @) = 0.7, shows that
o708 =(@ D ) D 1. Property also does not hold in - 0.7-0s, as ¢ follows from
=(p D p) D (L D —(pDp)) in it, but not in classical logic.

We present two particularly interesting simple refinements of Mg72. The first is
obtained by refining the interpretation of O back to its original interpretation in Mg.

The second is a reconstruction of a well-known semi-relevant logic [2, [49], in which all

properties |(i)H(vii)| hold.

Closest to The Original: det(Mg?)

If we refine the interpretation of D in Mg"? to its original interpretation in Mg, we ob-
tain a matriz for a paraconsistent fuzzy logic (denoted det(Mg??)), whose {A,V, D, L}-
fragment differs from Mg solely in the choice of designated values. This seems as close as
one can get to adding a paraconsistent involutive negation to Mg. Moreover, + det(Ma )
G-
strictly extends + M2 and satisfies all properties listed above, except for .A. The

only property whose verification is not routine is A, which we now prove.

Proposition 6.5.6 (Deduction Theorem for K
T? Y1 H

£/2)). TE w1 D py iff

det(Mg det(Mgi/z)

det(Me ) 2

Proof. The fact that T l_det(MGi/z) Y1 D o implies T, ¢ }_det(Mgl/Q) 9 is easily verified

using the interpretation of D. For the converse, suppose T / det( Mg /2
G-

that 7,1 ¥/,

) P1 D 3. We prove

M2 P2 By our assumption, there exists a det(Mg?)-valuation v such
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that v(¢) > 1/2 for every ¢ € T, and v(p1 D a) < V2. Let 71 = v(p1) and 75 = v(pa).
1
Then: v(pr D o) =1y <12, 1 —1ry > 12 and r; > ry. If ri > 1/2 then v det(Ma?) ©1
1
and v #2MaL”) o) and thus T, ¢ H

det(M
r1 < 1/2. We construct an appropriate countermodel by “fixing” v so that it satisfies T

L2 P2 Hence we assume in addition that

and 1, but still does not satisfy ys. This is done by replacing by /2, and then making

other necessary adjustments to keep the resulting valuation a det(Mg/?)-valuation. Let

2 = r<nr

1

f=Axe[0,1].4 1/ mlrz<l-—nr
—“;ZQ” x>1—nr

and let v'(p) = f(v(p)) for every ¢. f is clearly an increasing function from [0, 1] to [0, 1].
Now, v'(¢) > 1/2 for every ¢ € T, as v(¢p) > /2 > 1y for every such 9. Also, v'(p1) = 1/2,
and v'(ya) < 2, as v(pg) = re < ry. It is left to prove that v is a det(MG:/Q)—Valuation.
Suppose det(Mg?) = (V, D, 0).

L v(eny) = flulpAv) = flmin{o(e), v(¥)}) = min{v'(), v'()}, as [ is in-

creasing.

2. Disjunction is shown similarly.

3. If v'(¢) < ' (¢) then v(p) < v(v)), and then v'(p D ) = f(v(p D)) = f(1) = 1.
V(e DY) = flule D¥)) = fu(¥)) = v'(¥).

4. We show that v'(-p) = 1 —v'(¢). If v(p) < 71, then v(-p) > 1 —r;. In

1 v(=p)—142r1 2r1—v(p)

such a case, v'(¢) = 5-v(p) and v'(=p) = o = =5, 2. In particular,

V() +' () = Uektin=u(e) =1. Ifry <w(p) <1—r, then v/'(p) = v'(—p) = /2.

2r1

And if v(¢) > 1 — 7y, then this case is symmetric to the first case.

A Semi-relevant Refinement: Mguo

The matrix for the logic RM- [§], that we denote by Mgmo> is a simple refinement of
{1-a} a<b<1l-—a

{b} otherwise
RM- is shown in [§] to be equivalent to the famous Dunn-Meyer semi-relevant logic RM
[2]. RM? satisfies all of the properties listed above. (All properties but .A and
follow from Theorem . .A and were proved in [§].) In particular, it strictly

Mg in which implication is interpreted by: O(D)(a,b) =
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extends F M2 H Moreover, we show that RM- is unique with respect to the properties
G-

above:

Proposition 6.5.7. RM- is the only ﬁnitarﬂ logic that satisfies all properties
above.

Proof. Let L be such a logic. Denote by H the Hilbert-type calculus for G from [48],
and by Hrnmo the Hilbert-type calculus obtained from H by the addition of the axiom
schemes of and Note that the only rule of inference in H and Hgmo is
M.P. It was shown in [§] that the set of theorems of Hrmo is the same as the set of
formulas that are valid in RM>. Since RM? is finitary{?|] and admits the deduction
theorem, it follows that Hgrno is sound and complete for RM?-, that is, ¢ is derivable
from 7 in Hrmo iff T Frvo . Now, to satisfy , all axiom schemes from H must
be valid in L, as otherwise, it would not be conservative over G. To satisfy , and
, the axioms they include must be valid in L also. For M.P. must be valid in L.
Thus Hgrno is sound for L, and in particular, RM>- is contained in L. Now, if L strictly
contains RM-, then since M.P. is valid in RM- and L is both finitary and admits the
deduction theorem (by [(iv)]), there exists a formula  that is valid in L but not in RM?~.
It is then a corollary of [§] that L has a finite characteristic matrix, and in particular, so
does its —-free fragment. Since G cannot be finitely characterized by a matrix [48], L is
not a conservative extension of G, and thus fails. Therefore, we must have that L
and RM- are identical. O

Table summarizes the various logics and properties discussed in this section, and
in particular, specifies the properties that hold in each logic. In the table, “¢” means
that the property holds, and “f” means that it does not. The column in the middle
(titled “Simple Refinements of Mg?*”) includes some cells with the symbol “T”. For

the corresponding properties, the meaning is that some simple refinements of Mg?

<
o)

satisfy them, and some do not. In contrast, property is not relevant for L=, as it

does not include any new connective. Thus it is marked with “1”.

I2The axiomatic extension of RM> with C’, that we did not include in our list of requirements,
is also considered in [8], and is proven to be equivalent to the 3-valued logic PAC (see Section [6.4.1)),
that is also known as RMs.

13A logic L is called finitary if the compactness theorem holds for it, that is: 7 Fy, ¢ iff T' Fy, ¢ for
some finite I' C 7.

14This follows from the equivalence between RM- and RM shown in [8], together with the fact that
RM itself is finitary. The latter follows from the (strong) soundness and completeness theorem that was
proven for RM in [18].
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Property LS G= Simple det(Mg??)| RM?
Refinements
of Mg
(i) f / t t t
(ii) ; f T ; f
(iid) 1 ' ' ‘ !
(iv) f / T / /
(v) / / t t t
(vi) ¢ t t t t
(vii) / f T f /

Figure 6.1: Summary of properties for paraconsistent fuzzy logics

6.5.3 What is the Cardinality of {y . | 0<t<1}?

In this section we investigate the relation between the different logics that are induced

by the Nmatrices Mg", (see Definition [6.5.1]) themselves. These logics are minimal in
the family of logics that are studied in Theorem [6.5.2] as different refinements of them
may induce different extensions. The main result of this section can be summarized as

follows:

1. All the Nmatrices Mg", for 0 < ¢t < 1/2 induce the same logic;
2. There are exactly two logics that are induced for ¢ > 1/2.

3. All together, the answer to the above question is: threeE]

The rest of this section is devoted to the proof of this result. We start by introducing
the notion of (ty,ts)-expanding functions in Definition and prove that they char-
acterize all strongly preserving rexpansions between elements of {MGZ |0<t< 1} in
Lemma[6.5.9] This fact is then used in Lemma [6.5.10] where the logics that are induced
by these Nmatrices are identified, thus obtaining the aforementioned result in Corollary
6.5.111

Definition 6.5.8. Let 0 < t; < t5 < 1. An expansion function F : [0,1] — P([0,1]) is
called (ty,t5)-expanding if:

(1) Uxe[o,l} F(z) =[0,1] and Uxe[tg,u F(z) = [t 1].

15We stress that the logics that are considered here are those that are induced by the Nmatrices Mg’
themselves, not their refinements.
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(2) F is increasing: if x < y then 2’ < 3/ for every 2’ € F(x) and y' € F(y).

(3) F1 —z) = {l—y|ye F(x)} for every z € [0,1] (that is, y € F(z) iff
1—yeF(l—ux)).

(4) F(x) is a singleton whenever = < t5 (and so because of (3), also when = > 1 — t5).

