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Abstract

Sequent calculi constitute a prominent proof-theoretic framework, suitable for a vari-

ety of logics. These include classical and intuitionistic logic, modal logics, paraconsistent

logics, and many-valued logics, including fuzzy logics. The most important property of

useful sequent calculi is analyticity, whose most common instance is the subformula prop-

erty. When a calculus is analytic, a certain limitation on the search space of derivations

is achieved. In the case of propositional sequent calculi, this often leads to a finite bound

on the search space, and decidability immediately follows. This limitation may also be

useful for proving the consistency of a sequent calculus (the fact that the empty sequent

is not derivable).

The most standard way to prove analyticity is via cut-admissibility, that is: the

redundancy of the cut rule, which is usually the only rule whose premises may include

a formula that is unrelated to the conclusion. Indeed, when cuts can be eliminated, and

all other rules include in their premises only syntactic material from their conclusions, a

simple induction on derivations entails that the end sequent can be derived using only

its own syntactic material. Another major motivation for the elimination of the cut rule

is the adequacy of cut-free calculi for efficient proof-search procedures.

Despite the usefulness of cut-admissibility, relying on it alone for proving analyt-

icity leaves out various useful sequent calculi that are analytic, but do not enjoy cut-

admissibility. Moreover, even when it is possible to obtain cut-admissibility, it might

be easier to prove analyticity directly, rather than to go through complicated and error-

prone proofs of cut-admissibility. In addition, a great deal of ingenuity is required for

developing efficient proof-search algorithms for cut-free sequent calculi.

The main subject of this thesis is the notion of analyticity of sequent calculi discussed

above. Our main contribution is a general analysis of it in several wide families of calculi.

This analysis includes the following:

• We provide several sufficient criteria for analyticity, that are easy to check either

“by hand” or in an automated way. These simple criteria can replace complex

proofs of analyticity that go through cut-admissibility. In fact, many analyticity

results from the literature are obtained as particular instances of this result. The

value of these criteria is also demonstrated by several new useful calculi that we

introduce in this work.

• We study the connection between analyticity and cut-admissibility, and prove that



iv

in a wide variety of calculi, the two properties are equivalent. Besides theoretical

interest, this result can be used to simplify proofs of cut-admissibility, whenever

analyticity has already been established. Using this result, we show that some

of the sufficient criteria for analyticity that we propose are also sufficient for cut-

admissibility.

• We utilize analyticity to construct a uniform decision procedure for a wide family

of sequent calculi. Our decision procedure relies only on analyticity, regardless of

the admissibility of cut. Moreover, it is based on an efficient reduction to SAT,

and thus all heuristic considerations are shifted to the mechanisms of off-the-shelf

SAT-solvers. An implementation of this decision procedure is also described.

• Finally, we study the framework of non-deterministic matrices (Nmatrices) as a

tool for constructing analytic sequent calculi for logics that are already given in

some other form. A fundamental operation on Nmatrices is introduced, called

rexpansion, and is shown to be a crucial (though so far implicit) ingredient in

applying Nmatrices for the construction of analytic sequent calculi for non-classical

logics.
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Chapter 1

Introduction

1.1 Background

Gentzen’s seminal paper from 1934 [54] begins with the introduction of the first two

natural deduction calculi: system NK for classical logic and system NJ for intuitionistic

logic.1 The calculus NJ admits the subformula property: whenever a hypothesis can

be derived from a set of assumptions, there is a derivation of the same hypothesis that

contains only subformulas of the hypothesis and the assumptions. However, this property

fails for NK. For the purpose of providing a calculus with the subformula property for

both intuitionistic and classical logic, Gentzen introduced two alternative systems: LK

and LJ. The main formal entities that are manipulated in LK and LJ are called sequents.

These have the form Γ ⇒ ∆, where Γ and ∆ are finite lists of formulas2 and “ ⇒ ”

is a meta-symbol. This more complex data structure provides a good mechanism for

keeping track of the current premises in the derivation (the formulas that appear in Γ),

as well as the current possible conclusions of these premises (the formulas that appear

in ∆). And indeed, the intuitive reading of a sequent Γ ⇒ ∆ is that the conjunction

of the left side implies the disjunction of the right side. The manipulation of sequents

instead of formulas allowed Gentzen to replace all elimination rules of natural deduction

with rules that introduce formulas on the left side of the sequent. This way, the rules

of the logical symbols admit the local subformula property: in each rule, the premises

only include subformulas of the conclusion. In addition to the right-introduction and

left-introduction rules (that correspond to introduction and elimination rules in natural

deduction, respectively), LK and LJ also include several structural rules, that operate on

the sequent level. Most of the structural rules also admit the local subformula property,

1The same year, Jaśkowski’s similar notion of natural deduction was independently published [62].
2In this thesis we consider a variant in which Γ and ∆ are finite sets of formulas.

1



2 Chapter 1. Introduction

with the single exception being the cut rule:

Γ1 ⇒ ψ,∆1 Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

This is the only rule in LK and LJ that does not have the local subformula property.

For this reason, a major portion of Gentzen’s paper is devoted to the “Hauptsatz” (Main

Theorem):

Theorem ([54]). Every derivation of a sequent in LK (LJ) can be transformed into a

derivation of the same sequent in LK (LJ), in which the cut rule is not used.

As a corollary, Gentzen obtains the desired subformula property for the intuitionis-

tic case (LJ), and unlike natural deduction, also for the classical case (LK). From this

property, two additional characteristics of LK and LJ follow:

1. Consistency: the empty sequent is not derivable. This is true, as if it were derivable,

the subformula property would have ensured a proof of it that includes no formulas

at all. This is only possible if the empty sequent was one of the rules of the systems,

which is not the case.

2. Decidability: when considering propositional classical and intuitionistic logics, each

formula has finitely many subformulas. The subformula property of LK and LJ

then provides a decision procedure for both logics, as it reduces the search space of

possible derivations of a given sequent to a finite one.

Since then the framework of sequent calculi (as well as its extensions, like hyperse-

quential calculi) is widely applied in proof theory and automated reasoning. In addition to

classical and intuitionistic logics, many important non-classical logics were investigated

and implemented through this framework and some of its variants. Examples include

modal logics [85, 101], conditional logics [55], many-valued and fuzzy logics [25, 79] and

paraconsistent logics [27, 28, 29].

For each of them, the process can be roughly described as follows:

1. A sequent calculus is designed for a particular logic.

2. The cut rule is shown to be admissible in this calculus.

3. The subformula property (or some natural generalization of it) is obtained as a

corollary, and ensures that the calculus is consistent and decidable (in the proposi-

tional case).

4. In some cases, a proof-search procedure is designed for this particular calculus.
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There are two main disadvantages in the process just described. First, the traditional

route to the subformula property derives it as a corollary of cut-admissibility. However,

there are several important logics for which a cut-free ordinary sequent calculus seems

to be beyond reach, while a calculus that admits the subformula property was found.

Examples for such logics include the modal logics B (of symmetric Kripke frames) and S5

(of universal Kripke frames) [85, 96, 101], and also bi-intuitionistic logic [84]. Moreover,

even when a calculus admits both properties, it is sometimes much easier to prove the

subformula property than cut-admissibility. Second, developing an efficient proof-search

decision procedure for a given calculus requires a great deal of ingenuity (see, e.g., [45]).

Efficiency is often gained by heuristics that are calculus-specific, which makes them hard

to be generalized for other calculi.

Aiming for alternative routes than the one described above, this thesis focuses mainly

on the subformula property and some of its natural generalizations, in most cases without

relying on cut-admissibility, and utilizes some useful characteristics of it in order to design

uniform decision procedures.

1.2 This Thesis

On Analyticity

Gentzen describes the subformula property concisely by: “No concepts enter into the

proof other than those contained in its final result” [54]. Now, the obvious interpretation

of this description identifies the notion of “containment” simply with the subformula

relation. However, such a reading leaves out various calculi for non-classical logics, that,

while not admitting the subformula property, do admit simple variants of it, that still

ensure decidability and consistency. For example, in several calculi for many-valued and

paraconsistent logics, every derivation of a sequent can be transformed into a deriva-

tion in which not only subformulas of the sequent occur, but also their negations (see,

e.g., [13, 27]). Such variants of the subformula property are just as useful as the usual

one to achieve decidability and consistency. Thus, in this thesis we consider several in-

terpretations of what “containment” means, and introduce a parametrized notion of a

subformula. We call the various variants of the subformula property that we propose

analyticity, and say that a calculus is analytic if it admits one of them.

Main Results

Our main contribution is a systematic analysis of analyticity in three general families of

propositional sequent calculi:
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Pure Calculi These are propositional sequent calculi that include all the usual struc-

tural rules (id, cut, weakening, contraction and permutation), and whose logical

derivation rules do not enforce any limitations on the context sequents.3 While

the most dominant example of a pure calculus is the propositional fragment of

LK, pure calculi are suitable for various non-classical logics, including three and

four-valued logics, and also many paraconsistent logics. For this family, we provide

simple and decidable sufficient criteria for analyticity, that can be easily checked

by either a logic researcher or practitioner, or in an automated way. Many an-

alyticity results from the literature, as well as analyticity of new calculi that we

introduce, are obtained as particular instances of this result. Further, we study the

connection between analyticity and cut-admissibility in pure calculi, and show that

for a wide sub-family, these properties are equivalent. We then provide a generic

decision procedure for analytic pure calculi, that is based on a uniform reduction to

SAT, thus leaving all logic-specific heuristics and optimizations that are common in

proof-search algorithms to the realm of off-the-shelf SAT solvers. The final chapter

of this thesis studies methods to construct pure calculi for logics that are defined by

other means (e.g. by a Hilbert-type calculus or using a semantic definition).4 The

resulting calculi are subject to the reduction to SAT, as well as to the extension of

pure calculi with modal operators, that is described next.

Pure Calculi with Modal Operators Usual sequent rules for modal logics are im-

pure, as they operate on the context sequents and have several constraints on them.

However, when a calculus can split into a pure part and a separate impure part that

consists solely of modal rules, and these parts do not share any logical connectives,

it is possible to lift some of the properties of the pure part to the whole calculus.

This is the case, for example, for classical modal logics like K and S5, whose pure

part is simply the propositional fragment of LK, and the modal part consists of a

single rule for �. We study such calculi in a multimodal setting, and prove that the

analyticity of a pure calculus is preserved when adding several well-known impure

rules for modal operators. We then extend the decision procedure for analytic pure

calculi to modal calculi of a certain form.

Intuitionistic Calculi Gentzen’s calculus for intuitionistic logic LJ is not pure, as it

employs only single-conclusion sequents. In particular, all right-introduction rules

restrict the right side of the context sequent to be empty. In [97], Takeuti described

3We follow [11] and use the name pure for such calculi.
4In case the logic is given by a Hilbert calculus, we obtain proper sequent rules that are different

from the original axioms.
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Maehara’s equivalent calculus for this logic [77], LJ’, that relaxes this requirement.

LJ’ employs ordinary multiple conclusion sequents, and requires that the right side

of the context sequent is empty only for the right introduction rules of implication

and negation. Other calculi for constructive logics such as Nelson’s N3 and N4 (see,

e.g., [100]) employ a similar restriction. We identify a family of calculi, that we call

intuitionistic calculi, and includes, among others, the aforementioned examples.

We then prove that similarly to the case of pure calculi, cut-admissibility and

analyticity are equivalent for a wide sub-family of intuitionistic calculi.

Main Tools

Gentzen’s original method for proving analyticity (through cut-admissibility) is syntactic:

it uses double induction on derivations, and constructively eliminates cuts, by replacing

them with other rules that produce a derivation with a smaller inductive measurement.

Since then, many analyticity proofs go through the same route, with the details changing

according to the investigated calculus. While this approach is constructive – an algorithm

can usually be extracted, that transforms a derivation with cut into a derivation without

it – such syntactic proofs are very hard to verify, and are error-prone. The main issue is

the vast number of (sub-)cases that need to be considered, and the fact that some cases

that look similar to previously proven cases in the proof (and are therefore usually left

to the reader), are actually different.

Another approach, that we adopt in this work, is the semantic approach. According

to this approach, proving analyticity (and/or cut-admissibility) for a particular calculus

amounts to a completeness proof of analytic (and/or cut-free) derivations in the calculus

with respect to some semantics for which the full calculus is sound. Proofs in the semantic

approach are easier to verify, and, more importantly in the context of this thesis, to

generalize. Therefore, they are much more suitable for investigating families of calculi.

While each of the aforementioned results is purely syntactic, almost all of their proofs

are semantic, but in a way that is invisible to the “end-user”, that does not need to know

that the semantics even exists. The general recipe for proving our results goes as follows:

1. Formalize a syntactic hypothesis about a certain family of sequent calculi

2. Prove a general soundness and completeness theorem for this family

3. Using soundness and completeness, find a semantic hypothesis whose validity entails

that of the syntactic one (often the two hypotheses will actually be equivalent)

4. Prove the semantic hypothesis using semantic tools
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5. Conclude the validity of the syntactic hypothesis

But what semantic frameworks or principles should be used? An important desired

feature of a semantic framework for the investigation of proof systems is modularity. The

connection between the derivation rules and their semantics should be local, such that

small changes in the derivation rules only have a local effect on the semantics, preferably

only relating to the connectives that were changed in the proof system. For this reason,

the main principle that is common to all the frameworks that we utilize in this thesis

is the principle of non-determinism, that has proven useful in the analysis of families

of sequent calculi (see, e.g., [21, 27, 70]). According to this principle, that is borrowed

from automata and computability theory, the truth value of a compound formula is not

uniquely determined by the truth values of its direct subformulas, but is only constrained

by them. Further, more complex constraints may be incorporated, that do not only

rely on the values assigned to immediate subformulas. The meaning of the connectives

is thus not represented by functions (e.g. “¬(x) = 1 − x”, like in the case of classical

negation). Instead, it is represented by relational constraints (e.g. “x = 0 → ¬x = 1”,

like in the case of the CLuN negation [33] and other paraconsistent negations). This

relaxed notion of a semantic framework is very flexible, and allows for a great amount of

modularity. Such an approach is particularly useful for a semantical analysis of sequent

calculi, by reading each derivation rule as a semantic constraint on the “legal” models.

Unlike deterministic frameworks (such as many-valued matrices), each derivation rule

has only a local effect, and thus its inclusion (or exclusion) is handled without the need

to propagate any changes to the general semantics. The following is a list of the non-

deterministic semantic frameworks that we use in this work:

Two-valued valuation functions These are functions that assign binary truth values

to formulas, and generalize the bivaluation semantics of [35]. They are mainly used

to study analyticity in pure calculi, and also to provide a uniform decision procedure

for analytic pure calculi. By translating the rules of a given pure calculus into

semantic constraints, one obtains a subset of such functions, for which the calculus

is sound and complete. An important feature of these functions is that they may

be partially defined, and in many cases, the ability to extend partial functions into

full ones corresponds to analyticity.

Three-valued valuation functions This semantic framework is used to study cut-

admissibility in pure calculi. It is obtained from two-valued valuation functions

by the addition of a third truth value, whose purpose is to make the cut rule un-

sound (an idea that goes at least as far back as Schütte’s work on cut-admissibility

[90]). In such a framework, it is possible to obtain a semantics for which a pure
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calculus without cut is sound and complete. By relating the third truth value to

the undefined elements in two-valued valuation functions, we are able to show the

equivalence between cut-admissibility and analyticity in a wide sub-family of pure

calculi.

Two-valued Kripke models This semantic framework is a particular instance of the

Kripke valuations from [70], and it allows us to import the syntactic separation

between pure rules and modal rules to the semantics: pure rules are represented by

local constraints on the truth values in each world, while modal rules are represented

by global constraints according to the usual meaning of �. Similarly to valuation

functions, we consider Kripke models that are partially defined, and are thus able

to generalize some of the results of pure calculi to their augmented version with

modal operators. In particular, this semantic framework enables us to show that

the analyticity of a pure calculus survives the addition of modal operators (by

showing that the ability to extend partial valuations can be used to extend partial

Kripke models). The similarities between Kripke models and valuation functions

also allows us to extend the above decision procedure to certain modal operators.

Three-valued Kripke models These are obtained from two-valued Kripke models by

the addition of a third truth value, and are a particular instance of the quasi-

valuations from [70]. This framework is used to study the connection between

cut-admissibility and analyticity in intuitionistic calculi. Unlike two-valued Kripke

models, whose global constraints depend on modal operators, we utilize three-

valued Kripke models for intuitionistic calculi, that do not employ modalities. In-

stead, the impure rules of intuitionistic calculi impose other (global) constraints on

the valuations of each world. In the spirit of the semantics for intuitionistic logic,

these models are persistent, which means that truth is hereditary in accessible

worlds.

Non-deterministic matrices The above frameworks are very restrictive with respect

to the number of truth values that are allowed to be used (either two or three), but

are permissive with respect to the minimal semantic restrictions on the models that

are employed. Non-deterministic matrices (Nmatrices) [21, 22], a natural general-

ization of ordinary many-valued matrices [99], are of a dual character: they are not

restricted to any number of truth values; but, they are much more restrictive in the

minimal requirements from the models of the framework. Nmatrices are obtained

from ordinary matrices by allowing a non-deterministic choice of a truth value for

a compound formula out of a set of possible values, determined by the values of

its immediate subformulas. While the aforementioned semantic frameworks are
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mainly applied for studying existing sequent calculi, the framework of Nmatrices

is useful for constructing sequent calculi for existing logics, and even for families of

logics. And indeed, many sequent calculi for non-classical logics were constructed

using the method of [25], by first finding a finite Nmatrix for the logic and then

translating it to a sequent calculus (see, e.g., [26]). Using similar techniques, in-

finite Nmatrices are also useful for this task (see, e.g., [27, 29]). When studying

families of logics, this method often requires some transformations on a certain

basic Nmatrix, and then each logic of the family naturally induces some variant of

the transformed Nmatrix. We introduce a fundamental operation on Nmatrices,

that we call rexpansion, and show that many transformations on Nmatrices from

the literature are actually, though implicitly, particular instances of this operation.

We study the properties of rexpansion, and make explicit its usage in the construc-

tion of sequent calculi for non-classical logics. In addition, we introduce a method

for conservatively extending a given logic or sequent calculus with new connectives

that have several desired properties. The most important demonstration of this

method that we present is a novel technique for the construction of paraconsistent

fuzzy logics.

Outline

The structure of this thesis is as follows. Chapters 2 and 3 are devoted to the family

of pure calculi. After explicitly defining this family and providing several examples in

Section 2.2, their semantics, that is based on two-valued valuation functions, is introduced

in Section 2.3. Then, a generalized analyticity property is defined in Section 2.5, where

we also provide sufficient criteria for identifying and constructing analytic calculi. In

Section 2.6 analyticity is proven to be equivalent to cut-admissibility in a wide sub-

family of calculi. Chapter 3 presents a SAT-based decision procedure for analytic pure

calculi. In particular, Section 3.3 describes an implementation of this procedure.

In Chapter 4 we investigate the extension of pure calculi with impure rules for well-

known modal operators. Section 4.3 shows that analyticity survives the addition of such

rules to a pure calculus, and Section 4.4 extends the reduction from Chapter 3 to a certain

type of modal operators that we call Next operators. The results of this chapter are based

on an extension of two-valued valuation functions to two-valued Kripke models.

Chapter 5 introduces the family of intuitionistic calculi, and extends the equivalence

of Section 2.6 between cut-admissibility and analyticity to this family. This result is

proved using a semantic view of intuitionistic calculi, that is based on three-valued Kripke

models.
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Chapter 6 is dedicated to rexpansions of non-deterministic matrices and their appli-

cations in the construction of pure sequent calculi. Section 6.2 introduces the rexpansion

operation and study its important properties, as well as its effects on semantically-defined

consequence relations. In particular, it includes a method for obtaining conservative

extensions of a given logic with new connectives that are expected to admit several

properties. Section 6.4 demonstrates the usefulness of rexpansion in the construction of

sequent calculi for non-classical logics. Section 6.5 uses rexpansions for the construction

of paraconsistent fuzzy logics.

Finally, in Chapter 7 we conclude with a discussion of some directions for further

research.

Related Work

Avron and Lev [21] introduced the family of canonical sequent calculi, a very restricted

sub-family of pure calculi, and provided a sufficient syntactic criterion, called coherence

for analyticity and cut-admissibility in them (see also [22]). Here we generalize this

criterion in order to cover a much wider family of calculi. The general framework of [81]

allows one to encode all pure calculi in linear logic, and use linear logic to reason about

them. Among the pure calculi, it is again only the canonical ones for which a decidable

criterion for analyticity is given in [81].

While most of the work in decision procedures for non-classical logics is done for

specific logics, some tools focus on families of logics, that share the same syntax and

basic structure of derivation rules. Examples of such tools include the Logic WorkBench

[61], the Tableau Workbench [1], LoTREC [53], focusing on modal-like logics, and COOL

[57], focusing on modal and hybrid logics. The decision procedure that we introduce

here and its implementation are completely generic, and are applicable to all analytic

pure calculi (and some of their extensions), without any restriction on the syntax itself.

Another project with a similar goal is MetTeL [98], which incorporates a generic decision

procedure for tableau calculi, and thus uses a different approach from the one taken here.

We compare between the two approaches in Section 3.3.

Finally, some of the semantic frameworks that we employ here are either variants or

particular instances of the general framework given in [70]. In particular, some of our

completeness theorems, which we prove directly, can be also obtained using the method

given there. However, in some cases, direct completeness proofs turn out to be simpler,

and better targeted for the purposes of this thesis. While one of the main purposes of

[70] is to provide semantic methods to prove syntactic properties, this thesis aims to take

these methods to the next step, by building techniques and algorithms on top of it.
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Publications Related to this Dissertation

Most of the contributions described in Chapters 2 to 5 are based on [71, 72, 73, 74, 103,

104]. The material of Chapter 6 is based on [23, 24]. The connection between each

publication and its related chapters is described at the beginning of each chapter.



Chapter 2

Pure Sequent Calculi

In this chapter we define the family of pure sequent calculi [9], and provide a uniform

semantic interpretation of such calculi, that will be the main tool for our investigation.

Roughly speaking, pure sequent calculi are propositional calculi that include all the

usual structural rules: exchange, contraction, cut, identity and weakening, and whose

derivation rules do not enforce any limitations on the context formulas. As will be

evident by our examples, this family is a prominent proof-theoretic framework, adequate

for many propositional logics, including classical logic, many-valued logics, and various

paraconsistent logics.

We start with Section 2.1, that is a section of preliminaries for this chapter, as well as

for the chapters that follow. Section 2.2 explicitly defines the family of pure calculi and

provides examples. In Section 2.3 we introduce a semantic framework for pure calculi,

that will be the main tool for our investigation. Section 2.4 includes several useful trans-

formations of sequent calculi that are used in later sections. In Section 2.5 we introduce

a generalized notion of a subformula, that induces a parametrized notion of analyticity

in sequent calculi, and provide method for identifying and constructing analytic calculi.

Section 2.6 studies the connection between our general notion of analyticity and cut-

admissibility. Finally, section Section 2.7 studies derivations in pure calculi that are

restricted to single-conclusion sequents.

Publications Related to this Chapter

This chapter is mainly based on [71, 73, 74]. However, the results of [73] are strengthened

here to apply on arbitrary languages and a more general notion of analyticity.

11
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2.1 Preliminaries

A propositional language L consists of a countably infinite set of atomic variables

At = {p1, p2, ...} and a finite set ♦L of propositional connectives. For every n ≥ 0,

the set of all n-ary connectives of L is denoted by ♦nL. Well-formed formulas in a propo-

sitional language L are defined as usual. Given a set F ⊆ L, we say that a formula ψ is

an F-formula if ψ ∈ F .

A substitution is a function from At to some propositional language. A

substitution σ is extended to formulas of a propositional language L by

σ(�(ψ1, ... , ψn)) = �(σ(ψ1), ... , σ(ψn)) for every connective �, and to sets of formulas

by σ(F) = {σ(ψ) | ψ ∈ F}.
A propositional logic is a pair L = 〈L,`L〉 such that L is a propositional language and

`L is a binary relation between subsets of L and formulas of L, which is: (i) reflexive: if

ϕ ∈ T then T `L ϕ; (ii) monotone: if T `L ϕ and T ⊆ T ′ then T ′ `L ϕ; (iii) transitive:

if T `L ϕ and T ′, ϕ `L ψ then T , T ′ `L ψ; (iv) structural: if T `L ϕ then σ(T ) `L σ(ϕ);

(v) non-trivial: there exist ∅ 6= T ⊆ L and ϕ ∈ L such that T 6`L ϕ.1

A sequent is a pair 〈Γ,∆〉, denoted Γ ⇒ ∆, where Γ and ∆ are finite sets of for-

mulas. For a sequent Γ ⇒ ∆, frm(Γ ⇒ ∆) = Γ ∪ ∆. This notation is extended

to sets of sequents by frm(S) =
⋃
s∈S frm(s). A sequent Γ ⇒ ∆ is called an F-

sequent if frm(Γ ⇒ ∆) ⊆ F . We employ the standard sequent notations, e.g., when

writing expressions like Γ, ψ ⇒ ∆ or ⇒ ψ. The union of sequents is given by

(Γ1 ⇒ ∆1) ∪ (Γ2 ⇒ ∆2) = (Γ1 ∪ Γ2) ⇒ (∆1 ∪ ∆2). A sequent Γ1 ⇒ ∆1 is a subse-

quent of a sequent Γ2 ⇒ ∆2, denoted (Γ1 ⇒ ∆1) ⊆ (Γ2 ⇒ ∆2), if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2.

Substitutions are also extended to sequents by σ(Γ ⇒ ∆) = σ(Γ) ⇒ σ(∆) and sets of

sequents by σ(S) = {σ(s) | s ∈ S}.
Henceforth, L denotes an arbitrary propositional language. We sometimes identify

L with its set of well-formed formulas (e.g., when writing “ψ ∈ L”), or with its set of

connectives (e.g., when writing “the language {∧,∨,¬}”. The correct reading of such

expressions will always be clear from the context. Whenever L can be inferred from the

context, we may call L-formulas formulas.

2.2 What Are Pure Calculi?

We start by defining pure rules and their applications, namely the steps that form deriva-

tions in pure calculi.

1This requirement is not always demanded in the literature, but we find it convenient (and natural)
to include it here.
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Definition 2.2.1. A pure rule is a pair 〈S, s〉, denoted S / s, where S is a finite set of

sequents and s is a sequent. The elements of S are called the premises of the rule and s

is called the conclusion of the rule.

An application of a pure rule is obtained by applying a substitution to the rule, and

then adding a context-sequent.

Definition 2.2.2. An application of a pure rule {s1, ... , sn} / s is a pair of the form

〈{σ(s′1) ∪ c1, ... , σ(s′n) ∪ cn} , σ(s) ∪ c1 ∪ ... ∪ cn〉 where σ is a substitution, s′i is a subse-

quent of si for every 1 ≤ i ≤ n and c1, ... , cn are sequents (called context sequents).

The sequents σ(s′i) ∪ ci are called the premises of the application and the sequent

σ(s) ∪ c1 ∪ ... ∪ cn is called the conclusion of the application. We often denote an appli-

cation 〈{σ(s′1) ∪ c1, ... , σ(s′n) ∪ cn} , σ(s) ∪ c1 ∪ ... ∪ cn〉 as a derivation step:

σ(s′1) ∪ c1, ... , σ(s′n) ∪ cn
σ(s) ∪ c1 ∪ ... ∪ cn

Example 2.2.3. The following is a pure rule:

p1 ⇒ p2 / ⇒ p1 ⊃ p2

Applications of this rule have the following forms:

Γ, ψ1 ⇒ ψ2,∆

Γ⇒ ψ1 ⊃ ψ2,∆

Γ, ψ1 ⇒ ∆

Γ⇒ ψ1 ⊃ ψ2,∆

Γ⇒ ψ2,∆

Γ⇒ ψ1 ⊃ ψ2,∆

Applications of the following rules

⇒ p1 ; p2 ⇒ / p1 ⊃ p2 ⇒ / ⇒ p1 ⊃ p1

have respectively the forms:

Γ1 ⇒ ψ1,∆1 Γ2, ψ2 ⇒ ∆2

Γ1,Γ2, ψ1 ⊃ ψ2 ⇒ ∆1,∆2 ⇒ ψ ⊃ ψ

In contrast, the usual rule for introducing implication on the right side in intuitionistic

logic is not a pure rule, since it allows only left context formulas.

We make three brief remarks regarding the above definition, that relate it to more

common definitions of sequent rules from the literature:

1. Following [21], we use the object propositional language for specifying derivation

rules, instead of meta-variables which are often used to present derivation schemes.

Accordingly, applications of rules are obtained by applying a substitution on the

premises and the conclusion of the rule, and freely adding context formulas.

2. We allow applications of pure rules to make use of subsequents of the premises,

and not necessarily the full premises. While this is technically convenient (see, e.g.,
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Section 2.4), it does not change the derivability relation induced by a given sequent

calculus.

3. Applications of rules are multiplicative—allowing a different context sequent in each

premise. Since all usual structural rules are assumed, one may equivalently consider

additive applications, that require the same context sequent in all premises.

In turn, pure sequent calculi are finite sets of pure rules. To make them fully-structural

(in addition to defining sequents as pairs of sets), the weakening rule, the identity axiom

and the cut rule are allowed to be used in derivations. This is defined as follows:

Definition 2.2.4. A pure calculus is a finite set of pure rules. A derivation in a pure

calculus G is defined as usual, where in addition to applications of the pure rules of G,

the following standard application schemes may be used:

(weak)
Γ⇒ ∆

Γ′,Γ⇒ ∆,∆′
(id)

Γ, ψ ⇒ ψ,∆
(cut)

Γ1 ⇒ ψ,∆1 Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

In (cut), ψ is called the cut formula.

Henceforth, unless stated otherwise, we consider only pure rules and pure calculi, and

may refer to them simply as rules and calculi. By an L-rule (L-calculus) we mean a rule

(calculus) that includes only connectives of L. In what follows, unless stated otherwise,

every calculus is an L-calculus for some fixed propositional language L.

Notation 2.2.5. For an L-calculus G, a set F ⊆ L of formulas, a set S of F -sequents

and an F -sequent s, we write S `FG s if there is a derivation of s from S in G consisting

only of F -sequents. For S `LG s (i.e., F = L), we may also write S `G s. When S is

finite, we usually omit the curly braces (writing, e.g., ⇒ p1, ⇒ p2 `FG ⇒ p2).

Given a pure calculus G, its associated derivability relation `G is defined between

sets of sequents and sequents. This relation induces two consequence relations between

sets of formulas and formulas.

1. T `G ϕ if there exists finite Γ ⊆ T such that `G Γ⇒ ϕ

2. T `G ϕ iff { ⇒ ψ | ψ ∈ T } `G ⇒ ϕ

In the case of pure calculi, these two definitions are easily seen to be equivalent.2

2The notation `G here is overloaded: it is used to denote both a relation between sequents and a
relation between formulas. This overloading does not pose a problem, as the correct interpretation is
always clear from the context.
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Remark 2.2.6. Since pure sequent calculi manipulate multiple-conclusion sequents, they

also naturally induce consequence relations in the sense of Scott [91] (see also [93]) be-

tween sets of formulas. For sets T and S of formulas, such a relation is defined by T `G S
iff there are finite Γ ⊆ T and ∆ ⊆ T such that `G Γ⇒ ∆.

Next, we present several examples of pure sequent calculi. The most fundamental one

is Gentzen’s system for classical logic [54]:

Example 2.2.7 (Classical Logic). The propositional language CL consists of three bi-

nary connectives ∧, ∨, ⊃, and one unary connective ¬. The propositional fragment of

Gentzen’s fundamental sequent calculus for classical logic [54] can be directly presented

as a pure CL-calculus, denoted LK, that consists of the following CL-rules:

(¬ ⇒) ⇒ p1 /¬p1 ⇒ (⇒ ¬) p1 ⇒ / ⇒ ¬p1

(∧ ⇒) p1, p2 ⇒ / p1 ∧ p2 ⇒ (⇒ ∧) ⇒ p1 ; ⇒ p2 / ⇒ p1 ∧ p2

(∨ ⇒) p1 ⇒ ; p2 ⇒ / p1 ∨ p2 ⇒ (⇒ ∨) ⇒ p1, p2 / ⇒ p1 ∨ p2

(⊃ ⇒) ⇒ p1 ; p2 ⇒ / p1 ⊃ p2 ⇒ (⇒ ⊃) p1 ⇒ p2 / ⇒ p1 ⊃ p2

Note that there are several differences between Gentzen’s original calculus from [54]

and our presentation of it. First, instead of taking sequents to be lists of formulas, and

including structural rules for manipulating lists, we consider sequents to be pairs of sets.

Second, the rules (∧ ⇒) and (⇒ ∨) were split in [54] to two rules each. For instance

(⇒ ∨) was given by two separate derivation schemes:
Γ⇒ ϕ,∆

Γ⇒ ϕ ∨ ψ,∆ and
Γ⇒ ψ,∆

Γ⇒ ϕ ∨ ψ,∆
Nevertheless, our notion of an application of a rule, that allows for partial sequents

to occur, considers these two application schemes as applications of (⇒ ∨).

Besides classical logic, pure calculi are useful for a wide variety of non-classical logics,

as demonstrated by the following examples.

Example 2.2.8 (Many-valued Logics). The paper [13] provides pure sequent calculi for

well-known many-valued logics. For example, a calculus for  Lukasiewicz three-valued

logic  L3 [76], which we call G L3
, is obtained from LK by replacing the rules (⊃ ⇒),

(⇒ ⊃) and (⇒ ¬) with the following rules:

(¬¬ ⇒) p1 ⇒ /¬¬p1 ⇒ (⇒ ¬¬) ⇒ p1 / ⇒ ¬¬p1

(¬∧ ⇒) ¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ∧ p2)⇒ (⇒ ¬∧) ⇒ ¬p1,¬p2 / ⇒ ¬(p1 ∧ p2)

(¬∨ ⇒) ¬p1,¬p2 ⇒ /¬(p1 ∨ p2)⇒ (⇒ ¬∨) ⇒ ¬p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ∨ p2)

(¬ ⊃ ⇒) p1,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ (⇒ ¬ ⊃) ⇒ p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)
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(⊃ ⇒) L3
¬p1 ⇒ ; p2 ⇒ ; ⇒ p1,¬p2 / p1 ⊃ p2 ⇒

(⇒ ⊃) L3
p1 ⇒ p2 ; ¬p2 ⇒ ¬p1 / ⇒ p1 ⊃ p2

A pure calculus for the CL-fragment of the logic of bilattices [3] (whose implication-

free fragment coincides with the logic of first-degree entailments [2]), that we call G4,

is obtained in a similar manner, by augmenting the positive fragment of LK with the

above rules, excluding (⊃ ⇒) L3
and (⇒ ⊃) L3

.

Example 2.2.9 (Paraconsistent Logics). The paper [27] provides sequent calculi for

many paraconsistent logics. For example, a pure calculus for da Costa’s historical para-

consistent logic C1, which we call GC1 , consists of the rules of LK except for the left-

introduction rule of negation, that is replaced by (¬¬ ⇒ ), together with the following

pure CL-rules:

⇒ p1; ⇒ ¬p1 /¬(p1 ∧ ¬p1)⇒ ¬p1 ⇒ ;¬p2 ⇒ /¬(p1 ∧ p2)⇒
¬p1 ⇒ ; p2,¬p2 ⇒ /¬(p1 ∨ p2)⇒ p1,¬p1 ⇒ ;¬p2 ⇒ /¬(p1 ∨ p2)⇒
p1 ⇒ ; p2,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ p1,¬p1 ⇒ ;¬p2 ⇒ /¬(p1 ⊃ p2)⇒

Example 2.2.10 (Logic for efficient access control). Primal infon logic [44], that we

denote by PIL, was designed to efficiently reason about access control policies. While

expressive enough for this purpose, it can be decided in linear time. The quotations-free

fragment of its sequent calculus [34] can be presented as a pure calculus, which we denote

by GPIL. It is obtained from the positive fragment of LK by adding the rules ∅ / ⇒ >
and ∅ /⊥ ⇒ , dismissing the left introduction rule of disjunction, and replacing the right

introduction rule of implication with the following weaker rule:

⇒ p2 / ⇒ p1 ⊃ p2

To conclude, the following lemma shows that derivability in pure calculi admits closure

under substitutions and context sequents.

Lemma 2.2.11. If S `FG s, then:

1. σ(S) `σ(F)
G σ(s) for every substitution σ.

2. {s′ ∪ c | s′ ∈ S} `F∪frm(c)
G s ∪ c for every sequent c.

2.3 Semantics

In this section we introduce a semantic interpretation of pure calculi, based on (possibly

non-deterministic) two-valued valuation functions. This semantics will be the main tool
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that we use to characterize analyticity, and to provide a decision procedure for analytic

pure calculi.

Our semantics follows [35] and uses bivaluations—functions assigning a binary truth

value to each formula. The simple framework of bivaluations is applicable to a wide

variety of propositional logics. The price for its simplicity and generality is the loss

of truth-functionality: the truth value assigned to a compound formula is not always

uniquely determined by the truth values assigned to its subformulas. Accordingly, it is

insufficient to define bivaluations over atomic formulas, and hence they are defined in

[35] over the entire language.

Here we extend the bivaluation framework by considering also partial bivaluations

that assign truth values to some formulas. This allows us to have finite models which are

essential in semantic decision procedures. Next, we precisely define (partial) bivaluations,

and provide a general soundness and completeness theorem, relating each pure calculus G

and set F of formulas to a set of partial bivaluations for which G is sound and complete,

when only F -formulas may appear in derivations.

Definition 2.3.1. A bivaluation is a function v from some set of propositional formu-

las, denoted dom(v), to {0, 1}. A bivaluation v is extended to dom(v)-sequents by:

v(Γ ⇒ ∆) = 1 iff v(ϕ) = 0 for some ϕ ∈ Γ or v(ϕ) = 1 for some ϕ ∈ ∆. v is ex-

tended to sets (of dom(v)-formulas or sequents) by v(X) = min {v(x) | x ∈ X}, where

min ∅ = 1. Given a set F of formulas, by an F-bivaluation we refer to a bivaluation v

with dom(v) = F .

To relate sequent calculi to bivaluations, we read pure rules as semantic constraints

on bivaluations. This is formally defined as follows:

Definition 2.3.2. A bivaluation v respects a rule s1, ... , sn / s if

v({σ(s′1), ... , σ(s′n)}) ≤ v(σ(s)) for every subsequents s′1, ... , s
′
n of s1, ... , sn (respec-

tively) and substitution σ such that σ(frm({s′1, ... , s′n, s})) ⊆ dom(v). v is called G-legal

for a calculus G if it respects all rules of G.

This definition captures many well-known semantic frameworks in a modular way.

Example 2.3.3 (Semantics of Classical Logic). It is easy to see that a CL-bivaluation

v is LK-legal iff it respects the classical truth tables. For example, the first line of the

truth table for conjunction is obtained as follows: Suppose v(p1) = v(p2) = 1. Then

v({ ⇒ p1, ⇒ p2}) = 1. Since v is LK-legal, it respects (⇒ ∧), and so v(⇒ p1∧p2) = 1.

Therefore, v(p1 ∧ p2) = 1.

The generality of partial bivaluations allows them to go beyond classical logics, and

thus to include some less standard examples:
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Example 2.3.4. A bivaluation v respects the rule p1 ⇒ /¬¬p1 ⇒ iff either

v(ϕ) = v(¬¬ϕ) = 0 or v(ϕ) = 1, for every formula ϕ such that ϕ,¬¬ϕ ∈ dom(v).

Indeed, let σ be a substitution such that σ(p1) = ϕ. If v(σ(p1) ⇒ ) = 1, then we have

v(ϕ) = v(σ(p1)) = 0, and hence also v(σ(¬¬p1)) = v(¬¬ϕ) = 0, which means that

v(σ(¬¬p1)⇒ ) = 1. The converse is shown similarly. Note that every bivaluation v such

that ¬¬ϕ /∈ dom(v) whenever ϕ ∈ dom(v) (trivially) respects this rule.