Lemma 6.5.9. Let F' : [0,1] — P([0,1]) and 0 < #; < to < 1. Then the following

statements are equivalent:
1. F'is (t1,ty)-expanding.
2. Mg" is an F-rexpansion of Mg™.
3. Mg" is a strongly preserving F-rexpansion of Mg".

Proof. Suppose Mg" = ([0,1],[t1,1],01), Mg? = {0,1],[t2,1],0,) and
(MGZQ)F = <VF> DFa OF)

(1=3): Let us calculate (Mg”?)p: Ve = [0,1] and Dp = D, = |[t1,1],
because of property As for Op: Using property |(2), we have that
[z]

Or(A)(z,y) = F(min{F ,F[y]}) and Op(V)(z,y) = F(max F[x],ﬁ[y]}). By
property , we have Op(—)(z) = F(1 — F[z]). Combining properties and

ti,1] z<yory>t
gives us Op(D)(z,y) = 1 1] yorv=n-
{y}  z>yandy<ty

Finally, Op(L) = F(0).
We show that Mg" is a (simple) refinement of (Mg"?):

L OiM)(zy) S Or(M)(2,y)
Since F s increasing, F ] < Fly], which means that
O\ (w.y) = {x} € F(F a]) = Plamin {F ). F[5]}) = Or(A) ..

Assume w.l.g. that =z < y.

2. O1(V)(z,y) € Op(V)(z,y): this is shown similarly.

3. O1(~)(x) € Op(=)(z): using property [(3)] we have that

O\()@) = {1 -} S {1y |y € F(Fla))} = F(1 - Fla]) = Op(~)(x).

4. O1(D)(xz,y) <  Op(D)(z,y): If 2 < y or y € [t,1] then
O1D)(z,y) = [t1,1] = Op(D)(z,y). Otherwise, O1(D)(x,y) = {y}, which
conforms with the calculation of Op(D) above.
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5. O1(L) € Op(L): We show that 0 € F(0) (= Op(L)). Since Im(F) = [0, 1],
0 € F(x) for some x. Assume for contradiction that x > 0. Since F' is an ex-
pansion function, there exists some y € F(0). By property [2)} 0 > y, which is a

contradiction.

t1

=

Next, we prove that Mg is a strongly preserving F-rexpansion of Mg". Clearly,
it is preserving (as it is simple). The interpretations of all the connectives in Mg"
are deterministic, with the exception of D. Therefore, the only thing that needs to
be verified is that F(z) N Oy(D)(z,y) # 0 whenever z € Oy(D)(F [z], F [y]) and either
z<yory € [t,1]. Let z € Ox(D)(F[z],Fly]). Since < y or y € [t1,1], we have
Flz] < F[y] or Fly] € [ts,1]. Therefore, z € [ta,1], and so F(z) C [t1,1]. Since in this

case, O1(D)(x,y) = [t1, 1], we have F(z) N O1(D)(x,y) = F(z) # 0.

(3 = 2) : Clearly, every strongly preserving F-rexpansion is an F-rexpansion.
(2= 1): Suppose Mg" is an F-rexpansion of Mg”. We prove that F is (t;,ts)-

-

expanding, by verifying the four properties:
1. The correctness of property is trivial.

2. If F is not increasing, then there exist =, 2, y,y" € [0, 1] such that x < y, 2’ € F(x),
y' € F(y) and 2’ > y/. Since F is an expansion function, 2’ # ¢/, thus 2’ > /. Now,
since Mg"! is an F-rexpansion of Mg, v’ € O1(A)(2',y') C Op(A)(2,y') = F(x).

This is impossible, as x # y, ¥ € F(y), and F' is a rexpansion function.

3. Let € [0,1]. We prove that F(1 — z) = {l—y|yeF(x)}.
For every z€ F(1—uz), since Mg" is an F-rexpansion of Mg?,
1 — 2z € 0"k < Uscoyyant'(z) = F(x), and therefore

ze{l—y|ye F(x)}. And for every z € {1—y |y € F(z)}, 1 — z € F(z), and
therefore z € O1(=)(1 — 2) € U, icop-y@) F(7) = F(1 — ).

4. If F(x) is not a singleton for some z < to, then let y;,ys € F(x) such that y; < ys.
In particular, yi,y, < t;. Therefore, since Mg" is an F-rexpansion of Mg?,
y1 € 01(0)(y2: y1) € U.co, o)) £'(2) = [t1, 1], which is a contradiction. O

Now we apply Lemma and Theorem to the matrices Mg’ for various

values of t.
Lemma 6.5.10.

Loyt =F L for every 0 <t < 1/a.

M
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2.

Ml = I—MG? for every 12 < t; <ty < 1.

3. Fugt © Fagr for every 12 <t < 1.
4. l_MGi/Q g l_MGt_‘ and l_MGt—‘ g l_MGi/z fOI‘ eVeI'y 1/2 < t S 1
Proof.

1. We construct an expansion function F' that maps [0,1/2) to [0,¢) and (1/2,1] to
(1 —t¢,1]. The remaining value 1/2 is duplicated to the remaining segment [t, 1 — t].
Namely:

{2tx} x <1/2
F=Xel0,1].¢[t,1—1 T =1/
{2tz +1 -2t} x>1/)2

F : 0,1 — P([0,1]) since ¢ < 1/2. By Lemma and Theorem [6.2.7],
it suffices to prove that F is (t,l/2)-expanding. F is clearly an increasing
expansion function with (JIm(F) = [0,1] and U,cppy F(x) = [t 1] To
see that property is satisfied, we distinguish three cases: If =z < 1/2
1 —2 > Y2 and then F(1 —z) = {1—-2tz} = {1-y|yeF(x)}. If
x = Yo 1 —x = 12 and then F(1 — x) = [t,1—1t]. Note that
for every y, y € [t,1—¢t] iff 1 —y € [t,1—t]. Hence in this case,
Fl—z)={1—-y|lyet,1 -t} ={1l—-y|ye F(x)}. Ifx>121—2 <12 and
then F(1—z)={2t(1l—2)}={l—-y|ye{2ta+1-2t}} ={1—-y |y e F(z)}.
Finally, property clearly holds, as F'(z) is a singleton whenever x < 1/2.

2. We construct a rexpansion function that maps [ta, 1] to [t1, 1], [0, 1—t2) to [0, 1—1t1),
and [1 — t,t2) to [1 —t1,¢;). Consider the following function:

1—¢
17t; - X r<1l—1t
_ 2t;—1 —
f=Xxel0,1]. T Lt <z <ty
1-t; | t1—t2
Tty T2t

Let FF = Xz € [0,1].{f(x)}. By Lemma and Theorem [6.2.7, it suf-
fices to show that F' is (t1,ts)-expanding. F is clearly an increasing expan-
sion function, |JIm(F) = [0,1], and F(x) is always a singleton. In addition,
Usepon F@) = f({t1]) = [t1,1]. Finally, F(1 —2) = {1—y |y € F@)}, as
f(1—=x)=1- f(z) for every z € [0,1].

3. To show that k.t C .1, we prove that for every M! -valuation v there exists
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a Mg!-valuation v’ such that for every formula ¢, v EMe? o iff o/ EMe’ gp Let
v be a Mgl-valuation. We construct v by mapping the values that are strictly
below 1 to being strictly below ¢, in a way that conforms with the interpretation of
—. By making this mapping an increasing one, we conform with the interpretation
of the other connectives. This is defined as follows: Let f be defined by:

0 r =0
f=Axel0,1].¢2t—1Daz+1—-t O<z<1
1 r=1

f:10,1] — [0, 1] is strongly increasing and f(1 —x) = 1 — f(z) for every x € [0, 1].

Define v'()) = f(v(v)) for every 1. First, we prove that v’ is a Mg"-valuation:
For A, we have /(¢ Ah) = (u(pA9)) = f(min {v(g), o($)}) = min {v/(s), v'(8)},
as f is increasing. V is shown similarly. In addition,
V(oY) = fl(=y) = f - (@) = 1= fu@) = 1 - v(¥) and
V(L) = f(v(L)) = f(0) = 0. Next, we show that the implication con-
straints are satisfied: If v/(¢) < v/(¢), then since f is increasing, v(p) < v(v).
Since v is a Mgl-valuation, v(¢ D ) = 1, and hence v'(¢ D ) = 1 > t. If
v'(1p) > t, then by the definition of f, v/(¢)) = 1, which means that v(¢) = 1, and
again, v'(p D ) = 1 > t. Finally, if v'(¢) > v/(¢0) and v'(¢0) < t then we have
v(p) > v(p) and v() < 1. Since v is a Mg!-valuation, v(¢ D ¥) = v(¥) < 1,
and hence v'(¢ D ¥) = f(v(¢p)) = v'(¢p). Second, we prove that v EMes g iff
v EMGY 4 for every formula . If v EMS 1) then (1)) = 1. In this case, v/(¢)) = 1
as well, and in particular, v’ EMe" ¢, In addition, if o/ EMeS ¢, then V() > t,
that is, f(v(¢))) > t. By f’s definition, we must have v'(¢) = f(v(¢))) = 1, which
means that v(¢)) = 1. Therefore, v EME= ¢,

To show that ¢ # ka1, note that p D gk 1 =g D —p, as for every
Mg!-valuation v such that v(p D ¢) = 1, we must have that v(p) < v(q).
In particular, v(—-q) < wo(-p), and thus v(~¢g D -p) = 1. How-
ever, p D ql/pet 7¢ D —p, as can be seen by the following M " -valuation:
v(p) = 1,v(q) = t,v(-p) = 0,v(=g) =1 —t,v(p D q) =t,v(~¢ > —p) = 0.

4. By Theorem we have that p,—phFyge ¢ but p,—p VMG1/2 q, and
l_MGIf" =V @ but e = V. O

16The proof of this item does not use rexpansions: by Proposition Mgl is not a rexpansion of
Mag?,, as there is no function f : [0,1] — [0, 1] satisfying = € {1} iff f(z) € [t,1].
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Corollary 6.5.11. {'_Mci |0<t< 1} = {I—MGHQ,I—MGE,I—MGL}, and its cardinality
is 3.

6.5.4 On The Construction of Corresponding Proof Systems

We conclude by describing the current and potential development of analytic proof sys-
tems for the logics investigated in this section. We shall not repeat all general arguments
laid down in previous sections regarding the usage of rexpansions for the construction of
proof systems, but focus instead on an example that illustrates these principles in the
context of paraconsistent fuzzy logics.

Since all of the logics that were investigated here are conservative over G, our starting
point should be a proof system for it. There are several Gentzen-type systems for this
logic (see, e.g., [7, [10], 19, 43| 50, 51, [04]), and each of them can be used as a starting point.
As an example, we employ here the system from [I0], which is the most important of this
list, and was already used for extending Gdodel logic with quantifiers and modalities (see,
e.g. [31]). A (additive) variant of the system from [I0], which we call Gp¢ is presented
in Figure [6.2] Grc goes beyond ordinary sequent calculi, and employs a more complex
data structure: hypersequents. In our variant of Grc, hypersequents are taken to be
finite sets of sequents. For a hypersequent H and a sequent s, we write H | s to denote
the hypersequent H U{s}. The hypersequents in Grc are single-conclusion, in the sense
that for every hypersequent in a derivation of Grc, all sequents comprising it are single-
conclusion. The structural rules of Gy,c are obtained from obvious variants of the usual
structural rules of ordinary sequent calculi, by the addition of the communication rule
(com) and external weakening (EW), that operate on the hypersequent level. All the
logical rules of G except for (= V) are obtained from those of LK (with the same

names) by:
(1) Restricting them to single-conclusion sequents
(2) Adding a context hypersequent that is copied from the premises to the conclusion.

Equivalently, they are obtained from the logical rules of the propositional fragment of
Gentzen’s calculus LJ for intuitionistic logic by (2) alone.

We are thus again in a situation where a semantics and a corresponding Gentzen-type
system exist for some basic logic (in this case, Godel logic), and we would like to extend
this logic in several ways, thus obtaining a family of logics (in this case, logics induced

by simple refinements of Mg”?), as well as corresponding proof systems.
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Structural Rules:
H|T=¢p H|l p=19

ID —_—— cuT
(p) H|L,p= (eum) =19
H|T =y H
W) s, EW) Frs,
H|T,I"=¢ H|DT' =
(com) T, P T, 0

H|T=¢|["=1
Logical Rules:

H| Do =¢ Hi's=¢ H|T=4¢

M=) T erv=o =) HIT = oAy
H|l'o=¢ H|L[¢Y=09 H|T'=p|T=19
(V=) HT.oVi = o =V —HT=ove
HI'=¢ H|T[Yv=¢ H|T,¢p=1
(5=) H|T,pD1=0¢ 5=) H|T=¢Dv¢
U HT IS

Figure 6.2: The hypersequent calculus Gy,c

The first step, which is performing the right rexpansion for the base logic, was al-
ready done, and the various properties of the various refinements were identified in The-
orem [6.5.2] What is left is to augment Grc with appropriate rules for each logic.

All the arguments laid down in Section (6.4, and in particular Proposition [6.4.3, can
be extended to other families of proof systems besides pure calculi, and in particular to
hypersequent calculi. Accordingly, since every simple refinement of Mg? is conservative
over G, only rules that involve — should be considered when constructing calculi for
refinements of Mg 2.

As an example, we consider RM-, which is the most promising refinement (taking
into consideration properties (i)—(vii) above). A calculus for this logic was recently
constructed, which we call GRMDE As expected by the above arguments, Gryo is
obtained from Grc by the addition of rules that involve negation. These additional
rules are described in Figure [6.3l There is a strong connection between Gryo> and Gy
(see Example [2.2.8)), which is similar to the connection between Grc and LK: the rules
(== =), (= =), (-A =), (=V =) and (= V) of Grm> are obtained from the rules
with the same names of G4 by making the changes (1) and (2) described above.

"Grm> was given by Arnon Avron in an unpublished manuscript. It is presented here with his
permission.
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= H|I'=¢|l= g
(5==) Hﬁ;f;i:jzﬁ (=) %
ey HEXRRER=E o e
L TS LS WIS
(=5 =) H|T,—p=¢ <:ﬁ3)2H|r,gp3¢;H(¢3¢)

H|T,=(¢D9Y)=0¢ H|T = —~(pD)

Figure 6.3: Additional rules for — in Grnmo

When searching for proof systems for other refinements of MgY?, we have an even
better starting point than Grc. Indeed, let M be such a refinement. Then M differs
from Mgno solely in the interpretation of D. By Proposition [6.1.8] F, is conservative
over the D-free fragment of RM-. Thus, when designing a hypersequential calculus for

M, it suffices to focus on finding alternatives to the implication rules of Gruo.



Chapter 7

Summary and Further Work

In this thesis we studied and utilized analyticity in general families of propositional
Gentzen-type proof systems. Our research included pure calculi and their extensions
with modal operators, as well as intuitionistic calculi. For each of them, we defined a
parametrized notion of a subformula that led to a general definition of analyticity, that,
while preserving the main advantages of the usual subformula property, applies for a
much wider collection of calculi. Decidable sufficient criteria for analyticity in pure cal-
culi were given, and analyticity was used in order to develop and implement a uniform
SAT-based decision procedure for the family of analytic pure calculi. The connection
between cut-admissibility and analyticity was also studied, and it was shown that the
two properties are equivalent for a wide sub-family. This result was also proved for
intuitionistic calculi. We then extended pure calculi with well-known impure rules for
modal operators, and proved that this extension preserves the analyticity of the base
pure calculus. An extension of the decision procedure for pure calculi was given, that
accommodates the addition of modal operators of a certain type. While all of the afore-
mentioned results are syntactic in nature, their proofs were based on general semantic
frameworks. Thus, general soundness and completeness theorems were used to identify
and prove semantic counterparts of the desired syntactic properties. In particular, we
investigated a useful semantic framework, namely Nmatrices, and introduced the rexpan-
sion operation on them. This operation was shown to be useful in the construction of
pure analytic sequent calculi for families of non-classical logics. The constructed calculi,
being pure and analytic, are of course subject to the reduction to SAT, as well as to the
(analyticity-preserving) extension with modal operators. We have also shown that this
operation is interesting in its own right, and used it to introduce a general method to ob-
tain conservative extensions of a given logic. In particular, we constructed paraconsistent
conservative extensions of Godel fuzzy logic using rexpansions. For them, hypersequent

calculi were considered, rather than ordinary sequent calculi.