We prove a general soundness and completeness theorem, that ties the domain of

bivaluations to the set of formulas that are allowed to appear in derivations.

Theorem 2.3.5 (Soundness and Completeness). S `FG s iff v(S) ≤ v(s) for every G-legal

F -bivaluation v.

Proof.

Soundness: Let v be a G-legal F -bivaluation. Suppose v(S) = 1. We prove that

v(s) = 1 by induction on the length of the derivation of s from S in G (which consists

only of F -sequents). If s ∈ S, or s is the conclusion of an application of (id), (cut), or

(weak) then this is straightforward.

Suppose now that s is the conclusion of an application of some rule

s1, ... , sn / sn+1 ∈ G. Then there are subsequents s′1, ... , s
′
n of s1, ... , sn (respec-

tively), a substitution σ and F -sequents c1, ... , cn such that s = σ(sn+1) ∪ c1 ∪ ... cn,

σ(frm({s′1, ... , s′n, sn+1})) ⊆ F , c1, ... , cn ⊆ F , and S `FG σ(s′i) ∪ ci for every 1 ≤ i ≤ n

with a shorter derivation. By the induction hypothesis, v(σ(s′i) ∪ ci) = 1 for every

1 ≤ i ≤ n. If v(ci) = 1 for some 1 ≤ i ≤ n then v(σ(sn+1) ∪ c1, ... , cn) = 1. Other-

wise, for every 1 ≤ i ≤ n, v(σ(s′i)) = 1. Since v is G-legal, v(σ(sn+1)) = 1 and hence

v(σ(sn+1) ∪ c1, ... , cn) = 1.

Completeness: Assume S 6`FG s. We construct a G-legal F -bivaluation v such that

v(S) > v(s). Since F may be infinite, this construction requires the following general-

ization of sequents: An ω-sequent is a pair 〈L,R〉, denoted L ⇒ R, where L and R are

(possibly infinite) subsets of L. We write S `FG L ⇒ R if there exist finite Γ ⊆ L and

∆ ⊆ R such that S `FG Γ ⇒ ∆. Other definitions and notations involving sequents are

adopted to ω-sequents in the obvious way. Call an ω-sequent L⇒ R maximal unprovable

if the followings hold:

• L ∪R ⊆ F

• S 6`FG L⇒ R

• S `FG L, ϕ⇒ R for every ϕ ∈ F \ L, and S `FG L⇒ ϕ,R for every ϕ ∈ F \R.
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It is routine to extend s to a maximal unprovable ω-sequent L ⇒ R. Then, a counter-

model v is defined as follows: v = λϕ ∈ F .

1 ϕ ∈ L
0 ϕ ∈ R

. From the fact that L ⇒ R is

maximal unprovable, using (cut) and (id), we have that L ] R = F , and so v is well-

defined. Clearly, v(s) = 0. In addition, for every Γ⇒ ∆ ∈ S, we have that S `FG Γ⇒ ∆,

which means that either Γ 6⊆ L or ∆ 6⊆ R. Either way, v(Γ⇒ ∆) = 1.

It is left to show that v is G-legal. Let Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n /Γ0 ⇒ ∆0 be a

rule of G, Γ′1 ⇒ ∆′1, ... ,Γ
′
n ⇒ ∆′n respective subsequents of Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n,

and σ a substitution, such that σ(frm({Γ′1 ⇒ ∆′1, ... ,Γ
′
n ⇒ ∆′n,Γ0 ⇒ ∆0})) ⊆ F and

v(σ(Γ′i ⇒ ∆′i)) = 1 for every 1 ≤ i ≤ n. We prove that v(σ(Γ0 ⇒ ∆0)) = 1. By our

assumption, for every 1 ≤ i ≤ n there exists either ϕ ∈ Γ′i such that v(σ(ϕ)) = 0 (and

then σ(ϕ) ∈ R) or ϕ ∈ ∆′i such that v(σ(ϕ)) = 1 (and then σ(ϕ) ∈ L). We construct a

sequent Γ⇒ ∆ as follows. For every 1 ≤ i ≤ n, we include in Γ a formula σ(ϕ) for some

ϕ ∈ ∆′i such that v(σ(ϕ)) = 1, or, if such ϕ does not exist, we include in ∆ a formula

σ(ϕ) for some ϕ ∈ Γ′i such that v(σ(ϕ)) = 0. Then, we have (Γ ⇒ ∆) ⊆ (L ⇒ R).

In addition, using (id), we have S `FG σ(Γ′i),Γ ⇒ σ(∆′i),∆ for every 1 ≤ i ≤ n. By

applying Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n /Γ0 ⇒ ∆0 with Γ ⇒ ∆ as a context sequent, we

obtain that S `FG σ(Γ0),Γ⇒ σ(∆0),∆, and therefore, S `FG σ(Γ0), L⇒ σ(∆0), R. Since

S 6`FG L⇒ R, we have σ(Γ0 ⇒ ∆0) 6⊆ L⇒ R, and so either v(ψ) = 0 for some ψ ∈ σ(Γ0)

or v(ψ) = 1 for some ψ ∈ σ(∆0). Either way, we have v(σ(Γ0 ⇒ ∆0)) = 1.

Various soundness and completeness theorems from the literature are obtained as

particular instances of Theorem 2.3.5, by taking F to be the entire propositional lan-

guage. For instance, Example 2.3.3 shows that classical propositional assignments co-

incide with LK-legal CL-bivaluations. Theorem 2.3.5 thus provides proof of soundness

and completeness of LK with respect to the usual semantics of propositional classical

logic. Using a similar argument, soundness and completeness of GPIL with respect to

the non-deterministic semantics from [44] is also obtained as a particular instance of

Theorem 2.3.5.

Alternative semantics for well-known logics are also obtained. For example, G L3
-legal

bivaluations provide an alternative semantics to  Lukasiewicz three-valued logic (Exam-

ple 2.2.8). This semantics is two-valued, but not truth-functional. In Figure 2.1 we list

the semantic constraints for G L3
-legal CL-bivaluations. On the left of each such con-

straint we include the derivation rule that induces it. Another two-valued semantics for

this logic was presented in [95], and was then used to construct a different calculus for it

in [35].
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(¬ ⇒) if v(ϕ) = 1, then v(¬ϕ) = 0

(¬¬ ⇒) if v(ϕ) = 0, then v(¬¬ϕ) = 0

(⇒ ¬¬) if v(ϕ) = 1, then v(¬¬ϕ) = 1

(∧ ⇒) if v(ϕ) = 0 or v(ψ) = 0, then v(ϕ ∧ ψ) = 0

(⇒ ∧) if v(ϕ) = 1 and v(ψ) = 1, then v(ϕ ∧ ψ) = 1

(¬∧ ⇒) if v(¬ϕ) = 0 and v(¬ψ) = 0, then v(¬(ϕ ∧ ψ)) = 0

(⇒ ¬∧) if v(¬ϕ) = 1 or v(¬ψ) = 1, then v(¬(ϕ ∧ ψ)) = 1

(∨ ⇒) if v(ϕ) = 0 and v(ψ) = 0, then v(ϕ ∨ ψ) = 0

(⇒ ∨) if v(ϕ) = 1 or v(ψ) = 1, then v(ϕ ∨ ψ) = 1

(¬∨ ⇒) if v(¬ϕ) = 0 or v(¬ψ) = 0, then v(¬(ϕ ∨ ψ)) = 0

(⇒ ¬∨) if v(¬ϕ) = 1 and v(¬ψ) = 1, then v(¬(ϕ ∨ ψ)) = 1

(⊃ ⇒) L3
if v(¬ϕ) = 0, v(ψ) = 0, and (v(ϕ) = 1 or v(¬ψ) = 1), then v(ϕ ⊃ ψ) = 0

(⇒ ⊃) L3
if (v(ϕ) = 0 or v(ψ) = 1) and (v(¬ψ) = 0 or v(¬ϕ) = 1), then v(ϕ ⊃ ψ) = 1

(¬ ⊃ ⇒) if v(ϕ) = 0 or v(¬ψ) = 0, then v(¬(ϕ ⊃ ψ)) = 0

(⇒ ¬ ⊃) if v(ϕ) = 1 and v(¬ψ) = 1, then v(¬(ϕ ⊃ ψ)) = 1

Figure 2.1: Semantic constraints induced by G L3

2.4 Streamlining, Equivalence, and

Gentzen’s Axioms

After presenting his calculus for classical logic, Gentzen mentions that there are some

simplifications possible for the sequent rules (see Section III, 2.2 of [54]). Following

Gentzen’s simplified variants, we present a calculus, denoted Ax(LK), that consists of

the following axioms (rules with no premises):3

∅ / p1, p2 ⇒ p1 ∧ p2 ∅ / p1 ∧ p2 ⇒ p1 ∅ / p1 ∧ p2 ⇒ p2

∅ / p1 ∨ p2 ⇒ p1, p2 ∅ / p1 ⇒ p1 ∨ p2 ∅ / p2 ⇒ p1 ∨ p2

∅ / p2 ⇒ p1 ⊃ p2 ∅ / ⇒ p1, p1 ⊃ p2 ∅ / p1, p1 ⊃ p2 ⇒ p2

∅ / ⇒ p1,¬p1 ∅ / p1,¬p1 ⇒

In this section we show that such equivalent simplifications are not peculiar for LK,

and are possible for every pure calculus. The results of the current section have several

3For some reason, Gentzen did not include the simplification of (⇒ ⊃) to ⇒ p1, p1 ⊃ p2 and
p2 ⇒ p1 ⊃ p2.
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applications. The different manipulations that transform one calculus into another cal-

culus which is equivalent will be proven useful for the construction of analytic calculi in

Section 2.5.3. Also, the “axiomized” versions of sequent calculi make it simpler to reduce

derivability in them to SAT, as we do in Chapter 3.

We present several useful streamlining principles that transform one calculus into

another, without affecting the induced derivability relations.

Definition 2.4.1. Two calculi G1 and G2 are called equivalent if `FG1
=`FG2

for every

F ⊆ L. Equivalence is naturally defined also between single rules (and between a rule

and a calculus) by identifying a rule r with the calculus {r}.

Lemma 2.4.2. The following holds:

1. S /Γ⇒ ψ,∆ is equivalent to S ; ψ ⇒ /Γ⇒ ∆.

2. S /Γ, ψ ⇒ ∆ is equivalent to S ; ⇒ ψ /Γ⇒ ∆.

3. {S ; s1 / s , S ; s2 / s} is equivalent to S ; s1 ∪ s2 / s.

Proof. We show only the left-to-right direction of the third case. All other cases are

handled similarly. Using Theorem 2.3.5, it suffices to show that every bivaluation that

respects the rule S ; s1 ∪ s2 / s also respects the rules S ; s1 / s and S ; s2 / s. Let v

be a bivaluation that respects the rule S ; s1 ∪ s2 / s. We prove that it respects the rule

S ; s1 / s (S ; s2 / s). Let S = {q1, ... , qn}, q′1, ... , q′n respective subsequents of q1, ... , qn, s′ a

subsequent of s1 (s2), and σ a substitution such that σ(frm({q′1, ... , q′n, s′, s})) ⊆ dom(v).

Suppose v(σ(q′i)) = 1 for every 1 ≤ i ≤ n, and also that v(σ(s′)) = 1. Clearly, s′ ⊆ s1∪s2.

Since v respects S ; s1 ∪ s2 / s, we have that v(σ(s)) = 1.

Going back to Gentzen’s axioms, we point out a useful application of Lemma 2.4.2.

Call a rule axiomatic if it has an empty set of premises. In turn, call a calculus axiomatic

if it consists solely of axiomatic rules. Lemma 2.4.2 allows us to convert every calculus

to an axiomatic one, in a similar manner to the calculus Ax(LK).

Theorem 2.4.3. Every calculus is equivalent to an axiomatic calculus.

Proof. Consider the following transformations of pure rules:

1. S ; ψ ⇒ /Γ⇒ ∆ 7−→ S /Γ⇒ ψ,∆

2. S ; ⇒ ψ /Γ⇒ ∆ 7−→ S /Γ, ψ ⇒ ∆

3. S ; Γ⇒ ψ,∆ / s 7−→ {S ; Γ⇒ ∆ / s , S ; ⇒ ψ / s}

4. S ; Γ, ψ ⇒ ∆ / s 7−→ {S ; Γ⇒ ∆ / s , S ; ψ ⇒ / s}
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The first two are taken from items 1 and 2 of Lemma 2.4.2 (read from right to left). The

last two are particular instance of item 3 of Lemma 2.4.2 (also read from right to left).

Given a calculus G, we apply these four transformations on the rules of G as

long as it is possible. By Lemma 2.4.2, each step in this process results in a calcu-

lus which is equivalent to G. Observing that at least one transformation is applicable

to any non-axiomatic rule, it remains to establish termination. For each rule S / s, let

‖S / s‖ =
∑

Γ⇒∆∈S(|Γ| + |∆|). For every set R of rules, we associate the multiset MR,

given by MR = λn ∈ N. |{r ∈ R | ‖r‖ = n}|. We prove that if R2 is obtained from

R1 by one of the transformations, then MR2 ≺ MR1 , where ≺ is the Dershowitz-Manna

well-founded ordering over multisets of natural numbers [46]. Clearly, R2 = R1 \ {r}∪R
for some set R that is obtained from r by one of the transformations. If the transfor-

mation is 1 or 2 then, w.l.o.g., r has the form S ] {ψ ⇒ } /Γ ⇒ ∆ and R has the

form {S /Γ⇒ ψ,∆} with Γ ∪ ∆ 6= ∅. This means that MR2 is obtained from MR1 by

replacing one copy of ‖S ; ψ ⇒ /Γ⇒ ∆‖ with a new copy of ‖S ; ψ ⇒ /Γ⇒ ∆‖ − 1,

and thus MR2 ≺ MR1 . If the transformation is 3 or 4 then, w.l.o.g., r has the form

S ] {Γ⇒ ψ,∆} / s where ψ /∈ ∆, and R has the form {S ; Γ⇒ ∆ / s, S ; ⇒ ψ / s}.
This means that MR2 is obtained from MR1 by replacing a copy of ‖S ; Γ⇒ ψ,∆ / s‖
with a copy of ‖S ; Γ⇒ ∆ / s‖ and a copy of ‖S ; ⇒ ψ / s‖. Both are smaller than

‖S ; Γ⇒ ψ,∆ / s‖, and therefore MR2 ≺MR1 .

This method for obtaining axiomatic calculi is applicable to every pure calculus, not

only LK.

Example 2.4.4. The rule ¬p1 ⇒ ; p2 ⇒ ; ⇒ p1,¬p2 / p1 ⊃ p2 ⇒ of G L3
(Ex-

ample 2.2.8) transforms into the equivalent axiomatic rules ∅ / p1, p1 ⊃ p2 ⇒ ¬p1, p2 and

∅ /¬p2, p1 ⊃ p2 ⇒ ¬p1, p2.

2.5 Analyticity

Roughly speaking, analyticity of a calculus provides a computable bound on the formulas

that may appear in derivations of a sequent s from a set S of sequents. For propositional

calculi, such a bound usually entails decidability and consistency (unprovability of the

empty sequent). The special case of the subformula property is obtained when the

set of subformulas of (formulas of) S ∪ {s} serves as this bound. Many useful calculi,

however, do not admit this strict property, while still allowing some other effective bound.

For example, in GC1 and G L3
(Examples 2.2.9 and 2.2.8), there are sequents whose

derivations require not only subformulas, but also negations of subformulas of the derived

sequent.
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In this section we provide a generalized definition of analyticity, that is parametrized

by a distinguished set of unary connectives and a natural number. This generalized

notion holds for a larger family of calculi, and still suffices to ensure decidability and

consistency.

After defining this notion of analyticity and providing a semantic counterpart for

it in Section 2.5.1, we introduce methods to identify and construct analytic calculi in

Sections 2.5.2 and 2.5.3. Section 2.5.4 proves that these methods are indeed correct, that

is, that the criteria that underlie them suffice for analyticity.

2.5.1 A Generalized Subformula Property

We start by generalizing the subformula relation between formulas, and prove that this

generalized relation inherits the crucial properties of the usual one. This relation nat-

urally induces a parametrized notion of analyticity, defined in Definition 2.5.5. After

studying the properties of this new notion of analyticity, we provide it an equivalent

semantic condition in Theorem 2.5.9, which, in addition to providing another viewpoint

of this property, turns out to be very useful: first, it is the main tool for identifying and

constructing analytic calculi in Sections 2.5.2 and 2.5.3; second, it has an important role

in the decision procedure that we provide in Chapter 3.

In what follows, } denotes an arbitrary subset of unary connectives in ♦1
L and k

denotes an arbitrary positive integer. We denote the set of strings over} of length at most

k by }≤k (e.g., {¬, ◦}≤2 = {ε,¬, ◦,¬¬, ◦◦,¬◦, ◦¬}, where ε denotes the empty string).

For convenience, we use the following notations: ◦F = {◦ϕ | ϕ ∈ F} for any unary

connective ◦, }ϕ = {◦ϕ | ◦ ∈ }} for any set } of unary connectives, }F =
⋃
◦∈} ◦F ,

}≤kϕ =
{
◦̄ϕ | ◦̄ ∈ }≤k

}
, and }≤kF =

⋃
ϕ∈F }

≤kϕ.

Definition 2.5.1. A formula ϕ is an immediate }-k-subformula of a formula ψ if one of

the followings hold:

• ψ = �(ψ1, ... , ψn) and ϕ ∈ }≤kψi for some n-ary connective � ∈ ♦L \ }, formulas

ψ1, ... , ψn, and 1 ≤ i ≤ n.

• ψ ∈ }ϕ.

The }-k-subformula relation is the reflexive transitive closure of the immediate }-k-

subformula relation. We denote the set of }-k-subformulas of a formula ψ by sub}k (ψ).

This notation is naturally extended to sequents, sets of sequents, etc. When ϕ is a

(}-k-)subformula of ψ and ϕ 6= ψ, we call ϕ a proper (}-k-)subformula of ψ.

When } = ∅ (and so }≤k = {ε}), the }-k-subformula relation amounts to the usual

subformula relation. In such a case we call ϕ a subformula of ψ and denote sub}k by sub.
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Example 2.5.2. sub
{¬}
1 (¬(p1 ⊃ p2)) = {p1, p2,¬p1,¬p2, p1 ⊃ p2,¬(p1 ⊃ p2)} and

sub
{¬}
2 (◦p1) = {p1,¬p1,¬¬p1, ◦p1}.

We now explore the properties of this generalized relation. The first step is to define

an adequate decreasing complexity measure cc on formulas. For every ψ ∈ L, denote

by ◦̄ψ the longest (possibly empty) prefix of ψ that consists of }-elements, and by bψ

the formula for which ψ = ◦̄ψbψ. Let c : L → N be a usual complexity measure for

formulas (so that c(ϕ) < c(ψ) whenever ϕ is a proper subformula of ψ). The function

cc : L → (N× N) is then given by cc(ψ) = 〈c(bψ), |◦̄ψ|〉, where |◦̄ψ| denotes the length of

◦̄ψ.

Proposition 2.5.3. cc(ϕ) < cc(ψ) whenever ϕ is a proper }-k-subformula of ψ (where

< is the standard lexicographic order over N× N).

Proof. We consider only the case that ϕ is an immediate }-k-subformula of ψ. The claim

then follows by standard induction. First, if ψ = �(ψ1, ... , ψn) and ϕ ∈ }≤kψi for some

1 ≤ i ≤ n and � /∈ }, then c(bϕ) = c(bψi) ≤ c(ψi) < c(ψ) = c(bψ), and so cc(ϕ) < cc(ψ).

Second, if ψ ∈ }ϕ, then ψ = ◦ϕ for some ◦ ∈ }, ◦̄ψ = ◦◦̄ϕ, and bψ = bϕ. Hence,

c(bψ) = c(bϕ), but |◦̄ψ| = |◦̄ϕ|+ 1, and so cc(ϕ) < cc(ψ).

Using this complexity measure, it easily follows that the }-k-subformula relation is

anti-symmetric. Also, since every formula has finitely many immediate }-k-subformulas,

it also follows that sub}k (ψ) is finite for every ψ ∈ L.

In addition, we have the following useful property of the generalized relation:

Lemma 2.5.4. σ(sub}k (ψ)) ⊆ sub}k (σ(ψ)) for every formula ψ and substitution σ.

We now define our generalized notion of analyticity. It is obtained from the usual

subformula property by replacing the role of subformulas with }-k-subformulas.

Definition 2.5.5. A calculus G is called }-k-analytic if S `G s implies S `sub
}
k (S∪{s})

G s

for every set S of sequents and a sequent s.

Note that for every k, ∅-k-analytic calculi are calculi that enjoy the usual subfor-

mula property. We call such calculi ∅-analytic. Also note that whenever two calculi are

equivalent (Definition 2.4.1), one is }-k-analytic iff the other is.

We shall use the terms “analyticity” and “analytic” without any prefix whenever the

prefix is clear from the context, or when describing calculi that are }-k-analytic for some

} and k.

Just like the usual subformula property, }-k-analyticity of a pure calculus entails its

decidability. Formally:
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Definition 2.5.6. The derivability problem for an L-calculus G is given by:

Input: A finite set S of L-sequents and an L-sequent s.

Question: Does S `G s?

Obviously, one cannot expect to have decision procedures for the derivability problem

for all pure calculi.4 However, decidability is guaranteed whenever the calculus is }-k-

analytic.

Proposition 2.5.7. The derivability problem is decidable for every }-k-analytic pure

calculus.

Proof. For every }-k-analytic calculus G, finite set S of sequents, and sequent s, we

have that S `G s iff S `sub
}
k (S∪{s})

G s. Since sub}k (S ∪ {s}) is finite, the latter can

be checked by an exhaustive search of derivations of s from S in G, that include only

sub}k (S ∪ {s})-formulas.

Moreover, }-k-analyticity guarantees the consistency of the calculus, whenever the

calculus is not trivial:

Proposition 2.5.8. The empty sequent is not derivable in any }-k-analytic calculus,

that does not include the rule ∅ / ⇒ .

Proof. A proof of the empty sequent in a }-k-analytic calculus would entail the existence

of a proof that includes no formulas at all. This is only possible in the presence of the

rule ∅ / ⇒ , which cannot be included.

Analyticity of sequent calculi is traditionally proved as a corollary of cut-admissibility.

Indeed, if every rule in a pure calculus (except for (cut)) admits the local}-k-subformula

property (i.e., the premises consist only of }-k-subformulas of the formulas in the conclu-

sion), then cut-admissibility implies }-k-analyticity. For example, the calculi LK, GPIL,

GC1 , G L3
and G4 (Examples 2.2.7–2.2.10) admit cut-admissibility. Taking into account

the structure of their logical rules, this directly entails that LK and GPIL are ∅-analytic,

and that GC1 , G L3
and G4 are {¬}-1-analytic.

There are cases, however, in which a sequent calculus does not enjoy cut-admissibility,

although it is analytic. Examples include, e.g., sequent calculi for the modal logics S5

and B [85, 96, 101], bi-intuitionistic logic [84], and several calculi for paraconsistent

logics [16]. Other ways are thus needed for proving }-k-analyticity, independently from

cut-admissibility.

4Example 2.7.9 below shows how to translate propositional Hilbert-type calculi to pure calculi. In
particular, the undecidable Hilbert-type calculus from [80] translates to an undecidable pure calculus.
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Next we provide a semantic characterization of analyticity which is independent of

cut-admissibility. To apply this criterion, one has to consider bivaluations that are defined

only on }-k-subformulas of the derived sequent and the assumptions, and show that the

existence of a countermodel in the form of such a partial bivaluation entails the existence

of a full countermodel. Formally:

Theorem 2.5.9. An L-calculus G is }-k-analytic iff every G-legal bivaluation v can

be extended to a G-legal L-bivaluation, provided that dom(v) is finite and closed under

}-k-subformulas.

Proof. Suppose that S `G s but S 6`FG s for F = sub}k (S ∪ {s}). By Theorem 2.3.5,

there exists a G-legal F -bivaluation v such that v(S) = 1 and v(s) = 0, but u(S) ≤ u(s)

for every G-legal L-bivaluation u. Therefore, v cannot be extended to a G-legal L-

bivaluation. In addition, dom(v) = F is finite and closed under }-k-subformulas.

For the converse, suppose that v is a G-legal bivaluation, dom(v) is finite and closed

under }-k-subformulas, and v cannot be extended to a G-legal L-bivaluation. Let

s = Γ ⇒ ∆, where Γ = {ψ ∈ dom(v) | v(ψ) = 1} and ∆ = {ψ ∈ dom(v) | v(ψ) = 0}.
Then, dom(v) = frm(s) = sub}k (s) and v(s) = 0. We show that u(s) = 1 for every

G-legal L-bivaluation u. Indeed, every such u does not extend v, and so u(ψ) 6= v(ψ)

for some ψ ∈ dom(v). Then, u(ψ) = 0 if ψ ∈ Γ, and u(ψ) = 1 if ψ ∈ ∆. In either case,

u(s) = 1. By Theorem 2.3.5, 6`sub
}
k (s)

G s and `G s.

Often, a slightly weaker notion of analyticity is employed, by considering only cases

where S = ∅. We say that a calculus G is weakly }-k-analytic if `G s implies `sub
}
k (s)

G s

for every sequent s. The proof of Theorem 2.5.9 shows that this seemingly weaker notion

is actually equivalent to the stronger one: given that a calculus G is weakly }-k-analytic,

the second part of the proof shows that every G-legal bivaluation whose domain is finite

and closed under }-k-subformulas can be extended to a full G-legal bivaluation. The

first part of the proof then establishes that G is }-k-analytic, and not only weakly

}-k-analytic.

Example 2.5.10. A particular instance of Theorem 2.5.9 is the ability to define full clas-

sical assignments based only on the values that are assigned to atomic formulas. This fact

is taken for granted, however in this general semantic framework it does not always hold.

Recall the axiomatic version of LK, described in Section 2.4, and denoted by Ax(LK).

In [54], Gentzen only presents this calculus as a simplification, but does not actually use

it, and even restricts the attention to it for the case where “we attached no importance

to the Hauptsatz” (see Section III, 2.2. of [54]). And indeed, as Gentzen mentions, while

equivalent to LK, Ax(LK) does not admit cut-admissibility. Nevertheless, Ax(LK) is
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∅-analytic, as can be proved using Theorem 2.5.9: similarly to Example 2.3.3, it can be

shown that a bivaluation is Ax(LK)-legal if and only if it assigns values to compound

formulas according to the classical truth tables. Since partial classical assignments can

be extended to full ones, Theorem 2.5.9 ensures that Ax(LK) admits ∅-analyticity.

Theorem 2.5.9 is also useful for proving that a certain calculus is not analytic:

Example 2.5.11. Consider a pure calculus, denoted here by G, that consists of the

following rules:

p1 ⇒ / ◦ p1 ⇒ p1 ⇒ / ⇒ ◦ p1

The G-legal bivaluation v whose domain is {p1}, such that v(p1) = 0 cannot be extended

to a full G-legal bivaluation: according to the first rule, v(◦p1) = 0 must hold, and

according to the second, v(◦p1) = 1 must hold. Indeed, G is not analytic, as the sequent

⇒ p1 is derivable in it, but only using a cut on ◦p1.

While the semantic characterization of }-k-analyticity from Theorem 2.5.9 provides

meaningful insights on this property, it is not effective for determining }-k-analyticity,

as in order to use it, one needs to go over all bivaluations whose domains are closed under

}-k-subformulas, and check whether they can be fully extended. Therefore, a decidable

syntactic criterion for }-k-analyticity is desired. In the next section we generalize the

result of [21] in order to provide a sufficient syntactic criterion for }-k-analyticity for a

wider family of calculi. Calculi that admit this criterion are then used in Section 2.5.3

for providing a method to construct }-k-analytic calculi.

2.5.2 Sufficient Criterion for Analyticity

In this section we generalize the coherence condition from [21], that was given for canoni-

cal calculi, and show that the generalized condition ensures analyticity. Unlike the ability

to extend partial bivaluations, which is semantic in nature, the coherence property (as

well at its generalization that we introduce here) is syntactic and decidable. Roughly

speaking, canonical calculi are pure calculi in which each rule introduces exactly one

connective in the conclusion, and all premises include only atomic formulas. Here we

relax these requirements, and allow several connectives to be introduced at once, and not

only from atomic formulas, as long as all premises include only }-k-subformulas of the

conclusion. This is defined as follows:

Definition 2.5.12. A rule r is called }-k-ordered if every formula in its premises is

a proper }-k-subformula of some formula in its conclusion. Further, r is called }-k-

directed if it is }-k-ordered, and its conclusion has the form ⇒ ϕ or ϕ ⇒ for some
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formula ϕ. A calculus is called }-k-ordered (}-k-directed) if it consists of }-k-ordered

(}-k-directed) rules. For every k, we call ∅-k-ordered (∅-k-directed) rules and calculi

∅-ordered (∅-directed).

Example 2.5.13. The calculi LK and GPIL are ∅-directed, while GC1 , G L3
and G4 are

{¬}-1-directed.

In [21], the coherence property was defined for canonical calculi, and was used for

proving analyticity in them. Roughly speaking, a canonical calculus is coherent if when-

ever two rules share the same formula in their conclusion, but on different sides, the

empty sequent is derivable from their premises using only (cut). We generalize this

requirement for the case of }-k-directed calculi:

Definition 2.5.14. A }-k-directed calculus G is called coherent if for every two rules of

G of the forms S1 / ⇒ ϕ1 and S2 /ϕ2 ⇒ , and two substitutions σ1, σ2, if σ1(ϕ1) = σ2(ϕ2),

then the empty sequent is derivable from σ1(S1) ∪ σ2(S2) using only (cut).

Note that for canonical calculi, this definition coincides with that of [21]. Also, it is

decidable whether a given calculus is coherent or not: for each pair of rules S1 / ⇒ ϕ1 and

S2 /ϕ2 ⇒ , one can first rename the atomic variables so that no atomic variable occurs in

both rules, and then it suffices to check the above condition for the most general unifier

of ϕ1 and ϕ2. Finally, it is useful to notice that if a calculus G is coherent, }-k-directed,

or }-k-ordered, then the same holds for any sub-calculus of G (i.e. any calculus that is

obtained from G by deleting some of its rules).

Example 2.5.15. LK, GPIL, G L3
and G4 are coherent, while GC1 is not. Indeed, for

the rules p1 ⇒ / ⇒ ¬p1 and p1 ⇒ /¬¬p1 ⇒ of GC1 , if σ1(p1) = ¬p1 and σ2(p1) = p1, we

have σ1(¬p1) = σ2(¬¬p1), but the empty sequent cannot be derived from ¬p1 ⇒ ; p1 ⇒
using only (cut).

Our notion of coherence, which generalizes that of [21], together with }-k-

directedness, suffices for }-k-analyticity:

Theorem 2.5.16. Every coherent }-k-directed calculus is }-k-analytic.

This theorem is obtained as a corollary of Theorem 2.5.21 (see Section 2.5.3 below),

which will be proved in Section 2.5.4. We now present some examples and applications.

Example 2.5.17. LK and GPIL are coherent and ∅-directed, and hence they are ∅-
analytic. G L3

is coherent and {¬}-1-directed, and hence it is {¬}-1-analytic. Similarly,

every canonical system (as defined in [21]) is ∅-directed, and hence every coherent canon-

ical system is ∅-analytic.
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Example 2.5.18 (Hierarchy of double negations). The paper [63] studies an infinite

family, denoted {L2n+2 | n ∈ N}, of pure sequent calculi for non-classical logics that

admit the double negation principle as well as its weaker forms (e.g., ¬¬¬ψ ↔ ¬ψ).

For example, the calculus L4 is the same as the calculus G4 presented in Example 2.2.8.

This calculus is coherent and {¬}-1-directed, and hence, by Theorem 2.5.16, it is {¬}-
1-analytic. Moreover, it can be easily observed that for every n, L2n+2 is coherent and

{¬}-(n+ 1)-directed, and thus by Theorem 2.5.16, it is {¬}-(n+ 1)-analytic.

Example 2.5.19 (Dolev-Yao intruder deductions). In [42], a formal deductive system

for the Dolev-Yao intruder model was presented. Its language consists of two binary

connectives: pairing, denoted 〈·, ·〉, and encryption, denoted [·]· (where the argument in

the subscript is the encryption key). Formulated as an Hilbert-type calculus, which we

call H, this system includes the rules of the first column in the following table:

H G(H) GDY

Pairing p1 ; p2 / 〈p1, p2〉 ⇒ p1 ; ⇒ p2 / ⇒ 〈p1, p2〉 ⇒ p1 ; ⇒ p2 / ⇒ 〈p1, p2〉
Unpairing 〈p1, p2〉 / p1 ⇒ 〈p1, p2〉 / ⇒ p1 p1 ⇒ / 〈p1, p2〉 ⇒

〈p1, p2〉 / p2 ⇒ 〈p1, p2〉 / ⇒ p2 p2 ⇒ / 〈p1, p2〉 ⇒
Encryption p1 ; p2 / [p1]p2 ⇒ p1 ; ⇒ p2 / ⇒ [p1]p2 ⇒ p1 ; ⇒ p2 / ⇒ [p1]p2
Decryption [p1]p2 ; p2 / p1 ⇒ [p1]p2 ; ⇒ p2 / ⇒ p1 p1 ⇒ ; ⇒ p2 / [p1]p2 ⇒

The middle column of the table provides a pure sequent calculus, denoted G(H),

that is obtained from H by applying the method sketched in Example 2.7.9 below. The

right column includes a third sequent calculus, that we call GDY , obtained from G(H)

by performing the streamlining rules of Lemma 2.4.2. All three calculi define the same

logic. GDY is coherent and ∅-directed, and thus by Theorem 2.5.16, it is ∅-analytic.

2.5.3 Constructing Analytic Calculi

Sequent calculi provide a wide range of possibilities for non-classical logics, and in par-

ticular, for sub-classical logics (logics that are contained in classical logic). By choosing

a subset of derivation rules that are derivable in LK, one easily obtains a (system cal-

culus for a) sub-classical logic. Various important and useful non-classical logics can

be formalized in this way, with the most prominent example being intuitionistic logic.

In general, the resulting logics come at first with no semantics, and might be unusable

for computational purposes, since the new calculi might not be analytic. Indeed, even

though LK is analytic, there is no guarantee that an arbitrary collection of classically

derivable sequent rules constitutes an analytic sequent calculus.

While Theorem 2.5.16 allows us to prove that many calculi are }-k-analytic (by ob-

serving that they are }-k-directed and coherent), some calculi are left out. For example,
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GC1 is {¬}-1-analytic, but it is not coherent (see Example 2.5.15). To capture GC1 and

other useful calculi, we introduce a more general method to prove }-k-analyticity. More

precisely, in this section we present a method for obtaining calculi that are analytic by

construction.

As a motivating example, consider Sette’s atomic paraconsistent logic P1 from [92],

that allows contradictions on atomic formulas, but forbids them on compound ones. In

P1 we have that every ϕ follows from {p,¬p}, but not from {ψ,¬ψ} when ψ is compound.

Since the explosion principle is manifested in LK through the rule (¬ ⇒), a natural way

to design a sequent calculus for P1 is to allow applications of (¬ ⇒) only on compound

formulas. We introduce a calculus which naturally achieves this goal, denoted GP1 . It is

obtained from LK by replacing (¬ ⇒) with several weaker variants of it, namely, with

its following applications:

⇒ ¬p1 /¬¬p1 ⇒ ⇒ p1 ∧ p2 /¬(p1 ∧ p2)⇒
⇒ p1 ∨ p2 /¬(p1 ∨ p2)⇒ ⇒ p1 ⊃ p2 /¬(p1 ⊃ p2)⇒

As we shall see in what follows, this type of construction is subject to the criterion that we

propose in this section. Thus, the ∅-analyticity of our calculus is established in Example

2.5.23 below.

The general method for constructing }-k-analytic calculi that we present is obtained

by joining applications of rules of a certain basic coherent }-k-directed calculus. The

derivable rules that are collected to create new calculi will all have the form of applica-

tions of existing rules. For this, it is useful to observe a duality between rules and their

applications: every pure rule is an application of itself (using the identity substitution

and the empty context sequent), and every application of a pure rule constitutes a new,

perhaps weaker, pure rule. In particular, we may apply Definition 2.5.12 to applications

of rules, and have }-k-ordered applications (i.e., applications in which every formula that

occurs in the premises is a proper }-k-subformula of some formula that occurs in the con-

clusion). Also observe that an application 〈σ(s1) ∪ c1, ... , σ(sn) ∪ cn / σ(s) ∪ c1 ∪ ... ∪ cn〉
of a }-k-directed rule s1, ... , sn / s is itself }-k-ordered iff every formula of the context

sequent c1 ∪ ... ∪ cn is a proper }-k-subformula of the formula that occurs in s.

Example 2.5.20. The following are ∅-ordered, {¬}-1-ordered and {¬}-2-ordered appli-

cations of the rule (⊃ ⇒) of LK (respectively):

p1 ⇒ p1 ∧ p2 p1, p2 ⇒
p1, (p1 ∧ p2) ⊃ p2 ⇒

¬p1 ⇒ p1 ∧ p2 ¬p1, p2 ⇒
¬p1, (p1 ∧ p2) ⊃ p2 ⇒

¬¬p3 ⇒ p1 ∧ p2,¬(p1 ∧ p2) ¬¬p3, p2 ⊃ p3 ⇒ ¬(p1 ∧ p2)

¬¬p3, (p1 ∧ p2) ⊃ (p2 ⊃ p3)⇒ ¬(p1 ∧ p2)
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Our main result for this section is the following theorem, that provides a method for

obtaining calculi that are }-k-analytic by construction.

Theorem 2.5.21. Let GB be a }-k-directed coherent calculus. Then, every calculus

that consists of }-k-ordered applications of rules of GB is }-k-analytic.

This theorem is proved in Section 2.5.4. We devote the reminder of the current section

for presenting applications and consequences of Theorem 2.5.21.

Simple Consequences

First, observe that Theorem 2.5.16 is obtained as a corollary of Theorem 2.5.21:

Proof of Theorem 2.5.16. Every rule of GB is a trivial }-k-ordered application of itself,

and, by Theorem 2.5.21, GB itself is }-k-analytic.

Also, for calculi that are constructed this way, }-k-analyticity is preserved when

omitting a rule:

Corollary 2.5.22. Suppose that G consists of }-k-ordered applications of rules of some

}-k-directed coherent calculus. Then every calculus G′ ⊆ G is }-k-analytic.

Analyticity for our calculus GP1 is now obtained using Theorem 2.5.21.

Example 2.5.23 (Atomic paraconsistent logic). The calculus GP1 described above for

Sette’s atomic paraconsistent logic can be constructed using the method of Theorem

2.5.21. Begin with LK \ {(¬ ⇒)}, and add the above ∅-ordered applications of (¬ ⇒) to

allow left-introduction of negation only for compound formulas. By Theorem 2.5.21, this

calculus is ∅-analytic. Alternatively, since GP1 is directed and coherent, its analyticity

also follows from Theorem 2.5.16. Note that GP1 is equivalent to the calculus given in [4]

for this Sette’s logic.

More Examples

In some cases, when adding a new rule r to an existing calculus G, some premises of

r are already derivable in G. For example, consider augmenting GPIL with the rule

⊥ ⇒ p1 / ⇒ ⊥ ⊃ p1, which is an application of (⇒ ⊃). Since ⊥ ⇒ p1 is derivable in

GPIL, it is a redundant premise: one can equivalently add the rule ∅ / ⇒ ⊥ ⊃ p1. The

next proposition is used for omitting such redundant premises in the following examples.

Proposition 2.5.24. Let GB be a }-k-directed coherent calculus, G a calculus consist-

ing solely of }-k-ordered applications of rules of GB, and s a conclusion of a }-k-ordered

application of some rule of GB, all premises of which are derivable in G. Then, G∪{∅ / s}
is }-k-analytic.
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Proof. Let S be a set of sequents such that S / s is a }-k-ordered application of some

rule of GB, and for every s′ ∈ S, `G s′. Denote G∪{S / s} by G1 and G∪{∅ / s} by G2.

By Theorem 2.5.21, G1 is }-k-analytic. We prove that so is G2. Suppose that S0 `G2
s0.