151
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We believe that the usefulness of our generic approach was demonstrated in this
thesis, and that future Gentzen-type systems for new non-classical logics will be able to
be proven analytic, and also to be given decision procedures using our results. The quest
for generic theorems and tools that capture families of logics at once is still at its early
stages of development, and there are several open problems and directions for further
research. The general direction is to further extend, refine and generalize the results
of this thesis, thus making them more robust across families of non-classical logics. In

particular, this includes the following:

Modal and Intuitionistic Calculi For pure calculi, the picture is quite clear. Our in-
vestigation provides a comprehensive study of analyticity and cut-admissibility, and
also a uniform SAT-based decision procedure. These results should be imported
in their full generality also to the extension of pure calculi with modal operators,
and to intuitionistic calculi. For example, while the SAT-based decision procedure
for pure calculi was extended here to Next-operators, the inclusion of other modal
operators, as well as intuitionistic calculi are both left for future work. As an-
other example, the results of Section and chapter [5| were proven for a notion
of analyticity that is parametrized by a binary relation <. To what extent this
could be done for other parts of the thesis is another area for future research. In
particular, a corresponding “~<-local” relation should be found, that will carry the
results of Section 4.4l The connection between cut-admissibility and analyticity
in calculi for modal logics should also be investigated, using a similar approach
to the one taken here for intuitionistic calculi. We note, however, that such an
approach is expected to have certain limitations, as some analytic calculi for modal
logics (e.g., S5 and B [85], 196l [101]) do not admit cut-admissibility. The connection
between pure calculi and their intuitionistic variants should also be studied, with
the following questions in mind: Does <-analyticity imply Int-<-analyticity? Does
cut-admissibility imply Int-cut-admissibility? Do either of the converses hold?

First-order Languages Our general investigation focused on the propositional level of
non-classical logics. We believe, however, that the ideas presented here could be
elevated to the first-order level as well. In particular, the investigation of analyticity
and cut-admissibility in a first-order setting could be accomplished by studying
partial first-order structures, as well as three-valued first-order structures. Note
that for the case of classical logic, the latter was done already by Schiitte in [90].
In turn, a uniform decision procedure for first-order non-classical logics would rely

on automated first-order theorem provers, rather than on SAT-solvers.

Further Development of Gen2sat Our tool Gen2sat, that implements the suggested
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decision procedure, could be further developed in several ways. Having logic re-
searchers in mind, the ability to generate actual derivations of provable sequents
could be of great help. As an artifact of its semantic approach, however, Gen2sat
currently cannot provide such derivations. This can be overcome by integrating
Gen2sat with other existing propositional theorem provers so that for unprovable
sequents, the theorem prover will not have to search for a proof, while for prov-
able sequents, the search space can be potentially reduced by exploiting Gen2sat’s
capability of supplying a sufficient subset of rules. For applications, it is interest-
ing to study more useful logics that can be reduced to efficient fragments of SAT
(e.g., 2SAT). Finally, the sufficient criteria for analyticity that were proposed in
Section [2.5] could be implemented and incorporated into the tool, thus asking the
user for an analyticity assumption only in case the tool itself did not succeed in

finding one.

An Extended Study of Rexpansions Theorem provides a sufficient condition
for two Nmatrices to induce the same consequence relation. However, in Sec-
tion we have seen that Mgy~ induces the same logic as Mg n Without
being a strongly preserving rexpansion of it. An interesting direction for further re-
search is to find a necessary and sufficient criterion for two Nmatrices to induce the
same logic, of which being a strongly preserving rexpansion is a particular instance.
In addition, rexpansions can be used to construct paraconsistent conservative ex-
tensions of fuzzy logics other than G, using a similar methodology to the one of
Section [6.5l Finally, new sequent and hypersequent calculi for non-classical logics,
and in particular, for more interesting refinements of Mg 2 should be constructed,
taking the guidelines of Sections [6.4] and into account.



Bibliography

1]

[10]

P. Abate and R. Goré. The tableau workbench. Electr. Notes Theor. Comput. Sci.,
231:55-67, 2009.

A. R. Anderson and N. D. Belnap. FEntailment: The Logic of Relevance and Ne-
cessity, Vol.I. Princeton University Press, 1975.

O. Arieli and A. Avron. The value of the four values. Artificial Intelligence, 102
(1):97-141, 1998.

O. Arieli and A. Avron. Three-valued paraconsistent propositional logics. In J.-Y.
Beziau, M. Chakraborty, and S. Dutta, editors, New Directions in Paraconsistent
Logic: 5th WCP, Kolkata, India, February 201/, pages 91-129. Springer India,
New Delhi, 2015.

O. Arieli, A. Avron, and A. Zamansky. Maximal and premaximal paraconsistency
in the framework of three-valued semantics. Studia Logica, 97(1):31-60, 2011.

F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:
103-106, 1966.

A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi and related
cut-free sequent calculi for the interpolable propositional intermediate logics. Logic

Journal of the IGPL, 7(4):447-480, 1999.

A. Avron. On an implication connective of RM. Notre Dame Journal of Formal
Logic, 27:201-209, 1986.

A. Avron. Natural 3-valued logics: Characterization and proof theory. Journal of
Symbolic Logic, 56(1):276-294, 1991.

A. Avron. Hypersequents, logical consequence and intermediate logis for concur-
rency. Annals of Mathematics and Artificial Intelligence, 4:225-248, 1991.

154



BIBLIOGRAPHY 155

[11]

[12]

[13]

[14]

[15]

[19]

[20]

[21]

A. Avron. Simple consequence relations. [Information and Computation, 92(1):
105-139, may 1991.

A. Avron. Gentzen-type systems, resolution and tableaux. Journal of Automated
Reasoning, 10(2):265-281, 1993.

A. Avron. Classical Gentzen-type methods in propositional many-valued logics.
In M. Fitting and E. Ortowska, editors, Beyond Two: Theory and Applications
of Multiple-Valued Logic, volume 114 of Studies in Fuzziness and Soft Computing,
pages 117-155. Physica-Verlag HD, 2003.

A. Avron. A non-deterministic view on non-classical negations. Studia Logica: An
International Journal for Symbolic Logic, 80(2/3):159-194, 2005.

A. Avron. Non-deterministic semantics for logics with a consistency operator.
Journal of Approximate Reasoning, 45:271-287, 2007.

A. Avron. Non-deterministic semantics for families of paraconsistent logics. Hand-
book of Paraconsistency, 9:285-320, 2007.

A. Avron. Tonk - a full mathematical solution. In A. Biletzki, editor, Hues of
Philosophy, pages 17-42, 2010.

A. Avron. RM and its nice properties. In K. Bimbd, editor, J. Michael Dunn
on Information Based Logics, pages 15-43, Cham, 2016. Springer International
Publishing.

A. Avron and B. Konikowska. Decomposition proof systems for Godel-Dummett
logics. Studia Logica, 69(2):197-219, Nov 2001.

A. Avron and O. Lahav. On constructive connectives and systems. Logical Methods
in Computer Science, 6(4), 2010.

A. Avron and I. Lev. Non-deterministic multi-valued structures. Journal of Logic
and Computation, 15:241-261, 2005. Conference version: A. Avron and I. Lev.
Canonical Propositional Gentzen-Type Systems. In International Joint Confer-
ence on Automated Reasoning, IJCAR 2001. Proceedings, LNAI 2083, 529-544.
Springer, 2001.

A. Avron and A. Zamansky. Non-deterministic semantics for logical systems — A
survey. In D. Gabbay and F. Guenther, editors, Handbook of Philosophical Logic,
volume 16, pages 227-304. Springer, 2011.



156

[23]

[24]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

BIBLIOGRAPHY

A. Avron and Y. Zohar. Rexpansions of non-deterministic matrices and their ap-

plications in non-classical logics. Submitted to Review of Symbolic Logic.

A. Avron and Y. Zohar. Non-deterministic matrices in action: Expansions, refine-
ments, and rexpansions. In IEEE 4 7th International Symposium on Multiple- Valued
Logic (ISMVL), pages 118-123, 2017.

A. Avron, J. Ben-Naim, and B. Konikowska. Cut-free ordinary sequent calculi for

logics having generalized finite-valued semantics. Logica Universalis, 1:41-69, 2006.

A. Avron, B. Konikowska, and A. Zamansky. A systematic generation of analytic
calculi for logics of formal inconsistency. In J.-Y. Bziau and M. E. Coniglio, editors,
Logic without Frontiers: Festschrift for W.A. Carnielli on the occasion of his 60th
Birthday, volume 17 of Tribute. College Publications, London, 2011.

A. Avron, B. Konikowska, and A. Zamansky. Modular construction of cut-free
sequent calculi for paraconsistent logics. In Logic in Computer Science (LICS),
2012 27th Annual IEEE Symposium on, pages 85-94, 2012.

A. Avron, B. Konikowska, and A. Zamansky. Cut-free sequent calculi for C-systems

with generalized finite-valued semantics. Journal of Logic and Computation, 23(3):
517-540, 2013.

A. Avron, B. Konikowska, and A. Zamansky. Efficient reasoning with inconsistent

information using c-systems. Information Sciences, 296:219 — 236, 2015.