We prove that S0 `sub
}
k (S0∪{s0})

G2
s0. First, we show that S0 `G1

s0, by induction on the

length of the proof of s0 from S0 in G2. If s0 is not the conclusion of an application of

∅ / s then this is straightforward by the induction hypothesis. Otherwise, s0 = σ(s) ∪ c
for some substitution σ and context sequent c. Since `G s′ for every s′ ∈ S, by Lemma

2.2.11, we have `G σ(s′) ∪ c for every s′ ∈ S, and in particular, S0 `G1
σ(s′) ∪ c. Now,

apply S / s and obtain S0 `G1
s0. Since G1 is }-k-analytic, we have S0 `sub

}
k (S0∪{s0})

G1
s0.

By taking the proof of s0 from S0 in G1 and deleting every premise in every application

of S / s, we obtain a proof of s0 from S0 in G2 in which only sub}k (S0 ∪ {s0})-formulas

occur, which means that S0 `sub
}
k (S0∪{s0})

G2
s0.

Remark 2.5.25. The requirement in Proposition 2.5.24 that both G and s originate from

the same calculus GB is crucial. Consider, for example, the case in which G consists of

the rule r1 = ⇒ p1 / ⇒ p1Tp2, GB consists of the rule r2 = p2 ⇒ / p1Tp2 ⇒ , and s is

p1Tp2 ⇒ p2. s is the conclusion of the ∅-ordered application 〈p2 ⇒ p2, p1Tp2 ⇒ p2〉 of r2,

whose premise is derivable in G. Also, G and GB are ∅-directed and coherent (and thus

also ∅-analytic). However G ∪ {∅ / s} is not ∅-analytic, as it raises the “Tonk” problem

[87] (see also [17]).

Example 2.5.26. In [27], it was shown that GC1 is {¬}-1-analytic, as a corollary of cut-

admissibility. Using the methods of this section, we provide a simpler proof of the {¬}-1-

analyticity of GC1 . For this purpose, we construct a calculus which is equivalent to GC1 ,

that we call GC1

′. Take GB to be LK, and G to be LK \ {(¬ ⇒)}. By Theorem 2.5.16,

G is {¬}-1-analytic. GC1

′ is obtained by augmenting G with the following axiomatic

rules:

∅ /¬¬p1 ⇒ p1

∅ / p1,¬p1,¬(p1 ∧ ¬p1)⇒ ∅ /¬(p1 ∧ p2)⇒ ¬p1,¬p2

∅ /¬(p1 ∨ p2)⇒ ¬p1, p2 ∅ /¬(p1 ∨ p2)⇒ ¬p1,¬p2

∅ /¬(p1 ∨ p2)⇒ p1,¬p2 ∅ /¬(p1 ⊃ p2)⇒ p1, p2

∅ /¬(p1 ⊃ p2)⇒ p1,¬p2 ∅ /¬(p1 ⊃ p2)⇒ ¬p1,¬p2

Every rule here has the form ∅ / s, where s is the conclusion of a {¬}-1-ordered appli-

cation of the rule (¬ ⇒) of GB, whose premises are all derivable in G. For example,

¬(p1 ∧ p2) ⇒ ¬p1,¬p2 is the conclusion of the following {¬}-1-ordered application of
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(¬ ⇒), whose premise is derivable in G:

⇒ p1 ∧ p2,¬p1,¬p2

¬(p1 ∧ p2)⇒ ¬p1,¬p2

By Proposition 2.5.24, GC1

′ is {¬}-1-analytic. Using Lemma 2.4.2, it is easy to see that

GC1

′ is equivalent to GC1 , and furthermore, the {¬}-1-analyticity of GC1

′ entails the

{¬}-1-analyticity of GC1 .

Example 2.5.27 (Extended Primal Infon Logic). The calculus GPIL is ∅-analytic, as

was shown in Example 2.5.17. One of the most attractive properties of GPIL is the fact

that its derivability problem is solvable in linear time. It is possible to augment GPIL

with additional rules in order to make it somewhat closer to LK, without compromising

its ∅-analyticity nor its linear time complexity. For this, we introduce an extended logic,

called EPIL, which is defined by the following calculus, called GEPIL (that is, T `EPIL ϕ

iff Γ `GEPIL
ϕ for some finite Γ ⊆ T ). GEPIL is obtained from GPIL by the addition

of the following set of rules. These rules recover some natural properties of the classical

connectives (none of them is derivable in GPIL):

∅ / ⇒ ⊥ ⊃ p1 ∅ / p1 ∨ p1 ⇒ p1 ∅ / ⇒ p1 ⊃ p1

∅ /⊥ ∨ p1 ⇒ p1 ∅ / p1,¬p1 ⇒ ∅ / ⇒ (p1 ∧ p2) ⊃ p1

∅ / p1 ∨ ⊥ ⇒ p1 ∅ / p1 ∨ (p1 ∧ p2)⇒ p1 ∅ / ⇒ (p1 ∧ p2) ⊃ p2

∅ / (p1 ∧ p2) ∨ p1 ⇒ p1 ∅ / ⇒ p2 ⊃ (p1 ⊃ p2)

Each of these rules has the form ∅ / s, where s is the conclusion of a ∅-ordered application

of a rule of LK, whose premises are all derivable in GPIL. By repeatedly applying

Proposition 2.5.24, augmenting GPIL with these axiomatic rules results in a ∅-analytic

calculus. The fact that the extended calculus also has linear time complexity will be

proved in the next Chapter (see Example 3.2.2).

2.5.4 Proof of Theorem 2.5.21

Let G be a calculus that consists of }-k-ordered applications of rules of a }-k-directed

coherent calculus GB. We prove that G is }-k-analytic. Using Theorem 2.5.9, it suffices

to prove that every G-legal bivaluation v can be extended to a G-legal L-bivaluation,

provided that dom(v) is finite and closed under }-k-subformulas. Thus, in what follows,

we fix an arbitrary G-legal bivaluation v such that dom(v) is finite and closed under

}-k-subformulas.

We extend v iteratively: in each step we add a single formula to the domain of v. Thus,

we construct a sequence of G-legal bivaluations that extend v, and use this sequence in

order to define a G-legal L-bivaluation that extends v.
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Since the }-k-subformula relation is a partial order, sub}k (ψ) is finite for every ψ, and

dom(v) is finite, there exists an enumeration ψ1, ψ2, ... of L such that:

1. If ψi ∈ dom(v) and ψj /∈ dom(v) then i < j.

2. If ψi is a }-k-subformula of ψj then i ≤ j.

We define a sequence v0, v1, ... of bivaluations inductively by:

1. v0 = v.

2. For every i > 0, vi is defined over dom(v) ∪ {ψ1, ... , ψi} as follows:

(a) vi(ϕ) = vi−1(ϕ) for every ϕ ∈ dom(vi−1).

(b) If ψi /∈ dom(vi−1), then vi(ψi) = 1 iff there exists a rule of the form

s1, ... , sn / ⇒ ϕ in GB, sequents s′1 ⊆ s1, ... , s
′
n ⊆ sn, and a substitution

σ such that σ(frm({s′1, ... , s′n})) ⊆ dom(vi−1), σ(ϕ) = ψi and vi−1(σ(s′j)) = 1

for every 1 ≤ j ≤ n. Otherwise, vi(ψi) = 0.

We show that each bivaluation in the sequence is G-legal. For this, the following

lemma is needed:

Lemma 2.5.28. Let 〈{σ(s′1) ∪ c1, ... , σ(s′n) ∪ cn} , σ(s) ∪ c1 ∪ ... ∪ cn〉 be a }-k-ordered

application of a }-k-directed rule r = s1, ... , sn / s, and let ϕs be the single formula in

frm(s). Then, all formulas in sub}k (σ(s′i) ∪ ci) are proper }-k-subformulas of σ(ϕs) for

every 1 ≤ i ≤ n. In particular,

sub}k (frm({σ(s′1) ∪ c1, ... , σ(s′n) ∪ cn, σ(s) ∪ c1 ∪ ... ∪ cn})) ⊆ sub}k (σ(s)).

Proof. Denote 〈{σ(s′1) ∪ c1, ... , σ(s′n) ∪ cn} , σ(s) ∪ c1 ∪ ... ∪ cn〉 by r̂. Suppose that ψ is

a }-k-subformula of some ϕ ∈ σ(frm(s′i)) ∪ frm(ci). We show that ϕ is a proper }-k-

subformula of σ(ϕs). Since ψ is a }-k-subformula of ϕ, it would then follow that ψ is

also a proper }-k-subformula of σ(ϕs). If ϕ = σ(ϕ′) for some ϕ′ ∈ frm(s′i), then since

r is }-k-directed, ϕ′ is a proper }-k-subformula of ϕs. By Lemma 2.5.4, ϕ is a proper

}-k-subformula of σ(ϕs). Otherwise, ϕ ∈ frm(ci), and since r̂ is }-k-ordered, ϕ is a

proper }-k-subformula of some formula in frm(σ(s)∪ c1 ∪ ...∪ cn). If ϕ is a proper }-k-

subformula of some formula in frm(σ(s)), then this formula must be σ(ϕs). Otherwise,

let θ be a formula in frm(c1, ... , cn) such that ϕ is a proper }-k-subformula of θ, and θ

has a maximal number of connectives. Since r̂ is }-k-ordered, θ must also be a proper }-

k-subformula of some formula θ′ ∈ frm(σ(s)∪c1, ... , cn). By the maximality of θ, we have

that θ′ ∈ frm(σ(s)), which means that θ′ = σ(ϕs). Since ϕ is a proper }-k-subformula

of θ, we also have that ϕ is a proper }-k-subformula of σ(ϕs).
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We show by induction on i that each vi is G-legal. For i = 0, this holds by

our assumption regarding v. Let i > 0, and r be a rule of G. Then, there exist

a rule s1, ... , sn / s of GB, sequents s′1 ⊆ s1, ... , s
′
n ⊆ sn, a substitution α, and

sequents c1, ... , cn such that r = α(s′1) ∪ c1, ... , α(s′n) ∪ cn / α(s) ∪ c1 ∪ ... ∪ cn.

Let s′′1 ⊆ s′1, ... , s
′′
n ⊆ s′n, c′1 ⊆ c1, ... , c

′
n ⊆ cn and σ be a substitution

such that σ(frm({α(s′′1) ∪ c′1, ... , α(s′′n) ∪ c′n, α(s) ∪ c1 ∪ ... ∪ cn})) ⊆ dom(vi).

We show that vi(
{
σ(α(s′′j ) ∪ c′j) | 1 ≤ j ≤ n

}
) ≤ vi(σ(α(s) ∪ c1, ... , cn)). If

ψi /∈ σ(frm({α(s′′1) ∪ c′1, ... , α(s′′n) ∪ c′n, α(s) ∪ c1 ∪ ... ∪ cn)}) or ψi ∈ dom(vi−1),

then σ(frm({α(s′′1) ∪ c′1, ... , α(s′′n) ∪ c′n, α(s) ∪ c1 ∪ ... ∪ c′n})) ⊆ dom(vi−1),

and hence this holds by the induction hypothesis. Assume now that

ψi ∈ σ(frm({α(s′′1) ∪ c′1, ... , α(s′′n) ∪ c′n, α(s) ∪ c1 ∪ ... ∪ cn)}) and ψi /∈ dom(vi−1).

Let ϕs be the single formula in frm(s). We first prove that ψi = σ(α(ϕs)). Otherwise,

σ(α(ϕs)) ∈ dom(vi−1). By Lemma 2.5.28, the set of formulas that occur in r is

contained in sub}k (α(ϕs)), and by Lemma 2.5.4, we also have that for every formula ϕ

that occurs in r, σ(ϕ) ∈ σ(sub}k (α(ϕs))) ⊆ sub}k (σ(α(ϕs))). dom(vi−1) is closed under

}-k-subformulas, and σ(α(ϕs)) ∈ dom(vi−1). Thus we have ψi ∈ dom(vi−1), which is a

contradiction.

Similarly, we show that σ(frm(α(s′′j ) ∪ c′j)) ⊆ dom(vi−1) for every 1 ≤ j ≤ n. In-

deed, let ϕ ∈ σ(frm(α(s′′j ) ∪ c′j)) and let ϕ′ ∈ frm(α(s′′j ) ∪ c′j) such that ϕ = σ(ϕ′).

By Lemma 2.5.28, ϕ′ is a proper }-k-subformula of α(ϕs), and hence by Lemma

2.5.4, ϕ is a proper }-k-subformula of ψi = σ(α(ϕs)). In particular, ϕ 6= ψi. Since

σ(frm(α(s′′j ) ∪ c′j)) ⊆ dom(vi), it follows that ϕ ∈ dom(vi−1).

Now, suppose that vi(σ(α(s′′j ) ∪ c′j)) = 1 for every 1 ≤ j ≤ n. We prove that

vi(σ(α(s) ∪ c1 ∪ ... ∪ cn)) = 1. If vi(σ(c′1 ∪ ... ∪ c′n)) = 1, then we are clearly done.

Assume otherwise. Hence, we have vi(σ(α(s′′j ))) = 1 for every 1 ≤ j ≤ n. Since

σ(α(frm(s′′j ))) ⊆ dom(vi−1) for every 1 ≤ j ≤ n, we have vi−1(σ(α(s′′j ))) = 1 for ev-

ery such j. Distinguish two cases:

• s = ⇒ ϕs: Since σ(α(frm(s′′j ))) ⊆ dom(vi−1) for every 1 ≤ j ≤ n, σ(α(ϕs)) = ψi,

and vi−1(σ(α(s′′j ))) = 1 for every 1 ≤ j ≤ n, by the definition of vi we have

vi(ψi) = 1, and so vi(σ(α(s))) = 1.

• s = ϕs ⇒ : To prove that vi(σ(α(s))) = 1, we show that vi(ψi) = 0. By the defini-

tion of vi, it suffices to prove that for every rule of the form q1, ... , qm / ⇒ ϕ′ in GB,

sequents q′1 ⊆ q1, ... , q
′
n ⊆ qn and substitution σ′ such that σ′(frm(q′j)) ⊆ dom(vi−1)

for every 1 ≤ j ≤ m and σ′(ϕ′) = ψi, we have vi−1(σ′(q′j)) = 0 for some

1 ≤ j ≤ m . Let q1, ... , qm / ⇒ ϕ′ and σ′ as above. Since GB is coherent,

the empty sequent is derivable from {σ(α(s1)), ... , σ(α(sn)), σ′(q1), ... , σ′(qm)} us-

ing only (cut). It can be shown by induction on this derivation that the same
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holds for {σ(α(s′1)), ... , σ(α(s′n)), σ′(q′1), ... , σ′(q′m)}, and in particular, we have

σ(α(s′1)), ... , σ(α(s′n)), σ′(q′1), ... , σ′(q′m) `dom(vi−1)
G ⇒ . By Theorem 2.3.5, since

vi−1 is G-legal and vi−1(σ(α(s′j))) = 1 for every 1 ≤ j ≤ n, we have vi−1(σ′(q′j)) = 0

for some 1 ≤ j ≤ m.

Finally, let v′ be the L-bivaluation given by v′(ψi) = vi(ψi) for every i > 0. Clearly,

v′ extends v. To see that it is G-legal, let s1, ... , sn / s ∈ G, s′1 ⊆ s1, ... , s
′
n ⊆ sn,

and σ be a substitution. Let j = max {i | ψi ∈ σ(frm({s′1, ... , s′n, s}))}. Then,

v′(ψ) = vj(ψ) for every ψ ∈ σ(frm({s′1, ... , s′n, s})). Since vj is G-legal, we have

v′({σ(s′i) | 1 ≤ i ≤ n}) = min {vj(σ(s′i)) | 1 ≤ i ≤ n} ≤ vj(σ(s)) = v′(σ(s)).

2.6 Cut-admissibility

The most well-studied property of sequent calculi is the admissibility of the cut rule.

When cut is admissible, the calculus is generally considered well-behaved, and reasoning

about the calculus becomes much easier. Moreover, proof-search algorithms have no need

to “guess” the cut formulas.

The purpose of this section is to study the connection between cut-admissibility and

our generalized notion of analyticity. We show that for a wide sub-family of pure calculi,

these properties are equivalent. After explicitly defining the property of cut-admissibility,

we provide a semantic framework for pure calculi without the cut rule in Section 2.6.1.

Then, Section 2.6.2 presents our main result, which is proven in Section 2.6.5. Sec-

tions 2.6.3 and 2.6.4 include examples and generalizations.

We now precisely define cut-admissibility.

Definition 2.6.1. A derivation of s from S in a calculus G is called cut-limited if in every

application of (cut), the cut formula is in frm(S). We write S`cf
Gs if such a derivation

exists. A calculus G enjoys cut-admissibility if `G= `cf
G.

Note that what we call here cut-admissibility is actually known as strong cut-

admissibility, in which cuts are allowed, but they are confined to apply only on formulas

that appear in the set of assumptions [12]. Usual cut-admissibility, that we call here weak

cut-admissibility, only requires that `G s iff `cf
Gs for every sequent s. For pure calculi,

however, the two notions turn out to be equivalent (see [12]).

2.6.1 Semantics in the Absence of Cut

In this section we prove a soundness and completeness theorem for cut-limited derivations

in pure calculi, with respect to a variant of the bivaluation semantics from Section 2.3.
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We then obtain a sufficient semantic criterion for cut-admissibility, that will be used

in order to prove the equivalence between cut-admissibility and analyticity in a wide

sub-family of calculi.

Theorem 2.3.5 establishes a strong connection between derivations in pure calculi and

bivaluations. When considering derivations without cut, however, bivaluations fall short,

as the cut rule is sound for them. In order to obtain a semantics in which (cut) is

unsound, it must be possible that both ⇒ ϕ and ϕ ⇒ are satisfied. This is obtained

by the addition of a third truth value, 1/2, so that every sequent in which some formula

is assigned 1/2 is satisfied. This way, when assigning ϕ the value 1/2, both sequents above

are satisfied.

Thus, the semantics for cut-limited derivations is based on three truth-values: “false”,

“true”, and “indeterminate”, represented as 0, 1, and 1/2, respectively.

Definition 2.6.2. An L-trivaluation is a function v from L to {0, 1/2, 1}. A trivaluation

v is extended to sequents by: v(Γ ⇒ ∆) = 1 iff v(ϕ) < 1 for some ϕ ∈ Γ or v(ϕ) > 0

for some ϕ ∈ ∆. Otherwise, v(Γ ⇒ ∆) = 0.5 For a set S of sequents, by v(S) we mean

min {v(s) | s ∈ S}.

Definition 2.6.3. A trivaluation v respects a rule s1, ... , sn / s if

v({σ(s′1), ... , σ(s′n)}) ≤ v(σ(s)) for every subsequents s′1, ... , s
′
n of s1, ... , sn (respec-

tively) and substitution σ. v is called G-legal if it respects all rules of G.

Note that unlike bivaluations, we only consider trivaluations that are totally defined.

Example 2.6.4. Consider a trivaluation v such that v(p1) = v(p2) = 1/2, v(p1 ∧ p2) = 1,

and v(p1 ∨ p2) = 0. For every other formula, v(ϕ) = 1/2. v respects neither of the rules

⇒ p1, p2 / ⇒ p1 ∨ p2 and p1, p2 ⇒ / p1 ∧ p2 ⇒ . However, v does respect their axiomatic

counterparts p1 ∧ p2 ⇒ p1, p1 ∧ p2 ⇒ p2, p1 ⇒ p1 ∨ p2 and p2 ⇒ p1 ∨ p2.

When semantically describing the existence of a cut-limited derivation of a sequent

s from a set S of sequents in a calculus G, we should take into account that (cut) is

sound when the cut formula is in frm(S). Thus, frm(S)-formulas must be assigned either

1 or 0. For this requirement, we introduce the following definition:

Definition 2.6.5. The support of a trivaluation v, denoted supp(v), is the set

{ϕ ∈ L | v(ϕ) 6= 1/2}. v is called:

• F-determined (for F ⊆ L) if F ⊆ supp(v); and

• fully determined if it is L-determined.

5Note that trivaluations never assign 1/2 to a sequent.
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Remark 2.6.6. It might seem that there is no real difference between trivaluations and

(partial) bivaluations: given a trivaluation v, a bivaluation v∗ can be obtained from it

simply by taking v∗ = λϕ ∈ supp(v).v(ϕ). Moreover, if v is G-legal for some calculus

G, then so is v∗. The converse, however, does not always hold, and there lies the

difference between these two formalisms. Consider, for example, the trivaluation v from

Example 2.6.4. The domain of v∗ would then be supp(v) = {p1 ∧ p2, p1 ∨ p2}. v∗ is

(trivially) LK-legal, as for every substitution σ and rule r of LK, σ(frm(r)) 6⊆ dom(v).

However, as seen in Example 2.6.4, v itself is not LK-legal.

Note that every trivaluation is ∅-determined, and also that L-bivaluations are actually

fully determined trivaluations, and thus they will be called this way in the reminder of

this section.

For cut-limited derivations, we have the following variant of Theorem 2.3.5:

Theorem 2.6.7. S`cf
Gs iff v(S) ≤ v(s) for every frm(S)-determined G-legal trivaluation

v.

Proof.

Soundness: Soundness is proved analogously to the proof of Theorem 2.3.5. The only

difference is that (cut), in general, is unsound for trivaluations. However, assuming

S`cf
Gs, we have that cuts are limited to formulas in frm(S) ⊆ supp(v). For such formu-

las, v assigns either 1 or 0 and thus (cut) is valid.

Completeness: Recall the definitions related to ω-sequents from the proof of Theo-

rem 2.3.5. Let S be a set of sequents and s a sequent such that S0cf
Gs. Call an ω-sequent

L⇒ R maximal unprovable if the followings hold:

• S 6 `cf
GL⇒ R

• S`cf
GL, ϕ⇒ R for every ϕ /∈ L, and S`cf

GL⇒ ϕ,R for every ϕ /∈ R.

It is routine to extend s to a maximal unprovable ω-sequent L⇒ R.

Define a trivaluation v as follows:

v = λϕ ∈ L.


1 ϕ ∈ L
0 ϕ ∈ R
1/2 otherwise

First note that v is well defined, as L ∩ R = ∅ (otherwise, S`cf
GL ⇒ R). Clearly,

v(s) = 0, and for every Γ ⇒ ∆ ∈ S we have that S`cf
GΓ ⇒ ∆, which means that either

Γ 6⊆ L or ∆ 6⊆ R, and so v(Γ⇒ ∆) = 1.

v is shown to be G-legal as in the proof of Theorem 2.3.5, using the extensions

of trivaluations to sequents. It is left to show that v is frm(S)-determined. Assume
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otherwise. Then we have some ϕ ∈ frm(S)\(L∪R). Since L⇒ R is maximal unprovable,

we must have S`cf
GL ⇒ ϕ,R and S`cf

GL, ϕ ⇒ R. Applying (cut) (which is allowed, as

ϕ ∈ frm(S)), we obtain S`cf
GL⇒ R, which is a contradiction.

Note that only completeness of cut-limited derivations with respect to frm(S)-

determined trivaluations is used in the proof of Theorem 2.6.20.

Remark 2.6.8. The three valued semantics for the cut-free fragment of LK that is

obtained from Theorem 2.6.7 is equivalent to the Nmatrix semantics in [68].

Theorem 2.6.7 gives rise to a sufficient semantic criterion for cut-admissibility, which

is based on the following notion of determination:

Definition 2.6.9. We say that a trivaluation v′ is a determination of a trivaluation v

(alternatively, we say that v′ determines v) if v(ϕ) = v′(ϕ) for every ϕ ∈ supp(v). v′ is

called an F-determination of v if, in addition, it is F -determined. If v′ is fully determined

we call it a full determination of v.

It immediately follows from our definitions that:

Proposition 2.6.10. Suppose that v′ determines v. Then for every sequent s, if v′(s) = 1

then v(s) = 1. The converse holds as well when v is frm(s)-determined.

The sufficient semantic criterion for cut-admissibility is given in the following corol-

lary:

Corollary 2.6.11. If every G-legal trivaluation has a G-legal full determination, then

G enjoys cut-admissibility.

Proof. Suppose S0cf
Gs. By Theorem 2.6.7, there exists some frm(S)-determined G-legal

trivaluation v such that v(S) = 1 and v(s) = 0. Let v′ be a G-legal full determination of

v. By Proposition 2.6.10, v′(S) = 1 and v′(s) = 0. By Theorem 2.3.5 (and the fact that

fully determined trivaluations are actually L-bivaluations), we have S 0G s.

2.6.2 From Analyticity to Cut-admissibility

In this section we identify a sub-family of calculi in which analyticity and cut-admissibility

are equivalent. First, note that analyticity may not imply cut-admissibility in general:

Example 2.6.12. Consider the calculus Ax(LK) from Section 2.4. It was shown in Ex-

ample 2.5.10 that this calculus is ∅-analytic. However, it does not admit cut-admissibility.

For instance, the derivable sequent p1 ∧ p2 ⇒ p1 ∨ p2 has no derivation without cut. This

is proved using Theorem 2.6.7: recall the bivaluation v from Example 2.6.4. Clearly,

v(p1∧p2 ⇒ p1∨p2) = 0. Also, v is Ax(LK)-legal. By Theorem 2.6.7, 6 `cf
Gp1∧p2 ⇒ p1∨p2.
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However, for the family of }-k-directed calculi, these two fundamental properties

coincide:

Theorem 2.6.13. Every }-k-analytic }-k-directed pure calculus enjoys cut-

admissibility.

This theorem is a particular instance of Theorem 2.6.20 below, that will be proved in

Section 2.6.5.

For all the calculi mentioned above (except Ax(LK)), this theorem allows one to

obtain cut-admissibility as a consequence of }-k-analyticity for some } and k. This also

includes every calculus in the hierarchy of weak double negations (Example 2.5.18).

2.6.3 Some Applications

We outline two possible applications of Theorem 2.6.13 in cut-admissibility proofs:

Simpler Semantic Proofs of Cut-admissibility

Theorem 2.6.13 reduces the burden in proving cut-admissibility to establishing only ana-

lytic cut-admissibility. An application of (cut) in a derivation of s from S is called a }-k-

analytic cut if the cut formula is in sub}k (S∪{s}). In turn, }-k-analytic cut-admissibility

concerns only the admissibility of non-}-k-analytic cuts. Proving this property is often

easier than showing full cut-admissibility. For example, it is straightforward to prove that

LK is complete for the classical truth tables, when applications of (cut) are restricted

to be ∅-analytic. Indeed, assuming s is not derivable from S in LK using ∅-analytic cuts,

one extends s to a maximal unprovable sequent s∗ that consists solely of sub(S ∪ {s})-
formulas. Then, a countermodel v can be defined simply by setting v(ϕ) = 1 for every

ϕ on the left side of s∗, and v(ψ) = 0 for every ψ on its right side. Using ∅-analytic

cuts, it immediately follows that frm(s∗) = sub(S ∪ {s}), which makes it easy to prove

that v respects the classical truth tables, and can therefore be extended to a full classical

countermodel. By Theorem 2.6.13, we may conclude that LK enjoys cut-admissibility.

Providing a semantic proof of cut-admissibility without going through ∅-analytic cuts is

possible, but more complicated.

Sufficient Criterion for Cut-admissibility

Theorem 2.6.13 extends the sufficient criterion for analyticity from Theorem 2.5.16 to be

also sufficient for cut-admissibility.

Corollary 2.6.14. Every pure }-k-directed coherent calculus enjoys cut-admissibility.
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Proof. Let G be such a calculus. By Theorem 2.5.16, G is }-k-analytic. By Theo-

rem 2.6.13, it admits cut-admissibility.

2.6.4 Strengthening The Result

Actually, Theorem 2.6.13 holds for a more general notion of analyticity, as the internal

structure of the }-k-subformula relation is not important to the proof of the theorem.

The crucial properties of the }-k-subformula relation that are actually needed to obtain

Theorem 2.6.13 are the fact that it is an effective order relation (in the sense that it

induces an enumeration of formulas) that conforms with substitutions. We thus further

generalize the }-k-subformula property, by assuming a given ordering of L-formulas,

denoted ≺, which has to satisfy certain properties, as defined next.

Notation 2.6.15. Given a binary relation R on L, we denote by R [ϕ] the set

{ψ ∈ L | 〈ψ, ϕ〉 ∈ R}. This notation is naturally extended to sets (R [Γ] =
⋃
ϕ∈ΓR [ϕ]),

sequents (R [Γ⇒ ∆] = R [Γ]∪R [∆]), and sets of sequents (R [S] =
⋃
s∈S R [s]). By order

relation we mean an irreflexive and transitive binary relation.

Definition 2.6.16. An order relation ≺ is called:

• safe if it is prefinite (≺ [ϕ] is finite for every ϕ ∈ L), and the function λϕ ∈ L.≺ [ϕ] is

computable.

• structural if ϕ ≺ ψ implies σ(ϕ) ≺ σ(ψ) for every substitution σ.

Example 2.6.17. The usual proper subformula relation over CL is a structural safe

order relation. The proper {¬}-1-subformula relation is also an example of a structural

and safe order relation. Moreover, for every } and k, the proper }-k-subformula relation

is a structural and safe order relation.

In what follows, ≺ denotes an arbitrary safe and structural order relation over L, and

� denotes its reflexive closure.

The above definition allows us to further generalize }-k-analyticity, to a property

that we call ≺-analyticity.

Definition 2.6.18. A calculus G is called ≺-analytic if S `G s iff S `�[S∪{s}]
G s for every

set S of sequents and sequent s.

It is left to accommodate the definition of }-k-directedness (Definition 2.5.12) to the

generalized notion of analyticity that we consider in this section:



42 Chapter 2. Pure Sequent Calculi

Definition 2.6.19. A rule S/s is called ≺-ordered if frm(S) ⊆ ≺ [s]. It is called ≺-

directed if, in addition, s has the form ⇒ ϕ or ϕ⇒ for some formula ϕ. A calculus G

is called ≺-ordered (≺-directed) if all its rules are ≺-ordered (≺-directed).

Generalizing Theorem 2.6.13, we get that cut-admissibility follows from ≺-analyticity

in the family of ≺-directed pure calculi, for any structural and safe order relation ≺.

Theorem 2.6.20. Every ≺-analytic ≺-directed pure calculus enjoys cut-admissibility.

2.6.5 Proof of Theorem 2.6.20

We now prove Theorem 2.6.20, by utilizing Corollary 2.6.11. Thus, given a ≺-analytic

≺-directed pure calculus, we show that every G-legal trivaluation has a G-legal full

determination. This is done in two steps: Lemma 2.6.21 below shows that it is possible

to add a single formula to the support of a G-legal trivaluation. Then, Lemma 2.6.22

makes an iterative usage of this fact, thus obtaining a full determination.

Lemma 2.6.21. Let G be a ≺-analytic ≺-directed calculus, v a G-legal trivaluation

and ψ a formula such that ≺ [ψ] ⊆ supp(v). Then v has a G-legal supp(v) ∪ {ψ}-
determination.

Proof. If ψ ∈ supp(v), then this is trivial, as v determines itself. We therefore assume

that ψ /∈ supp(v). Let Γv = {ϕ ∈ ≺ [ψ] | v(ϕ) = 1} and ∆v = {ϕ ∈ ≺ [ψ] | v(ϕ) = 0}.
We first show that 0G Γv ⇒ ∆v: Consider the � [Γv ⇒ ∆v]-bivaluation u de-

fined by u(ϕ) = v(ϕ) for every ϕ ∈ � [Γv ⇒ ∆v]. u is indeed a bivaluation, as

� [Γv ⇒ ∆v] ⊆ � [ψ] ⊆ supp(v). Clearly, u is G-legal, and u(Γv ⇒ ∆v) = 0. By

Theorem 2.3.5, 0�[Γv⇒∆v ]
G Γv ⇒ ∆v, and since G is ≺-analytic, 0G Γv ⇒ ∆v. We define

a trivaluation v′, and show that it is a G-legal supp(v) ∪ {ψ}-determination of v. v′ is

obtained from v by setting

v′(ψ) =

1 0G Γv, ψ ⇒ ∆v

0 otherwise

Clearly, v′ is a supp(v) ∪ {ψ}-determination of v. We prove that it is G-legal. Let

s1, ... , sn / s be a rule of G, s′1, ... , s
′
n respective subsequents of s1, ... , sn and σ a substi-

tution. Suppose v′(σ(s)) = 0. We prove that v′(σ(s′i)) = 0 for some 1 ≤ i ≤ n. By our

assumption, frm(σ(s)) ⊆ supp(v′) = supp(v)∪{ψ}. If frm(σ(s)) ⊆ supp(v), then this fol-

lows from the fact that v is G-legal and v′ determines v. Otherwise, frm(σ(s)) 6⊆ supp(v).

Since G is ≺-directed, we have frm(σ(s)) = {ψ}. Also, for every 1 ≤ i ≤ n, we have

frm(s′i) ⊆ ≺ [s], and in particular, frm(σ(s′i)) ⊆ σ(≺ [s]) ⊆ ≺ [σ(s)] = ≺ [ψ].

To show that there exists 1 ≤ i ≤ n such that v′(σ(s′i)) = 0, we first prove that

6`G σ(s) ∪ (Γv ⇒ ∆v): by the above, either σ(s) = (ψ ⇒ ) or σ(s) = ( ⇒ ψ). In the
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first case, v′(ψ) = 1, which means that 0G Γv, ψ ⇒ ∆v. In the second, v′(ψ) = 0, which

means that `G Γv, ψ ⇒ ∆v. Using (cut), we have 0G Γv ⇒ ψ,∆v. Either way, we have

0G σ(s) ∪ (Γv ⇒ ∆v).

Since 6`G σ(s) ∪ (Γv ⇒ ∆v), we must have some 1 ≤ i ≤ n such that

6`G σ(s′i) ∪ (Γv ⇒ ∆v). Suppose si = Γi ⇒ ∆i and s′i = Γ′i ⇒ ∆′i. Then using the

fact that frm(σ(s′i)) ⊆ ≺ [ψ] ⊆ Γv ∪ ∆v, we have σ(Γ′i) ⊆ Γv and σ(∆′i) ⊆ ∆v. Thus

v(σ(s′i)) = 0, and therefore v′(σ(s′i)) = 0.

Lemma 2.6.22. Let G be a ≺-analytic ≺-directed calculus and v a G-legal trivaluation.

Then there exists a G-legal full determination of v.

Proof. For every trivaluation u and formula ψ, uψ denotes an arbitrary G-legal

supp(u) ∪ {ψ}-determination of u, if such exists (otherwise, uψ is undefined). Note that

whenever u is G-legal and ≺ [ψ] ⊆ supp(u), Lemma 2.6.21 provides us with such a

determination, in which case uψ is defined.

Let ψ1, ψ2, ... be an enumeration of the formulas of L, such that i < j whenever

ψi ≺ ψj. Such enumeration exists by the safety of ≺. For every i, denote the set

{ψ1, ... , ψi} by Φ≤i (in particular, Φ≤0 = ∅).
Define a sequence v0, v1, ... of trivaluations as follows: v0 = v, and for every i > 0,

vi = vi−1
ψi

. We prove by induction on i that vi is defined, and is a G-legal Φ≤i-

determination of v, and also of vi−1 (for i ≥ 1).

For i = 0, this trivially holds. Now let i > 0. By the induc-

tion hypothesis, vi−1 is G-legal and is a Φ≤i−1-determination of v. By the

enumeration, ≺ [ψi] ⊆ Φ≤i−1 ⊆ supp(vi−1). Thus, vi is defined, and is

a G-legal supp(vi−1) ∪ {ψi}-determination of vi−1, and thus also of v. Now,

Φ≤i = Φ≤i−1 ∪ {ψi} ⊆ supp(vi−1) ∪ {ψi} ⊆ supp(vi), and therefore vi is actually a

Φ≤i-determination of vi−1 and of v.

We now define v′, a G-legal full determination of v. For every ϕ ∈ L, let iϕ be the

index of ϕ in the enumeration (that is, ϕ = ψiϕ). Define v′ = λϕ ∈ L.viϕ(ϕ).

For every ϕ ∈ L, v′(ϕ) = viϕ(ϕ) 6= 1/2, as viϕ is Φ≤iϕ-determined. Also, for

every ϕ ∈ supp(v), v′(ϕ) = viϕ(ϕ) = v(ϕ), as viϕ determines v. Finally, let

s1, ... , sn / s be a rule of G, s′1, ... , s
′
n respective subsequents of s1, ... , sn, and σ a

substitution. Let k = min {i | frm(σ({s′1, ... , s′n, s})) ⊆ Φ≤i}. Then v′(ϕ) = vk(ϕ)

for every ϕ ∈ frm(σ({s′1, ... , s′n, s})). Therefore, if v′(σ({s′1, ... , s′n})) = 1, then

vk(σ({s′1, ... , s′n})) = 1 as well. Since vk is G-legal, vk(σ(s)) = 1, and therefore

v′(σ(s)) = 1.

Putting all pieces together we have proved Theorem 2.6.20: Assuming that G is ≺-

analytic and ≺-directed, by Lemma 2.6.22, every G-legal L-trivaluation has a G-legal
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full determination, and cut-admissibility follows by Corollary 2.6.11.

2.7 Single-conclusion Pure Calculi

Gentzen’s calculus for propositional intuitionistic logic from [54], called LJ, is obtained

from LK by an additional requirement according to which all sequents are single-

conclusion sequents (sequents Γ⇒ ∆ with |∆| ≤ 1). Obviously, LJ cannot be presented

as a pure calculus due to this restriction. While there is no known analytic pure calculus

for intuitionistic logic, we identify a sub-family of calculi in which such a restriction on

context sequents turns out to be redundant.

We start by defining the family of single conclusion calculi, and their associated

consequence relations:

Definition 2.7.1. A single-conclusion pure rule is a pure rule that consists only of

single-conclusion sequents. A single-conclusion pure calculus is a pure calculus whose

rules are all single-conclusion pure rules. A (strict) single-conclusion derivation of a

(strict) single-conclusion sequent in a calculus G is defined as a usual derivation, in

which only (strict) single-conclusion sequents occur.6 A (strict) single conclusion sequent

Γ ⇒ ∆ is (strictly) single-conclusion derivable from a set S of (strict) single-conclusion

sequents in a calculus G if it has a (strict) single-conclusion derivation from S in G. We

denote the latter by S `≤1
G s (S `=1

G s).

To identify a sub-family of calculi G in which `≤1
G (`=1

G ) and `G are equivalent, we

introduce the following definitions:

Definition 2.7.2. A pure rule is called definite if at least one of its premises has an

empty right side whenever the conclusion has an empty right side. A calculus is called

definite if each of its rules is definite.

Example 2.7.3. Both (∨ ⇒) and (⇒ ∨) of LK are definite (all sequents of the former

have empty right sides, and the right side of the conclusion of the latter is not empty).

However, the rule (¬ ⇒ ) is not definite.

Definition 2.7.4. A rule is called a Horn rule if the sum of the number of formulas in

the right side of the conclusion and the number of premises with a non-empty left side

is at most one. A calculus is called a Horn calculus if each of its rules is a Horn rule.

Example 2.7.5. The rule (⇒ ∨) of LK (see Example 2.2.7) is Horn. In contrast, the

rule (∨ ⇒) is not Horn, as both its premises have a non-empty left side.

6A strict single-conclusion sequent is a sequent Γ⇒ ∆ with |∆| = 1.
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For the family of single-conclusion calculi that are Horn and definite, we show that one

can consider only derivations that contain single-conclusion sequents, without affecting

the induced derivability relation.

Proposition 2.7.6. Let G be a pure Horn definite single-conclusion calculus, S a set

of (strict) single-conclusion sequents and s a (strict) single-conclusion sequent. Then,

S `G s iff S `≤1
G s (S `=1

G s).

Proof. The left-to-right direction is obvious. To show right-to-left direction of the non-

strict version, we prove by induction on the length of the derivation in G that if

S `G Γ ⇒ ∆ then S `≤1
G Γ ⇒ E for some singleton or empty set E ⊆ ∆. We con-

sider here only the case of an application of some rule of G. The other cases are easy.

Suppose that Γ ⇒ ∆ is the conclusion of an application of a single-conclusion rule r of

G, whose conclusion is Γ0 ⇒ ∆0. Then, there exist subsequents Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n

of the premises of r, a substitution σ and sets Γ′1, ... ,Γ
′
n,∆

′
1, ... ,∆

′
n of formulas, such that

Γ = σ(Γ0)∪ Γ′1 ∪ ...∪ Γ′n, ∆ = σ(∆0)∪∆′1 ∪ ...∪∆′n, and S `G σ(Γi),Γ
′
i ⇒ σ(∆i),∆

′
i for

every 1 ≤ i ≤ n with shorter derivations. Since G is Horn, one of the following holds:

• Γi = ∅ for every 1 ≤ i ≤ n. In this case, we have S `G Γ′i ⇒ σ(∆i),∆
′
i for every

1 ≤ i ≤ n. The induction hypothesis entails that for every 1 ≤ i ≤ n, S `≤1
G Γ′i ⇒ Ei

for some singleton or empty set Ei ⊆ σ(∆i) ∪ ∆′i. If Ei ⊆ ∆′i for some i, then we

obtain S `≤1
G Γ ⇒ Ei using (weak), and Ei ⊆ ∆′i ⊆ ∆′1 ∪ ... ∪∆′n. Otherwise, for

every 1 ≤ i ≤ n, we have S `≤1
G Γ′i ⇒ Ei for some singleton Ei ⊆ σ(∆i). Since G is

a single conclusion calculus, for every 1 ≤ i ≤ n there exists a formula ψi such that

Ei = σ(∆i) = {σ(ψi)} . Hence for every 1 ≤ i ≤ n, we have S `≤1
G Γ′i ⇒ σ(ψi). In

this case, we can apply r with (trivial) subsequents ⇒ σ(ψi) and context sequents

Γ′i ⇒ , and obtain S `≤1
G Γ⇒ σ(∆0) (|∆0| ≤ 1 since r is a single-conclusion rule).

• Γi 6= ∅ for a single 1 ≤ i ≤ n and ∆0 = ∅. Since G is definite, ∆j = ∅ for some

1 ≤ j ≤ n. Now, if j 6= i then since Γi 6= ∅ and G is Horn, Γj = ∅ as well. In

this case, S `G Γ′j ⇒ ∆′j and by the induction hypothesis, S `≤1
G Γ′j ⇒ Ej for

some Ej ⊆ ∆′j ⊆ ∆ such that |Ej| ≤ 1. Using (weak) we get that S `≤1
G Γ ⇒ Ej .

Hence we may assume that ∆i = ∅. Now, the induction hypothesis entails that

for every j 6= i, S `≤1
G Γ′j ⇒ Ej for some singleton or empty set Ej ⊆ σ(∆j) ∪∆′j,

and S `≤1
G Γ′i, σ(Γi) ⇒ Ei for some singleton or empty set Ei ⊆ ∆′i. If Ej ⊆ ∆′j for

some j 6= i, then we obtain S `≤1
G Γ ⇒ Ej using (weak) and Ej ⊆ ∆. Otherwise,

for every j 6= i, we have S `≤1
G Γ′j ⇒ Ej for some singleton Ej ⊆ σ(∆j). Since G

is a single conclusion calculus, for every j 6= i there exists a formula ψj such that

Ej = σ(∆j) = {σ(ψj)} . Hence for every j 6= i, we have S `≤1
G Γ′j ⇒ σ(ψj). In this
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case, we can apply r with context sequents Γ′i ⇒ Ei and Γ′j ⇒ for j 6= i and obtain

S `≤1
G Γ⇒ Ei, where Ei ⊆ ∆′i ⊆ ∆.

The proof of the right-to-left direction of the strict version is similar: one proves by

induction on the length of the derivation in G that if S `G Γ ⇒ ∆ then S `=1
G Γ ⇒ E

for some singleton E ⊆ ∆ ∪ {ψ}, where ψ is the formula on the right side of s.

Example 2.7.7. The single-conclusion calculus GPIL is both Horn and definite, and

hence S `GPIL
s iff S `≤1

GPIL
s whenever S ∪ {s} consists of single-conclusion sequents.

Example 2.7.8. The paper [20] studies the family of canonical single-conclusion sequent

calculi, by adjusting the theory of canonical calculi [21] to a single-conclusion setting. For

canonical calculi that are Horn and definite, there is no difference between the ordinary

version and the single-conclusion version.

Example 2.7.9. Any Hilbert-type calculus H (without side conditions on rule appli-

cations) can be translated to a pure sequent calculus GH , by taking a rule of the form

⇒ ψ1 ; ... ; ⇒ ψn / ⇒ ψ for each Hilbert-type derivation rule ψ1, ... , ψn /ψ (where n = 0

for axioms). For example, the axiom ϕ ⊃ (ψ ⊃ ϕ) is translated to the axiomatic rule

/ ⇒ ϕ ⊃ (ψ ⊃ ϕ), and modus ponens is translated to the rule ⇒ ϕ ; ⇒ ϕ ⊃ ψ / ⇒ ψ.

It is easy to show that ψ is derivable from Γ in H iff `=1
GH

Γ ⇒ ψ. Since GH is always

Horn and definite, the latter holds iff `GH
Γ⇒ ψ.



Chapter 3

SAT-based Decision Procedure

As shown in Section 2.5, the derivability problem of a given pure calculus is decidable

whenever the calculus is }-k-analytic for some } and k. However, the mere decidability

of this problem does not provide any efficient decision procedure. Moreover, a great deal

of ingenuity is often required for developing proof-search algorithms for sequent calculi

(see, e.g., [45]). In this chapter we show that for }-k-analytic pure calculi, it is possible

to replace proof-search by SAT solving. This is done using a polynomial-time reduction

from the derivability problem to the complement of SAT. While SAT is NP-complete, it

is considered “easy” when it comes to real-world applications. Indeed, there are many

off-the-shelf SAT solvers, that, despite an exponential worst-case time complexity, are

considered extremely efficient (see, e.g., [56]). The reduction that we propose here is

uniform, and does not employ any calculus-specific optimizations. Instead, it shifts all

heuristics and optimizations to the realm of SAT-solvers.

In Section 3.1 we present a reduction the derivability problem in a given }-k-analytic

pure calculus to the complement of SAT, and prove its correctness, as well as its poly-

nomial time complexity. In Section 3.2 we identify a subfamily of }-k-analytic pure

calculi for which the reduction induces a linear time decision procedure. Finally, in Sec-

tion 3.3 we describe an implementation of the reduction, and discuss its performance in

Section 3.3.3.

Publications Related to this Chapter

This chapter is mainly based on [72, 103, 104]. However, the results of [72] are generalized

here to the notion of analyticity used in Chapter 2.

47
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3.1 A Polynomial Reduction from Derivability to

UNSAT

We utilize the semantic view of pure sequent calculi (see Section 2.3), and reduce the

derivability problem in a given analytic sequent calculus to small countermodel search,

which can be be easily given in terms of a SAT instance.

SAT instances are taken to be CNFs represented as sets of clauses, where clauses

are sets of literals (that is, atomic variables and their negations, denoted by overlines).

The set {xψ | ψ ∈ L} is used as the set of atomic variables in the SAT instances. The

translation of sequents to SAT instances is naturally given by:

SAT+(Γ⇒ ∆) = {{xψ | ψ ∈ Γ} ∪ {xψ | ψ ∈ ∆}}
SAT−(Γ⇒ ∆) = {{xψ} | ψ ∈ Γ} ∪ {{xψ} | ψ ∈ ∆}

This translation captures the semantic interpretation of sequents. Indeed, given an L-

bivaluation v and a classical assignment u that assigns true to xψ iff v(ψ) = 1, we have

that for every L-sequent s: v(s) = 1 iff u satisfies SAT+(s), and v(s) = 0 iff u satisfies

SAT−(s). Now, for a bivaluation to be G-legal for some calculus G, it should satisfy

the semantic restrictions arising from the rules of G. These restrictions can be directly

encoded as SAT instances (as done, e.g., in [67] for the particular case of the classical

truth tables).

In the reduction that we present, we assume that the given calculus is axiomatic. If it

is not, it can be transformed into an equivalent axiomatic calculus (see Theorem 2.4.3).

Definition 3.1.1. The SAT instance associated with a given axiomatic L-calculus G,

a subset } of ♦1
L, a natural number k ≥ 0, a set of L-sequents S and an L-sequent s,

denoted SAT}k (G, S, s), consists of the following clauses:

1. SAT+(s′) for every s′ ∈ S

2. SAT−(s)

3. SAT+(σ(s′)) for every sequent s′ and substitution σ such that ∅ / s′ ∈ G and

σ(frm(s′)) ⊆ sub}k (S ∪ {s})

Example 3.1.2. Consider the {¬}-1-analytic calculus G L3
for  Lukasiewicz three-valued

logic. Its axiomatic version, Ax(G L3
), contains the rules ∅ / p1, p1 ⊃ p2 ⇒ ¬p1, p2 and

∅ /¬p2, p1 ⊃ p2 ⇒ ¬p1, p2 (see Example 2.4.4). Accordingly, SAT
{¬}
1 (Ax(G L3

), S, s) in-

cludes the clauses {xψ1 , xψ1⊃ψ2 , x¬ψ1 , xψ2} and {x¬ψ2 , xψ1⊃ψ2 , x¬ψ1 , xψ2} for every formula

of the form ψ1 ⊃ ψ2 in sub
{¬}
1 (S ∪ {s}).

Next, we prove the correctness of this reduction.
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Theorem 3.1.3. For any }-k-analytic axiomatic L-calculus G, we have S `G s iff

SAT}k (G, S, s) is unsatisfiable.

Proof. Suppose that S 6`G s. By Theorem 2.3.5, there exists a G-legal L-bivaluation v

such that v(S) > v(s). The classical assignment u that assigns true to a variable xψ iff

v(ψ) = 1 satisfies SAT}k (G, S, s).

For the converse, let u be a classical assignment satisfying the SAT instance

SAT}k (G, S, s). Consider the sub}k (S∪{s})-bivaluation v defined by v(ψ) = 1 iff u assigns

true to xψ. v is G-legal, and v(S) > v(s). By Theorem 2.3.5, we have S 6`sub
}
k (S∪{s})

G s.

Since G is }-k-analytic, we may conclude that S 6`G s.

We show that this reduction is computable in polynomial time. The exact exponent

is of course constant, and is determined by the structure of the given calculus.

Definition 3.1.4. The }-k-complexity of an axiomatic rule ∅ / s, denoted c}k (∅ / s), is the

minimal cardinality of a set Γ ⊆ frm(s) such that frm(s) ⊆ sub}k (Γ). The }-k-complexity

of an axiomatic calculus G, denoted c}k (G), is given by max {c}k (r) | r ∈ G}. If } = ∅,
we denote c}k by c.

Example 3.1.5. c(∅ / p1, p2 ⇒ p1 ∧ p2) = 1, c(∅ / p1, p1 ⊃ p2 ⇒ ¬p1, p2) = 2 and

c
{¬}
1 (∅ / p1, p1 ⊃ p2 ⇒ ¬p1, p2) = 1. By repeating these calculations on the other rules of

LK and G L3
, we obtain that c(Ax(LK)) = 1, c(Ax(G L3

)) = 2, and c
{¬}
1 (Ax(G L3

)) = 1.

Theorem 3.1.6. Let G be an axiomatic L-calculus. Given S and s, the SAT instance

SAT}k (G, S, s) is computable in O(nm) time, where n is the length of the string represent-

ing S and s, and m is the }-k-complexity of G.

Proof. The following algorithm computes SAT}k (G, S, s):

1. Build a parse tree for the input using standard techniques. As usual, every node

represents an occurrence of some subformula in S ∪ {s}.

2. Using, e.g., the linear time algorithm from [37], compress the parse tree into an

ordered dag by maximally unifying identical subtrees. After the compression, the

nodes of the dag represent subformulas of S ∪ {s}, rather than occurrences. Hence

we may identify nodes with their corresponding formulas.

3. Traverse the dag. For every ◦̄ ∈ }≤k and node v that has a parent that is labeled

with an element from ♦L \ }, add a new path ending with v, such that the con-

catenation of the path is ◦̄, if such a path does not exist. To do this it is possible

to maintain in each node v a constant-size list of all elements of }≤k that end with

v. Note that after these additions, the nodes of the dag one-to-one correspond to

sub}k (S ∪ {s}).
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4. SAT−(s) is obtained by traversing the dag and generating {xψ} for every ψ on the

left side of s and {xψ} for every ψ on the right side of s.

5. For every s′ ∈ S, SAT+(s′) is obtained similarly.

6.
⋃{

SAT+(σ(s′)) | ∅ / s′ ∈ G, σ(frm(s′)) ⊆ sub}k (S ∪ {s})
}

is generated by looping

over all rules in G. For each rule ∅ / s′, let ϕ1, ... , ϕm′ (m′ ≤ m) be formulas

such that frm(s′) consists only of }-k-subformulas of ϕ1, ... , ϕm′ . Go over all m′-

tuples of nodes in the dag. For each m′ nodes v1, ... , vm′ check whether v1, ... , vm′

match the pattern given by ϕ1, ... , ϕm′ , and if so, construct a mapping h from the

formulas in sub}k (s′) to their matching nodes. Then, construct a clause consisting of

a literal xh(ϕ) for every ϕ on the left side of s′, and a literal xh(ϕ) for every ϕ on the

right side of s′. Note that only a constant depth of the sub-dags rooted at v1, ... , vm′

is considered—that is the complexity of ϕ1, ... , ϕm′ , in addition to nodes on paths

that represent elements of }≤k. These are independent of the input S ∪ {s}. To

see that we generate exactly all required clauses, note that a substitution σ satis-

fies σ(frm(s′)) ⊆ sub}k (S ∪ {s}) iff σ({ϕ1, ... , ϕm′}) ⊆ sub}k (S ∪ {s}). Thus, there

exists a substitution σ satisfying σ(frm(s′)) ⊆ sub}k (S ∪ {s}) iff there are m′ nodes

matching the patterns given by ϕ1, ... , ϕm′ .

Steps 1,2,3,4 and 5 require linear time. Each pattern matching in step 6 is done in

constant time, and so handling a rule r with c}k (r) = m takes O(nm) time. Thus step 6

requires O(nm) time.

Remark 3.1.7. We employ the same standard computation model of analysis of al-

gorithms used in [44]. An efficient implementation of this algorithm cannot afford the

variables xψ to literally include a full string representation of ψ. Thus we assume that

each node has a key that can be printed and manipulated in constant time (e.g., its

memory address).

Corollary 3.1.8. For any }-k-analytic pure calculus G, the derivability problem for G

is in co-NP.

3.2 Linear Time Decision Procedure

Theorem 3.1.6 shows that when c}k (G) = 1, the SAT instance SAT}k (G, S, s) can be

generated in linear time. In such cases, it is natural to identify calculi whose SAT

instances can be also decided in linear time. This is the case, for example, for SAT

instances consisting of Horn clauses [47] – clauses with at most one positive literal. It is

routine to verify that for every Horn calculus (see Definition 2.7.4), its axiomatic version
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consists solely of single-conclusion sequents. In this case, the semantic constraints that

are induced by the calculus produce Horn clauses in the reduction above. When such

calculi also have a }-k-complexity of 1, the entire decision procedure (reducing + solving)

can be done in linear time. Formally:

Proposition 3.2.1. Let G be a }-k-analytic Horn L-calculus such that c}k (G) = 1. The

derivability problem for G can be decided in linear time using a HORNSAT solver, for

the case where the set of premises consists of single-conclusion sequents.

Proof. By Theorem 2.4.3, there exists an axiomatic calculus G′ that is equivalent to G.

It is easy to verify that G′ consists of single-conclusion sequents, and that when S also

consists of single-conclusion sequents, SAT}k (G′, S, s) consists of Horn clauses for every

s.

Example 3.2.2. [34] presents a reduction from the derivability problem for GPIL to

HORNSAT. This reduction is a particular instance of the reduction presented above. The

derivability problem for GEPIL (see Example 2.5.27) is also decidable in linear time, as

GEPIL is a ∅-analytic Horn calculus and c(GEPIL) = 1. We may also require that the dis-

junction of GPIL is symmetric by adding the pure axiomatic rule r = ∅ / p1∨p2 ⇒ p2∨p1.

Obviously, the resulting calculus is still Horn. In addition, using the semantic criterion of

Theorem 2.5.9, it is possible to show that it is ∅-analytic. However, c(r) = 2, and so the

resulting calculus will no longer have a complexity measure of 1, but of 2. The algorithm

described in Theorem 3.1.6 will then require quadratic time, and thus the entire decision

procedure will also require quadratic time.

Example 3.2.3. The calculus GDY (Example 2.5.19) is Horn, and the complexity of its

axiomatic version is 1. and c(GDY ) = 1. Thus, the reduction to SAT induces a linear

time decision procedure for it.

Example 3.2.4. The linear time fragment of dual-Horn clauses can be utilized as well.

For example, consider the (∅-analytic) calculus GPILd that consists of the rules (∨ ⇒),

(⇒ ∨), (∧ ⇒) of LK and the following rules for “dual primal implication”:

(≺ ⇒) p1 ⇒ / p1 ≺ p2 ⇒ (⇒ ≺) ⇒ p1 ; p2 ⇒ / ⇒ p1 ≺ p2

This calculus is coherent and ∅-directed. By Theorem 2.5.16, it is ∅-analytic. Also, the

complexity measure of its axiomatic version is 1, and the SAT-instance generated by

Definition 3.1.1 consists of dual-Horn clauses. Thus the derivability problem for GPILd

can be decided in linear time.
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3.3 Implementation of The Decision Procedure

In this section we describe our implementation of the decision procedure, in a tool called

Gen2sat, available in [102]. Gen2sat is implemented in Java, and uses the SAT-solver

sat4j [75]. For a given calculus G and an input sequent s, Gen2sat decides whether s is

derivable in G. If s is not derivable, the tool provides a countermodel. If it is derivable,

the tool provides a sub-calculus in which s is already derivable (using the explanation

for the lack of a countermodel given by sat4j).

We start with a high-level description of the Gen2sat and its usage in Section 3.3.1.

Section 3.3.2 includes some implementation details. We conclude with Section 3.3.3,

where we compare the performance of Gen2sat to that of MetTeL, which is another

generic tool for non-classical logics.

3.3.1 Features and Usage

There is a variety of tools developed in the spirit of logic engineering, such as MultLog

[30], TINC [40], NESCOND [83], LoTREC [53], and finally MetTeL [98], which generates

a theorem prover for a given logic, as well as a source code for the prover, that can be

further optimized. The aim of Gen2sat is similar, allowing the user to specify the logic and

automatically obtain a decision procedure. In contrast to MetTeL which uses tableaux,

in Gen2sat the logic is given by a sequent calculus. Moreover, the core of Gen2sat is

the above reduction to SAT, thus it leaves the ”hard work” and heuristic considerations

of optimizations to state of the art SAT solvers, allowing the user to focus solely on

the logical considerations. The current implementation of Gen2sat supports }-k-analytic

pure calculi for k = 1, and derivation problems with no premises (e.g., does `G s?).

Gen2sat can be run both via a web interface and from the command line. In

the web-based version the user fills in a form; in the command line a property

file is passed as an argument. From the command line, Gen2sat is called by:

java -jar gen2sat.jar <path>. The form has the following fields:

Connectives A comma separated list of connectives, each specified by its symbol and

arity, separated by a colon.

Rules Each pure rule is specified in a separate line that starts with ”rule:”. The rule

itself has two parts separated by ”/”: the premises, which is a semicolon separated

list of sequents, and the conclusion, which is a sequent.

Analyticity For the usual subformula property this field is left empty. For }-1-

analyticity, it contains a comma separated list of the elements of }.
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Input file

connectives: P:2, E:2

rule: =>a; =>b / =>aPb

rule: a=> / aPb=>

rule: b=> / aPb=>

rule: =>a; =>b / =>aEb

rule: =>b; a=> / aEb=>

analyticity:

inputSequent: (((m1 P m2 ) E k) E k),k=>m1

Output

provable

There’s a proof that uses only these rules:

[=>b; a=> / a E b=>, a=> / a P b=>]

Input file

connectives: AND:2,OR:2,IMPLIES:2,TOP:0

rule: =>p1; =>p2 / =>p1 AND p2

rule: p1,p2=> / p1 AND p2=>

rule: =>p1,p2 / =>p1 OR p2

rule: =>p2 / =>p1 IMPLIES p2

rule: =>p1; p2=> / p1 IMPLIES p2=>

rule: / => TOP

analyticity:

inputSequent: =>p IMPLIES p

Output

unprovable

Countermodel:

p=false, p IMPLIES p=false

Figure 3.1: Examples for inputs to Gen2sat

Input sequent The sequent whose derivability should be decided.

The web-based version includes predefined forms for some propositional logics (e.g. clas-

sical logic, primal infon logic and more). In addition, it allows the user to import sequent

calculi from Paralyzer.1

If the input sequent s is unprovable in the input calculus G, Gen2sat outputs a

countermodel, in the form of a G-legal sub}1 -bivaluation v such that v(s) = 0. If it is

provable, Gen2sat recovers a sub-calculus in which the sequent is already provable (the

full proof is unobtainable due to the semantic approach of Gen2sat). Thus, for a provable

sequent Gen2sat outputs a subset of rules that suffice to prove the sequent.

Figure 3.1 presents examples for the usage of Gen2sat. In the left example, the input

contains a sequent calculus for the Dolev-Yao intruder model (Example 2.5.19). The

connectives E and P correspond to encryption and pairing. The sequent is provable,

meaning that given two messages m1 and m2 that are paired and encrypted twice with k,

the intruder can discover m1 if it knows k. In the right example, the input file contains a

sequent calculus for primal infon logic (Example 2.2.10), where the implication connective

is not reflexive, and hence the input sequent is unprovable. Both calculi are ∅-analytic,

and hence the analyticity field is left empty.

3.3.2 Implementation Details

Gen2sat is implemented in Java and uses sat4j [75] as its underlying SAT solver. Since

its algorithm is a “one-shot” reduction to SAT, no changes are needed in the SAT solver

1Paralyzer is a tool that transforms Hilbert-type calculi of a certain general form into equivalent
analytic sequent calculi. It was described in [41] and can be found at http://www.logic.at/people/

lara/paralyzer.html.

http://www.logic.at/people/lara/paralyzer.html
http://www.logic.at/people/lara/paralyzer.html
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xplain

specs

sa4j

SatInstance

Gen2sat

PartialBiValuation

Sequent

SequentCalculus DecisionProcedure

-sequentCalculus: SequentCalculus

+decide(s: Sequent)

Figure 3.2: A partial class diagram of Gen2sat

itself. In particular, sat4j can be easily replaced by other available solvers. Figure 3.2

includes a partial class diagram of Gen2sat. The two main modules of sat4j that we

use are specs, which provides the solver itself, and xplain, which searches for an unsat

core. The main class of Gen2sat is DecisionProcedure, that is instantiated with a

specific SequentCalculus. Its main method decide checks whether the input sequent

is provable. Given a Sequent s and a calculus G, decide first transforms G to an

equivalent axiomatic calculus, and then generates a SatInstance stating that s has a

countermodel, by applying the rules of the calculus on the relevant formulas, as described

in Theorem 3.1.6. SatInstance is the only class that uses sat4j directly, and thus it is

the only class that will change if another SAT solver is used.

For satisfiable instances, the specs module returns a satisfying assignment, which

is directly translated to a countermodel in the form of a PartialBivaluation. For

unsatisfiable instances, the xplain module generates a subset of clauses that is itself

unsatisfiable. Tracking back to the rules that induced these clauses, we are able to recover

a smaller sequent calculus in which s is already provable. Note however, that the smaller

calculus need not be analytic, and then the correctness, that relies on Theorem 3.1.3 might

fail. Nevertheless, correctness is preserved in this case, as the ”if” part of Theorem 3.1.3

holds even for non-analytic calculi. Thus, although Gen2sat does not provide a proof of

the sequent, we do obtain useful information about the rules that were used in it.

3.3.3 Performance

Gen2sat is generic, as the sequent calculus in which derivability should be checked is a

part of the input, and not a part of the code of the tool. The purpose of this section

is to check whether the approach that underlies its implementation is efficient. For this

purpose, we compared the performance of Gen2sat with that of another tool that has a

similar purpose, called MetTeL [98]. Like Gen2sat, MetTeL is a generic prover for non-

classical logics. However, the approach undertaken in MetTeL is completely different.

First, it operates on tableau calculi, rather than on sequent calculi. Second, in the core

of MetTeL there are efficient implementations of useful techniques for tableau proof-

search, that are applicable for a wide variety of tableau calculi. This is in contrast to
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Gen2sat’s underlying semantic approach, that goes through a reduction to SAT.

We describe an evaluation performed on Gen2sat and MetTeL, aimed at checking to

what extent these two generic tools can be used in practice. The results, as we shall

see, are encouraging, as both tools perform well on relatively large problem sets. Also, it

seems that some improvements can be utilized to get even better running times, without

sacrificing genericity. Another general goal of this evaluation is to identify families of

logics, or logic problems that are executed better in each of the tools.

As a case study, we consider  Lukasiewicz three-valued logic  L3 from Example 2.2.8,

that employs three truth values: t, f , and u (for “true”, “false” and “undetermined”,

respectively). Valid formulas in  L3 are the formulas that are always assigned the truth

value t. Its implication-free fragment is identical to Kleene’s three-valued logic [66]. As a

consequence, it does not have implication-free valid formulas.  L3 is decidable, like every

propositional logic that is defined using a finite-valued logical matrix.

We start by describing the different implementations of this logic in both tools. This

is followed by a description of the problems that were tested. Then, we provide the actual

results of this case study, and discuss the various differences that were observed between

the tools.

Calculi

The paper [59] presents a tableau calculus for  L3 (henceforth denoted T for “Tableau”),

which is available in the online version of MetTeL. The sequent calculus G L3
for this logic

from Example 2.2.8 (henceforth denoted S for “Sequent”), can easily be implemented

in Gen2sat, as it is {¬}-1-analytic and pure. The most straightforward comparison

would be between MetTeL’s implementation of the first and Gen2sat’s implementation

of the second. However, since our goal is to compare the underlying approaches rather

than specific calculi, we believe that it is important to use the same calculus in both

frameworks. For this purpose, we have translated the sequent calculus S to a tableau

calculus (henceforth denoted ST for “Sequent–Tableau”), using the general technique

outlined in [12]. To summarize, we have considered three implementations of  L3:

T the tableau calculus from [59], implemented in MetTeL. Its specification in

MetTeL is shown in Figure 3.3.

S the sequent calculus from [13], implemented in Gen2sat. Its specification in

Gen2sat is shown in Figure 3.4.

ST a translation of S to a tableau calculus, implemented in MetTeL. Its specifica-

tion in MetTeL is shown in Figure 3.5.

Note that the calculus T is three-valued (corresponding to the three values of  L3). In

order to check the validity of a given formula ϕ, one needs to apply T both on F : ϕ and
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specification Lukasiewicz;

syntax Lukasiewicz{

sort valuation;

sort formula;

valuation true = ’T’ formula;

valuation unknown = ’U’ formula;

valuation false = ’F’ formula;

formula true = ’true’;

formula false = ’false’;

formula negation = ’~’ formula;

formula conjunction = formula ’&’ formula;

formula disjunction = formula ’|’ formula;

formula implication = formula ’->’ formula;

}

tableau Lukasiewicz{

T P F P / priority 0 $;

T P U P / priority 0 $;

U P F P / priority 0 $;

U P F P / priority 0 $;

T ~P / F P priority 1 $;

U ~P / U P priority 1 $;

F ~P / T P priority 1 $;

T (P & Q) / T P T Q priority 1 $;

F (P & Q) / F P $| F Q priority 2 $;

U (P & Q) / T P U Q $| U P T Q $| U P U Q priority 3 $;

T (P | Q) / T P $| T Q priority 2 $;

F (P | Q) / F P F Q priority 1 $;

U (P | Q) / F P U Q $| U P F Q $| U P U Q priority 3 $;

F (P -> Q) / T P F Q priority 1 $;

U (P -> Q) / U P F Q $| T P U Q priority 2 $;

T (P -> Q) / T Q $| F P $| U P U Q priority 3 $;

T false / priority 0 $;

U false / priority 0 $;

U true / priority 0 $;

F true / priority 0 $;

}

Figure 3.3: Definition of T in MetTeL
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connectives: &:2,|:2,->:2,!:1

rule: =>p1; =>p2 / => p1 & p2

rule: p1,p2=> / p1 & p2 =>

rule: =>p1,p2 / => p1 | p2

rule: p1=>; p2=> / p1 | p2 =>

rule: a=> / !! a=>

rule: =>a / => !! a

rule: !A, !B=> / !(A | B)=>

rule: =>!A; =>!B / => !(A | B)

rule: !A=>; !B=> / !(A & B)=>

rule: =>!A, !B / => !(A & B)

rule: /! A, A=>

rule: ! A => ; B =>; => A,! B / A -> B=>

rule: A=>B; ! B=>! A / => A -> B

rule: A, ! B=> / ! (A -> B)=>

rule: =>A; =>!B / => ! (A -> B)

analyticity: !

details: false

Figure 3.4: Definition of S in Gen2sat

on U : ϕ. Only if both turn out to be unsatisfiable, then the formula is valid. Obviously,

once one of them is found satisfiable, there is no need to check the second. In contrast,

when using S, checking the validity of a formula ϕ amounts to applying the calculus once

on the sequent ⇒ ϕ.

Taking performance rather than verbosity in Gen2sat for this evaluation, we have

compiled a non-verbose version of the tool, that does not include any information besides

a final answer of whether the sequent is derivable or not. The reason for this is that when

profiling Gen2sat, we noticed that the bottleneck is in the specs module of sat4j, which

is only needed to explain the result of the tool, but not to decide derivability. These

considerations lead to a total of five variants of the implementations that we consider:

Sm the implementation of S in the non-verbose version of Gen2sat.

S the implementation of S in the usual (slower) version of Gen2sat.

ST the implementation of ST in MetTeL.

T -F the implementation of T in MetTeL, applied on inputs of the form F : ϕ.

T -U the implementation of T in MetTeL, applied on inputs of the form U : ϕ.

Problem Classes

We have generated instances of different sizes from two classes of problems. The first

is a class of random problems, generated by MetTeL itself. The second class is more
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specification ST;

syntax ST{

sort valuation;

sort formula;

valuation true = ’T’ formula;

valuation false = ’F’ formula;

formula negation = ’!’ formula;

formula conjunction = formula ’&’ formula;

formula disjunction = formula ’|’ formula;

formula implication = formula ’->’ formula;

}

tableau ST{

T P F P / priority 0 $;

T (P & Q) / T P T Q priority 1 $;

F (P & Q) / F P $| F Q priority 2 $;

T (P | Q) / T P $| T Q priority 2 $;

F (P | Q) / F P F Q priority 1 $;

F (!(!(P))) / F P priority 1 $;

T (!(!(P))) / T P priority 1 $;

F !(P) / T P priority 1 $;

T (!(P | Q)) / T !P T !Q priority 1 $;

F (!(P | Q)) / F !P $| F !Q priority 2 $;

T (!(P & Q)) / T !P $| T !Q priority 2 $;

F (!(P & Q)) / F !P F !Q priority 1 $;

T (P->Q) / F P F !Q $| F P T !P $| T Q F !Q $| T Q T !P priority 3 $;

F (P->Q) / T P F Q F !P $| T !Q F Q F !P priority 2 $;

T !(P->Q) / T P T !Q priority 1 $;

F !(P->Q) / F P $| F !Q priority 2 $;

}

Figure 3.5: Definition of ST in MetTeL
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structured, and provides more control on the derivability of sequents.

• Random Problems: Using the random problem generator included with MetTeL,

we have generated random formulas of depths 10, 15 and 20, with 50 formulas for

each depth. Most random formulas turned out to be not valid in  L3, and so this

benchmark mainly tests the tools for non-valid formulas.

• Rothenberg’s Problems: In order to gain more control on the derivability of

formulas, we have used the four problem classes from [88]:
(1) (An ∨Bn) ⊃ (A ∨B)n (2) (A ∨B)n ⊃ (An ∨Bn)

(3) (n · (A ∧B)) ⊃ ((n · A) ∧ (n ·B)) (4) ((n · A) ∧ (n ·B)) ⊃ (n · (A ∧B))

where: A0 = >, An+1 = A � An, 0 · A = ⊥, (n + 1) · A = A ⊕ (n · A),

A � B = ¬(¬A ⊕ ¬B) and A ⊕ B = ¬A ⊃ B. We have only considered the

language {∧,∨,⊃,¬}, and so we have defined > as p ⊃ p and ⊥ as ¬>. We pro-

duced formulas for 0 ≤ n ≤ 300 of intervals of 5. These problems were designed

to test provers for infinite-valued  Lukasiewicz logic [76], and are all valid in it, as

well as in  L3. We generated non-valid formulas simply by adding a negation. In

[88], problems of the first and third class are said to be easy, while problems of

the second and forth class are considered hard. There are several explanations to

this classification in [88] (e.g., hard problems require cuts and branching proofs),

that are backed by experimental results of several implementations of calculi for

infinite-valued  Lukasiewicz logic.

Results

The experiments were made on a dedicated Linux machine with four dual-core 2.53 Ghz

AMD Opteron 285 processors and 8GB RAM. The Java heap limit was 4GB. Figures 3.6

to 3.8 exhibit the main results. A timeout of 10000 ms was imposed on all problems, and

anything higher appears in these figures as ‘11000’.

• Random Problems: We generated problems of depth 10, 15, and 20. For each

depth, 50 problems were generated, and their running times were measured on the

five different implementations. For each formula depth and implementation, the

median running time over the 50 problems was calculated, along with the lowest

and highest 25%. For example, when measuring the performance of Sm on the 50

problems of depth 10, the lowest 25% of running times were all below 14ms, and

the highest 25% of them were above 33ms. The median was 22ms. The results

are presented in Figure 3.6, that includes a boxplot for each formula depth and

implementation, in which the rectangle marks the range between the lowest and
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Figure 3.6: Running times on random problems

highest 25% of running times, and the middle line marks the median. Every dot

above the segments is considered an outlier. For example, for depth 20, the medians

of the aforementioned implementations are 1042ms, 964ms, 70ms, 40ms, and 160ms.

• Rothenberg’s Problems: Figures 3.7 and 3.8 present running times on Rothen-

berg’s problems. The x-axis shows the size of the problem (ranging from 0 to 300),

and the y-axis shows running times in ms (ranging from 0ms, through 5000ms to

10000ms). Each of the 5 implementations is represented by its own line chart on the

graphs. For example, on provable problems of class 1, S has reached the timeout

around N = 150, and the running time for N = 100 was almost 5000ms.

Discussion

• Random Problems: On random problems, ST outperformed all other imple-

mentations of  L3. In particular, it performed better than S, thus showing that

when considering random problems with this particular calculus (recall that ST
is a translation of S to tableau), MetTeL outperformed Gen2sat. It was also ob-

served, however, that MetTeL implementations were less stable. Thus, although

having a better result on most of the inputs, some inputs reached the timeout. As

for depths that are not presented in Figure 3.6, we note that for depths higher than

20, Gen2sat always reached the timeout, while MetTeL almost never did. We stress

that these results do not necessarily indicate any downside of Gen2sat’s approach,
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Figure 3.7: Running times on provable and unprovable instances of classes 1–2 from

Rothenberg’s problems. N is the size of the Rothenberg problem.

but may indicate a room for improvement in its implementation. Indeed, most of

the running time was not inside the SAT-solver, but in the preprocessing done by

Gen2sat. The reduction implemented in Gen2sat does not produce too many SAT

clauses (recall that according to Theorem 3.1.6, the SAT instance for this calculus

is linear in the size of the problem), but preliminary review of the code showed that

the process of producing them can be improved. As an example for one of these

possible improvements, we describe the effect of the hashCode() function in Java.

A crucial point in the reduction that Gen2sat implements is that each variable cor-

responds to a formula of the input, but not to an occurrence of a formula. For this

reason, Gen2sat employs sets rather than lists. Manipulating sets in Java involves

many calls to the hashCode() function of each object. Since logical formulas are
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Figure 3.8: Running times on provable and unprovable instances of classes 3–4 from

Rothenberg’s problems. N is the size of the Rothenberg problem.

essentially trees, each such call to hashCode() initiates a recursion. Our prelim-

inary profiling shows that by caching these hash codes, a significant performance

improvement could be gained.

• Rothenberg’s Problems: Here the implementation of S in Gen2sat performed

better than all other implementations. In every problem class, both Gen2sat im-

plementations of S (verbose and non-verbose) performed better than the MetTeL

implementations of ST and T . Notably, there was a big difference between the

performances of the verbose and non-verbose versions of Gen2sat (S and Sm, re-

spectively), but only on provable instances. The reason is that on such instances,

the largest amount of computation time is spent on calls to the xplain module

of sat4j, that is disabled in the non-verbose version. On unprovable problems,
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for which this module is not called, the running-time difference between the two

versions of Gen2sat was negligible.

Comparing the different implementations of MetTeL between themselves, we did

not get consistent results. Focusing on T however, we did see that problems of

the form U : ϕ are processed slower than problems of the form F : ϕ, whenever ϕ

was not valid. In all these formulas, it was possible to assign F to the Rothenberg

formula, but not U . This is not surprising, as the rules for U in T involve three-

way branching, that significantly increases the search space for MetTeL. When ϕ

was valid, however, F -problems and U -problems either performed similarly, or U -

problems were processed faster. Thus, when using the prover generated by MetTeL

for T , it is better to first use it with an F -label and only if it was not satisfiable,

run it again with U .

On the other hand, almost all the rules in ST have one premise, which explains

the better performance of this calculus over T . Moreover, few fine grained priority

values improved the performance for this calculus. For example, raising the priority

value of T (P->Q) from 3 to 4, and that of F (P->Q) from 2 to 3 resulted in some

improvement in running times.

Note that both MetTeL and Gen2sat performed better on unprovable problems

than on provable ones. When using the non-verbose version of Gen2sat, however,

the difference was negligible.

A plausible explanation to the gap between Gen2sat’s performance on random

problems and its performance on Rothenberg’s problems is that the textual repre-

sentation of the random problem was much longer (mainly due to the number of

variables used in them, which is almost always much larger than the number of vari-

ables in Rothenberg’s problems). Since Gen2sat’s bottleneck was the pre-solving

stage, we suspect that the actual input size has such a distinguished effect.

• On Easy and Hard Problems

Figure 3.9 shows that Rothenberg’s original classification of hard vs. easy problems

does not hold for the provers MetTeL and Gen2sat generate for  Lukasiewicz three-

valued logic. In S, Sm and T -U, we have that classes 3 and 4 were easier than

classes 1 and 2. In ST , the differences were minor. Only in T -F, the classification

of [88] survived, and classes 1 and 3 were easier than classes 2 and 4.

The fact that the original classification did not survive the transition from infinite-

valued  Lukasiewicz logic to the three-valued one, is not surprising. First, these

are two different logics, and second, the calculi for them are much simpler than
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the calculi for the infinite-valued version. For example, the sequent calculus that

we consider here is cut-free, while only hyper-sequent calculi that are cut-free are

available in the infinite case. In the three-valued case, however, we uncovered a

different classification, according to which classes 1 and 2 are harder than classes

3 and 4. This is consistent with the fact that the problems of classes 3 and 4 are

less complex than those of 1 and 2. At least in Gen2sat, where the complexity of

the input has a big effect on the parsing stage, this is to be expected.
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Figure 3.9: Easy and Hard Rothenberg problems: N is the size of the Rothenberg prob-

lem.



Chapter 4

Extending Pure Calculi with Modal

Operators

As we have seen, the framework of pure sequent calculi is a very powerful one. When

paired with the general definition of analyticity (Definition 2.5.5), effective calculi for

many propositional non-classical logics are obtained. Even more, the reduction of Chap-

ter 3 provides a concrete, uniform decision procedure for each of them. However, there

are useful non-classical logics that seem to go beyond the reach of }-k-analytic pure

calculi. For example, the usual sequent rules for the modal operators � and ♦ in various

modal logics (e.g. K, KTB, S5 etc.) operate on the context sequent, and thus are not

pure.