M. Baaz, C. G. Fermiiller, G. Salzer, and R. Zach. Multlog 1.0: Towards an expert
system for many-valued logics. In M. A. McRobbie and J. K. Slaney, editors,
Automated Deduction (CADE-13), pages 226-230. Springer, 1996.

M. Baaz, A. Ciabattoni, and C. G. Fermller. Hypersequent calculi for Godel logics
a survey. Journal of Logic and Computation, 13(6):835-861, 2003.

D. Batens. Paraconsistent extensional propositional logics. Logique et Analyse,
90-91:195-234, 1980.

D. Batens and J. Meheus. A tableau method for inconsistency-adaptive logics. In
TABLEAUX, pages 127-142. Springer, 2000.

L. Beklemishev and Y. Gurevich. Propositional primal logic with disjunction. Jour-
nal of Logic and Computation, 24(1):257-282, 2014.



BIBLIOGRAPHY 157

[35]

[36]

[39]

[41]

[42]

J.-Y. Béziau. Sequents and bivaluations. Logique et Analyse, 44(176):373-394,
2001.

F. Bou, F. Esteva, J. M. Font, A. J. Gil, L. Godo, A. Torrens, and V. Verdu. Logics
preserving degrees of truth from varieties of residuated lattices. Journal of Logic
and Computation, 19(6):1031-1069, 2009.

J. Cai and R. Paige. Using multiset discrimination to solve language processing
problems without hashing. Theoretical Computer Science, 145(12):189-228, 1995.

W. Carnielli, M. Coniglio, and J. Marcos. Logics of formal inconsistency. In
D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 14,
pages 1-93. Springer, 2007. Second edition.

W. A. Carnielli and J. Marcos. A taxonomy of C-systems. In W. A. Carnielli, M. E.
Coniglio, and I. M. L. D’Ottaviano, editors, Paraconsistency: The logical way to
the inconsistent, volume 228 of Lecture Notes in Pure and Applied Mathematics,
pages 1-94. Marcel Dekker, 2002.

A. Ciabattoni and L. Spendier. Tools for the investigation of substructural and
paraconsistent logics. In E. Fermé and J. Leite, editors, Logics in Artificial Intel-
ligence (JELIA 201}), pages 18-32. Springer, 2014.

A. Ciabattoni, O. Lahav, L. Spendier, and A. Zamansky. Automated support for
the investigation of paraconsistent and other logics. In S. Artemov and A. Nerode,
editors, Logical Foundations of Computer Science, volume 7734 of Lecture Notes in

Computer Science, pages 119-133. Springer Berlin Heidelberg, 2013.

H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In Logic in Computer Science, 2003.
Proceedings. 18th Annual IEEE Symposium on, pages 271-280, June 2003.

G. Corst. Semantic trees for Dummett’s logic LC. Studia Logica: An International
Journal for Symbolic Logic, 45(2):199-206, 1986.

C. Cotrini and Y. Gurevich. Basic primal infon logic. Journal of Logic and Com-
putation, 2013.

A. Degtyarev and A. Voronkov. The inverse method. Handbook of Automated
Reasoning, 1:179-272, 2001.

N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Com-

mun. ACM, 22(8):465-476, Aug. 1979.



158

[47]

[50]

[51]

[52]

[53]

[54]

[55]

BIBLIOGRAPHY

W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. The Journal of Logic Programming, 1(3):267—-284,
1984.

M. Dummett. A propositional calculus with denumerable matrix. Journal of Sym-
bolic Logic, 24:97-106, 1959.

M. Dunn and G. Restall. Relevance logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 6, pages 1-128. Kluwer, 2002.

R. Dyckhoff. A deterministic terminating sequent calculus for Godel-Dummett
logic. Logic Journal of the IGPL, 7(3):319-326, 1999.

R. Dyckhoff and S. Negri. Decision methods for linearly ordered Heyting algebras.
Archive for Mathematical Logic, 45(4):411-422, May 2006.

R. Ertola, F. Esteva, T. Flaminio, L. Godo, and C. Noguera. Paraconsistency
properties in degree-preserving fuzzy logics. Soft Computing, 19(3):531-546, 2014.

O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux
research engineering companion. In B. Beckert, editor, Automated Reasoning with
Analytic Tableauzr and Related Methods (TABLEAUX 2005), volume 3702 of Lec-
ture Notes in Computer Science, pages 318-322. Springer, 2005.

G. Gentzen. Investigations into logical deduction, 1934. In German. An English
translation appears in ‘The Collected Works of Gerhard Gentzen’, edited by M. E.
Szabo, North-Holland, 1969.

M. Girlando, B. Lellmann, N. Olivetti, and G. L. Pozzato. Standard sequent
calculi for Lewis’ logics of counterfactuals. In L. Michael and A. Kakas, editors,
Logics in Artificial Intelligence: 15th European Conference, Proceedings, Cham,
2016. Springer International Publishing.

C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. Foun-
dations of Artificial Intelligence, 3:89-134, 2008.

D. Gorin, D. Pattinson, L. Schroder, F. Widmann, and T. Wilmann. COOL: A
generic reasoner for coalgebraic hybrid logics (system description). In S. Demri,
D. Kapur, and C. Weidenbach, editors, Automated Reasoning (IJCAR 2014 ), vol-
ume 8562 of Lecture Notes in Computer Science, pages 396-402. Springer, 2014.

[58] Y. Gurevich and I. Neeman. Logic of infons: The propositional case. ACM Trans-

actions on Computational Logic, 12(2):91-928, Jan. 2011.



BIBLIOGRAPHY 159

[59]

[62]

[63]

R. Héhnle. Tableaux and related methods. In J. A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning (in 2 volumes), pages 100-178. Elsevier
and MIT Press, 2001.

P. Hajek. Metamathematics of fuzzy logic. Springer Science & Business Media,
1998.

A. Heuerding, G. Jager, S. Schwendimann, and M. Seyfried. The logics workbench
LWB: A snapshot. Furomath Bulletin, 2(1):177-186, 1996.

S. Jaskowski. On the rules of suppositions in formal logic. Studia Logica, 1:5-32,
1934. Reprinted in S. McCall (1967) Polish Logic 19201939 Oxford UP, pp. 232258.

N. Kamide. A hierarchy of weak double negations. Studia Logica, 101(6):1277-1297,
2013.

H. Kawai. Sequential calculus for a first order infinitary temporal logic. Mathe-
matical Logic Quarterly, 33(5):423-432, 1987.

S. C. Kleene. On notation for ordinal numbers. The Journal of Symbolic Logic, 3:
150-155, Dec. 1938.

S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1950.

R. Kowalski. Logic for Problem-solving. North-Holland Publishing Co., Amster-
dam, The Netherlands, The Netherlands, 1986.

O. Lahav. Studying sequent systems via non-deterministic multiple-valued ma-
trices. In International Symposium on Multiple- Valued Logic, volume 9, pages
575-595, 2013.

O. Lahav. Semantic Investigation of Proof Systems for Non-classical Logics. PhD
thesis, Tel Aviv University, 2013.

O. Lahav and A. Avron. A unified semantic framework for fully structural proposi-
tional sequent systems. ACM Transactions on Computational Logic, 14(4):271-273,
Nov. 2013.

O. Lahav and Y. Zohar. From the subformula property to cut-admissibility in

propositional sequent calculi. To appear in Journal of Logic and Computation.



160

[72]

[74]

[81]

[82]

[83]

BIBLIOGRAPHY

O. Lahav and Y. Zohar. SAT-based decision procedure for analytic pure sequent
calculi. In S. Demri, D. Kapur, and C. Weidenbach, editors, Automated Reason-
ing, volume 8562 of Lecture Notes in Computer Science, pages 76-90. Springer
International Publishing, 2014.

O. Lahav and Y. Zohar. On the construction of analytic sequent calculi for sub-
classical logics. In U. Kohlenbach, P. Barcel, and R. de Queiroz, editors, Logic,
Language, Information, and Computation, volume 8652 of Lecture Notes in Com-

puter Science, pages 206-220. Springer Berlin Heidelberg, 2014.

O. Lahav and Y. Zohar. Cut-admissibility as a corollary of the subformula prop-
erty. In R. A. Schmidt and C. Nalon, editors, Automated Reasoning with Analytic
Tableaur and Related Methods: 26th International Conference, TABLEAUX 2017,
Brasilia, Brazil, September 25-28, 2017, Proceedings, pages 65-80, Cham, 2017.

Springer International Publishing.