In this section, we consider the extension of pure sequent calculi with impure rules

for introducing box-like modal operators. Our investigation is not limited to a single

modal operator, and thus the systems that we study are multimodal. Moreover, the base

logic need not be classical, and can be any logic that is described by a pure calculus. We

prove a soundness and completeness theorem for the resulting calculi with respect to a

Kripke-style semantics, that generalizes the bivaluations of Section 2.3. This semantics

is then used in order prove the following result: if a pure calculus is }-k-analytic, then

it remains so after the addition of the considered rules for modal operators, excluding

some degenerate cases (to be described below). The semantics is also used to extend the

reduction of Chapter 3 to pure calculi that are augmented with a special kind of modal

operators.

Figure 4.1 in Section 4.1 includes well-known modal rules, whose addition to arbitrary

pure calculi are studied in this chapter. Section 4.2 elevates the bivaluations semantics of

pure calculi from Section 2.3 to Kripke-style semantics, thus obtaining a strong soundness

and completeness theorem. In Section 4.3 this theorem is used in order to prove that

analyticity of a pure calculus survives the addition of the modal rules. Section 4.4

66
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generalizes the reduction from Chapter 3 to a special kind of modal operators. Finally,

in Section 4.5 we study some equivalences between some of the modal rules of Figure 4.1.

Publications Related to this Chapter

This chapter is mainly based on [72]. However, the results of [72] are generalized here to

the notion of analyticity from Section 2.5, and to more modal operators.

4.1 Impure Rules for Modal Operators

In what follows, L continues to denote an arbitrary propositional language, and � denotes

a finite set of unary connectives, called modal operators, such that � ∩ ♦L = ∅. We

denote by L� the propositional language obtained by augmenting L with the modal

operators in �. The notations �F and �F are adaptations of the similar notations from

Section 2.5, and are extended to sequents and sets of sequents in the obvious way (e.g.

�(Γ⇒ ∆) = �Γ⇒ �∆, �S = {�s | � ∈ �, s ∈ S}).
Unlike the connectives of L, that may appear in any pure rule, the modal operators

are manipulated according to a predefined set of rules, as given in Table 4.1. These rules

are known to correspond to several classical modal logics [64, 101]. The upper part of

Figure 4.1 includes the rules (k), (), (), (b), (b), and (pf) (The rule (pf) is less

common, and corresponds to the modal logic of functional Kripke models). The middle

part of the table includes rules that correspond to the seriality axiom D. Each rule (X)

of the above six rules is given a “serial version” (dX). The bottom part of the table

includes the rule (t), that corresponds to reflexive Kripke models. Note that, with the

exception of (t), these are not pure rules, as their applications do not allow arbitrary

context sequents. The table also includes the semantic property that corresponds to each

rule. This will be used in Section 4.2, where we prove soundness and completeness.

To keep the discussion modular, we assume a given function M specifying the deriva-

tion rules that manipulate each � ∈ �. For every � ∈ �, M(�) is either a singleton

consisting of one of the rules from the upper part of Table 4.1, or a pair consisting of

such a rule (X) together with either (t) or a matching (dX) rule. (Note that there is no

need to consider the combination of both (t) and a (dX)-rule, since all (dX)-rules are

derivable in the presence of (t).) We exclude the combination of (pf) and (t), as their

combined frame conditions do not correspond to the derivations they allow.1

1Note that if classical negation is definable, the meaning of � becomes trivial in this combination: on
the one hand, the inclusion of (t) immediately entails the derivability of �ϕ⇒ ϕ. On the other hand,
the ϕ⇒ �ϕ can be proven using the rules (¬ ⇒) and (⇒ ¬) of LK, together with (t), (pf) and (cut).
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(k)
Γ⇒ ϕ

�Γ⇒ �ϕ
(pf)

Γ⇒ ϕ,∆

�Γ⇒ �ϕ,�∆
(functional)

()
�Γ1,Γ2 ⇒ ϕ

�Γ1,�Γ2 ⇒ �ϕ
(transitive) ()

�Γ1,Γ2 ⇒ ϕ,�∆

�Γ1,�Γ2 ⇒ �ϕ,�∆
(transitive &

euclidean )

(b)
Γ⇒ ϕ,�∆

�Γ⇒ �ϕ,∆
(symmetric) (b)

�Γ1,Γ2 ⇒ ϕ,�∆1,�∆2

�Γ1,�Γ2 ⇒ �ϕ,�∆1,∆2

(symmetric &
transitive )

Additional seriality rules:

(dk)
Γ⇒

�Γ⇒
(dpf)

Γ⇒ ∆

�Γ⇒ �∆
(d)

�Γ1,Γ2 ⇒
�Γ1,�Γ2 ⇒

(d)
�Γ1,Γ2 ⇒ �∆

�Γ1,�Γ2 ⇒ �∆
(db)

Γ⇒ �∆

�Γ⇒ ∆
(db)

�Γ1,Γ2 ⇒ �∆1,�∆2

�Γ1,�Γ2 ⇒ �∆1,∆2

Additional reflexivity rule:

(t)
Γ, ϕ⇒ ∆

Γ,�ϕ⇒ ∆

Figure 4.1: Application schemes of sequent rules for a modal operator �
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Given a pure calculus G for L, we obtain the calculus GM for L� by augmenting G

with the rules determined by M(�) for each � ∈ �. For a set F ⊆ L� of formulas, we

write S `FGM
s (or S `GM

s when F = L�) if there is a derivation of a sequent s from a

set S of sequents in GM consisting only of F -sequents.

Example 4.1.1. The following is an application of (⇒ ∧) in L�:
p3 ⇒ �p1,��p3 p3 ⇒ �p2,��p3

p3 ⇒ (�p1) ∧ (�p2),��p3

The context sequent in both premises is p3 ⇒ ��p3.

Example 4.1.2. Sequent calculi for classical modal logics are obtained by taking

� = {�}, and augmenting LK with the appropriate rules for the modal operators.

For example, calculi for the modal logics K and KD are obtained by respectively tak-

ing M(�) = {(k)} or M(�) = {(k), (dk)}. The logics S4 and S5 are captured by

respectively taking M(�) = {(), (t)} and M(�) = {(b), (t)}.
Example 4.1.3. The quotations employed in primal infon logic [44] are unary con-

nectives of the form q said, where q ranges over a finite set of principals. Sequent

rules for quotations are obtained by taking � to include these connectives, and setting

M(q said) = {(pf), (dpf)} for every principal q. Augmenting the calculus GPIL (Exam-

ple 2.2.10) with M, we get that `GPILM
Γ⇒ ψ iff ψ is derivable from Γ in the Hilbert-type

system for primal infon logic given in [44]. This can be shown by induction on the lengths

of the derivations. By augmenting GEPIL (Example 2.5.27) with M, we obtain the cal-

culus GEPILM, which augments primal infon logic (with quotations) with some natural

classically valid tautologies, without compromising the linear time algorithm (see Exam-

ple 4.4.7 below).

4.2 Semantics

In this section we generalize the semantics from Section 2.3 and elevate it to a Kripke-

style semantics. Given a pure L-calculus G and a specification M of rules for the modal

operators �, there is a complete syntactic separation between the connectives of the

original calculus and the modal operators: first, these are disjoint sets; and second,

the rules of G contain no modal operators, and the rules of the modal operators from

Figure 4.1 do not contain any elements from ♦L. We keep this separation also in the

semantics. Semantics of the connectives from ♦L is local: it will be governed by the

bivaluation semantics in each possible world separately. In contrast, semantics of the

modal operators is global: it will be governed by their usual meaning in Kripke models.

Similarly to what has been done for bivaluations, we consider partial Kripke models,

in order to achieve a semantic counterpart of analyticity for the augmented calculi.
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Definition 4.2.1. A biframe for M is a tuple W = 〈W,R,V〉 where:

1. W is a set of elements called worlds. Henceforth, we may identify W with this set

(e.g., when writing w ∈ W instead of w ∈ W ).

2. R is a function assigning a binary relation on W (called accessibility relation) to

every � ∈ �. We write R� instead of R(�), and R�[w] for {w′ ∈ W | wR�w
′}.

For every every � ∈ �, the relation R� should have particular properties according

to M(�) as indicated in Table 4.1.2

3. V is a function assigning a bivaluation to every w ∈ W , such that for every

w ∈ W , � ∈ � and formula ψ: if �ψ ∈ dom(V(w)) and ψ ∈ dom(V(w′)) for

every w′ ∈ R�[w] then V(w)(�ψ) = min {V(w′)(ψ) | w′ ∈ R�[w]}.3 We write Vw
instead of V(w).

Furthermore, if dom(Vw) = F for every w ∈ W , we call W an F-biframe for M.

Example 4.2.2. When M(�) = {(b), (t)}, every biframe W = 〈W,R,V〉 for M must

have that R� is reflexive, symmetric and transitive. If (dX) ∈ M(�) for some (X) then

R� is serial. If (t) ∈ M(�) then R� is reflexive.

Notation 4.2.3. Let W = 〈W,R,V〉 be a biframe for M. For a set W ′ ⊆ W we denote

min {Vw′(ψ) | w′ ∈ W ′} by VW ′(ψ). This notation is extended to sequents and sets of

sequents in the natural way (e.g., VW ′(S) = min {Vw′(s) | s ∈ S,w′ ∈ W ′}). We denote

by dom(W) the intersection of all sets dom(Vw) for every w ∈ W . In particular, we have

Vw(�ψ) = VR�[w](ψ) for every w ∈ W and ψ,�ψ ∈ L� such that �ψ ∈ dom(Vw) and

ψ ∈ dom(Vw′) for every w′ ∈ R�[w].

Remark 4.2.4. There are two main differences between our definition of biframes and

the usual definition of Kripke-style models. First, since we are in a multimodal setting, we

have a separate accessibility relation for every � ∈ �. Moreover, the semantic properties

of R� may be different for each �. Second, for each world w, Vw may have a different

domain. Accordingly, the semantics of � is only enforced when the relevant formulas are

in the appropriate domains. While the first difference was made to obtain generality, the

second is crucial for the success of the decision procedure that we present in Section 4.4.

Next, we adopt the semantic viewpoint of pure rules in order to retain the connection

between sequent calculi and their semantics, that was given in Definition 2.3.2.

2An accessibility relation R� is called transitive if wRu and uRv imply wRv; symmetric if wRu
implies uRw; functional if wRu and wRv imply u = v; euclidian if wRu and wRv imply uRv; reflexive
if wRw for every w ∈ W; and serial if for all w ∈W , we have wRu for some u.

3Recall that min ∅ = 1.
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Definition 4.2.5. A biframe 〈W,R,V〉 for M is called G-legal for an L-calculus G if Vw
is G-legal for every w ∈ W (see Definition 2.3.2).

We turn to proving soundness and completeness. Note that the rule () and its

two variants () and (b) are not sound for every partial biframe, even with the

necessary frame conditions. For example, the sequent �ϕ ⇒ ��ϕ is derivable from

() using only these two formulas. However, this sequent is not valid in the follow-

ing {�ϕ,��ϕ}-biframe W = 〈W,R,V〉, in which R� is transitive: W = {w1, w2},
R� = {〈w1, w2〉 , 〈w2, w2〉}, Vw1(�ϕ) = 1, Vw1(��ϕ) = 0, Vw2(�ϕ) = 0, Vw2(��ϕ) = 0.

Thus, in the presence of any one of the rules (), () and (b), we require that F is

“closed” with respect to �, that is, ϕ ∈ F whenever �ϕ ∈ F . Note that this requirement

is needed only for soundness.

Theorem 4.2.6 (Soundness). Let G be an L-calculus, F a set of L�-formulas,

S a set of F -sequents and s an F -sequent. Suppose that for every � ∈ �, if

{(), (), (b)} ∩ M(�) 6= ∅ then ψ ∈ F whenever �ψ ∈ F . If S `FGM
s then

VW (S) ≤ VW (s) for every G-legal F -biframe 〈W,R,V〉 for M.

Proof. Let W = 〈W,R,V〉 be a G-legal F -biframe for M. Suppose that VW (S) = 1.

We prove that VW (s) = 1 by induction on the length of the derivation of s from S in

GM (that consists only of F -sequents). If s ∈ S, or s is the conclusion of an application

of a non-modal rule, then this is shown like in the proof of Theorem 2.3.5. If s is the

conclusion of an application of some rule in M(�), then the proof carries on according

to the identity of this rule. We explicitly prove the cases of (k), () and (t). The other

cases are handled similarly.

1. If s is the conclusion of an application of (k) for some � ∈ �, then s has the

form �Γ ⇒ �ϕ for some Γ ⊆ F and ϕ ∈ F , and S `FGM
Γ ⇒ ϕ with a shorter

derivation. Suppose for contradiction that Vw(�Γ ⇒ �ϕ) = 0 for some w ∈ W .

Then, Vw(�ϕ) = 0, and Vw(�ψ) = 1 for every ψ ∈ Γ. In particular, there must

exist a world w′ ∈ R�[w] such that Vw′(ϕ) = 0, and Vw′(ψ) = 1 for every ψ ∈ Γ,

which contradicts the induction hypothesis, according to which Vw′(Γ⇒ ϕ) = 1.

2. If s is the conclusion of an application of () for some � ∈ �, then s has the

form �Γ1,�Γ2 ⇒ �ϕ for some Γ2 ⊆ F , ϕ ∈ F and Γ1 such that �Γ1 ⊆ F , and

S `FGM
�Γ1,Γ2 ⇒ ϕ with a shorter derivation. In addition, since () ∈ M(�), we

have Γ1 ⊆ F as well. Suppose for contradiction that Vw(�Γ1,�Γ2 ⇒ �ϕ) = 0 for

some w ∈ W . Then, Vw(�ϕ) = 0, and Vw(�ψ) = 1 for every ψ ∈ Γ1 ∪ Γ2. In par-

ticular, there must exist a world w′ ∈ R�[w] such that Vw′(ϕ) = 0, and Vw′(ψ) = 1

for every ψ ∈ Γ2. Now, let ψ ∈ Γ1 and w′′ ∈ R�[w′]. Since () ∈ M(�), we
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have that R� is transitive, which means that w′′ ∈ R�[w]. Therefore, Vw′′(ψ) = 1

for every such w′′, and hence Vw′(�ψ) = 1 for every such ψ. We therefore have

Vw′(�Γ1,Γ2 ⇒ ϕ) = 0, contradicting the induction hypothesis.

3. If s is the conclusion of an application of (t) for some � ∈ �, then s has the form

Γ,�ϕ ⇒ ∆ for some Γ,∆ ⊆ F and ϕ ∈ F , and S `FGM
Γ, ϕ ⇒ ∆ with a shorter

derivation. Let w ∈ W . By the induction hypothesis, Vw(Γ, ϕ ⇒ ∆) = 1, which

means that either Vw(ψ) = 0 for some ψ ∈ Γ, Vw(ψ) = 1 for some ψ ∈ ∆, or

Vw(ϕ) = 0. In the first two cases, we have Vw(Γ,�ϕ ⇒ ∆) = 1 as well. In the

third case, since (t) ∈ M(�) we have that R� is reflexive. This, together with the

fact that Vw(ϕ) = 0, means that Vw(�ϕ) = 0, and hence Vw(Γ,�ϕ⇒ ∆) = 1.

We turn to completeness. Similarly to Theorem 2.3.5, we follow the canonical con-

struction of a countermodel, whose worlds are maximal unprovable sequents, but adjust

it to the case where only formulas from a certain set F are allowed in derivations. When

F is infinite, this requires the use of ω-sequents (defined as in the proof of Theorem

2.3.5).

Theorem 4.2.7 (Completeness). Let G be an L-calculus, F a set of L�-formulas, S a

set of F -sequents and s an F -sequent. If S 6`FGM
s then VW (S) > VW (s) for some G-legal

F -biframe 〈W,R,V〉 for M.

Proof. We say that an ω-sequent L⇒ R is M-S-F-maximal unprovable if the followings

hold:

• L ∪R ⊆ F

• S 6`FGM
L⇒ R

• S `FGM
L, ψ ⇒ R for every ψ ∈ F \ L and S `FGM

L⇒ ψ,R for every ψ ∈ F \R.

We denote the set of M-S-F maximal unprovable ω-sequents by W (M, S,F). Using (id)

and (cut), it is easy to see that L∪R = F and L∩R = ∅ for every L⇒ R ∈ W (M, S,F).

In addition, it is a routine matter to show that every ω-sequent L ⇒ R such that

L ∪ R ⊆ F and S 6`FGM
L ⇒ R can be extended to a M-S-F -maximal unprovable ω-

sequent.

For every L⇒ R ∈ W (M, S,F) and � ∈ M, define the following sets:
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L�
1 = {ϕ ∈ F | �ϕ ∈ L}

L�
2 =

∅ {(), (), (b)} ∩M(�) = ∅
� {ϕ ∈ F | �ϕ ∈ L} otherwise

R�
1 =

∅ {(), (b)} ∩M(�) = ∅
� {ϕ ∈ F | �ϕ ∈ R} otherwise

R�
2 =

∅ {(b), (b)} ∩M(�) = ∅
F ∩�R otherwise

R�
3 =

∅ (pf) /∈ M(�)

{ϕ ∈ F | �ϕ ∈ R} otherwise

A�
L⇒R =

{
L′ ⇒ R′ ∈ W (M, S,F) | L�

1 , L
�
2 ⇒ R�

1 , R
�
2 , R

�
3 ⊆ L′ ⇒ R′

}
Using these sets, we define the following countermodel W = 〈W,R,V〉, where:

1. W = W (M, S,F).

2. for every � ∈ �, we define R� by specifying the set R�[L⇒ R] for every

L⇒ R ∈ W :

(a) if (pf) /∈ M(�) then R�[L⇒ R] is A�
L⇒R.

(b) If (pf) ∈ M(�) then R�[L⇒ R] consists of a single arbitrary element from

A�
L⇒R, unless A�

L⇒R is empty, in which case so is R�[L⇒ R].

3. For every ψ ∈ F and L ⇒ R ∈ W , VL⇒R(ψ) = 1 if ψ ∈ L and VL⇒R(ψ) = 0

otherwise.

We first show that VW (S) > VW (s). For every Γ ⇒ ∆ ∈ S and L ⇒ R ∈ W , since

S `FGM
Γ ⇒ ∆ and S 6`FGM

L ⇒ R, there exist some ψ ∈ Γ \ L (and then VL⇒R(ψ) = 0)

or ψ ∈ ∆ \ R (and then VL⇒R(ψ) = 1). Either way, VL⇒R(Γ ⇒ ∆) = 1. In addition,

since s ⊆ Ls ⇒ Rs for some Ls ⇒ Rs ∈ W (M, S,F), we have VLs⇒Rs(s) = 0.

It remains to prove that W is a G-legal F -biframe for M.

• G-legal: For every L ⇒ R ∈ W , the bivaluation VL⇒R is shown to be G-legal

similarly to the proof of Theorem 2.3.5.

• biframe: let � ∈ �, ψ,�ψ ∈ F , and L ⇒ R ∈ W . If VL⇒R(�ψ) = 1 and

L′ ⇒ R′ ∈ R�[L⇒ R], then we have �ψ ∈ L, which means that ψ ∈ L′, and

hence VL′⇒R′(ψ) = 1. For the converse, suppose that VL⇒R(�ψ) = 0. Then
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�ψ ∈ R. We prove that S 6`FGM
L�

1 , L
�
2 ⇒ ψ,R�

1 , R
�
2 , R

�
3 , extend this sequent

to an element L′ ⇒ R′ of R�[L⇒ R], and then obtain that VL′⇒R′(ψ) = 0

(as ψ ∈ R′). Assume for contradiction that S `FGM
L�

1 , L
�
2 ⇒ ψ,R�

1 , R
�
2 , R

�
3 .

Then there exist finite Γ1 ⊆ L�
1 , Γ2 ⊆ L�

2 , ∆1 ⊆ R�
1 , ∆2 ⊆ R�

2 and ∆3 ⊆ R�
3 ,

such that S `FGM
Γ1,Γ2 ⇒ ψ,∆1,∆2,∆3. Let ∆′2 = {ϕ ∈ F | �ϕ ∈ ∆2}.

By applying the only rule in M(�) ∩ {(k), (), (), (b), (b), (pf)},
we obtain S `FGM

�Γ1,Γ2 ⇒ �ψ,∆1,∆
′
2,�∆3. Clearly,

�Γ1,Γ2 ⇒ �ψ,∆1,∆
′
2,�∆3 ⊆ L ⇒ R, and so S `FGM

L ⇒ R, which is a

contradiction. Now, L�
1 , L

�
2 ⇒ ψ,R�

1 , R
�
2 , R

�
3 can be extended to some element

L′ ⇒ R′ of W , and every such extension is an element of A�
L⇒R. Thus we have

some L′ ⇒ R′ ∈ R�[L⇒ R] such that ψ ∈ R′, and so VL′⇒R′(ψ) = 0.

• for M: let � ∈ �. We show that R� has the properties that are induced by M. We

separately consider each of the cases:

– Suppose (dX) ∈ M(�) for some (X). We show that R� is serial. Similarly

to the proof above that S 6`FGM
L�

1 , L
�
2 ⇒ ψ,R�

1 , R
�
2 , R

�
3 , it can be shown

that S 6`FGM
L�

1 , L
�
2 ⇒ R�

1 , R
�
2 , R

�
3 , by applying (dX) rather than (X), for the

only (dX) ∈ M(�), and that L�
1 , L

�
2 ⇒ R�

1 , R
�
2 , R

�
3 can be extended to some

element L′ ⇒ R′ in W such that (L⇒ R)R�(L′ ⇒ R′).

– Suppose (t) ∈ M(�). We show that R� is reflexive. Let L ⇒ R ∈ W . We

show that (L ⇒ R)R�(L ⇒ R), that is, L�
1 , L

�
2 ⇒ R�

1 , R
�
2 , R

�
3 ⊆ L ⇒ R.

Let ψ ∈ L�
1 , and assume for contradiction that ψ /∈ L, that is, ψ ∈ R. Since

ψ ∈ L�
1 , we have that �ψ ∈ L, and therefore, �ψ ⇒ ψ ⊆ L ⇒ R, which is

impossible, as (t) ∈ M(�). The proofs that L�
2 ⊆ L and R�

1 ⊆ R are trivial.

Now let ψ ∈ R�
2 , and assume for contradiction that ψ /∈ R, that is, ψ ∈ L.

Since ψ ∈ R�
2 , we have that ψ = �ψ′ for some ψ′ ∈ R, and that ψ ∈ F . This

means that ψ ⇒ ψ′ ⊆ L ⇒ R, which is again impossible by the presence of

(t) in M(�). Finally, since (t) ∈ M(�), we must have that (pf) /∈ M(�),

which means that R�
3 = ∅ ⊆ R.

In the following cases, La ⇒ Ra, Lb ⇒ Rb and Lc ⇒ Rc denote arbitrary elements

of W .

– Suppose () ∈ M(�). We show that R� is transitive. Suppose

that (La ⇒ Ra)R�(Lb ⇒ Rb) and (Lb ⇒ Rb)R�(Lc ⇒ Rc).

We prove that (La ⇒ Ra)R�(Lc ⇒ Rc), that is,

(La)
�
1 , (La)

�
2 ⇒ (Ra)

�
1 , (Ra)

�
2 , (Ra)

�
3 ⊆ Lc ⇒ Rc. Since () ∈ M(�),

we must have (Ra)
�
1 = (Ra)

�
2 = (Ra)

�
3 = ∅. Now, let ψ ∈ (La)

�
1 . Then both
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ψ ∈ F and �ψ ∈ La, which means that �ψ ∈ (La)
�
2 ⊆ Lb. Together with

the fact that ψ ∈ F , we have ψ ∈ (Lb)
�
1 ⊆ Lc. Next, let ψ ∈ (La)

�
2 . Then

ψ = �ψ′ for some ψ′ ∈ F , and ψ ∈ Lb. Therefore, ψ ∈ (Lb)
�
2 ⊆ Lc.

– Suppose () ∈ M(�). We show that R� is transitive and euclidean.

∗ Transitivity: suppose that (La ⇒ Ra)R�(Lb ⇒ Rb) and

(Lb ⇒ Rb)R�(Lc ⇒ Rc). We prove that (La ⇒ Ra)R�(Lc ⇒ Rc), that

is, (La)
�
1 , (La)

�
2 ⇒ (Ra)

�
1 , (Ra)

�
2 , (Ra)

�
3 ⊆ Lc ⇒ Rc. Since () ∈ M(�),

we must have (Ra)
�
2 = (Ra)

�
3 = ∅. Similarly to the case of (),

(La)
�
1 , (La)

�
2 ⊆ (Lc). Now let ψ ∈ (Ra)

�
1 . Then ψ = �ψ′ for some

ψ′ ∈ F and ψ ∈ Rb. Therefore, ψ ∈ (Rb)
�
1 ⊆ Rc.

∗ Euclideaness: suppose that (La ⇒ Ra)R�(Lb ⇒ Rb) and

(La ⇒ Ra)R�(Lc ⇒ Rc). We prove that (Lb ⇒ Rb)R�(Lc ⇒ Rc), that

is, (Lb)
�
1 , (Lb)

�
2 ⇒ (Rb)

�
1 , (Rb)

�
2 , (Rb)

�
3 ⊆ Lc ⇒ Rc. Since () ∈ M(�),

we have (Rb)
�
2 = (Rb)

�
3 = ∅. Let ψ ∈ (Lb)

�
1 . Then �ψ ∈ Lb and ψ ∈ F .

Hence �ψ /∈ Rb, and therefore �ψ /∈ (Ra)
�
1 . Since we have ψ ∈ F , this

must mean that �ψ /∈ Ra, and hence �ψ ∈ La. Again, since ψ ∈ F ,

ψ ∈ (La)
�
1 ⊆ Lc. Next, let ψ ∈ (Lb)

�
2 . Then ψ = �ψ′ for some ψ′ ∈ F

and ψ ∈ Lb. In particular, ψ /∈ Rb. Since (Ra)
�
1 ⊆ Rb, we also have

ψ /∈ (Ra)
�
1 . Together with the fact that ψ′ ∈ F , we have ψ /∈ Ra. This,

in turn, means that ψ ∈ La, which, together with ψ′ ∈ F , means that

ψ ∈ (La)
�
2 ⊆ Lc. The fact that (Rb)

�
1 ⊆ Rc is proven symmetrically.

– Suppose (b) ∈ M(�). We show that R� is symmetric. Suppose that

(La ⇒ Ra)R�(Lb ⇒ Rb). We prove that (Lb ⇒ Rb)R�(La ⇒ Ra), that

is, (Lb)
�
1 , (Lb)

�
2 ⇒ (Rb)

�
1 , (Rb)

�
2 , (Rb)

�
3 ⊆ La ⇒ Ra. Since (b) ∈ M(�), we

have (Lb)
�
2 = (Rb)

�
1 = (Rb)

�
3 = ∅. Let ψ ∈ (Lb)

�
1 . Then �ψ ∈ Lb ⊆ F , and

hence �ψ /∈ Rb, and in particular, �ψ /∈ (Ra)
�
2 . Since �ψ ∈ F , we have also

ψ /∈ Ra, which means that ψ ∈ La. Next, let ψ ∈ (Rb)
�
2 . Then ψ = �ψ′

for some ψ′ ∈ Rb ⊆ F . Hence ψ′ /∈ Lb, and in particular, ψ′ /∈ (La)
�
1 . Since

ψ′ ∈ F , we also have ψ /∈ La, which means that ψ ∈ Ra.

– Suppose (b) ∈ M(�). We show that R� is transitive and symmetric.

∗ Transitivity: suppose that (La ⇒ Ra)R�(Lb ⇒ Rb) and

(Lb ⇒ Rb)R�(Lc ⇒ Rc). We prove that (La ⇒ Ra)R�(Lc ⇒ Rc),

that is, (La)
�
1 , (La)

�
2 ⇒ (Ra)

�
1 , (Ra)

�
2 , (Ra)

�
3 ⊆ Lc ⇒ Rc First, note that

(Ra)
�
3 = ∅. Second, (La)

�
1 , (La)

�
2 ⊆ Lc and (Ra)

�
1 ⊆ Rc are shown simi-

larly to the case of (). Let ψ ∈ (Ra)
�
2 ⊆ Rb. Then ψ ∈ F , and ψ = �ψ′

for some ψ′ ∈ F . Hence ψ ∈ (Rb)
�
1 ⊆ Rc.
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∗ Symmetry: suppose that (La ⇒ Ra)R�(Lb ⇒ Rb).

We prove that (Lb ⇒ Rb)R�(La ⇒ Ra), that is,

(Lb)
�
1 , (Lb)

�
2 ⇒ (Rb)

�
1 , (Rb)

�
2 , (Rb)

�
3 ⊆ La ⇒ Ra. First, note that

(Ra)
�
3 = ∅. Second, (Lb)

�
1 ⊆ La and (Rb)

�
2 ⊆ La are shown similarly to

the case of (b). Let ψ ∈ (Lb)
�
2 . Then ψ ∈ Lb, and ψ = �ψ′ for some

ψ′ ∈ F . In particular, ψ /∈ Rb, and hence also ψ /∈ (Ra)
�
1 . Together with

the fact that ψ′ ∈ F , we have that ψ /∈ Ra, which means that ψ ∈ La.
The fact that (Rb)

�
1 ⊆ Ra is shown symmetrically.

– Suppose (pf) ∈ M(�). By the definition of R� in this case, R� is functional.

4.3 Analyticity

The definition of a }-k-subformula (Definition 2.5.1) applies also for the language L�,

which is a propositional language. Thus, the elements of � are taken to be additional

propositional connectives. It is important to note, however, that � ∩ ♦L = ∅, and in

particular, � ∩} = ∅.

Example 4.3.1. Considering the language CL�, with � = {�}.
sub

{¬}
1 (�(p ∧ q)) = {p, q,¬p,¬q, p ∧ q,¬(p ∧ q),�(p ∧ q)}.

Thus, also in L�, the }-k-subformula property induces the }-k-analyticity property

for pure calculi that are augmented with the above rules for modal operators: just like

in the pure case, a calculus GM is }-k-analytic if S `sub
}
k (S∪{s})

G s whenever S `G s.

In this section we show that, excluding some degenerate cases (to be described below),

}-k-analyticity is preserved when augmenting a pure calculus with the above rules for

modal operators. Semantics will play a major role here, as what will actually be shown

is how to use the possibility to extend partial bivaluations in order to extend partial

biframes.

For this, we focus on a slightly restricted sub-family of calculi, namely standard calculi,

thus ruling out some degenerate cases. Roughly speaking, a calculus is called standard

if whenever an atomic formula occurs in one of its rules, it also occurs as a subformula

in the same rule. This is formally defined as follows:

Definition 4.3.2. An atomic variable p is called shared in a rule r if at least one of the

followings hold:

1. p is a proper subformula of some formula in the conclusion of r.
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2. p is a proper subformula of every ψ ∈ frm(s) for some non-empty premise s of r.

A rule is called standard if all atomic variables that occur in it are shared in it. A calculus

is called standard if each of its rules is standard.

Example 4.3.3. All calculi considered in examples above are standard. In contrast,

p3 is not shared in the rule ⇒ p1, p3 / ⇒ p1 ∨ p2, and so every calculus that includes

this rule is not standard. Aside from such tailored examples, we are not aware of any

non-standard calculus from the literature.

The main result of this section is:

Theorem 4.3.4. Let G be a standard L-calculus. If G is }-k-analytic then so is GM.

Note that if GM is }-k-analytic, then G must also be }-k-analytic: given that S and

s do not include any symbol from �, we have that if S `G s then also S `GM
s. The

}-k-analyticity of GM then ensures that there is a derivation of s from S in GM that

consists only of sub}k (S ∪ {s})-formulas. This derivation cannot contain applications of

M(�) for any � ∈ �, and hence it is also a derivation in G.

We now present some examples for applications of Theorem 4.3.4, before turning to

its proof.

Example 4.3.5. All sequent calculi for classical modal logics that are obtained from LK

by the adding the rules of Table 4.1 are known to be ∅-analytic. Theorem 4.3.4 makes

this fact a direct consequence of the ∅-analyticity of LK.

Example 4.3.6. GPIL and GEPIL are standard. Since they are ∅-analytic, so are GPILM

and GEPILM (see Example 4.1.3). In contrast, the Hilbert-type system for primal infon

logic in [44] admits a similar property that concerns local formulas (see Definition 4.4.1

below) rather than subformulas.

Example 4.3.7. One can add modal operators to the paraconsistent logic C1 (see Ex-

ample 2.2.9), by augmenting GC1 with one of the rules for modal operators. The {¬}-1-

analyticity of the calculus GC1 then entails the {¬}-1-analyticity of the extended calculus.

Example 4.3.8. The paper [89] augments  Lukasiewicz three-valued logic (Exam-

ple 2.2.8) with several modal operators. Proof-theoretically, [89] focuses on Hilbert-type

calculi, that are rarely analytic. In contrast, such a goal could be achieved by aug-

menting G L3
with some of the modal rules from Figure 4.1. Using Theorem 4.3.4, the

{¬}-1-analyticity of G L3
entails the {¬}-1-analyticity of the resulting calculi.
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Next, we prove Theorem 4.3.4. We use Theorems 4.2.6 and 4.2.7, and show how to

extend partial biframes into full ones. The general notion of biframes (that allows for

different domains in each world), and the enforced semantics of the connectives from

�, all make the extension of partial biframes more challenging than partial bivaluations.

The following definitions are therefore needed. First, we introduce a more delicate notion

of closure under }-k-subformulas.

Definition 4.3.9. A set of L�-formulas is called }-k-closed if whenever it contains a

formula of the form ◦ϕ for some ◦ ∈ }, it also contains ϕ, and whenever it contains a

formula of the form �(ϕ1, ... , ϕn) for some � ∈ ♦L \ }, it also contains }≤kψi for every

1 ≤ i ≤ n.

Every set that is closed under}-k-subformulas is also}-closed. However, the converse

may not hold. For example, the set {(�p1) ∧ (�p2),�p1,�p2} is ∅-k-closed for any k,

but it is not closed under ∅-k-subformulas, as p1 and p2 are missing.

Next, we generalize this property from sets of formulas to biframes.

Definition 4.3.10. A biframe 〈W,R,V〉 for M is called }-k-closed if the followings hold

for every w ∈ W :

• dom(Vw) is }-k-closed and finite.

• For every � ∈ �, if �ψ ∈ dom(Vw), then ψ ∈ dom(Vw′) for every w′ ∈ R�[w].

Similarly to the case of pure calculi, the ability to extend partial models is essential

also when introducing modal operators. We thus explicitly define what does it mean to

extend a biframe.

Definition 4.3.11. A biframe 〈W,R,V〉 for M extends a biframe 〈W ′,R′,V ′〉 for M if

W = W ′, R = R′, and Vw extends V ′w for every w ∈ W .

Finally, the main part of the proof of Theorem 4.3.4 is the following lemma, that is

proven in the next section. From this lemma, the theorem immediately follows, with the

help of Theorem 4.2.7.

Lemma 4.3.12. Let G be a standard }-k-analytic L-calculus, and W a G-legal }-k-

closed biframe for M. Then, W can be extended to a G-legal L�-biframe for M.

Before proving the lemma, we show how it is used to prove Theorem 4.3.4.

Proof of Theorem 4.3.4. Suppose that G is }-k-analytic. Assume S `GM
s for a set S

of L�-sequents and an L�-sequent s. Let S ′ ⊆ S be a finite set such that S ′ `GM
s. We
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prove that S ′ `sub
}
k (S′∪{s})

GM
s, and conclude that S `sub

}
k (S∪{s})

GM
s. Assume otherwise. By

Theorem 4.2.7, there exists a G-legal sub}k (S ′ ∪ {s})-biframe W = 〈W,R,V〉 for M such

that VW (S ′) > Vw(s). W is also }-k-closed, and by Lemma 4.3.12, it can be extended

to a G-legal L�-biframe W ′ = 〈W,R,V ′〉 for M. After this extension, we still have

V ′W (S ′) > V ′w(s). Theorem 4.2.6 implies that S ′ 6`GM
s, which is a contradiction.

Remark 4.3.13. The proof of Theorem 4.3.4 only considers biframes with a domain that

is closed under }-k-subformulas. Lemma 4.3.12, however, holds also for biframes that

are }-k-closed, even if they are not closed under }-k-subformulas. This strengthening is

needed in Section 4.4, where we extend the reduction of Chapter 3.

4.3.1 Proof of Lemma 4.3.12

Lemma 4.3.12 is basically an extension lemma. It ensures the ability to extend partial

biframes into full ones. For the extension method that we propose here, the following

property of }-k-closed sets is useful:

Lemma 4.3.14. If F ⊆ L� is }-k-closed, ϕ, ψ ∈ L, and ϕ is a }-k-subformula of ψ,

then σ(ψ) ∈ F implies σ(ϕ) ∈ F .

We add all formulas of the language to the domain of the biframe, not one by one

– but many at a time. For each formula, we need to know the value of other formulas

(usually, its }-k-subformulas) in order to determine its value. In each step, we add to

the domain of the biframe all the formulas for which we are able to determine this value.

The following lemma shows that every step in this process is possible:

Lemma 4.3.15. Let G be a standard }-k-analytic L-calculus and W = 〈W,R,V〉 a

G-legal }-k-closed biframe for M. Then:

1. Given p ∈ At, W can be extended to a G-legal }-k-closed biframe W ′ for M, such

that p ∈ dom(W ′).

2. W can be extended to a G-legal }-k-closed biframe W ′ for M, such that

�dom(W) ⊆ dom(W ′).

3. W can be extended to a G-legal }-k-closed biframe W ′ for M, such that

}dom(W) ⊆ dom(W ′), and for every � ∈ ♦nL \}, �(ϕ1, ... , ϕn) ∈ dom(W ′) when-

ever }≤k {ϕ1, ... , ϕn} ⊆ dom(W).

Proof.
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1. Let W ′ = 〈W,R,V ′〉, where V ′ is the function assigning to every w ∈ W , the

dom(Vw) ∪ {p}-bivaluation V ′w obtained by extending Vw with the value 0 (say)

for p if p /∈ dom(Vw). Clearly, W ′ is a }-k-closed biframe for M that ex-

tends W , and p ∈ dom(W ′). It remains to show that W ′ is G-legal. Let

w ∈ W , s1, ... , sn / s ∈ G, s′1, ... , s
′
n respective subsequents of s1, ... , sn, and

σ a substitution such that σ(frm({s′1, ... , s′n, s})) ⊆ dom(V ′w). We prove that

V ′w(σ({s′1, ... , s′n})) ≤ V ′w(σ(s)). If p /∈ σ(frm({s′1, ... , s′n, s})) or p ∈ dom(Vw),

then this follows from the fact that Vw is G-legal. We show that these are actually

the only two options for p. Indeed, if p ∈ σ(frm({s′1, ... , s′n, s})), then p = σ(p′) for

some atomic variable p′ ∈ frm({s′1, ... , s′n, s}). Since G is standard, p′ is a proper

subformula of some ϕ ∈ frm({s′1, ... , s′n, s}). Since σ(ϕ) ∈ dom(V ′w) and σ(ϕ) 6= p,

we have σ(ϕ) ∈ dom(Vw). By Lemma 4.3.14, p ∈ dom(Vw).

2. For every w ∈ W , let Fw = dom(Vw) ∪�dom(W). Let W ′ = 〈W,R,V ′〉, where V ′
is the function assigning to every w ∈ W , the Fw-bivaluation V ′w defined by:

V ′w(ψ) =

Vw(ψ) ψ ∈ dom(Vw)

VR�[w](ϕ) ψ = �ϕ ∈ Fw \ dom(Vw)

We show first that W ′ is a biframe for M. Let w ∈ W . Let �ψ ∈ dom(V ′w)

such that ψ ∈ dom(V ′w′) for every w′ ∈ R�[w]. If �ψ ∈ dom(Vw), then

since W is }-k-closed, ψ ∈ dom(Vw′) for every w′ ∈ R�[w]. Hence since

W is a biframe for M, V ′w(�ψ) = Vw(�ψ) = VR�[w](ψ) = V ′R�[w](ψ). If

�ψ /∈ dom(Vw), then ψ ∈ dom(W), and by the definition of V ′ in this case,

V ′w(�ψ) = VR�[w](ψ) = V ′R�[w](ψ).

Obviously, W ′ extendsW and �dom(W) ⊆ dom(W ′). It remains to show thatW ′
is }-k-closed and G-legal.

(a) }-k-closed: For every w ∈ W , dom(Vw) is }-k-closed and finite. Since we

only added a finite number of formulas, all from �L�, dom(V ′w) is also }-k-

closed and finite for every w ∈ W . Now, suppose that �ψ ∈ dom(V ′w). If

�ψ ∈ dom(Vw), then ψ ∈ dom(V ′w′) for every w′ ∈ R�[w] since W is }-k-

closed. If �ψ /∈ dom(Vw), then ψ ∈ dom(W) ⊆ dom(W ′), and in particular

ψ ∈ dom(V ′w′) for every w′ ∈ R�[w].

(b) G-legal: Let w ∈ W , s1, ... , sn / s ∈ G, s′1, ... , s
′
n respective subsequents of

s1, ... , sn, and σ a substitution such that σ(frm({s′1, ... , s′n, s})) ⊆ dom(V ′w).

We prove that σ(frm({s′1, ... , s′n, s})) ⊆ dom(Vw), and then

V ′w(σ({s′1, ... , s′n})) ≤ V ′w(σ(s)) follows from the fact that W is G-legal.

Indeed, let ψ ∈ σ(frm({s′1, ... , s′n, s})). If ψ /∈ �L�, then ψ ∈ dom(Vw). If
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ψ ∈ �L�, then ψ = σ(p) for some atomic variable p ∈ frm({s′1, ... , s′n, s}).
Since G is standard, p is a proper subformula of some compound L-formula

ϕ ∈ frm({s′1, ... , s′n, s}). Since ϕ is a compound L-formula, we have

σ(ϕ) /∈ �L�, and hence σ(ϕ) ∈ dom(Vw). By Lemma 4.3.14, since dom(Vw)

is }-k-closed, ψ ∈ dom(Vw).

3. We define W ′ in several steps.

Embedding L in L�: Let σ0 be some bijection from At to At ∪�L�. As a sub-

stitution, σ0 is naturally extended to apply on all L-formulas. It is straight-

forward to verify that its extension is a bijection from L to L�.

Translating V: For every w ∈ W , let Fw = {ϕ ∈ L | σ0(ϕ) ∈ dom(Vw)}.
By Lemma 4.3.14 and the fact that W is }-k-closed, we have that Fw
is closed under }-k-subformulas for every w ∈ W . Since σ0 is a bijec-

tion, we also have that Fw is finite for every w ∈ W . Now, for every

w ∈ W , let uw be the Fw-bivaluation given by uw = λϕ ∈ Fw. Vw(σ0(ϕ)).

We show that uw is G-legal for every w ∈ W . Let w ∈ W ,

s1, ... , sn / s ∈ G, s′1, ... , s
′
n respective subsequents of s1, ... , sn, and σ

a substitution such that σ(frm({s′1, ... , s′n, s})) ⊆ Fw. We prove that

uw(σ({s′1, ... , s′n})) ≤ uw(σ(s)). Consider the substitution σ′ = σ0 ◦ σ.

It is easy to see that σ′(ϕ) = σ0(σ(ϕ)) for every formula ϕ. Therefore,

σ′(frm({s′1, ... , s′n, s})) = σ0(σ(frm({s′1, ... , s′n, s}))) ⊆ σ0(Fw) ⊆ dom(Vw).

Since W is G-legal, we have

uw(σ({s′1, ... , s′n})) = Vw(σ′({s′1, ... , s′n})) ≤ Vw(σ′(s)) = uw(σ(s)).

Extending the translation: Let w ∈ W . Then, uw is a G-legal bivaluation

whose domain Fw is a finite subset of L closed under }-k-subformulas. Since

G is }-k-analytic, by Theorem 2.5.9, uw can be extended to a G-legal L-

bivaluation u∗w.

Defining W ′: For every w ∈ W , let F ′w be the following set:

dom(Vw)∪}dom(W)∪{�(ϕ1, ... , ϕn) | � ∈ ♦nL\},}≤k {ϕ1, ... , ϕn} ⊆ dom(W)}.
Let α be the inverse of σ0. α is a bijection from L� to L. LetW ′ = 〈W,R,V ′〉,
where V ′ is the function assigning to every w ∈ W , the F ′w-bivaluation V ′w
defined by:

V ′w(ψ) =

Vw(ψ) ψ ∈ dom(Vw)

u∗w(α(ψ)) ψ ∈ F ′w \ dom(Vw)

First, we prove that W ′ is a biframe for M. Let w ∈ W and ψ,�ψ ∈ L�.

Suppose that �ψ ∈ dom(V ′w) and ψ ∈ dom(V ′w′) for every w′ ∈ R�[w].
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Then, since �ψ ∈ �L�, we have �ψ ∈ dom(Vw). Since W is }-k-

closed, ψ ∈ dom(Vw′) for every w′ ∈ R�[w]. Since W is a biframe,

V ′w(�ψ) = Vw(�ψ) = VR�[w](ψ) = V ′R�[w](ψ).

Clearly, W ′ extends W , }dom(W) ⊆ dom(W ′), and for every � ∈ ♦nL \ },

�(ϕ1, ... , ϕn) ∈ dom(W ′) whenever }≤k {ϕ1, ... , ϕn} ⊆ dom(W).

It remains to show that W ′ is }-k-closed and G-legal.

(a) }-k-closed: Let w ∈ W . First, dom(V ′w) is finite since dom(W) and ♦L are

finite. Second, let ◦ϕ ∈ dom(V ′w) for some ◦ ∈ }. If ◦ϕ ∈ dom(Vw), then since

W is }-k-closed, ϕ ∈ dom(Vw) ⊆ dom(V ′w). Otherwise, ◦ϕ ∈ F ′w \ dom(Vw),

which means that ϕ ∈ dom(W) ⊆ dom(Vw) ⊆ dom(V ′w). Third, let

�(ψ1, ... , ψn) ∈ dom(V ′w). We show that }≤kψi ⊆ dom(V ′w) for every

1 ≤ i ≤ n. If �(ψ1, ... , ψn) ∈ dom(Vw) then this holds since W is }-

k-closed. Otherwise, �(ψ1, ... , ψn) ∈ F ′w \ dom(Vw), which means that

}≤kψi ⊆ dom(W) ⊆ dom(Vw) ⊆ dom(V ′w) for every 1 ≤ i ≤ n. Finally,

let �ψ ∈ dom(V ′w). Then, since �ψ ∈ �L�, �ψ ∈ dom(Vw). Since W is

}-k-closed, ψ ∈ dom(Vw′) ⊆ dom(V ′w′) for every w′ ∈ R�[w].

(b) G-legal: Let w ∈ W , s1, ... , sn / s ∈ G, s′1, ... , s
′
n respective subsequents of

s1, ... , sn, and σ a substitution such that σ(frm({s′1, ... , s′n, s})) ⊆ dom(V ′w).

We prove that V ′w(σ({s′1, ... , s′n})) ≤ V ′w(σ(s)). For that, we first prove

that V ′w(ψ) = u∗w(α(ψ)) for every ψ ∈ dom(V ′w). If ψ /∈ dom(Vw),

then this holds by definition. Suppose that ψ ∈ dom(Vw). Since

σ0(α(ψ)) = ψ, α(ψ) ∈ Fw. Hence u∗w(α(ψ)) = uw(α(ψ)). By def-

inition, uw(α(ψ)) = Vw(σ0(α(ψ))) = Vw(ψ). Since ψ ∈ dom(Vw),

u∗w(α(ψ)) = V ′w(ψ). Now, consider the substitution σ′ = α ◦ σ. It

is easy to see that σ′(ψ) = α(σ(ψ)) for every ψ ∈ frm({s′1, ... , s′n, s}).
Clearly, σ′(frm({s′1, ... , s′n, s})) ⊆ L. Since u∗w is G-legal, we have that

V ′w(σ({s′1, ... , s′n})) = u∗w(α(σ({s′1, ... , s′n}))) = u∗w(σ′({s′1, ... , s′n})) is less than

or equal to u∗w(σ′(s)) = u∗w(α(σ(s))) = V ′w(σ(s)).

To complete the proof of Lemma 4.3.12, we use Lemma 4.3.15 repeatedly, and con-

struct a full biframe from a partial one.

First, recursively construct an infinite sequence

W0 = 〈W,R,V0〉 ,W1 = 〈W,R,V1〉 , ..., such that:

• W0 =W .
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• For every i, W i is a G-legal }-k-closed biframe for M.

• Each W i+1 extends W i.

• For every ψ ∈ L�, ψ ∈ dom(W i) for some i ≥ 0.

We begin with W0 = W . Given W i, W i+1 is obtained as follows. By Lemma

4.3.15, W i can be extended to a G-legal }-k-closed biframe W i
1 for M such that

pi ∈ dom(W i
1). In turn, W i

1 can be extended to a G-legal }-k-closed biframe W i
2

for M such that �dom(W i
1) ⊆ dom(W i

2). Finally, W i
2 can be extended to a G-

legal }-k-closed biframe W i
3 for M such that }dom(W i

2) ⊆ dom(W i
3), and for every

� ∈ ♦nL \ }, �(ϕ1, ... , ϕn) ∈ dom(W i
3) whenever }≤k {ϕ1, ... , ϕn} ⊆ dom(W i

2). We take

W i+1 = 〈W ,R,V i+1〉 to be W i
3.

Clearly, for every i ≥ 0,W i+1 is a G-legal }-k-closed biframe for M that extendsW i.

We prove that for every ψ ∈ L� there exists some i ≥ 0 such that ψ ∈ dom(W i), by

induction on the complexity of ψ:

1. If ψ ∈ At then ψ = pi for some i ≥ 1. By our construction, pi ∈ dom(W i
1) and

hence pi ∈ dom(W i+1).

2. If ψ = �ϕ then by the induction hypothesis, ϕ ∈ dom(W i) for some i ≥ 0. By our

construction, �ϕ ∈ dom(W i
2) and hence ψ ∈ dom(W i+1).

3. If ψ = ◦ϕ, then by the induction hypothesis, there exists i such that ϕ ∈ dom(W i).

By our construction, ◦ϕ ∈ dom(W i
3), and hence ◦ϕ ∈ dom(W i+1).

4. If ψ = �(ψ1, ... , ψn) then by the induction hypothesis, there exist i1, ... , in such

that ψj ∈ dom(W ij) for every 1 ≤ j ≤ n. Let i = max{i1, ... , in}. By our

construction, there exists i0 ≥ i such that }≤kψj ⊆ dom(W i0) for every 1 ≤ j ≤ n

(in each step we add ◦ϕ for every ϕ ∈ dom(W i) and ◦ ∈ }. Since }≤k is finite,

we exhaust it at some point). Hence �(ψ1, ... , ψn) ∈ dom(W i0
3 ), which means that

�(ψ1, ... , ψn) ∈ dom(W i0+1).

We now define W ′ = 〈W,R,V ′〉, a G-legal L�-biframe for M that extends W . For

every ψ ∈ L�, let iψ denote the first i such that ψ ∈ dom(W i). For every w ∈ W , V ′w is

defined by V ′w(ψ) = V iψw (ψ).

We prove that W ′ is a G-legal L�-biframe for M that extends W . Clearly,

dom(W ′) = L� and W ′ extends W . We prove that W ′ is a biframe: Let w ∈ W

and ψ,�ψ ∈ L�. Let k = max {iψ, i�ψ}. Since W i extends W i−1 for every i,

we have V ′w′(ψ) = Vkw′(ψ) and V ′w′(�ψ) = Vkw′(�ψ) for every w′ ∈ W . Since Wk

is a biframe, V ′w(�ψ) = Vkw(�ψ) = VkR�[w](ψ) = V ′R�[w](ψ). It remains to show



84 Chapter 4. Extending Pure Calculi with Modal Operators

that W ′ is G-legal. Let w ∈ W , s1, ... , sn / s ∈ G, s′1, ... , s
′
n respective subsequents

of s1, ... , sn, and σ a substitution. We prove that V ′w(σ({s′1, ... , s′n})) ≤ V ′w(σ(s)).

Let k = max {iψ | ψ ∈ σ(frm({s′1, ... , s′n, s}))}. Since W i extends W i−1 for every i,

we have V ′w(ψ) = Vkw(ψ) for every ψ ∈ σ(frm({s′1, ... , s′n, s})). Since Vkw is G-legal,

V ′w(σ({s′1, ... , s′n})) = Vkw(σ({s′1, ... , s′n})) ≤ Vkw(σ(s)) = V ′w(σ(s)).

4.4 Extending The Decision Procedure

In this section we extend the reduction from Chapter 3 to standard pure calculi with

modal operators, that are defined by (pf) and (dpf). We call such operators Next

operators. These are often employed in temporal logics. In primal infon logic, they play

the role of quotations (see Example 4.1.3). We start by defining a variant of the }-k-

subformula relation in Section 4.4.1. In Section 4.4.2 we make the necessary adjustments

to the reduction from Chapter 3, and prove the correctness of the extended reduction.

For the modal case, correctness is more challenging, and heavily relies on Lemma 4.3.12

above. In Section 4.4.3 we briefly describe how Next-operators are incorporated into our

tool Gen2sat.

In what follows, we denote the specification function that assigns {(pf), (dpf)} to

every � ∈ � by Next. In turn, we call biframes for Next totally functional (as their

accessibility relations are functional and serial).

4.4.1 Local Formulas

While the reduction in Chapter 3 was based on }-k-subformulas, the current general-

ization of it is based on }-k-local formulas. This notion generalizes the local formulas

relation from [58], that preserves prefixes of �-elements between formulas. A sequence

�̄ = �1 ...�m (m ≥ 0) of elements of � is called a �-prefix. For any formula ϕ ∈ L, �̄
is a �-prefix of �̄ϕ. The notation �F is naturally extended to prefixes �̄.

Definition 4.4.1. Denote by �̄ψ the longest (possibly, empty) �-prefix of ψ, and by bψ

the formula for which ψ = �̄ψbψ. A formula ϕ is immediately }-k-local to a formula ψ if

ϕ = �̄ψϕ
′ for some immediate }-k-subformula ϕ′ of bψ. The }-k-local formula relation

is the reflexive transitive closure of the immediate }-k-local formula relation. We denote

the set of }-k-local formulas of a formula ψ by loc},�k (ψ). This notation is naturally

extended to sequents, sets of sequents etc. When } = ∅, we say that ϕ is local to ψ.

Note that for � = ∅, we have loc},�k (ψ) = sub}k (ψ) for every formula ψ.

Example 4.4.2. For � = {�,�}, we have

loc
{¬},�
1 (�(�p1 ⊃ p2)) = {�� p1,�¬� p1,�p2,�¬p2,�(�p1 ⊃ p2)}.
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The following lemma provides an alternative, inductive definition of the }-k-local

relation between formulas:

Lemma 4.4.3.

1. loc},�k (p) = {p} for every p ∈ At.

2. loc},�k (◦ψ) = {◦ψ} ∪ loc},�k (ψ) for every ◦ ∈ }.

3. loc},�k (�(ψ1, ... , ψn)) = {�(ψ1, ... , ψn)}∪⋃1≤i≤n}
≤kψi∪

⋃
1≤i≤n loc

},�
k (ψi) for every

� ∈ ♦L \}.

4. loc},�k (�ψ) = �loc},�k (ψ).

Proof.

1. p does not have any immediate }-k-local formulas.

2. (⊆): Let ϕ ∈ loc},�k (◦ψ). If ϕ = ◦ψ, then this trivially holds. Otherwise, by the

definition of the }-k-local relation as the reflexive transitive closure relation of the

immediate one, either ϕ = ψ or ϕ ∈ loc},�k (ψ).

(⊇): Obviously, ◦ψ, ψ ∈ loc},�k (◦ψ). From transitivity, loc},�k (ψ) ⊆ loc},�k (◦ψ).

3. (⊆): Let ϕ ∈ loc},�k (�(ψ1, ... , ψn)). If ϕ = �(ψ1, ... , ψn), then we are done. If ϕ is

immediately }-k-local to �(ψ1, ... , ψn), then ϕ ∈ }≤kψi for some 1 ≤ i ≤ n, and

so we are also done. Otherwise, by the definition of the }-k-local relation as the

reflexive transitive closure of the immediate one, ϕ is }-k-local to ◦̄ψi for some

◦̄ ∈ }≤k and 1 ≤ i ≤ n. So, either ϕ = ◦̄′ψi for some suffix ◦̄′ of ◦̄, or ϕ is }-k-local

to ψi. In the first case, ϕ ∈ ⋃1≤i≤n}
≤kψi, and in the second, ϕ ∈ loc},�k (ψi).

(⊇): Obviously, �(ψ1, ... , ψn) ∈ loc},�k (�(ψ1, ... , ψn)). In addition, for every

◦̄ ∈ }≤k, ◦̄ψi is immediately }-k-local to �(ψ1, ... , ψn), and hence it is in

loc},�k (�(ψ1, ... , ψn)). The same holds for ψi for every i, and from transitivity,

it also holds for every element in loc},�k (ψi).

4. (⊆): Let ϕ ∈ loc},�k (�ψ). It is routine to show that ϕ = �ϕ′ for some ϕ′, such that

ϕ′ is }-k-local to ψ. Hence ϕ′ ∈ loc},�k (ψ) and therefore ϕ = �ϕ′ ∈ �loc},�k (ψ).

(⊇): Similarly to the previous direction, let ϕ ∈ �loc},�k (ψ). Then, ϕ = �ϕ′ for

some ϕ′ that is }-k-local to ψ. Therefore, ϕ = �ϕ′ is }-k-local to �ψ and hence

ϕ ∈ loc},�k (�ψ).



86 Chapter 4. Extending Pure Calculi with Modal Operators

Similarly to the }-k-subformula relation, since every formula has finitely many im-

mediate }-k-local formulas, it follows that loc},�k (ψ) is finite for every ψ ∈ L�.

4.4.2 Extending The Reduction

For the case that the set S of assumptions is empty, it is possible to extend the reduction

from Chapter 3 to pure calculi with Next operators. Like in the reduction for the non-

modal case, we assume that the calculus G is axiomatic.

Definition 4.4.4. The SAT instance associated with a given axiomatic L-calculus G, a

subset } of ♦1
L, a natural number k ≥ 0, and an L�-sequent s, denoted SAT

},�
k (G, s), is

given by the union of the following SAT instances:

1. SAT−(s)

2.
⋃{

SAT+(�̄σ(s′)) | ∅ / s′ ∈ G, �̄σ(frm(s′)) ⊆ loc},�k (s), �̄ is an �-prefix
}

The following theorem establishes the correctness of the extended reduction.

Theorem 4.4.5. Let G be a standard axiomatic }-k-analytic L-calculus and s an L�-

sequent. Then `GNext
s iff SAT

},�
k (G, s) is unsatisfiable.

Proof. For a totally functional biframe 〈W,R,V〉 and a world w ∈ W , we denote by

R�(w) the world w′ such that 〈w,w′〉 ∈ R� (w′ always exists since 〈W,R,V〉 is to-

tally functional). Then, we have Vw(�ψ) = VR�(w)(ψ) whenever �ψ ∈ dom(Vw) and

ψ ∈ dom(VR�(w)).

(⇒): Suppose that 6`GNext
s. By Theorem 4.2.7, we have Vw(s) = 0 for some G-legal

L�-biframe W = 〈W,R,V〉 for Next and w ∈ W . Consider the classical assignment u

that assigns true to xψ iff Vw(ψ) = 1. Since Vw(s) = 0, u satisfies SAT−(s). It remains

to prove that Vw(�̄σ(s′)) = 1 for every ∅ / s′ ∈ G, substitution σ and �-prefix �̄ such

that �̄σ(frm(s′)) ⊆ loc},�k (s). Suppose that �̄ = �1 ...�n, and let w0, w1, ... , wn be a

sequence of worlds of W such that w0 = w, and R�i(wi−1) = wi for every 1 ≤ i ≤ n.

Then Vw0(�1 ...�nψ) = Vw1(�2 ...�nψ) = ... = Vwn(ψ) for every ψ ∈ L�. Since W is

G-legal, the bivaluation Vwn is G-legal, and therefore, Vw(�̄σ(s′)) = Vwn(σ(s′)) = 1.

(⇐): Suppose that SAT},�k (G, s) is satisfiable and let u be a satisfying assignment. Define

the following biframe W = 〈W,R,V〉:

1. W is the set of all �-prefixes.

2. For every � ∈ � and �̄ ∈ W , R�(�̄) = �̄�.
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3. V�̄ is defined by induction on the length of �̄: dom(Vε) = loc},�k (s) and

Vε(ψ) = 1 iff u satisfies xψ; dom(V�1...�n) =
{
ϕ | �nϕ ∈ dom(V�1...�n−1

)
}

and

V�1...�n(ψ) = V�1...�n−1
(�nψ).

Clearly, R� is a total function for every � ∈ �. Since u satisfies SAT−(s), Vε(s) = 0. We

prove that W is a G-legal }-k-closed biframe for Next (see Definition 4.3.10).

1. biframe for Next: By the definition of V .

2. G-legal: We prove that V�1...�n is G-legal for every �1 ...�n ∈ W . Let

∅ / s′ ∈ G and σ a substitution such that σ(frm(s′)) ⊆ dom(V�1...�n).

We prove that V�1...�n(σ(s′)) = 1. We actually prove a stronger claim,

namely that V�1...�n(�̄σ(s′)) = 1 for every �-prefix �̄ (including ε) such that

�̄σ(frm(s′)) ⊆ dom(V�1...�n). We do so by induction on n. For n = 0

we have Vε(�̄σ(s′)) = 1 because u satisfies SAT+(�̄σ(s′)). Now, let n ≥ 1.

Since �̄σ(frm(s′)) ⊆ dom(V�1...�n), we have �n�̄σ(frm(s′)) ⊆ dom(V�1...�n−1
).

By the induction hypothesis, V�1...�n−1
(�n�̄σ(s′)) = 1. By V ’s definition,

V�1...�n(�̄σ(s′)) = 1.

3. }-k-closed: dom(V�̄) is finite for every �̄ since dom(Vε) = loc},�k (s) is finite. In

addition, if �ψ ∈ dom(V�̄) then by our construction, ψ ∈ dom(V�̄�). It remains

to prove that for every �̄ ∈ W , dom(V�̄) is }-k-closed. First, note that every set

which is closed under }-k-local formulas is also }-k-closed. This holds since ψ is

}-k-local to ◦ψ for every ◦ ∈ }, and ◦̄ψi is }-k-local to �(ψ1, ... , ψn) for every

1 ≤ i ≤ n and ◦̄ ∈ }≤k. Therefore, it suffices to prove that dom(V�̄) is closed

under }-k-local formulas for every �̄ ∈ W . We do so by induction on the length

of �̄. First, we have that dom(Vε) = loc},�k (s) is closed under }-k-local formulas.

Now, let �1 ...�n ∈ W (n ≥ 1). We prove that loc},�k (ψ) ⊆ dom(V�1...�n) for

every ψ ∈ dom(V�1...�n). Let ψ ∈ dom(V�1...�n). Then, �nψ ∈ dom(V�1...�n−1
).

By the induction hypothesis, dom(V�1...�n−1
) is closed under }-k-local formulas.

Therefore, loc},�k (�nψ) ⊆ dom(V�1...�n−1
). Now, let ϕ ∈ loc},�k (ψ). Then, by

Lemma 4.4.3, �nϕ ∈ �nloc
},�
k (ψ) = loc},�k (�nψ). Hence �nϕ ∈ dom(V�1...�n−1

).

By V ’s definition, ϕ ∈ dom(V�1...�n).

Now, since G is }-k-analytic, By Lemma 4.3.12, W can be extended to a G-legal L�-

biframe 〈W,R,V ′〉 for Next. By Theorem 4.2.6, since V ′ε(s) = 0, we have 6`GNext
s.

Note that Theorem 4.4.5 is restricted to derivability problems with an empty set of

assumptions. The main difficulty with encoding a countermodel for the derivability of a

sequent s from a set S of sequents, is that every element of S must hold in every world of
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the countermodel. This is in contrast to the rules of G, that are required to hold only in

worlds whose domains include the instances of the rules. We leave the inclusion of sets

of assumptions for future work.

For the case that } = ∅ and S = ∅, the polynomial time algorithm from Theorem

3.1.6 can be modified to accommodate Next operators. We denote SAT
∅,�
k by SAT∅,� for

every k.

Theorem 4.4.6. Let G be an axiomatic L-calculus. Given an L�-sequent s, the SAT

instance SAT∅,�(G, s) is computable in O(nm) time, where n is the length of the string

representing s, and m = c(G).

Proof. The algorithm from the proof of Theorem 3.1.6 is reused with several modifica-

tions. As in [44], an auxiliary trie (an ordered tree data structure commonly used for

string processing) for �-prefixes is constructed in linear time, and every node in the

input parse tree has a pointer to a node in this trie. Now, each node in the parse tree

corresponds to an occurrence of a formula that is local to s. The tree is then compressed

to a dag as in the proof of Theorem 3.1.6. The nodes of the dag one-to-one correspond to

the local formulas of s. The rest of the algorithm is exactly as in the proof of Theorem

3.1.6.

Following Section 3.2, we note that when G is a Horn calculus, SAT∅,�(G, s) consists

of Horn clauses. When, in addition, c(G) = 1, a linear time decision procedure for the

derivability problem for GNext is obtained by applying a HORNSAT solver.

Example 4.4.7. Example 3.2.2 works also after adding Next operators: the derivability

problem of GPILNext and GEPILNext can be solved in linear time using a HORNSAT

solver.

4.4.3 Implementation

Our tool Gen2sat (see Section 3.3) supports ∅-analytic pure calculi that are augmented by

a finite set of modal operators �, with the specification Next. In order to use the tool with

such operators, an additional field should be added to the form described in Section 3.3.1:

“Next Operators”. This field contains a comma-separated list of unary connectives that

do not occur in the field “connectives”. Their arities are not mentioned, as they are

assumed to be unary. Moreover, the rules (pf) and (dpf) should not be specified, as

they are assumed by Gen2sat to be the rules that correspond to the operators in this list.

In case the sequent is derivable, a sufficient subset of rules will be generated, excluding

the modal rules (these are not encoded in any way to the SAT-solver, but only exist in

the background of the reduction, and are the reason it is based on Kripke models). If
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the sequent is not derivable, Gen2sat outputs the truth values in the first world of the

countermodel.

For example, adding quotations to the input file for primal infon logic from Figure 3.1,

would result in the following input and output:

Input file

connectives: AND:2,OR:2,IMPLIES:2,TOP:0

nextOperators: q1 said, q2 said, q3 said

rule: =>p1; =>p2 / =>p1 AND p2

rule: p1,p2=> / p1 AND p2=>

rule: =>p1,p2 / =>p1 OR p2

rule: =>p2 / =>p1 IMPLIES p2

rule: =>p1; p2=> / p1 IMPLIES p2=>

rule: / => TOP

analyticity:

inputSequent: =>q1 said (p IMPLIES p)

Output

unprovable

Countermodel:

q1said p=false, q1said(p IMPLIES p)=false

4.5 Equivalence and Admissibility of Modal Rules

4.5.1 Functionality vs. Seriality

In this section, we show that the specifications {(pf), (dpf)} and {(k), (dk)} are equiv-

alent when added to a pure Horn calculus (see Definition 2.7.4).

This is proven using a similar technique to the one used in the proof of Proposi-

tion 2.7.6.

Lemma 4.5.1. If G is a Horn calculus and M(�) = {(k), (dk)} for every � ∈ �, then

for every set S of single-conclusion L�-sequents and L�-sequent Γ⇒ ∆, if S `GM
Γ⇒ ∆,

then S `GM
Γ⇒ E for some singleton or empty set E ⊆ ∆.

Proof. By induction on the length of the derivation of Γ⇒ ∆.

1. If Γ ⇒ ∆ ∈ S or Γ ⇒ ∆ is the conclusion of an application of (id) or (weak)

then this is obvious.

2. If Γ ⇒ ∆ is the conclusion of an application of (cut), then

Γ ⇒ ∆ = Γ1,Γ2 ⇒ ∆1,∆2 and S `GM
Γ1 ⇒ ϕ,∆1 and S `GM

Γ2, ϕ ⇒ ∆2 with

shorter derivations. By the induction hypothesis, there are singletons or empty

sets E1 and E2 such that S `GM
Γ1 ⇒ E1, S `GM

Γ2, ϕ ⇒ E2, E1 ⊆ ∆1 ∪ {ϕ} and

E2 ⊆ ∆2. If ϕ /∈ E1 then using (weak) we obtain S `GM
Γ⇒ E1. If E1 = {ϕ}, then

using (cut), we get S `GM
Γ⇒ E2.
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3. If Γ ⇒ ∆ is the conclusion of an application of some rule

Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n /Γ0 ⇒ ∆0 of G, then there is a substitution σ and

sequents Γ′1 ⇒ ∆′1,Γ
′′
1 ⇒ ∆′′1, ... ,Γ

′
n ⇒ ∆′n,Γ

′′
n ⇒ ∆′′n such that for every 1 ≤ i ≤ n,

Γ′i ⇒ ∆′i ⊆ Γi ⇒ ∆i, Γ ⇒ ∆ = Γ′′1, ... ,Γ
′′
n, σ(Γ0) ⇒ σ(∆0),∆′′1, ... ,∆

′′
n, and

S `GM
Γ′′i , σ(Γ′i) ⇒ σ(∆′i),∆

′′
i with shorter derivations for every 1 ≤ i ≤ n. Since

G is Horn, one of the following holds:

(a) For every 1 ≤ i ≤ n, Γ′i = ∅. In this case, S `GM
Γ′′i ⇒ σ(∆′i),∆

′′
i for every

1 ≤ i ≤ n. By the induction hypothesis, for every 1 ≤ i ≤ n, S `GM
Γ′′i ⇒ Ei

for some singleton or empty set Ei ⊆ σ(∆′i) ∪ ∆′′i . If Ei ⊆ ∆′′i for some

1 ≤ i ≤ n, then using (weak) we are done. Otherwise, for every 1 ≤ i ≤ n,

there exists ϕi ∈ σ(∆′i) such that Ei = {ϕi}. Hence for every 1 ≤ i ≤ n,

S `GM
Γ′′i ⇒ σ(ϕi). Using (weak), we get that S `GM

Γ′′i ⇒ σ(∆′i).

Now, we may apply the rule with context sequents Γ′′i ⇒ and get that

S `GM
Γ′′1, ... ,Γ

′′
n, σ(Γ0) ⇒ σ(∆0), which means that S `GM

Γ ⇒ σ(∆0).

Since G is Horn, |σ(∆0)| ≤ 1.

(b) There exists a single 1 ≤ i ≤ n such that Γ′i 6= ∅. By the induction hy-

pothesis, there exists a singleton or empty set Ei ⊆ σ(∆′i) ∪ ∆′′i such that

S `GM
Γ′′i , σ(Γ′i)⇒ Ei. Also by the induction hypothesis, for every j 6= i, there

exists a singleton or empty set Ej ⊆ ∆′′j ∪ σ(∆′j) such that S `GM
Γ′′j ⇒ Ej

(Γj = ∅ since i 6= j, Γi 6= ∅ and G is Horn). If Ej ⊆ ∆′′j for some j 6= i,

then using (weak), we get that S `GM
Γ⇒ Ej (and Ej ⊆ ∆). Otherwise, for

every j 6= i there exists ϕj ∈ σ(∆′j) such that Ej = {ϕj}. Using (weak) we

get S `GM
Γ′′j ⇒ σ(∆′j) for every j 6= i. Moreover, using (weak) we get that

S `GM
Γ′′i , σ(Γ′i) ⇒ σ(∆′i), Ei. Apply the rule with context sequents Γ′′i ⇒ Ei

and Γ′′j ⇒ for every j 6= i and get S `GM
Γ′′1, ... ,Γ

′′
n, σ(Γ0)⇒ σ(∆0), Ei. Since

G is Horn and ∅ 6= Γ′i ⊆ Γi, ∆0 = ∅. Hence we actually get that S `GM
Γ⇒ Ei

(and Ei ⊆ ∆).

4. If Γ⇒ ∆ is the conclusion of an application of (k) or (dk) then it is clearly a single

conclusion sequent.

Corollary 4.5.2. Let G be a pure calculus, S a set of (strict) single-conclusion sequents

and s a sequent. If G is Horn then S `GM
s iff S `GM′

s, where M(�) = {(pf), (dpf)}
for every � and M′(�) = {(k), (dk)} for every �.

Proof. The right-to-left directions are trivial. Suppose that S `GM
s. We prove that

S `GM′
s by induction on the number of applications of (dpf) in the derivation of s from
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S in GM (all applications of (pf) are also applications of (dpf)). If this number is 0 then

the claim trivially holds. Otherwise, let 〈Γ⇒ ∆,�Γ⇒ �∆〉 be the last application of

(dpf) in the derivation. By the induction hypothesis, S `GM′
Γ ⇒ ∆. Since G is Horn,

by Lemma 4.5.1, there exists a singleton or empty set E ⊆ ∆ such that S `GM′
Γ ⇒ E .

Apply either (k) or (dk) and get S `GM′
�Γ ⇒ �E . Now, use weakening and get

S `GM′
�Γ⇒ �∆.

Example 4.5.3. Since GPIL (Example 2.2.10) is Horn, by Corollary 4.5.2, we may use

either {(k), (dk)} or {(pf), (dpf)} as the rules for its said operators (see Example 4.1.3).

The same holds for GEPIL.

4.5.2 On the Admissibility of D-rules

Figure 4.1 associates each modal rule (X) with its own (dX)-rule, that essentially allows

it to be applied with an empty right side. This is needed, for example, in the following

derivation of the sequent �⊥ ⇒ , which is valid in the modal logic KD, but not in K:

⊥ ⇒
�⊥ ⇒

For definite calculi (see Definition 2.7.2), however, we have that the addition of any

of (dk), (d), (d) and (dpf), is redundant:

Proposition 4.5.4. Let G a definite calculus, S a set of sequents with non-empty right

sides, and s a sequent such that S `GM
s. Let M′ be obtained from M by removing (dX)

from M(�) whenever X ∈ {(k), (), (), (pf)} and (dX) ∈ M(�). Then, S `GM′
s.

Proof. First, since G is definite, using induction on the length of the derivation of s from

S in GM, it can be shown that all sequents in this derivation have a non-empty right

side. Next, we induct on the number of applications of (dX). Let 〈Γ⇒ ∆, s〉 be the last

application of (dX). Then, ∆ 6= ∅, and in particular, X cannot be (k) or (). By the

induction hypothesis, S `GM′
Γ ⇒ ∆. If X = () then Γ = �Γ1 ∪ Γ2 and ∆ = �∆′

for some Γ1,Γ2,∆
′. Since ∅ 6= ∆ = �∆′, we have �Γ1,Γ2 ⇒ �ψ,�∆′ as the premise for

some ψ ∈ ∆′. Using (weak), we may obtain �Γ1,Γ2 ⇒ ψ,�ψ,�∆′ and now using (),
we get �Γ1,�Γ2 ⇒ �ψ,�∆′, which is s. If X = (pf) then since ∆ 6= ∅, 〈Γ⇒ ∆, s〉 is

also an application of (pf).

Note that (db) and (db) are not admissible under the conditions above. Indeed, the

sequent ��p⇒ p is derivable using either (db) or (db), while it is not derivable using

(b) or (b).
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Example 4.5.5. Following Example 4.5.3, when augmenting the definite calculus GPIL

with (k) ((pf)), one can either include (dk) ((dpf)) or not, and the resulting calculi

would be equivalent.



Chapter 5

Intuitionistic Calculi

We have seen that while pure sequent calculi form a useful and prominent framework for

non-classical logics, some logics seem to require impure calculi. This was indeed the case

in Chapter 4, where multimodal logics were studied. In this section we tackle another

family of logics that seem to go beyond the scope of pure calculi, whose proof-theory

resembles that of intuitionistic logic. The propositional fragment of Gentzen’s original

calculus for intuitionistic logic, LJ, is not pure, as it does not meet the requirement of

allowing arbitrary context formulas in applications of rules: it manipulates only single-

conclusion sequents. An equivalent cut-free sequent calculus, which we call LJ′, was

presented in [77, 97]. This calculus employs multiple-conclusion sequents, and restricts

only the right introduction rules of implication and negation to apply on single-conclusion

sequents. In other words, LJ′ is obtained from LK by adding the requirement that in

applications of (⇒ ⊃) and (⇒ ¬), the context sequent has an empty right side. Such

applications have the forms:

Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ

Γ, ϕ⇒
Γ⇒ ¬ϕ

Taking LJ′ as a prototype, we consider a family of calculi that have similar structural

properties. We call the calculi of this family intuitionistic calculi. The main result of

this chapter is a variant of Theorem 2.6.20 for intuitionistic calculi, which identifies a

sub-family in which cut-admissibility and analyticity coincide. Our proof has a similar

general structure to the proof for pure calculi, but is more challenging, because valuation

functions do not suffice to characterize the calculi of this family. Instead, we modify the

Kripke semantics from Chapter 4 and accommodate it to intuitionistic calculi.

In Section 5.1 we explicitly define intuitionistic calculi, by restricting derivations in

pure calculi. Section 5.2 provides a semantic counterpart for derivability in intuitionistic

calculi. This semantics is then used in Section 5.3 in order to derive cut-admissibility

from analyticity in a wide sub-family of intuitionistic calculi, as was shown in Section 2.6

93
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for pure calculi.

Publications Related to this Chapter

Most of the results of this section appeared in [71, 74].

5.1 Intuitionistic Derivations

In Chapter 2 we studied the family of pure calculi, that can be seen as a generalization

of LK. Just like LK, pure calculi employ all structural rules, and do not enforce any

limitation on the context sequents. In this section we study a family of calculi that

generalizes LJ′. We first identify the structural characteristics of LJ′: LJ′ is obtained

from LK by forbidding right context formulas in all premises with a non-empty left side

of right-introduction rules. Another well-known calculus that follows this pattern, which

we call G′4, is obtained by extending the positive fragment of LJ′ with the rules for

negation of G4 (see Example 2.2.8). G′4, investigated in [14, 100], is sound and complete

for Nelson’s paraconsistent constructive logic N4 [82].

We precisely define a wide family of impure calculi, that we call intuitionistic calculi,

of which LJ′ and G′4 are particular examples. Note that both LJ′ and G′4 employ pure

rules: LJ′ is based on the rules of LK, and G′4 is based on the rules of G4. The difference

lies in the allowed applications of the rules: both calculi forbid right context formulas

in premises of the form Γ ⇒ ∆ with Γ 6= ∅ of applications of rules that introduce some

formula on the right side. This is formalized as follows:

Definition 5.1.1. A pure rule is called positive if its conclusion has the form Γ⇒ ∆ for

some ∆ 6= ∅. A derivation in a pure calculus G is called intuitionistic if in every applica-

tion 〈{σ(s′1) ∪ c1, ... , σ(s′n) ∪ cn} , σ(s0) ∪ c1 ∪ ... ∪ cn〉 of a positive rule s1, ... , sn / s0, for

every 1 ≤ i ≤ n we have that if si has a non-empty left side then ci has an empty right

side.

Example 5.1.2. Consider the rule (⇒ ⊃) of LK: p1 ⇒ p2 / ⇒ p1 ⊃ p2. (⇒ ⊃) is

positive, and its only premise has a non-empty left side. Applications of this rule in

intuitionistic derivations will have a context sequent with an empty right side, and will

therefore have one of the following forms:
Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ

Γ⇒ ψ

Γ⇒ ϕ ⊃ ψ

Γ, ϕ⇒
Γ⇒ ϕ ⊃ ψ

Note that in the second application, only the subsequent ⇒ p2 of the premise p1 ⇒ p2 is

used, and therefore the premise of the application has an empty left side. Nevertheless,

since the premise of the rule has a non-empty left side, the context sequent still must

have an empty right side.
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In contrast, (⊃ ⇒) is not positive, and therefore applications of it in intuitionistic

derivations have the same form as in ordinary derivations.