D. Le Berre and A. Parrain. The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7:59-64, 2010.

J. Lukasiewicz. Philosophische bemerkungen zu mehrwertigen systemen der aus-
sagenlogik. Comptes Rendus de la Siciete des Sciences et des Letters de Varsovie,
ct.iii 23:51-77, 1930.

S. Maehara. Eine darstellung der intuitionistischen logik in der klassischen. Nagoya
Mathematical Journal, 7:45—64, 1954.

J. Marcos. On negation: Pure local rules. Journal of Applied Logic, 3(1):185-219,
2005.

G. Metcalfe, N. Olivetti, and D. M. Gabbay. Proof theory for fuzzy logics, volume 36.
Springer Science & Business Media, 2008.

R. K. Meyer and R. Routley. An undecidable relevant logic. Mathematical Logic
Quarterly, 19(26-29):389-397, 1973.

D. Miller and E. Pimentel. A formal framework for specifying sequent calculus
proof systems. Theoretical Computer Science, 474(0):98 — 116, 2013.

D. Nelson. Constructible falsity. Journal of Symbolic Logic, 14(1):16-26, 005 1949.

N. Olivetti and G. Pozzato. Nescond: An implementation of nested sequent cal-

culi for conditional logics. In S. Demri, D. Kapur, and C. Weidenbach, editors,



BIBLIOGRAPHY 161

[84]

[92]

[93]

[94]

[95]

[96]

Automated Reasoning, volume 8562 of Lecture Notes in Computer Science, pages
511-518. Springer, 2014.

L. Pinto and T. Uustalu. Proof search and counter-model construction for bi-
intuitionistic propositional logic with labelled sequents. In Proceedings of the 18th
International Conference on Automated Reasoning with Analytic Tableauz and Re-
lated Methods, TABLEAUX 09, pages 295-309, Berlin, Heidelberg, 2009. Springer-
Verlag.

F. Poggiolesi. Gentzen calculi for modal propositional logic, volume 32. Springer
Science & Business Media, 2010.

G. Priest. The logic of paradox. Journal of Philosophical Logic, 8(1):219-241, 1979.
A. N. Prior. The runabout inference-ticket. Analysis, 21(2):38-39, 1960.

R. Rothenberg. A class of theorems in Lukasiewicz logic for benchmarking auto-
mated theorem provers. In TABLEAUX, volume 7, pages 101-111. Citeseer, 2007.

P. K. Schotch, J. B. Jensen, P. F. Larsen, and E. J. MacLellan. A note on three-
valued modal logic. Notre Dame J. Formal Logic, 19(1):63-68, 01 1978.

K. Schiitte. Beweistheorie. Springer-Verlag, Berlin, 1960.

D. Scott. Completeness and axiomatizability in many-valued logic. In Proceedings of
the Tarski symposium, volume 25, pages 411-436. American Mathematical Society,
Providence, 1974.

A. M. Sette. On the propositional calculus P1. Mathematica Japonicae, 18(13):
173-180, 1973.

D. J. Shoesmith and T. J. Smiley. Multiple Conclusion Logic. Cambridge University
Press, 1978.

O. Sonobe. A Gentzen-type formulation of some intermediate propositional logics.
Journal of Tsuda College, 7:7-14, 1975.

R. Suszko. Remarks on Lukasiewicz’s three-valued logic. Bulletin of the Section of
Logic, 4(3):87-90, 1975.

M. TAKANO. Subformula property as a substitute for cut-elimination in modal
propositional logics. Mathematica Japonica, 37:1129-1145, 1992.



BIBLIOGRAPHY 162

[97]

[100]

[101]

[102]

103]

[104]

G. Takeuti. Proof Theory. Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Company., 1975.

D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. Mettel2: Towards a tableau
prover generation platform. In PAAR@ IJCAR, pages 149-162, 2012.

A. Urquhart. Many-valued logic. In D. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, volume 11, pages 249-295. Kluwer, 2001. Second edition.

H. Wansing. The Logic of Information Structures, volume 681 of Lecture Notes in
Computer Science. Springer, 1993.

H. Wansing. Sequent systems for modal logics. In D. M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, 2nd edition, volume 8, pages 61-145.
Springer, 2002.

Y. Zohar. Gen2sat website. http://www.cs.tau.ac.il/research/yoni.zohar/

gen2sat.html.

Y. Zohar and A. Zamansky. Gen2sat: An automated tool for deciding derivability
in analytic pure sequent calculi. In International Joint Conference on Automated

Reasoning, pages 487-495. Springer, 2016.

Y. Zohar, D. Tishkovsky, R. A. Schmidt, and A. Zamansky. Automating automated
reasoning: The case of two generic automated reasoning tools. Submitted to Journal

of Automated Reasoning.


http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html
http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html

071099

I NTIAY NODIAN 0POY DINDINN NI OND

. Ori Lahav and Yoni Zohar. SAT-based decision procedure for analytic

pure sequent calculi. IJCAR 2014.

. Ori Lahav and Yoni Zohar. On the construction of analytic sequent

calculi for sub-classical logics. WoLLIC 2014.

. Yoni Zohar and Anna Zamansky. Gen2sat: An automated tool for

deciding derivability in analytic pure sequent calculi. IJCAR 2016.

. Arnon Avron and Yoni Zohar. Non-deterministic matrices in action:

Expansions, refinements, and rexpansions. ISMVL 2017.

. Ori Lahav and Yoni Zohar. Cut-admissibility as a corollary of the
subformula property. TABLEAUX 2017.

. Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Za-
mansky. Automating automated reasoning: The case of two generic

automated reasoning tools. Submitted.

. Arnon Avron and Yoni Zohar. Rexpansions of non-deterministic ma-

trices and their applications in non-classical logics. Submitted.

. Ori Lahav and Yoni Zohar. From the subformula property to cut-

admissibility in propositional sequent calculi. Submitted.



DXDYNN MNIY NIV 2INN DIPINVORND NN 25515 D) NI IWAND DNIANIM O NNV
.DDN NN OPIRTIN DNVINNK T DY ONANIND O) , 0NNV
NP9IP MINDN NIN N N0N DDYNN OV NPPND YHYNIY 3DI0N 20INDN 190N
Ty pNPNRN NNVN DYNNN 28D NYAPI NPPVLINDN O2Y D52 NYPON NPIIYIT
LOYONTIND DNVINND DY M1DAIVIN NPPLINDN NN DYNP DPYIRTINN OOOINY
.NPPOVINDA DY NIPNVN ONTINND PONM NNVN PHNN P2 NPVLPLVLYION NTIN T
DY ANNNN DYNNN DY NPVIOIND DX NI NNV DYNN DY NPVIOIRY NTNYN
MDD 2NN NN NN NNV NPPON MNYN NN NONY NTIYIN

DVPOYN NpYIp

DNPOVONPHINIVIN DIVNHN

DIVN NNV PR DODIPHRIVIND NPNON NAY 18N SY LJ 00mpon 22vnn
JIPYY NP ININD DYNN ,DOIN .DPTIPONTTN DVINMPD PN TR IVIRD NIV
NN NP5V S P NDIONN 9955 P IR RN AWATH NN oNnsn [ LJ Y
M1y 027 DYNN N9 L LJ DR 9900y DwNn SY NNavn DTN PN
DWNN DVA NON DDYNN D010 DX .HINK TMIWNT NPDVPIIVONP MPPND
DHVDHPYIRIOIR

NPVIOINY TNN PIPDY DININ DX ,DX NNV DDYNND IMTL ,NON D2WNN N1AY
.N2NT DNAYN NN MY MDY MNON )N

NPYIP MIDN NXIN N NNAYND NAY DYHRNYHN DX 12 RDINN 20INDN 19IN
T NPOIP MAMDN MO ROV IPOIYTNON NNV D910 0Ny 9D 102, NPOIY-NoN
NPYOINDM ,OPIRTIN DNVINN NIOID KO Mt P92 DWNNYN 1IN N2 NIV ,NPIIY