Remark 5.1.3. If G is Horn (see Definition 2.7.4), then every derivation in it is intu-

itionistic, simply because positive rules with a non-empty left side of a premise do not

exist.

Derivability, cut-admissibility and analyticity are adopted to intuitionistic derivations

as follows.

Definition 5.1.4. For a pure calculus G, we write S `GInt
s if there is an intuitionistic

derivation of a sequent s from a set S of sequents in G. We write S`cf
GInt

s if there is such

a derivation which is also cut-limited, and S `FGInt
s if there is such a derivation which

contains only F -formulas. We say that G enjoys Int-cut-admissibility if `GInt
= `cf

GInt
,

and is Int-}-k-analytic if S `GInt
s iff S `sub

}
k (S∪{s})

GInt
s for every set S of sequents and

sequent s. If G is Int-∅-k-analytic for some k, we call it Int-∅-analytic.

The difference between pure and intuitionistic calculi is not in the rules, but rather

in the allowed applications. Thus, any pure calculus has an intuitionistic counterpart,

obtained by considering only intuitionistic derivations.

Example 5.1.5. Derivations in LJ′ are exactly the intuitionistic derivations of LK.

Indeed, for a finite set Γ of formulas and a formula ϕ, ϕ follows from Γ in intuitionistic

logic iff `LKInt
Γ ⇒ ϕ. In contrast, ϕ follows from Γ in classical logic iff `LK Γ ⇒ ϕ.

Similarly, derivations in G′4 coincide with intuitionistic derivations of G4.

Our main theorem concerning intuitionistic calculi is presented next.

Theorem 5.1.6. Every Int-}-k-analytic }-k-directed pure calculus enjoys Int-cut-

admissibility.

Theorem 5.1.6, which we prove below, allows one to derive the fact that cut is ad-

missible in LJ′ from the fact that LJ′ enjoys the subformula property. More precisely,

Int-cut-admissibility of LK follows from its Int-∅-analyticity. Such entailment also holds

for the pure calculi presented in the examples of Chapter 2, as well as for the calculi of

the next example.

Example 5.1.7 (Constructive Negations). The paper [14] includes sequent calculi for

logics that replace classical negation with several non-classical negations. One of the

families investigated there consists of calculi that are obtained from the positive fragment

of LJ′ by augmenting it with pure rules for negation. All calculi of this family, except
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those described in Example 5.1.8 below, allow only intuitionistic derivations, and are {¬}-
1-directed and Int-{¬}-1-analytic. From these facts, Theorem 5.1.10 allows us to conclude

that cut is admissible in them. These calculi include a calculus for Nelson’s constructive

logic N3 [82], as well as the calculus G′4 presented above for its paraconsistent variant

N4.

Intuitionistic derivations disallow right context formulas in premises of positive rules,

in which the left side is not empty. A natural question that arises regarding Theorem 5.1.6

is: Does it still hold if we allow right context formulas for certain premises of a right

introduction rule with a non-empty left side, and forbid them in others? The answer is

negative as the next example demonstrates.

Example 5.1.8 (Beyond Intuitionistic Derivations). Following Example 5.1.7, we note

that [14, 16] investigate also several calculi that include both the single-conclusion right-

introduction rule of implication and the multiple-conclusion right-introduction rule of

negation, namely:
Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ

Γ, ϕ⇒ ∆

Γ⇒ ¬ϕ,∆
The first conforms with the restriction to intuitionistic derivations, as right context

formulas are forbidden. The second allows for non-intuitionistic derivations, as it allows

right context formulas in a premise of a positive rule, that has a non-empty left side.

Such calculi are therefore left out from the scope of Theorems 2.6.20 and 5.1.10. And

indeed, as was shown in [16], all of them are {¬}-1-analytic, but none of them enjoys

cut-admissibility.

Similarly to Section 2.6, we prove a stronger version of Theorem 5.1.6, for a more

generalized notion of analyticity. Thus, in what follows, ≺ denotes an arbitrary safe and

structural order relation (see Definition 2.6.16).

Definition 5.1.9. We say that a pure calculus G is Int-≺-analytic if S `GInt
s iff

S `�[S∪{s}]
GInt

s for every set S of sequents and sequent s.

Theorem 5.1.10. Every Int-≺-analytic ≺-directed pure calculus enjoys Int-cut-

admissibility.

Theorem 5.1.6 is obtained as a particular instance, as the }-k-subformula relation is

a safe and structural order relation for every } and k.

The rest of this chapter is devoted to the proof of Theorem 5.1.10. Similarly to the

case of pure calculi, we go through a semantic interpretation of intuitionistic derivations,

that is defined next.
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5.2 Semantics

Similarly to the case of modal operators (see Chapter 4), the syntactic restrictions on

context sequents that are enforced in intuitionistic derivations can be naturally captured

by a Kripke-style semantics.

While many of the results in previous chapters relied on two-valued (partial) models,

the models that were used in Section 2.6, whose results are generalized here to intuitionis-

tic calculi, were three-valued. Therefore, in this chapter we use three-valued models from

the beginning, without going through partial two-valued models. This way, we gain a

more direct connection between the semantics of cut-limited derivations and derivations

that include only (generalized) subformulas of the derived sequent.

We start by defining the three-valued Kripke-style models that will be used.

Definition 5.2.1. An L-triframe is a tuple W = 〈W,R,V〉 where:

1. W is a set of elements called worlds.

2. R is a transitive and reflexive relation over W .

3. V is a function assigning a trivaluation Vw to every w ∈ W (see Definition 2.6.2),

such that V is persistent: for every ϕ ∈ L and w ∈ W , if Vw(ϕ) = 1 then Vu(ϕ) = 1

for every u such that wRu.

We adopt the notations for biframes (see Definition 4.2.1 and notation 4.2.3)

to triframes. For example, we denote the set {u ∈ W | wRu} by R[w] and

min {Vw(s) | w ∈ W ′, s ∈ S} by VW ′(S).

Remark 5.2.2. Aside from being based on three truth values, there are several other

differences between triframes and biframes:

1. Triframes are totally defined – every formula is assigned a value in every world. In

contrast, every world in a biframe has its own domain.

2. While biframes are defined over an extended language which includes modal op-

erators, triframes are defined on the same language as trivaluations. The global

semantics (used for modal operators in biframes) is used for a subset of the con-

nectives of the language.

3. There is only one accessibility relation, and it must be transitive and reflexive.

4. The persistency condition of triframes is not enforced in biframes (although it may

be seen as a counterpart of the semantics of � in biframes).
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We turn to the semantic reading of pure rules in triframes. Given a triframe

W = 〈W,R,V〉 and a world w in it, the interpretation of a pure rule in w may involve

not only w itself, but also the elements of R[w]:

Definition 5.2.3. A triframe W = 〈W,R,V〉 respects a pure rule r = s1, ... , sn / s if

one of the following holds for every w ∈ W , substitution σ, and respective subsequents

s′1, ... , s
′
n of s1, ... , sn:

• r is positive, and Vw(σ(s)) = 1 whenever both of the followings hold:

– Vw(σ(s′i)) = 1 for every 1 ≤ i ≤ n such that si has an empty left side; and

– VR[w](σ(s′i)) = 1 for every 1 ≤ i ≤ n such that si has a non-empty left side.

• r is not positive, and Vw(σ(s)) whenever Vw(σ(s′i)) = 1 for every 1 ≤ i ≤ n.

Definition 5.2.4. For a pure calculus G, a triframe W is called G-legal if it respects

the rules of G.

Finally, the notion of determined trivaluations (Definition 2.6.5) is generalized to

apply on triframes in a natural way:

Definition 5.2.5. For a set F ⊆ L, a triframe W = 〈W,R,V〉 is called F-determined

if Vw is F -determined for every w ∈ W . W is called fully determined if Vw is fully

determined for every w ∈ W .

The semantic reading of derivation rules in Definition 5.2.3 conforms with the essence

of Kripke’s semantics for intuitionistic logic, according to which “constructive truth” is

more demanding than “classical truth”. Thus, when introducing a formula on the right

side, the premises should be satisfied not only in the particular world in question, but

also in all its accessible worlds.

Example 5.2.6 (Semantics of Intuitionistic Logic). Recall that LJ′ is obtained by con-

sidering only intuitionistic derivations in LK. Accordingly, Definition 5.2.4 associates LJ′

with LK-legal triframes. It is easy to see that a fully determined triframeW = 〈W,R,V〉
is LK-legal iff it respects the usual truth conditions of the intuitionistic connectives. For

example, the truth condition for implication is obtained as follows: Let w ∈ W , and

suppose that for every u ∈ W such that wRu, we have that if Vu(p1) = 1 then also

Vu(p2) = 1. Then VR[w](p1 ⇒ p2) = 1. Since W is LK-legal, Vw( ⇒ p1 ⊃ p2) = 1,

which gives us Vw(p1 ⊃ p2) = 1. For the converse, suppose there exists some u ∈ W such

that wRu, Vu(p1) = 1 and Vu(p2) = 0. Then Vu( ⇒ p1) = Vu(p2 ⇒ ) = 1. Since W is

LK-legal, Vu(p1 ⊃ p2) = 0. By the persistency requirement, Vw(p1 ⊃ p2) = 0 as well.
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After setting all required adjustments in definitions, we prove soundness and com-

pleteness theorems for intuitionistic derivations.

Theorem 5.2.7.

1. S `GInt
s iff VW (S) ≤ VW (s) for every fully determined G-legal triframe

W = 〈W,R,V〉.

2. S`cf
GInt

s iff VW (S) ≤ VW (s) for every frm(S)-determined G-legal triframe

W = 〈W,R,V〉.

3. If S `�[S∪{s}]
GInt

s then VW (S) ≤ VW (s) for every � [S ∪ {s}]-determined G-legal triframe

W = 〈W,R,V〉. The converse also holds, provided that G is ≺-ordered (see Defini-

tion 2.6.19).

Proof.

Soundness:

1. Suppose S `GInt
s, and let W = 〈W,R,V〉 be a fully determined G-legal triframe.

Assume VW (S) = 1. We prove that Vw(s) = 1 for every w ∈ W , by induction on

the length of the intuitionistic derivation of s from S in G. The cases where s ∈ S
or s is the conclusion of an application of (id) or (weak) are trivial.

If s is the conclusion of (cut), then there are Γ1,Γ2,∆1,∆2 and ψ such that

s = Γ1,Γ2 ⇒ ∆1,∆2, and both S `GInt
Γ1 ⇒ ψ,∆1 and S `GInt

Γ2, ψ ⇒ ∆2

with shorter derivations. Let w ∈ W . By the induction hypothesis,

Vw(Γ1 ⇒ ψ,∆1) = Vw(Γ2, ψ ⇒ ∆2) = 1. Since W is fully determined, Vw(ψ) 6= 1/2,

and so Vw(Γ1,Γ2 ⇒ ∆1,∆2) = 1.

Now suppose s is the conclusion of an application
σ(s′1) ∪ c1 ... σ(s′n) ∪ cn
σ(s0) ∪ c1 ∪ ... ∪ cn

of a rule

r = s1, ... , sn / s0 of G. Then s = σ(s0)∪c1∪ ...∪cn, and S `GInt
σ(s′i)∪ci for every

1 ≤ i ≤ n, with shorter derivations. By the induction hypothesis, Vw(σ(s′i)∪ci) = 1

for every 1 ≤ i ≤ n and w ∈ W . Let w ∈ W . Assume for contradiction that

Vw(σ(s0) ∪ c1 ∪ ... ∪ cn) = 0. In particular, Vw(σ(s0)) = 0, and Vw(σ(ci)) = 0 for

every 1 ≤ i ≤ n.

Assume first that r is positive. Then, since W is G-legal, we have some 1 ≤ i ≤ n

such that either si has an empty left side and Vw(σ(s′i)) = 0, or si has a non-empty

left side and Vw′(σ(s′i)) = 0 for some w′ ∈ R[w]. In the first case, Vw(σ(s′i)∪ci) = 0,

contradicting the induction hypothesis. In the second, ci must have the form Ω′i ⇒ .

Hence, for every ψ ∈ Ωi we have Vw(ψ) = 1. Since W is a triframe, we also have
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Vw′(ψ) = 1 for every such ψ. Hence, Vw′(σ(s′i) ∪ ci) = Vw′(σ(s′i) ∪ (Ωi ⇒ )) = 0,

contradicting the induction hypothesis.

Now assume that r is not positive. Then sinceW is G-legal, we have some 1 ≤ i ≤ n

such that Vw(σ(s′i)) = 0, and thus Vw(σ(s′i) ∪ ci) = 0 for that i, which contradicts

the induction hypothesis.

2. For `cf
GInt

, the proof is similar. The only difference is in the case where s is the con-

clusion of (cut). In such a case, the cut formula ψ is guaranteed to be an element

of frm(S). SinceW is assumed to be frm(S)-determined, we have Vw(ψ) 6= 1/2. The

proof then carries as in the previous item, also for the case that s is the conclusion

of a rule of G.

3. Denote the set � [S ∪ {s}] by F . Suppose S 0FGInt
s, and let W = 〈W,R,V〉 be

an F -determined G-legal triframe. Assume VW (S) = 1. We prove that Vw(s) = 1

for every w ∈ W , by induction on the length of the intuitionistic derivation of s

from S in G, that only includes F -formulas. The proof is similar to that of `GInt
,

with the only difference being the cut rule. If s is the conclusion of (cut), then

the cut formula ψ, as a formula that occurs in the derivation, is guaranteed to be

an element of F . Since W is assumed to be F -determined, Vw(ψ) 6= 1/2. The proof

carries as before, also for the case that s is the conclusion of a rule of G.

Completeness:

1. Recall the definitions concerning ω-sequents from the proof of Theorem 2.3.5, and

adapt them to `GInt
. We say that an ω-sequent L ⇒ R is maximal unprovable if

the following holds:

• S 0GInt
L⇒ R

• S `GInt
L, ψ ⇒ R for every ψ /∈ L and S `GInt

L⇒ ψ,R for every ψ /∈ R.

It is routine to extend any ω-sequent L ⇒ R such that S 0GInt
L ⇒ R to a

maximal unprovable ω-sequent. In particular, s can be extended to such an ω-

sequent Ls ⇒ Rs.

Define a triframeW = 〈W,R,V〉 as follows: W is the set of all maximal unprovable

ω-sequents; (L⇒ R)R(L′ ⇒ R′) iff L ⊆ L′; and for every L⇒ R ∈ W and ϕ ∈ L,

VL⇒R(ϕ) = 1 if ϕ ∈ L, VL⇒R(ϕ) = 0 if ϕ ∈ R, and VL⇒R(ϕ) = 1/2 otherwise.

W is indeed a triframe, as R is transitive and reflexive, and if ϕ ∈ L and

(L⇒ R)R(L′ ⇒ R′) then ϕ ∈ L′. The fact that VW (S) > VW (s) is shown similarly
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to the proof of Theorem 2.3.5, using the fact that VLs⇒Rs(s) = 0. We show that

W is fully determined. Let L ⇒ R ∈ W and assume for contradiction that there

exists a formula ϕ /∈ L ∪ R. Then S `GInt
L⇒ ϕ,R and S `GInt

L, ϕ⇒ R. Using

(cut), we get that S `GInt
L⇒ R, which is a contradiction.

It is left to prove that W is G-legal. Let Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n /Γ0 ⇒ ∆0 be a

positive rule of G, σ a substitution, Γ′1 ⇒ ∆′1, ... ,Γ
′
n ⇒ ∆′n respective subsequents

of Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n, and L⇒ R ∈ W . Suppose VL⇒R(σ(Γ0 ⇒ ∆0)) = 0. We

prove that there exists 1 ≤ i ≤ n such that either Γi = ∅ and VL⇒R(σ(⇒ ∆′i)) = 0

or Γi 6= ∅ and VL′⇒R′(σ(Γ′i ⇒ ∆′i)) = 0 for some L′ ⇒ R′ ∈ W such that

(L ⇒ R)R(L′ ⇒ R′). By our assumption, VL⇒R(σ(ϕ)) = 1 for every ϕ ∈ Γ0, and

VL⇒R(σ(ψ)) = 0 for every ψ ∈ ∆0. This means that S 0GInt
L, σ(Γ0)⇒ σ(∆0), R.

Thus, we must either have S 0GInt
L, σ(Γ′i) ⇒ σ(∆′i) for some 1 ≤ i ≤ n with

Γi 6= ∅, or S 0GInt
L⇒ σ(∆′i), R for some 1 ≤ i ≤ n with Γi = ∅. In the first case,

extend L, σ(Γ′i) ⇒ σ(∆′i) to a maximal unprovable ω-sequent L′ ⇒ R′. Clearly,

L ⊆ L′, and VL′⇒R′(σ(Γ′i ⇒ ∆′i)) = 0. In the second, the fact that L⇒ R is maxi-

mal unprovable ensures that σ(∆′i) ⊆ R, which means that VL⇒R(σ(⇒ ∆′i)) = 0.

Next, let Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n /Γ0 ⇒ be a non-positive rule of G, σ a substitu-

tion, Γ′1 ⇒ ∆′1, ... ,Γ
′
n ⇒ ∆′n respective subsequents of Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n, and

L⇒ R ∈ W . Suppose VL⇒R(σ(Γ0)⇒ ) = 0. We prove that VL⇒R(σ(Γ′i ⇒ ∆′i)) = 0

for some 1 ≤ i ≤ n. By our assumption, VL⇒R(σ(ϕ)) = 1 for every ϕ ∈ Γ0. This

means that σ(Γ0) ⊆ L, and so S 0GInt
L, σ(Γ0) ⇒ R. In particular, we have

S 0GInt
L, σ(Γ′i) ⇒ σ(∆′i), R for some 1 ≤ i ≤ n. By the fact that L ⇒ R is

maximal unprovable, we have that σ(Γ′i) ⊆ L and σ(∆′i) ⊆ R, which means that

VL⇒R(σ(Γ′i ⇒ ∆′i)) = 0.

2. We say that an ω-sequent is cf -maximal unprovable if S0cf
GInt

L ⇒ R,

S`cf
GInt

L, ψ ⇒ R for every ψ /∈ L, and S`cf
GInt

L ⇒ ψ,R for every ψ /∈ R. It is

routine to extend any ω-sequent L ⇒ R such that S0cf
GInt

L ⇒ R to a cf -maximal

unprovable ω-sequent. Define a triframe W = 〈W,R,V〉 such that W is the set

of all cf -maximal unprovable ω-sequents, and R and V are defined as in the proof

for `GInt
. The proofs that W is a triframe, VW (S) > VW (s), and that W is

G-legal are similar. However, W need not be fully determined, but only frm(S)-

determined. Indeed, let L ⇒ R ∈ W , and assume for contradiction that there

exists ϕ ∈ frm(S) \ (L ∪ R). Then S`cf
GInt

L ⇒ ϕ,R and S`cf
GInt

L, ϕ ⇒ R. Since

ϕ ∈ frm(S), it is allowed to be a cut formula in cut-limited derivations from S.

Using (cut), we get that S`cf
GInt

L⇒ R, which is a contradiction.

3. Denote the set � [S ∪ {s}] by F . We say that an ω-sequent is F -maximal unprov-
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able if L ∪ R ⊆ F , S 0FGInt
L ⇒ R, S `FGInt

L, ψ ⇒ R for every ψ ∈ F \ L,

and S `FGInt
L ⇒ ψ,R for every ψ ∈ F \ R. It is routine to show that every

ω-sequent L ⇒ R such that S 0FGInt
L ⇒ R can be extended to an F -maximal

unprovable ω-sequent, provided that frm(L ⇒ R) ⊆ F (including s). Define a

triframe W = 〈W,R,V〉 such that W is the set of all F -maximal unprovable ω-

sequents, and R and V are defined as before. The proof that W is a triframe

and VW (S) > VW (s) stays the same. We prove that supp(VL⇒R) = F for every

L ⇒ R ∈ W , that is, L ∪ R = F . In particular, this would mean that W is

F -determined. Let L ⇒ R ∈ W . By definition, L ∪ R ⊆ F . Now assume for

contradiction that there exists ϕ ∈ F \ (L ∪ R). Since L ⇒ R is F -maximal un-

provable, we have that S `FGInt
L ⇒ ϕ,R and S `FGInt

L, ϕ ⇒ R. Since ϕ ∈ F , it

is allowed to appear in proofs that are restricted to F -formulas. Using cut with ϕ,

we have S `FGInt
L⇒ R, which is a contradiction.

We show that W is G-legal. Let r = Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n /Γ0 ⇒ ∆0 be

a rule of G, σ a substitution, Γ′1 ⇒ ∆′1, ... ,Γ
′
n ⇒ ∆′n respective subsequents of

Γ1 ⇒ ∆1, ... ,Γn ⇒ ∆n, and L ⇒ R ∈ W . Suppose VL⇒R(σ(Γ0 ⇒ ∆0)) = 0.

Then σ(Γ0) ⊆ L and σ(∆0) ⊆ R. L ⇒ R is F -maximal unprovable, and therefore

S 0FGInt
L, σ(Γ0) ⇒ σ(∆0), R. Also, σ(frm(Γ0 ⇒ ∆0)) ⊆ F , and since G is

≺-ordered and � [F ] ⊆ F , we also have that σ(frm(Γ′i ⇒ ∆′i)) ⊆ F for every

1 ≤ i ≤ n.

First suppose r is a positive rule. Then, we must either have

S 0FGInt
L, σ(Γ′i)⇒ σ(∆′i) for some 1 ≤ i ≤ n with Γi 6= ∅, or S 0FGInt

L⇒ σ(∆′i), R

for some 1 ≤ i ≤ n with Γi = ∅. In the first case, extend L, σ(Γ′i) ⇒ σ(∆′i)

to an F -maximal unprovable ω-sequent L′ ⇒ R′. Clearly, L ⊆ L′ and

VL′⇒R′(σ(Γ′i ⇒ ∆′i)) = 0. In the second case, the fact that L ⇒ R is F -maximal

unprovable and σ(frm(Γ′i ⇒ ∆′i)) ⊆ F , ensures that σ(∆′i) ⊆ R, which means that

VL⇒R(σ(⇒ ∆′i)) = 0.

Next, suppose r is not positive. Then ∆0 = ∅, and we must have

S 6`FGInt
L, σ(Γ′i) ⇒ σ(∆′i), R for some 1 ≤ i ≤ n. Since L ⇒ R is F -maximal

unprovable and σ(frm(Γ′i ⇒ ∆′i)) ⊆ F , we have that σ(Γ′i) ⊆ L and σ(∆′i) ⊆ R,

and thus VL⇒R(σ(Γ′i ⇒ ∆′i)) = 0.

Remark 5.2.8. The completeness part of the third item in Theorem 5.2.7 holds for ≺-

ordered calculi, but not necessarily for all calculi. To see this, we consider intuitionistic

(and also ordinary) derivations in the calculus GC1 (see Example 2.2.9), which is not
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∅-ordered. Consider the following sequent s, that was used in [69] in order to prove that

GC1 is not ∅-analytic:

¬p1,¬p2,¬p1 ∧ ¬p2,¬(¬p1 ∧ ¬p2)⇒ p1, p2,¬¬p1

frm(s) is closed under subformulas, and thus sub(s) = frm(s). Denote this

set by F . Consider the following F -bivaluation v (see Definition 2.3.1), de-

fined by v(¬p1) = v(¬p2) = v(¬p1 ∧ ¬p2) = v(¬(¬p1 ∧ ¬p2)) = 1, and

v(p1) = v(p2) = v(¬¬p1) = 0. It is routine to verify that v is GC1-legal, and that

v(s) = 0. By Theorem 2.3.5, we have that 6`FGC1
s, which means that there is no deriva-

tion of s in GC1 that consists solely of F -formulas. In particular, there is no such

intuitionistic derivation, and thus 6`FGC1Int
s. However, we show that Vw(s) = 1 for every

F -determined GC1-legal triframe W = 〈W,R,V〉 and w ∈ W . Assume otherwise. Then

there exists an F -determined GC1-legal triframe W = 〈W,R,V〉 and w ∈ W such that

Vw(s) = 0. In particular, Vw(ψ) = v(ψ) for every ψ ∈ F . Since W is GC1-legal, it

respects the following non-positive rules:

¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ∧ p2)⇒ and p1 ⇒ /¬¬p1 ⇒
According to the first, since Vw(¬(¬p1 ∧ ¬p2)) = 1 and Vw(¬¬p1) = 0, we must have

that Vw(¬¬p2) = 1. However, according to the second, Vw(¬¬p2) = 0, as Vw(p2) = 0,

which is a contradiction. Therefore, such W cannot exist, and so s is satisfied by every

F -determined GC1-legal triframe, although 0FGC1Int
s.

Note, however, that GC1 is {¬}-1-ordered, and indeed, if we set

F ′ = F ∪ {¬¬p2} = sub
{¬}
1 (s), we do have `F ′GC1Int

s.

Theorem 5.2.7 gives rise to a sufficient semantic criterion for Int-cut-admissibility, that

is a variant of Corollary 2.6.11:

Definition 5.2.9. We say that a triframe W ′ = 〈W ′,R′,V ′〉 is a determination of a

triframe W = 〈W,R,V〉 (or that W ′ determines W) if W = W ′, R = R′, and V ′w is

a determination of Vw for every w ∈ W . W ′ is called an F-determination of W if, in

addition, it is F -determined. If W ′ is fully determined, we call it a full determination of

W .

Corollary 5.2.10. If every G-legal triframe has a G-legal full determination, then G

enjoys Int-cut-admissibility.

Proof. Suppose S0cf
GInt

s. By Part 2 of Theorem 5.2.7, there exists some frm(S)-

determined G-legal triframe W such that VW (S) > VW (s). W has a G-legal full de-

termination W ′ = 〈W,R,V ′〉. For W ′ we also have V ′W (S) > V ′W (s). By part 1 of

Theorem 5.2.7, S 0GInt
s.
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5.3 Proof of Theorem 5.1.10

The semantic view of intuitionistic derivations via Kripke-style semantics enables us to

provide proper variants of Lemmas 2.6.21 and 2.6.22, and then, together with Corol-

lary 5.2.10, to derive Theorem 5.1.10. We start by showing that a single formula can be

added to the support of a given triframe.

Definition 5.3.1. The support of a triframe W = 〈W,R,V〉, denoted supp(W) is the

set
⋂ {supp(Vw) | w ∈ W}.

Lemma 5.3.2. Let G be an Int-≺-analytic ≺-directed calculus, W a G-legal triframe,

and ψ a formula such that ≺ [ψ] ⊆ supp(W). Then W has a G-legal supp(W) ∪ {ψ}-
determination.

Proof. Suppose W = 〈W,R,V〉. For every w ∈ W , define the following sets:

• Γw = {ϕ ∈ ≺ [ψ] | Vw(ϕ) = 1};

• ∆w = {ϕ ∈ ≺ [ψ] | Vw(ϕ) = 0}; and

• Sw =
{
s | frm(s) ⊆ ≺ [ψ],VR[w](s) = 1

}
.

We start by proving that for every w ∈ W , Sw 0GInt
Γw ⇒ ∆w. Let w ∈ W . De-

fine the following triframe W∗ = 〈W ∗,R∗,V∗〉: W ∗ = R[w], R∗ = R ∩ (W ∗ × W ∗),

and V∗u = Vu for every u ∈ W ∗. W∗ is clearly a G-legal triframe, V∗W ∗(Sw) = 1

and V∗w(Γw ⇒ ∆w) = 0 (and thus V∗W ∗(Sw) > V∗W ∗(Γw ⇒ ∆w)). W∗ is also

� [Sw ∪ {Γw ⇒ ∆w}]-determined, as � [Sw ∪ {Γw ⇒ ∆w}] ⊆ ≺ [ψ] ⊆ supp(W∗). By

part 3 of Theorem 5.2.7, Sw 0�[Sw∪{Γw⇒∆w}]
GInt

Γw ⇒ ∆w, and since G is Int-≺-analytic,

Sw 0GInt
Γw ⇒ ∆w.

Define a G-legal supp(W)∪{ψ}-determinationW ′ = 〈W,R,V ′〉 ofW as follows. For

every w ∈ W and ϕ ∈ L, V ′w(ϕ) is defined by:

• if ϕ 6= ψ or ϕ ∈ supp(Vw), then V ′w(ϕ) = Vw(ϕ);

• if ϕ = ψ, ϕ /∈ supp(Vw), and either Vu(ϕ) = 0 or Su `GInt
Γu, ϕ ⇒ ∆u for some

u ∈ R[w], then V ′w(ϕ) = 0;

• otherwise, V ′w(ϕ) = 1.

Clearly, W ′ is a supp(W) ∪ {ψ}-determination of W . Let us show that W ′ is a

triframe. Suppose V ′w(ϕ) = 1 and let u ∈ R[w]. We prove that V ′u(ϕ) = 1. If ϕ 6= ψ

or ϕ ∈ supp(Vw), then Vw(ϕ) = 1 as well. Since W is a triframe, Vu(ϕ) = 1. Thus,

ϕ ∈ supp(Vu) and hence V ′u(ϕ) = 1. Otherwise, ϕ = ψ and ψ /∈ supp(Vw). Since
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V ′w(ψ) = 1, by the definition of V ′, we have that Vz(ψ) 6= 0 and Sz 0GInt
Γz, ψ ⇒ ∆z

for every z ∈ R[w] (including u). R is transitive, and therefore the same holds for every

z ∈ R[u]. Since Vu(ψ) 6= 0, we are left with two options: either Vu(ψ) = 1 or Vu(ψ) = 1/2.

In the first, ψ ∈ supp(Vu), and thus V ′u(ψ) = Vu(ψ) = 1. In the second, the definition of

V ′ ensures that V ′u(ψ) = 1

It is left to prove that W ′ is G-legal. Let s1, ... , sn / s be a rule of G, s′1, ... , s
′
n

respective subsequents of s1, ... , sn, σ a substitution and w ∈ W . Suppose V ′w(σ(s)) = 0.

Then frm(σ(s)) ⊆ supp(Vw) ∪ {ψ}. First assume that frm(σ(s)) ⊆ supp(Vw). In this

case, Vw(σ(s)) = 0 as well. If s1, ... , sn / s is positive, then since W is G-legal, there

exists 1 ≤ i ≤ n such that either si has an empty left side and Vw(σ(s′i)) = 0, or si has

a non-empty left side, and Vu(σ(s′i)) = 0 for some u ∈ R[w]. Now, W ′ determines W .

Thus, in the first case we have V ′w(σ(s′i)) = 0, and in the second, V ′u(σ(s′i)) = 0 for the

same u. If s1, ... , sn / s is not positive, then similarly, V ′w(σ(s′i)) = 0 for some 1 ≤ i ≤ n.

We therefore assume that frm(σ(s)) 6⊆ supp(Vw), which means that ψ ∈ frm(σ(s)) and

ψ /∈ supp(Vw). By the fact that G is≺-directed, frm(σ(s)) = {ψ}, and frm(σ(s′i)) ⊆ ≺ [ψ]

for every 1 ≤ i ≤ n.

First suppose that s1, ... , sn / s is not positive. Then σ(s) = ψ ⇒ . We prove that

V ′w(σ(s′i)) = 0 for some 1 ≤ i ≤ n. By our assumption, V ′w(ψ) = 1. This in par-

ticular means that Sw 0GInt
Γw, ψ ⇒ ∆w, and so there exists 1 ≤ i ≤ n such that

Sw 0GInt
(Γw ⇒ ∆w) ∪ σ(s′i). Since frm(σ(s′i)) ⊆ ≺ [ψ] = frm(Γw ⇒ ∆w), we must

have σ(s′i) ⊆ (Γw ⇒ ∆w), which means that Vw(σ(s′i)) = 0. V ′w determines Vw, and so

V ′w(σ(s′i)) = 0.

Next, suppose that s1, ... , sn / s is positive. We prove that there exists 1 ≤ i ≤ n such

that either si has an empty left side and V ′w(σ(s′i)) = 0, or si has a non-empty left side

and V ′z(σ(s′i)) = 0 for some z ∈ R[w]. By our assumption, σ(s) = ⇒ ψ, and V ′w(ψ) = 0.

According to the definition of V ′, there exists some u ∈ R[w] such that either Vu(ψ) = 0,

or Su `GInt
Γu, ψ ⇒ ∆u. We first show that there exists 1 ≤ i ≤ n and z ∈ R[w] such

that Vz(σ(s′i)) = 0, by considering each of these two cases:

1. Vu(ψ) = 0: Then Vu(⇒ ψ) = 0. SinceW is G-legal, we must have some 1 ≤ i ≤ n

such that either si has an empty left side and Vu(σ(s′i)) = 0, or si has a non-empty

left side and Vz(σ(s′i)) = 0 for some z ∈ R[u] ⊆ R[w].

2. Su `GInt
Γu, ψ ⇒ ∆u: Using cut, since Su 0GInt

Γu ⇒ ∆u, we must have that

Su 0GInt
Γu ⇒ ψ,∆u, and thus there exists some 1 ≤ i ≤ n such that either si has

an empty left side and Su 0GInt
(Γu ⇒ ∆u) ∪ σ(s′i), or si has a non-empty left side

and Su 0GInt
(Γu ⇒ )∪ σ(s′i). Either way, σ(s′i) /∈ Su. Since frm(σ(s′i)) ⊆ ≺ [ψ], we

have that Vz(σ(s′i)) = 0 for some z ∈ R[u] ⊆ R[w].
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Now, fix some 1 ≤ i ≤ n and z ∈ R[w] such that Vz(σ(s′i)) = 0. Since W ′ determines

W , we also have V ′z(σ(s′i)) = 0. If si has a non-empty left side, then we are done, as we

have found some 1 ≤ i ≤ n such that si has a non-empty left side and V ′z(σ(s′i)) = 0 for

some z ∈ R[w]. Otherwise, we show that V ′w(σ(s′i)) = 0. Let ϕ be a formula in the right

side of s′i. Then V ′z(σ(ϕ)) = 0. Since W ′ is a triframe, we have V ′w(σ(ϕ)) 6= 1. Since

σ(ϕ) ∈ frm(σ(s′i)) ⊆ ≺ [ψ] ⊆ supp(W) ⊆ supp(W ′), we also have V ′w(σ(ϕ)) 6= 1/2. Thus

V ′w(σ(ϕ)) = 0 for every such ϕ, which means that V ′w(σ(s′i)) = 0.

Next, an iterated application of Lemma 5.3.2 allows us to fully determine triframes,

in a similar manner to the determination of trivaluations:

Lemma 5.3.3. Let G be an Int-≺-analytic≺-directed calculus andW a G-legal triframe.

Then there exists a G-legal full determination of W .

Proof. For every triframe U and formula ψ, Uψ denotes an arbitrary G-legal

supp(U)∪{ψ}-determination of U , if such exists. Otherwise, Uψ is undefined. Whenever

U is G-legal and ≺ [ψ] ⊆ supp(U), Lemma 5.3.2 provides us with such a triframe, in

which case Uψ is defined. Let ψ1, ψ2, ... be an enumeration of L satisfying i < j when-

ever ψi ≺ ψj. Such an enumeration exists since ≺ is safe. For every i, denote the set

{ψ1, ... , ψi} by Φ≤i (Φ≤0 = ∅).
Let W = 〈W,R,V〉 be a G-legal triframe. We show that it has a G-legal full deter-

mination. Define a sequence W0,W1, ... of triframes as follows: W0 = W and for every

i > 0, W i = W i−1
ψi

. We prove by induction on i that W i is defined, and is a G-legal

Φ≤i-determination of W , and also of W i−1 (if W i−1 exists).

For i = 0, this holds by our assumption on W . Now let i > 0. By the induc-

tion hypothesis, W i−1 is G-legal and is a Φ≤i−1-determination of W . By the enu-

meration, ≺ [ψi] ⊆ Φ≤i−1 ⊆ supp(W i−1). Thus, W i = W i−1
ψi

is defined, and is a

G-legal supp(W i−1) ∪ {ψi}-determination of W i−1, and therefore also of W . Also,

Φ≤i ⊆ supp(W i), and thus W i is actually a Φ≤i-determination of W i−1 and of W .

We now define W ′ = 〈W,R,V ′〉, a G-legal full determination of W . Suppose

W i = 〈W i,Ri,V i〉 for every i. Then W i = W and Ri = R, as W i determines W .

For every ϕ ∈ L, let iϕ be the index of ϕ in the enumeration. For every w ∈ W , define

V ′w = λϕ ∈ L.V iϕw (ϕ).

First, we show that W ′ is a triframe. Suppose V ′w(ϕ) = 1 and let u ∈ R[w].

Then V iϕw (ϕ) = 1, and since W iϕ is a triframe, V iϕu (ϕ) = 1. Therefore, V ′u(ϕ) = 1.

Next, we show that W ′ fully determines W . For every ϕ ∈ L and w ∈ W ,

V ′w(ϕ) = V iϕw (ϕ) 6= 1/2, as W iϕ is Φ≤iϕ-determined. Also, for every ϕ ∈ supp(W)

and w ∈ W , V ′w(ϕ) = V iϕw (ϕ) = Vw(ϕ), as W iϕ determines W . Finally, let
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s1, ... , sn / s be a rule of G, s′1, ... , s
′
n respective subsequents of s1, ... , sn, and σ a substi-

tution. Let k = min {i | frm(σ({s′1, ... , s′n, s})) ⊆ Φ≤i}. Then V ′w(ϕ) = Vkw(ϕ) for every

ϕ ∈ frm(σ({s′1, ... , s′n, s})) and w ∈ W . Also, Wk is G-legal. Suppose V ′w(σ(s)) = 0 for

some w ∈ W . Then we must also have Vkw(σ(s)) = 0. If S / s is positive, then there exists

1 ≤ i ≤ n such that either si has an empty left side and V ′w(σ(s′i)) = Vkw(σ(s′i)) = 0, or

si has a non-empty left side and V ′u(σ(s′i)) = Vku(σ(s′i)) = 0 for some u ∈ R[w]. If it is

not positive, V ′w(σ(s′i)) = Vkw(σ(s′i)) = 0 for some 1 ≤ i ≤ n.

As in the case of pure calculi, Theorem 5.1.10 is now obtained as a direct corollary of

Lemma 5.3.3 and corollary 5.2.10.



Chapter 6

Rexpansions of Non-deterministic

Matrices

As evident from the preceding chapters, our main tool for investigating sequent calculi is a

semantic interpretation of derivation rules, that is based on various semantic frameworks.

So far, the frameworks that we have used are very restrictive with regard to the number

of truth values that are allowed to be used (either two or three). However, they are

very permissive in the minimal conditions that are imposed on models. As an extreme

example, even the set of all bivaluations is a legitimate set of models, when considering

the empty pure calculus, and a similar situation exists with the other frameworks as well.

In contrast, the framework of many-valued matrices [99], which is widely used in non-

classical logics, does not restrict the number of truth values, which may even be infinite.

Matrices consist of a set of truth values, a subset of designated truth values (that are

considered “true”), and an interpretation function, that can be thought of (in the finite

case) as a set of truth tables. This framework is completely deterministic: the truth

value of a compound formula is uniquely determined by the truth values of its immediate

subformulas. This makes the framework of many-valued matrices less modular, and

therefore inadequate for studying families of proof systems.

A semantic framework that sits in between the determinism of many-valued matrices

and the unrestricted non-determinism of bivaluations and trivaluations is the framework

of non-deterministic matrices (Nmatrices) [21, 22]. These are obtained from matrices

by allowing a set of possible values inside the entries of the truth tables. While this

framework allows for a non-deterministic choice of truth values, it is much more restrictive

than the frameworks used in previous chapters of the thesis, as the semantic constraints

on the truth value that is assigned to a compound formula must be constrained solely by

the truth values of its immediate subformulas.

The modular nature of the use of Nmatrices makes them an important ingredient in
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the construction of proof systems for various non-classical logics. In fact, when searching

for a Gentzen-type system for a logic that is defined in some other form (e.g. by a

deterministic semantics or by a Hilbert-type calculus), it suffices to find a finite Nmatrix

that is characteristic for the logic. If such an Nmatrix is found, the algorithm of [25] can

be employed in order to transform it into an equivalent analytic (generalized) Gentzen-

type system, that also admits cut-admissibility. The resulting system might employ a

more general notion of a sequent, in which more than two sides are used. However, when

some additional expressivity conditions are met, the outcome is ensured to be an ordinary

pure sequent calculus, which is still cut-free.