JPNPHRN NOVN DY DYPN YY NXAP NN NYHvn Y2100



NYPoON MNYN 2NIND NN P NPYIDIND NNON P2 IWPN Mt JPINR .NDAIM
MPavN N»Y1AY PEPITIN NN IYIANNDY IINN 2390 NN L)1 WD .MNDND MnNvnd
LIPNN 995 ROY DNV VYNNI NMIDIRNN MINDN NPIIY-NON MNYN NORIPN
MNYNA SWHYN TIYA YW P NPIIYITH MNYNN DY 'PoNn DINNN P2 Wpn
DIAPND  APYDINY TNN D0 PA VPN DR NPND MY AVOND NPIIYNONN
MYWH PN VI ,NPVDIPNIVT KO MYI0N POIYY DIPIN DX VI Y079
YDYNN SY 112320 1OYD NVWY NDAM N NPPN DY YSAD IV NPV
JDRAND DNRY 29D NPODPNIVT XD MXIVN TIT ,DP00INI DNNY DOIMPD
UMON NN XD HHAN I NVIY 29D 13 NPONIP RO MPPND Ny 027 ODVNN
OD5 NV PNNY VY MIYIND NPOVDPNIVT NI MPIVN DY NON My ,qON2a
9210 R NV HY ANV IWNN VIDIYN INM) NP0 DY MANYN manan n»ad
S5y D9 MNIM Y91V, MMNY NYVIVDONP-NID MPPND DY YTH NON Mo

I PYAY DNDYP MNIND N9

OYINTIN DMIVINNR DY DMINV DAYNN

Y25 0N JPY NNV DPNX OPORTIN DNVINNR NIAY DTN DOVIMPON DD
NPPNA DY OPN T80 ;NONRD DXDYNN .IVPNN MNNDN DY MON 190N
D2YNN DY MNNN 90NY 1) T DX NN )0 29 DY QR DY) NININY
OYYI Nt 72T LDYORTIN DNVINND NNV RY OOYD DY DNIANIN NAY NNV
DNVINNND NN HD1DY PONN P2 DYNNN DY NNVN PONN YA NTION T DY
D995 DY NNV DYNN SY NANIN DN OIPN LYNOY DAIN DX .OYONTINN
NIN PODIN NI NNV DYNN OXR IO NPYOIN NINYN OPORTIN D NVINND
oy T N OINNIN LOPONTID DNVINN MNAY 0995 DY INANIN INNKD TO IRYY
D) DYYYIN MY DVIVA DIPIVIP TN 0NNV DDYNN DY 7790 MINNIN

D2YNN P2 M IYP ORI DDYNN N0 DO D) WD NN NN DWNNA



VIOV 7PMOOYMN NPODIND NNON DY INVY NPPN NN TEOIND DN

:D0MPY PDYNN DY NPOOD MNavN

DNV D2VNAN

95 NN OO0 0N LK SV 0o PonD NmT M 220 Oya DOMPD 2VNN NON
DNVPN PONIN DYDY L (NADNM VI ,NYOND ,TNN ,MNT) D291 07NN DYYON
MY TIND TPVIDY 1 INOYN . IWPNN NMINNDI IR D9 092010 RY NN DIVPH
M9 NPVIVDIONP-NID MPINID 1D ,NPIIY-YIINI NI NON MPIND

DONIN .NPYOIN DNYVIANY DI DOV DNIN DPODN NN 1T INAYN NAY
12902 VIV J9IND ,TPVMIVIN NN X DIPIN T DY MHYPA PTNY 091D NON
DNV DDVYNN DY 120 MYY DPADN 0) MON DNIN TN 7D MNINN
D2YNN SV D) 1D ,0°27 DT DDYNN DY NPVIIIND NNON .DVTN DPDDIN)
S9N DD DONIN MYNAIND NN T NTIAYD OOPNN NRY ODWTN

DOV NYYNY THN P12°0) NPYIDIN ,NANT NNAYHN NN MNAYY DORIN N ,qON2
0) NPYYIOIN NAY DXPADN NRY ONPIVIPN IO PONI WNNYND NIYARD 1T INRNIN
PV VN SONNN TIY W R IRNIND LTI 2y LTNN P10 DY NOIYE INDIND
MNY MNI NPYRI VINIY ,DOMPD YDYNN DY NPTID? MNDON NV P2 DN NN
RIYaRT

552 DLINPO DY MND NYIONY 2733 DIPINON DPADN DN PHRIPINOND T2
D95 1Y ,PONOPN MPPADN N»YAD PNMITI DY DDINY PUDINY NNV VNN
NN 0T DY M NTTH DX 1D ,YINN 209 ,WNIN Nt DNPINON DD 0027
0 Oy DININND

DXVYNN 22D NMNNIN 217 MONNDN OPdDY 0»OINN DXVINDN DION NIV
MNMIYN .INDHD NPOIY"NON MNYN 1D ,NPPON NPOIYIT MNvn 0N 0NNV

N2 YRNYAD IMNY MIXNDNN NXIAP N2 MNIN NIVAND NYPON NYIIYT



N, TPNPNRN INDNNNN NNION WD PYTI NPVLIVDONPI MYPID NNINY NPV
MPNY NAY D27 O2DYNN L0191 .DDYNN DV INY INI PN MOND Y 29 DY
DM 5 TN ,NNDN~NNN NNONN 03N DPNR NPVIVDONP NI MPPND NPIIY~19
DANIN NNY MY NOOMN NININNN

Sy MUDIIN Y NTIYD NI N DAY MDD 13T DY WD PONN
,IMYO MNAY MAOWN ,INY MNP NPNY ML NPVIND MNDN .OPVIND DD
PVINDN NV QDN .NPLPVLID MNDN IYRND NV M MIOIN MIVOND)
MADN NNAIND ND NNV ,DNVYN DDYNNN DY NI VAN NTHPI NPOIDN
Rulp b by

NI NIRHIN NNNY HHIN PONNN
DOMPD MIIYN DY NNAYN 22X NVPLID MM MDY .1
1 INAYN MIAY 050 MMNN MNOY LAY NNDN .2

NN MVIN NNNDIY TPVIND MMN NNONHD ,MMNRN MY Dy THNvNa .3

PMPNN NTMa’nn MNd)
DPVIND DD NVINDN MMANN NNN .4

PNPHRN MMONN NPON .5

NI R NTIAY2 DVHNNYN DX 0N DPVINDN DYIN YOY MUY %500 NIPIYN
YAPI 1PN DA DNDN DY DHNNND TIY ,NE PIPY 29D . DOPNIVTIND PNIPYY
JDINN NN .NOY NPTHHNN MINNDNN NN SY NNRD 2DY 29 Dy TNy 19182
PIPPY .OMYN DOTINN DY WAYNI D010 NON MINNDN YNND DX NYP NPNT INDY
SV MNAYN DY NPPNY TNPNI DINNNY ;02T NPINTIN IWAND DOPNIVTIND
NN NIV TNY PRI MIPN 20N MNIND DIRNND PO 995 D 75 .NNDIN MOIWYN

.IN2INN NOIYNA JOP NPV MY PPVINDN NNONN O



179 NI 12 VIV DYNNN DNONND TOIN 2170 . NYVIVDONPTNNN M0 10
PNDN NPINY NAY NN DVINPD YNN .1
YNNI PO N TNNN 95 .2
NIPOND NOAPNN NNDN-NNN NNON .3
NIV DYNNN A0 DY 132 NPXNYa MOPN NYAPY DIINON ,0nNYo .4

NNON NN DN TYUND ,TPYRT LIANIN NDNY MY TPONINA DM MNION Y DIV
DNDN-NNN NNON NN NDIND AN N 9270, TNN 71200 MIPOND NNDR~NNN
DXDYNN T901N D) TN PIDDN DNINY DYN TN NMN DN»PNRY DWYNN NaY
YNNI MHDYPNN MNONN MDY AUND IDON DN DA (NYONTIN Moo
P20 VAYN NN TYRN NNDN~NNN NNON DX NDIND INY OP M2AT DY ,0MDN
NN NNDIN VIN DY DODDIANN DNIVPINON DY MY NNV .2WNNN Nay TNNN
DR MPIDD D2WNN NAY NOYIND NN’ XY PINTTN MNMONY MOY 51059

.N2Y DIPANON DY YITNN 132 NYNT DPPND D5 7D
Sy THNDNY YYAN ,NNDNTNNN NNONNA IPPYa MOINN N NTIAY ,NINE NIND

LN 0”93 DHRNINVON NN 11O 1 NNONA NYNNY |, THN 71D

”w ATy

NOXY NN D921 NN, NPORIP RO MPPND DY INY 935 2N P Moo »1oa
ST .9V NPYVIDY MYOON 901 DY DIVAND NON ,TaAD2 NNON-NNN NNONY
SY MNNDN NN P KD MYITY DNA DVIMPO SDYNN  OWYNd 99900 NDNPPN
PIMMNY SY NHYOMIN NNDN-NNN NNON NN YV MDY D) RONX NN VINPON

NON MYOON DMOMR INIP? NMX DNPYPNY DXDYNM  HIVOINIR OV 1)) MNVN



k)

NK :MIUNIN Doyaon pSpITIn moayn Ny NN P8 N 1934 mva
NPPNON MNAY DYNNN IPVOIPNIVYN AN TPONOP N May NJ)
YO MOIND IWAN ON  :DINON~NNN DN IR 07PN [, NJ ,WODIPONIVIND
NYNNYNRY MNIN NP DNMIND MYOLN DMNX DY DNDN W IR MNIN DY NNAPN
NRPPNN NO T NWYN ANON ,ODIN .NININAY MYV NN YOPVIDN N PN TN
NK 7y
D) YONOPN NIPNA DY NNDN~NNN NNON NN DNPPNRVY DDVYNN PWnY »Toa

02vNN .LJ) LK :0»2209709K ©2UNN Y NN 18 ODIDNIVYND NIPNIa
170, 0'= A nMsnn 0mMYa 0N DOMPD .DNIYNIN DVINPON YDYNND PN NIN
D791 MYY TRPH 2’0 NI = ), MIXNDN YV Nrayo v )0 A v
DX25N DVMPO VA NINK DD DWNHNYA NDNIN 1T NTIAYA 1D PYyI) 2
DIPNI DVLIMPO DY NPYWN NTIAYN (NMPYIN KD MNNDN DY NYHD MNIAPN
RN TONN 00N LI LK ©2wnnn vy meomd 1800 NIYR NMIRND) DY
9915Y TN 990N NINY ,TNNN DD5W NOIND TNY 7PN INT APOIND 27O .INDN
OIYNN INYA PR PN ,NIPOND NMYP XD DDD Neno N9YYw NND) MNNa
TPNPITYIND NADMNN POPOYD ANDN YIT IHND MDD VOVY NNONN Nt LIYN
(0PN >NM) DAIPNO NP DY NNDINN .D2YNNN YA MINDIN DY 1995
SV SPIDAN VINIIONVY NNV ,NT VAYHIN TPTHPHD NYI INDN~NNN NNON .0°329
Y22 1PN P20 OINPON DY) DPVIVDONP ON DVYNNNY 1M ,YID DDYNNN
nnomn (ON3a
DN (DXVIMPO-IPN YDYNN PO ,0NIY MIOON 1)) DOVIMPD YDYNN INND
NPPN9M TPONOPN NPPNYY QDN .NPONIP KO MM HY NNDINN NNNA DI 0D
NY MPMY DNDN~NNN NNON DY DVINPD SDYNN INND) |, TPODIVINIVIND

,I0MY MPPND NPV MPINY  NPORTIN MPPND DD ,MINK M2 NYONOP



DY DYSINN DIPIVAIPN DY TIYN 90N .1 NRNIN SV P09 NIPND N

LD21NN NRY ODWINY DVTN DXVYNN 190N DY NYYIDIND NN > T DY

MNON N TNN PIDPD) NPYIOIN ,DDYNN DY 2N PN NIAYY DORIN DN
NYVLINY DTN THN PIDD DY MNDIN VLYY N1 1 IRMN MNPV
DYPPADNN DAIPIVIPIN PONY DRIN DX T INNN MYNANA AN 92D

SIDN 90 D) DNYVIAN NPVIVIND

NNAYN MY N1 BNINON MIAD »TI1 NPYIIIND NNONI DVNNYN NN
YAy DY TPNPITY DY DDA DIINOND .DVMPO YDYNN DY NaNa
MON 0) NOND NTIAYN DY DT YD DNYP NY [ TPORIPN MPravn

ADY NNIN N MNP DNINORD VIDD SV

,NPODPNIVT KD MIVN DY HPVINDN NVONN NN DAIPIN DR ,NDAD
MITINY MPND MY DOMPO PDYNN OV 172D HHDD Na DVHNHNYM
TPON NOV DN rexpansion N NOIYI NN DI 1IN .DINN DIYNHNNI
YDYNN OV JNMIA N TPVIND NNDN DY ViKW (MND ND Ty ¥ DN) YION

JPORDD XD Mpondh 070DIN DVIMPD

ii



nsnn

SV aN7 PHND RNNY ,NNDINN NN RO YD DNNND DOVIMPD PYNN
NPORIP N MPINY 101 ,7PODIPHNIVIN NP9 DPONOP NiPnd Mao ,mpnd
SVOINMR NN DYDY DOIMPY YDYNN DY NP NAIVNN ANONN .MINK M9
NN DOMPY DYNN IYRD  .ANDN"NNN NNONI NNONDN DT OIPNA IWN
D2YNN MNAY  .YNNI MNDINN DY VISSNN 2NN DY 1Y NIIAPNN PODIN
DYNNN DY NI N I9NN 2NN DY M0 ODNY am 21D 92Th 079109
2THN 9N NYIAPIN

NN ,I0D AN MIPD NNOIN TIT NIY NPYOIN NNOINY NPOITIVDN TITN
921 ,MN2NN OONNN 92 NN PHDY I TWUND LION .YNNA TNNN 990 DV 1im )
,ONYY NDPONN TINN YOPLID NN PN TN DIPMNINA DOND POXNIN DD A
PNV 12 NN PVPVLYDN TN VIV TIN N YADN VINPONY YA TN
VIOND TNPNI ONIRNN THN XOD DDYNNY NTAIYN NN THN 2120 NNOIND NIDN
AN

DO IWND TO YY P MOHNNDN TN 7120 NNONAY NPVINIWN MAInd
DN PID0N 00N KXY TN ,DPVYIN DYV 027 DDYNN NYDID NN NPYVYIN
NVPVOIN PDIND ANV OPY 1PN [ TNN 7IDD NIOIND 110 AUNRD IDON NN NI
LY 191N

TITDINN NNMIN .DXOIMNPD YDYNN DY NPYIDIN NIN 1T NTIAY DY 1DI0N RV

:DNIAN DMI2TH DN NYDOW ) NNON DY SV 1HDD NPPN NN

NNON SV NNYP NN DHYVINY DI DOV DIVIVAP DPODN DN e
NPVLIN DY MOADN MNDN PONNY D01 NON OIPIVAIP . NPYDIND

NN D27 DT DXDYNN DY NPVIIIND ,NVYND . THN 7DD 73T MYV



000

TELAVIV NU'011IIN
UNIVERSITY QINTN

AN SN NVOIVNN
AOPNRO 29722 THNNI VY DTN DYTND NONPIN

P0202 VY AVYNNN SYTND 190N N2

NYONIP XY MPND 93y 18 MOIYN

PODAY MOPYT ININ NYAP BVYY NN

nN»

SNRLNGE

DV NNINA NNYY) ' DTy

PIAR ININ ‘9199

AN YN NVXOIDNIN DY VNIDY VN

2018 Ny



	Introduction
	Background
	This Thesis

	Pure Sequent Calculi
	Preliminaries
	What Are Pure Calculi?
	Semantics
	Streamlining, Equivalence, and Gentzen's Axioms
	Analyticity
	A Generalized Subformula Property
	Sufficient Criterion for Analyticity
	Constructing Analytic Calculi
	Proof of Theorem 2.5.21

	Cut-admissibility
	Semantics in the Absence of Cut
	From Analyticity to Cut-admissibility
	Some Applications
	Strengthening The Result
	Proof of analyticityImpliesCut

	Single-conclusion Pure Calculi

	SAT-based Decision Procedure
	A Polynomial Reduction from Derivability to UNSAT 
	Linear Time Decision Procedure
	Implementation of The Decision Procedure
	Features and Usage
	Implementation Details
	Performance


	Extending Pure Calculi with Modal Operators
	Impure Rules for Modal Operators
	Semantics
	Analyticity
	Proof of Lemma 4.3.12

	Extending The Decision Procedure
	Local Formulas
	Extending The Reduction
	Implementation

	Equivalence and Admissibility of Modal Rules
	Functionality vs. Seriality
	On the Admissibility of D-rules


	Intuitionistic Calculi
	Intuitionistic Derivations
	Semantics
	Proof of Theorem 5.1.10

	Rexpansions of Non-deterministic Matrices
	(N)matrices, Expansions, and Refinements
	Logical Matrices
	Non-deterministic Matrices
	Expansions and Refinements

	Refined Expansions
	Combining Expansions and Refinements
	Consequence Relations

	Some Examples
	Applications to Sequent Calculi
	Three-valued Paraconsistent Logics
	Logics of Formal (In)consistency
	Conservative Extensions of Sequent Calculi

	Negations for Gödel Logic
	The Nmatrix MGt and Its Refinements
	Two Particular Refinements of MG12
	What is the Cardinality of {MGt |  0<t1}?
	On The Construction of Corresponding Proof Systems


	Summary and Further Work
	Bibliography