To apply the method of [25] for a systematic study of families of logics, the Nmatrix

that is found is sometimes not enough, and an equivalent (usually less deterministic)

Nmatrix is constructed from it. Then, characteristic Nmatrices for the various logics

of the studied family are obtained by performing very simple modifications of the truth

tables of the new Nmatrix (see, e.g., [14] for an example of such a process). It is thus

evident from several constructions of sequent calculi for non-classical logics from the

literature that the manipulation of Nmatrices is tightly related to the construction of

analytic sequent calculi. Are these manipulations systematic in any way? Can they be

formally defined as Nmatrices operations and become an object of independent study?

In this section we provide an affirmative answer, and introduce a useful operation

on Nmatrices, called rexpansion, which is obtained by the composition of two previously

studied operations: expansion and refinement (see [5, 15]). Properties of this combined

operation are presented, along with its effects on the consequence and derivability re-

lations which are induced by the operated Nmatrices. We then show that many trans-

formations on Nmatrices from the literature, especially in the context of constructing

analytic proof systems, are actually particular instances of rexpansion. This places rex-

pansion as a fundamental ingredient in the already established usefulness of Nmatrices

for the construction of analytic sequent calculi for non-classical logics. In many cases the

calculi that are obtained from the algorithm of [25] are pure, and admit the generalized

notion of analyticity employed throughout this thesis. As such, they are subject to the

reduction to SAT from Chapter 3, as well as to the analyticity-preserving addition of

modal operators from Chapter 4. Thus, while previous chapters of this thesis provided

tools and techniques that are applicable after a calculus is constructed, and also a method

to construct new analytic calculi that induce new logics (with some desirable properties),

the current chapter focuses on the construction of analytic calculi for logics that were

originally introduced in some other manner.

Our investigation also leads to a general method for conservatively extending a given

logic (or calculus) with new connectives which have some desirable properties. An impor-
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tant specific usage of this method provides a new solution to the problem of constructing

paraconsistent fuzzy logics and proof systems for them. These are logics that are useful

for modeling vague propositions, while avoiding the explosion principle. A first solution

to this problem was given in [52], using a completely different approach. However, we

show that this solution has some drawbacks, which are overcome in the solution proposed

here.

The rest of this chapter is organized as follows. In Section 6.1 we review existing

definitions and results in the theory of Nmatrices, and provide examples. In Section 6.2

we combine expansion and refinement into a single operation that is called rexpansion,

and prove several results regarding this operation and its effects on consequence rela-

tions. Section 6.3 includes basic examples of rexpansions in well-known logics from the

literature. Section 6.4 shows how rexpansions are (implicitely) used in the construction

of sequent calculi for many non-classical logics. In Section 6.5 we introduce paraconsis-

tent conservative extensions of Gödel fuzzy logic that are obtained by performing various

rexpansions on the Gödel matrix.

Publications Related to this Chapter

This chapter is mainly based on [23, 24].

6.1 (N)matrices, Expansions, and Refinements

In this section we review the definitions of matrices and Nmatrices, and provide some

examples of logics that are defined using them. We then review the two fundamental

operations that can be performed on Nmatrices: expansions and refinements, and also

provide some examples of these operations.

6.1.1 Logical Matrices

The most standard way of defining logics semantically is by using matrices [99]:

Definition 6.1.1.

1. A matrix for L is a tuple 〈V ,D,O〉 such that:

(a) V is a non-empty set (of truth values).

(b) D is a non-empty proper subset of V (of designated truth values).
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(c) O : ♦L →
⋃∞
i=0(V i → V) such that for every i ∈ N and � ∈ ♦iL,

O(�) : V i → V .1

2. Let M = 〈V ,D,O〉 be a matrix for L. An M-valuation is a func-

tion v from L to V such that for every � ∈ ♦nL and ψ1, ... , ψn ∈ L,

v(�(ψ1, ... , ψn)) = O(�)(v(ψ1), ... , v(ψn)). An M-valuation v is an M-model of a

formula ψ (in symbols: v �M ψ) if v(ψ) ∈ D. It is an M-model of a set T of

formulas (in symbols: v �M T ) if v �M ψ for every ψ ∈ T . A formula ψ is an

M-consequence of a set T of formulas (in symbols: T `M ψ) if every M-model of

T is an M-model of ψ. We say that M induces a logic L = 〈L,`L〉 (or that M is

characteristic for L) if `M = `L.

Many well-known non-classical logics are characterized using matrices:

Example 6.1.2. Asenjo–Priest’s three-valued logic of paradox LP [6, 86] and Kleene’s

three-valued logic KL [65] are both defined by matrices that differ only in the set of

designated values. Consider the set V3 = {t, f, i}, and the interpretation function O3

that is defined by the following tables:

O3(∧) t f i

t t f i

f f f f

i i f i

O3(∨) t f i

t t t t

f t f i

i t i i

O3(¬)

t f

f t

i i

LP is characterized by the matrix MLP = 〈V3, {t, i} ,O3〉, and KL by the matrix

MKL = 〈V3, {t} ,O3〉. A matrix for  Lukasiewicz three-valued logic  L3 (see Example 2.2.8)

is obtained from MKL by the extension of O3 with the following table:

O3(⊃) t f i

t t f i

f t t t

i t i t

Example 6.1.3. Gödel fuzzy logic G [48] is characterized by the following matrix

MG = 〈VG,DG,OG〉 for {∧,∨,⊃,⊥}:

1. VG = [0, 1]

2. DG = {1}

1O(�) is often regarded as the “truth table” of �.
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3. OG(⊥) = 0, OG(∨)(a, b) = max {a, b}, OG(∧)(a, b) = min {a, b}, and

OG(⊃)(a, b) =

1 a ≤ b

b a 6≤ b
.

 Lukasiewicz fuzzy logic  L∞ [76] is characterized by a matrix that differs fromMG solely

in the interpretation of ⊃, that is changed to: O(⊃)(a, b)

1 a ≤ b

1− a+ b a 6≤ b
.

6.1.2 Non-deterministic Matrices

Matrices are truth-functional, that is, the truth value of a compound formula is uniquely

determined by the truth values of its immediate subformulas. In [22], matrices are gen-

eralized to allow non-deterministic assignments of truth values to compound formulas.

Definition 6.1.4.

1. A non-deterministic matrix (Nmatrix) for L is a tuple 〈V ,D,O〉 such that:

(a) V is a non-empty set (of truth values).

(b) D is a non-empty proper subset of V (of designated truth values).

(c) O : ♦L →
⋃∞
i=0(V i → P+(V)) such that for every i ∈ N and � ∈ ♦iL,

O(�) : V i → P+(V) (where P+(V) = P (V) \ {∅}).

2. Let M = 〈V ,D,O〉 be an Nmatrix for L. An M-valuation is a func-

tion v from L to V such that for every � ∈ ♦nL and ψ1, ... , ψn ∈ L,

v(�(ψ1, ... , ψn)) ∈ O(�)(v(ψ1), ... , v(ψn)). The definitions of M-models and M-

consequences are as in Definition 6.1.1, using the non-deterministic notion of an

M-valuation.

To be considered as a particular instance of Nmatrices, we take matrices to be Nma-

trices in which O(�)(x1, ... , xn) is a singleton for every � ∈ ♦nL and x1, ... , xn ∈ V . In

matrices mentioned above and below we freely interchange truth values with their sin-

gletons, whenever there is no danger of confusion. Unless stated otherwise, or clear from

the context, all Nmatrices below are for L.

Example 6.1.5. Recall the pure calculus GPIL for quotations-free primal infon logic

(Example 2.2.10). It is easy to verify that a bivaluation is GPIL-legal iff it is an M-

valuation, for M = 〈{0, 1} , {1} ,O〉, where O(∨)(0, 0) = O(⊃)(0, 0) = {0, 1}, and all

other entries are defined exactly like in the truth tables for classical logic in the language

{∧,∨,⊃ ⊥,>}. Note that this Nmatrix is two-valued, and is a proper Nmatrix (meaning
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it is an Nmatrix which is not a matrix). Using Theorem 3.4 of [21], we conclude that

primal infon logic PIL does not have a finite characteristic matrix.

Like matrices, Nmatrices provide an analytic semantic framework, in the sense that for

every Nmatrix M, every partial M-valuation can be extended to a full M-valuation.2 3

A useful consequence of this property is the modular character that the framework of

Nmatrices exhibits:

Definition 6.1.6. A logic L2 = 〈L2,`L2〉 is conservative over a logic L1 = 〈L1,`L1〉 (or:

L2 is a conservative extension of L1) if L1 ⊆ L2, and for every T ⊆ L1 and ϕ ∈ L1 it

holds that T `L1 ϕ iff T `L2 ϕ.

Definition 6.1.7. Let L1 and L2 be propositional languages such that L1 ⊆ L2, and

M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices for L1 and L2, respectively.

M2 is an extension of M1 to L2 if V1 = V2, D1 = D2, and O1(�) = O2(�) for every

� ∈ ♦L1 .

Proposition 6.1.8. Let L1 and L2 be propositional languages such that L1 ⊆ L2, and

M1 and M2 be Nmatrices for L1 and L2, respectively. If M1 is an extension of M2 to

L2 then 〈L2,`M2〉 is conservative over 〈L1,`M1〉.

6.1.3 Expansions and Refinements

Next we present two basic operations from [5] and [15], that can be performed on Nma-

trices: expansions and refinements. Loosely speaking, an expansion of an Nmatrix is

obtained by making several distinct copies of each truth value, so that the new desig-

nated values are the copies of the original ones, and each value in the interpretation of

the connectives is replaced by all of its copies. This is formally defined as follows:

Definition 6.1.9.

1. A function F is called an expansion function if for every x ∈ dom(F ), F (x) is a

non-empty set, and F (x)∩F (y) = ∅ whenever x 6= y. We say that F is an expansion

function for an Nmatrix M = 〈V ,D,O〉 for L if it is an expansion function and

dom(F ) = V .

2Following [22], we use the term analytic for this property. Our Theorem 2.5.9 also justifies the use
of this term.

3 Note, however, that if M is an ordinary matrix, then every partial M-valuation can be extended
to a single full M-valuation, while there can be several distinct full M-valuations that extend a partial
M-valuation in case M is an Nmatrix.
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2. For every expansion function F and y ∈ ⋃ Im(F ), we denote by F̃ [y] the unique

element x ∈ dom(F ) such that y ∈ F (x).

3. LetM = 〈V ,D,O〉 be an Nmatrix for L and F an expansion function forM. The

F -expansion of M is the Nmatrix MF = 〈VF ,DF ,OF 〉, where:

(a) VF =
⋃
x∈V F (x)

(b) DF =
⋃
x∈D F (x)

(c) OF (�)(y1, ... , yn) =
⋃
z∈O(�)(F̃ [y1],...,F̃ [yn]) F (z) for every � ∈ ♦nL and

y1, ... , yn ∈ VF .

M2 is an expansion of M1 if it is the F -expansion of it for some F .

Nothing but uniformly duplicating all truth values is done in expansions, and hence

the consequence relation remains the same, as was shown in [5]:

Proposition 6.1.10. Let M2 be an expansion of M1. Then `M1 = `M2 .

Example 6.1.11.

1. Two Nmatrices are isomorphic to one another if and only if one is the F -expansion

of the other for some expansion function F (in which F (x) is always a singleton).

2. Consider the usual matrix which is characteristic for classical logic, where the truth

values are t and f . By assigning {t,>} to t and {f} to f , we obtain an ex-

pansion function. The outcome of this expansion would be a non-deterministic

matrix for classical logic, in which, for example, the interpretation of negation is

O(¬)(t) = O(¬)(>) = {f} and O(¬)(f) = {t,>}.

3. The classical matrix can be further expanded by assigning [0, 1/2) to f and [1/2, 1] to

t. The outcome would be another non-deterministic matrix which is characteristic

for classical logic. The interpretation of negation would then be O(¬)(x) = [0, 1/2)

whenever x ≥ 1/2 and O(¬)(x) = [1/2, 1] whenever x < 1/2.

Next, we define the refinement operation on Nmatrices. Loosely speaking, refining

an Nmatrix means deleting some of its truth values, and then reducing the amount of

non-determinism (each of these steps is optional). This is formally defined as follows:

Definition 6.1.12. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices for L.

M2 is a refinement of M1 if:

1. V2 ⊆ V1.
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2. D2 = V2 ∩ D1.

3. O2(�)(x1, ... , xn) ⊆ O1(�)(x1, ... , xn) for every � ∈ ♦nL and x1, ... , xn ∈ V2.

M2 is a simple refinement of M1 if in addition, V2 = V1.

Example 6.1.13. The infinite characteristic Nmatrix for classical logic from Exam-

ple 6.1.11 can be (simply) refined by e.g. redefining O(¬) in the following way:

O(¬)(x) = {0} whenever x ≥ 1/2 and O(¬)(x) = {1} whenever x < 1/2.

Refining an Nmatrix M can only reduce the set of M-valuations. Consequently, we

have the following proposition from [15]:

Proposition 6.1.14. Let M2 be a refinement of M1. Then `M1 ⊆ `M2 .

6.2 Refined Expansions

In this section we combine the two basic operations defined above and obtain refined

expansions (in short: rexpansions).

6.2.1 Combining Expansions and Refinements

We start by explicitly defining the combined operation and exploring its properties.

Definition 6.2.1. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices and F

an expansion function for M1. We say that M2 is an F -rexpansion of M1 if it is a

refinement of the F -expansion of M1. It is called:

1. simple if it is a simple refinement of the F -expansion of M1.

2. preserving if F (x) ∩ V2 6= ∅ for every x ∈ V1.

3. strongly preserving if it is preserving, and for every x1, ... , xn ∈ V2, � ∈ ♦nL, and

y ∈ O1(�)(F̃ [x1], ... , F̃ [xn]), it holds that the set F (y) ∩ O2(�)(x1, ... , xn) is not

empty.

M2 is called a rexpansion ofM1 if it is an F -rexpansion of it for some expansion function

F for M1. If M2 is a rexpansion of M1, then we may call M2 “simple”, “preserving”,

or “strongly preserving” (without the suffix “rexpansion of M1”) whenever that is clear

from the context.

Loosely speaking, being a preserving rexpansion amounts to keeping at least one

“copy” of every original truth value. Being strongly preserving means that this property

holds not only for the set of truth values, but also for the interpretation of the connectives.
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Example 6.2.2. The Nmatrix from Example 6.1.13 is a rexpansion of the classical

matrix, which is simple and strongly preserving.

Let us elaborate on the connections between the different properties of rexpansions:

Lemma 6.2.3. Every simple rexpansion is preserving, every expansion is a strongly

preserving rexpansion, and every preserving rexpansion of a matrix is strongly preserving.

Proof. We prove that every preserving rexpansion of a matrix is strongly preserv-

ing. (The other statements are trivial.) Let M1 be a matrix, M2 an Nma-

trix, and F an expansion function such that M2 is a preserving F -rexpansion

of M1. Let x1, ... , xn ∈ V2, � ∈ ♦nL, and y ∈ O1(�)(F̃ [x1], ... , F̃ [x1]). We

prove that F (y) ∩ O2(�)(x1, ... , xn) 6= ∅. O2(�)(x1, ... , xn) ⊆ ⋃z∈O1(�)(F̃ [x1],...,F̃ [x1]) F (z)

and M1 is a matrix. Therefore, O2(�)(x1, ... , xn) ⊆ F (y), which means that

F (y) ∩ O2(�)(x1, ... , xn) = O2(�)(x1, ... , xn). This set cannot be empty, as M2 is an

Nmatrix.

Next we provide a necessary and sufficient condition for an Nmatrix to be a rexpansion

of another Nmatrix.

Proposition 6.2.4. M2 = 〈V2,D2,O2〉 is a rexpansion ofM1 = 〈V1,D1,O1〉 iff there is

a function f : V2 → V1 such that:

1. For every x ∈ V2, x ∈ D2 iff f(x) ∈ D1.

2. For every x1, ... , xn ∈ V2 and y ∈ O2(�)(x1, ... , xn), it holds that

f(y) ∈ O1(�)(f(x1), ... , f(xn)).

Proof.

(⇐): Suppose such a function f exists. For every subset Y of V1, denote the set

{x ∈ V2 | f(x) ∈ Y } by f−1 [Y ]. Let V be some set such that V ∩ V2 = ∅ and |V| = |V1|,
and let g : V1 → V be a bijection. We show that M2 is an F -rexpansion of M1 for

F = λx ∈ V1.

f−1 [{x}] x ∈ Im(f)

{g(x)} otherwise

F is clearly an expansion function for M1. Now, V2 is the domain of f , and thus it is

contained in (V1)F . Next, by property (1) of f , D2 = f−1 [D1], which, by the definition

of F is equal to (D1)F ∩ V2. Finally, by property (2) of f ,
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O2(�)(x1, ... , xn) ⊆ f−1 [O1(�)(f(x1), ... , f(xn))] ⊆

⋃
z∈O1(�)(f(x1),...,f(xn))

F (z) =
⋃

z∈O1(�)(F̃ [x1],...,F̃ [xn])

F (z) = (O1)F (�)(x1, ... , xn)

( ⇒ ): If M2 is an F -rexpansion of M1 for some F , then the function λx ∈ V2.F̃ [x]

satisfies the required conditions.

Remark 6.2.5. In [22], the term ‘simple refinement’ was reserved for what is called here

‘refinement’, while the term ‘refinement’ was related to the functions from Proposition

6.2.4.

Another useful property of the rexpansion operation is that it induces some forms of

transitivity:

Theorem 6.2.6.

1. If M2 is a preserving rexpansion of M1 and M3 is a (preserving) rexpansion of

M2, then M3 is a (preserving) rexpansion of M1.

2. If M2 is a strongly preserving rexpansion of M1 and M3 is a strongly preserving

rexpansion of M2, then M3 is a strongly preserving rexpansion of M1.

Proof. Let F and G be expansion functions such that M2 is a preserving F -rexpansion

of M1 and M3 is a G-rexpansion of M2. For every 1 ≤ i ≤ 3, assume that

Mi = 〈Vi,Di,Oi〉. Define H = λx ∈ V1.
⋃
y∈F (x)∩V2 G(y). Using the fact that M2 is

preserving, it can easily be shown that H is an expansion function for M1. We first

prove that M3 is a H-rexpansion of M1:

V3 ⊆ (V2)G =
⋃
y∈V2

G(y) =
⋃

y∈(V1)F∩V2

G(y) =
⋃

y∈(
⋃
x∈V1 F (x))∩V2

G(y) =

⋃
y∈⋃x∈V1 (F (x)∩V2)

G(y) =
⋃
x∈V1

 ⋃
y∈F (x)∩V2

G(y)

 =
⋃
x∈V1

H(x) = (V1)H

and
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(D2)G =

( ⋃
y∈D2

G(y)

)
=

 ⋃
y∈(D1)F∩V2

G(y)

 =

 ⋃
y∈(

⋃
x∈D1

F (x))∩V2

G(y)

 =

 ⋃
x∈D1

⋃
y∈F (x)∩V2

G(y)

 =

( ⋃
x∈D1

H(x)

)
= (D1)H

which means that D3 = (D2)G ∩ V3 = (D1)H ∩ V3.

As for O3, let � ∈ ♦nL, x1, ... , xn ∈ V3, and w ∈ O3(�)(x1, ... , xn).

We show that w ∈ (O1)H(�)(x1, ... , xn). M3 is a refinement of

(M2)G, and hence w ∈ (O2)G(�)(x1, ... , xn). Now, there must exists

z ∈ O2(�)(G̃ [x1], ... , G̃ [xn]) such that w ∈ G(z), and since M2 is a refine-

ment of (M1)F , we have z ∈ (O1)F (�)(G̃ [x1], ... , G̃ [xn]). Similarly, there exists

u ∈ O1(�)(F̃
[
G̃ [x1]

]
, ... , F̃

[
G̃ [x1]

]
) such that z ∈ F (u). So we have that there

exists z ∈ F (u) ∩ V2 such that w ∈ G(z). Hence w ∈ H(u). To prove that

w ∈ (O1)H(�)(x1, ... , xn), we show that u ∈ O1(�)(H̃ [x1], ... , H̃ [xn]). That is, we show

that for every 1 ≤ i ≤ n, H̃ [xi] = F̃
[
G̃ [xi]

]
. For every 1 ≤ i ≤ n let yi = H̃ [xi],

zi = G̃ [xi], and wi = F̃ [zi]. We prove that yi = wi: xi ∈ H(yi), and hence there exists

y ∈ F (yi) ∩ V2 such that xi ∈ G(y). Since G is an expansion function, y = zi. Hence

y ∈ F (wi). Similarly, F is an expansion function, and hence yi = wi.

Next, we show that ifM3 is a preserving G-rexpansion ofM2 then it is a preserving

H-rexpansion ofM1, that is, H(x)∩V3 6= ∅ for every x ∈ V1. SinceM2 is a preserving F -

rexpansion ofM1, there exists y ∈ F (x)∩V2. And sinceM3 is a preserving G-rexpansion

of M2, there exists z ∈ G(y) ∩ V3 ⊆ H(x) ∩ V3.

Finally, we show that ifM2 is a strongly preserving F -rexpansion ofM1 andM3 is a

strongly preserving G-rexpansion ofM2, thenM3 is a strongly preserving H-rexpansion

of M1. Let z1, ... , zn ∈ V3 and � ∈ ♦nL. We show that H(x) ∩ O3(�)(z1, ... , zn) 6= ∅
for every x ∈ O1(�)(H̃ [z1], ... , H̃ [zn]). Let x ∈ O1(�)(H̃ [z1], ... , H̃ [zn]). For ev-

ery 1 ≤ i ≤ n let xi = H̃ [zi]. Then there exists yi ∈ F (xi) ∩ V2 such that

zi ∈ G(yi). Since M2 is a strongly preserving F -rexpansion of M1, there exists

y0 ∈ F (x) ∩ O2(�)(y1, ... , yn). Since M3 is a strongly preserving G-rexpansion of M2,

there also exists z0 ∈ G(y0) ∩ O3(�)(z1, ... , zn) ⊆ H(x) ∩ O3(�)(z1, ... , zn).

6.2.2 Consequence Relations

In this section we investigate the effect rexpansions induce on semantically defined con-

sequence relations. Our main theorem is the following:
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Theorem 6.2.7. If M2 is a rexpansion of M1 then `M1 ⊆ `M2 . Moreover, if M2 is

strongly preserving then `M1 = `M2 .

Proof. The first part follows directly from Propositions 6.1.10 and 6.1.14 above. Suppose

M2 is a strongly preserving F -rexpansion of M1. We prove that `M2 ⊆ `M1 . For this,

it suffices to prove that for every M1-valuation v there exists an M2-valuation v′ such

that v �M1 ψ iff v′ �M2 ψ for every ψ ∈ L. Let c : P (V2) \ {∅} → V2 and suppose that

for every X ∈ P (V2) \ {∅}, c(X) ∈ X.4 Let ψ1, ψ2, ... be an enumeration of L such that if

ψi is a subformula of ψj then i < j. Now let v be anM1-valuation. For the construction

of v′, we first define a sequence v0, v1, ... of partial functions from L to V2: v0 is the

empty function, and for every i > 0, vi is defined as follows. For every ψ ∈ dom(vi−1),

vi(ψ) = vi−1(ψ). If ψi /∈ dom(vi−1), then:

• If ψi is atomic and F (v(ψi)) ∩ V2 is not empty, vi(ψi) = c(F (v(ψi)) ∩ V2).

• If ψi has the form �(ϕ1, ... , ϕn) for ϕ1, ... , ϕn ∈ dom(vi−1)

and F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), ... , vi−1(ϕn)) is not empty,

vi(ψi) = c(F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), ... , vi−1(ϕn))).

We prove by induction on i that:

1. vi(ψ) ∈ F (v(ψ)) for every ψ ∈ dom(vi);

2. dom(vi) = {ψ1, ... , ψi}; and

3. vi satisfies the conditions induced by M2, that is:

vi(�(ϕ1, ... , ϕn)) ∈ O2(�)(vi(ϕ1), ... , vi(ϕn)) whenever ϕ1, ... , ϕn and �(ϕ1, ... , ϕn)

are in dom(vi).

For i = 0, this trivially holds. Let i > 0.

1. Let ψ ∈ dom(vi). If ψ ∈ dom(vi−1) then this holds by the induction hypothesis.

Otherwise, ψ = ψi, and then this holds by definition.

2. By the induction hypothesis, dom(vi−1) = {ψ1, ... , ψi−1}, and therefore we have

to prove that ψi ∈ dom(vi). If ψi is atomic, this amounts to showing that the

set F (v(ψi)) ∩ V2 is not empty, which holds as M2 is a preserving F -rexpansion

of M1. Otherwise, ψi has the form �(ϕ1, ... , ϕn). By our enumeration and the

induction hypothesis, ϕ1, ... , ϕn ∈ dom(vi−1), and therefore this amounts to show-

ing that F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), ... , vi−1(ϕn)) is not empty. By the induction

4The existence of such a function relies on the axiom of choice in case V2 is infinite.



120 Chapter 6. Rexpansions of Non-deterministic Matrices

hypothesis, we have that vi−1(ϕj) ∈ F (v(ϕj)) for every 1 ≤ j ≤ n. In other words,

v(ϕj) = F̃ [vi−1(ϕj)] for every 1 ≤ j ≤ n. By the fact that v is an M1-valuation,

v(ψi) ∈ O1(�)(v(ϕ1), ... , v(ϕn)) = O1(�)(F̃ [vi−1(ϕ1)], ... , F̃ [vi−1(ϕn)]), and hence

F (v(ψi)) ∩ O2(�)(vi−1(ϕ1), ... , vi−1(ϕn)) 6= ∅, as M2 is strongly preserving.

3. Let �(ϕ1, ... , ϕn), ϕ1, ... , ϕn ∈ dom(vi). We prove that

vi(�(ϕ1, ... , ϕn)) ∈ O2(�)(vi(ϕ1), ... , vi(ϕn)). If �(ϕ1, ... , ϕn) ∈ dom(vi−1), then

this holds by the induction hypothesis and our enumeration. Otherwise,

ψi = �(ϕ1, ... , ϕn), and then this holds by the induction hypothesis and the

definition of vi.

For every ψ ∈ L, let iψ be the index of ψ in the enumeration. v′ is defined

by v′(ψ) = viψ(ψ). First, we show that v′ is an M2-valuation. Let � ∈ ♦nL,

ϕ1, ... , ϕn ∈ L, and k = i�(ϕ1,...,ϕn). v′(�(ϕ1, ... , ϕn)) = vk(�(ϕ1, ... , ϕn)), which belongs

to O2(�)(vk(ϕ1), ... , vk(ϕn)) = O2(�)(v′(ϕ1), ... , v′(ϕn)). Second, we show that v �M1 ψ

iff v′ �M2 ψ. Suppose v �M1 ψ. Then v(ψ) ∈ D1. Now, by the construction of v′,

v′(ψ) ∈ F (v(ψ)) ⊆ (
⋃
x∈D1

F (x)) ∩ V2 = D2, which means that v′ �M2 ψ. For the con-

verse, suppose v′ �M2 ψ. Then v′(ψ) ∈ D2 ⊆ (
⋃
x∈D1

F (x)). Hence there exists x ∈ D1

such that v′(ψ) ∈ F (x). Now, by the construction of v′, v′(ψ) ∈ F (v(ψ)). Since F is an

expansion function, v(ψ) = x ∈ D1, which means that v �M1 ψ.

The following corollary immediately follows as a consequence of Lemma 6.2.3 and

Theorem 6.2.7:

Corollary 6.2.8. Let M2 be a preserving rexpansion of M1. If M1 is a matrix then

`M2 = `M1 .

An important consequence of Corollary 6.2.8 and Proposition 6.1.8 (the usefulness of

which is demonstrated in Sections 6.3 and 6.5) is a general method for providing a given

logic with an alternative new semantics, and then use it for conservatively augmenting

it with new connectives. This is established in the following corollary:

Corollary 6.2.9. Let L1 and L2 be propositional languages such that L1 ⊆ L2, M1 a

(N)matrix for L1, and M2 an extension to L2 of some (strongly) preserving rexpansion

of M1. Then 〈L2,`M2〉 is conservative over 〈L1,`M1〉.

We conclude this section with a stronger instance of Corollary 6.2.9, that applies only

for two-valued matrices:

Corollary 6.2.10. Let L1 and L2 be propositional languages such that L1 ⊆ L2,

M1 = 〈{t, f} , {t} ,O1〉 a matrix for L1, and M2 an extension to L2 of some rexpan-

sion of M1. Then 〈L2,`M2〉 is conservative over 〈L1,`M1〉.
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Proof. By Definition 6.1.4, for every F -rexpansion M′ = 〈V ′,D′,O′〉 of M1 we must

have F (t)∩V ′ 6= ∅ (as otherwise D′ = ∅) and F (f)∩V ′ 6= ∅ (as otherwise D′ = V ′). The

result then follows from Corollary 6.2.9.

6.3 Some Examples

In this section we present some examples for the usefulness of rexpansion in non-classical

logics. This is done by performing it on fragments of well-known matrices and Nmatrices,

and thus obtaining conservative extensions of their induced logics.

Denote the (propositional) language whose set of connectives is {∧,∨,⊃,¬,⊥} by

CL⊥, classical logic (over CL⊥) by CL, and the classical two-valued matrix for CL⊥ by

MCL. For any C ⊆ {∧,∨,⊃,¬,⊥}, we denote the C-fragment of CL⊥ by CL⊥C , the C-

fragment of classical logic by CLC , and the C-fragment of the classical matrix byMC
CL.

For example, the language CL used in previous examples is CL⊥{¬,∧,∨,⊃}. We start with

a direct consequence of Corollary 6.2.10:

Lemma 6.3.1. Let C ⊆ {∧,∨,⊃,¬,⊥}. If L is a language such that CL⊥C ⊆ L, and

M is an extension to L of some rexpansion of MC
CL, then 〈L,`M〉 is conservative over

CLC .

We shall use Lemma 6.3.1 to present conservative extensions of fragments of classical

logic. Some of the resulting logics are paraconsistent, that is: unlike classical logic,

they tolerate contradictions. Here is a formal definition, based on properties that were

investigated in [4, 5, 38, 78]:5

Definition 6.3.2. Let L = 〈L,`L〉 be a logic such that ¬ is included in L. ¬ is a

weak negation in L if p 6`L ¬p and ¬p 6`L p for every p ∈ At. L is paraconsistent if

¬ is a weak negation in L and ¬p, p 6`L q for every two distinct atoms p and q. It is

boldly paraconsistent if it is paraconsistent, and ¬p, p 6`L ϕ whenever 6`L ϕ and p ∈ At

does not occur in ϕ. Further, ¬ is a negation in L if CL ⊆ L (CL⊥ ⊆ L) and the CL-

fragment (CL⊥-fragment) of L is subclassical, that is, T `L ϕ only if T `CL ϕ for any

subset T ∪ {ϕ} of CL (CL⊥). L is strictly paraconsistent if it is paraconsistent and ¬ is

a negation in L.

Remark 6.3.3. The requirement for being a weak negation is regarded in [5] as a minimal

condition that is expected from a unary connective to be called a negation (see also [78]).

5The term “paraconsistent logic” already appears in previous chapters of this thesis, that included
sequent calculi for logics that are recognized in the literature as paraconsistent. In this chapter, however,
we provide a more concrete analysis of this term, that requires a formal definition.
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This is hardly enough, though, to characterize negation. Therefore, [4] generalizes it to

the requirement of subclassicality, leading to what is called here “strict paraconsistency”.

(In practice, almost all non-classical logics in CL⊥ ever studied are subclassical.) Finally,

the requirement of bold paraconsistency connects paraconsistency to (and justifies it by)

the broader principle of relevance: the inconsistency of p should not be a reason for

inferring a formula that is completely irrelevant to p.

We start with (deterministic) finite-valued conservative extensions of classical logic.

Example 6.3.4. The {∧,∨}-fragments of MLP and MKL (see Example 6.1.2)

are simple rexpansions of M{∧,∨}
CL , as can be witnessed by the expansion functions

λx ∈ {t, f} .

{t, i} x = t

{f} x = f
and λx ∈ {t, f} .

{t} x = t

{f, i} x = f
, respectively. By Lemma

6.3.1, LP and KL are both conservative over CL{∧,∨}. Note that neither of the matrices

is a preserving rexpansion of the other: suppose for contradiction thatMLP is a preserv-

ing F -rexpansion ofMKL. Then we must have that {t, i} ⊆ F (t), and so f ∈ F (i)∪F (f).

If f ∈ F (i) then F (f)∩{t, f, i} = ∅, and if f ∈ F (f) then F (i)∩{t, f, i} = ∅. Either way,

MLP is not preserving. Clearly, MKL cannot be a preserving F -rexpansion of MLP,

as if this were the case, it would have two designated values. LP is one of the strict

paraconsistent logics studied in [4] (see Section 6.4.1).

The next example concerns Gödel fuzzy logic G and its relation to classical logic.

Example 6.3.5. It is routine to verify that MG (Example 6.1.3) is an extension to

{∧,∨,⊃,⊥} of a simple refinement of the F -expansion ofM{∧,∨,⊥}
CL , for F (f) = [0, 1) and

F (t) = {1}. Consider ∧, for example, and denote its classical interpretation by O(∧).

Let x, y ∈ [0, 1] and z = min(x, y), and suppose x′ = F̃ [x] and y′ = F̃ [y]. We show

that z ∈ F (O(∧)(x′, y′)) (recall that in matrices we identify singletons with their unique

elements). If z < 1, then either x < 1 or y < 1, and so either x′ = f or y′ = f , which

means that O(∧)(x′, y′) = f . In this case, we get z ∈ [0, 1) = F (f) = F (O(∧)(x′, y′)).

Otherwise, z = 1, which means that x = y = 1, and so x′ = y′ = t. In this case,

O(x′, y′) = t, and so we have z ∈ {1} = F (t) = F (O(∧)(x′, y′)). By Lemma 6.3.1, G is

conservative over CL{∧,∨,⊥}.

The process described in the above examples need not start with classical logic, as

can be seen by the following example:

Example 6.3.6. Consider the following matrix M = 〈V ,D,O〉, defined by

V = {t, f,>,⊥}, D = {t}, and O is given by:
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O(∧) t f >⊥
t t f >⊥
f f f f f

> > f >⊥
⊥ ⊥ f ⊥⊥

O(∨) t f >⊥
t t t t t

f t f >⊥
> t>> >
⊥ t⊥> ⊥

O4(¬)

t f

f t

> t

⊥ t

Its conjunction and disjunction are interpreted as minimum and maximum (respec-

tively) over the ordering f ≤ ⊥ ≤ > ≤ t. Its {∧,∨}-fragment is a simple F -rexpansion

of the {∧,∨}-fragment of MKL (Example 6.1.2), for F (t) = {t}, F (f) = {f,⊥} and

F (i) = {>}. By Corollary 6.2.9, the logic it induces is conservative over the {∧,∨}-
fragment of KL. It is a different logic than KL, as it has tautologies (e.g. p ∨ ¬p).

6.4 Applications to Sequent Calculi

In this section we show how Nmatrices, and rexpansions of them in particular, are used

in order to construct analytic sequent calculi for a given (family of) logic(s). We do

so by uncovering the underlying process in the construction of several sequent calculi

for non-classical logics from the literature (see, e.g., [14, 27]), and identifying it as an

implicit sequence of rexpansions. Roughly speaking, the process begins with some basic

logic, whose various extensions form a family of non-classical logics. For this basic logic,

an Nmatrix is found, and then the algorithm of [25] is used to translate it to a cut-free

Gentzen-type system, that admits the generalized notion of analyticity employed in this

thesis. In some cases, this construction can be done directly, without relying on [25].

In order to do the same for the various extensions of the logic, the original Nmatrix

sometimes needs to be transformed into another Nmatrix, using a rexpansion. Then, the

various extensions of the logic are translated into refinements of the new Nmatrix, and

the algorithm of [25] is again used for each of these refinements. We provide detailed

examples of this process for three and four valued logics, as well as for the logics of formal

inconsistency from [38].

6.4.1 Three-valued Paraconsistent Logics

Consider the rules (¬ ⇒) and (⇒ ¬) of LK. Their axiomatic counterparts (see Sec-

tion 2.4) are p,¬p ⇒ and ⇒ p,¬p, respectively. Now, having in mind the intuitive

reading of sequents, that interprets a comma on the left as a conjunction, and a comma

on the right as a disjunction, we see that (¬ ⇒) corresponds to the law of contradiction,

and that (⇒ ¬) corresponds to the law of excluded middle. Accordingly, these two rules
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represent the two basic principles that characterize classical negation. For the construc-

tion of sequent calculi for paraconsistent logics, we must give up (¬ ⇒). Therefore, in

order for ¬ to still have some properties of a negation, we should at least keep intact

the law of excluded middle. Thus we are left with LK \ {(¬ ⇒)} as the calculus for

the basic paraconsistent extension of positive classical logic. The induced logic is known

to be identical to the logic CLuN from [32] (see, e.g., [14]). We denote this calculus

by GCLuN. It is routine to verify that a CL-bivaluation v is GCLuN-legal iff it is an

M2
CLuN-bivaluation, where M2

CLuN = 〈{t, f} , {t} ,O2
CLuN〉 is defined like the classical

matrix for ∧, ∨ and ⊃, while O2
CLuN(¬) is given by:

O2
CLuN(¬)

t {t, f}
f {t}

Many well-known paraconsistent logics from the literature are characterized as ax-

iomatic extensions of CLuN, by augmenting it with classically valid axioms that are not

valid in CLuN. Examples include the following axioms for the double negation principle

and for connections between negation and the binary connectives (e.g. De Morgan laws):

(c) ¬¬ϕ ⊃ ϕ (e) ϕ ⊃ ¬¬ϕ
(nl
∧) ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ) (nr

∧) (¬ϕ ∨ ¬ψ) ⊃ ¬(ϕ ∧ ψ)

(nl
∨) ¬(ϕ ∨ ψ) ⊃ (¬ϕ ∧ ¬ψ) (nr

∨) (¬ϕ ∧ ¬ψ) ⊃ ¬(ϕ ∨ ψ)

(nl
⊃) ¬(ϕ ⊃ ψ) ⊃ (ϕ ∧ ¬ψ) (nr

⊃) (ϕ ∧ ¬ψ) ⊃ ¬(ϕ ⊃ ψ)

For example, the logic Cmin (see, e.g., [38, 39]) is the axiomatic extension of CLuN with

(c). In order to obtain corresponding analytic sequent calculi for these various extensions,

appropriate finite Nmatrices should be constructed. Let us examine, for example, the

effect of incorporating (c) into M2
CLuN. This would mean that if p is assigned f , then

¬p must be assigned t, and in order for the axiom to be satisfied, we must have that

¬¬p is assigned f . Hence we must set the negation of t to f , which brings us back

to the classical matrix.6 However, the addition of the rules of excluded middle and of

double negation elimination to any Hilbert-type system for positive classical logic does

not result in classical logic. The problem here is thatM2
CLuN is almost deterministic: it

has a single non-deterministic entry that allows for exactly two refinements. One results

in the classical matrix, and the other is equivalent to positive classical logic. Hence

M2
CLuN cannot serve as a basis for extensions of CLuN with more rules that concern

6Obviously, this would not be the case if we were working in the more general framework of bival-
uations (see Definition 2.3.1). In such a case, (c) would simply be translated to a semantic constraint,
namely v(ϕ) = 0 implies v(¬¬ϕ) = 0 for any formula ϕ. However, for the purpose of constructing
analytic sequent calculi, we would like to generate only Nmatrices, and then the inclusion of (c) indeed
leads to the classical matrix.
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negation. A solution to this problem is to perform a rexpansion on M2
CLuN, and obtain

a less deterministic Nmatrix. By the above argument, we need more flexibility with

the negation of f , which is t. Thus we shall make two copies of t, using an expansion

function F that is defined by F (t) = {t,>} and F (f) = {f}. The resulting expansion

(M2
CLuN)F = 〈{t,>, f} , {t,>} ,OF 〉 is given by:

OF (∧) t f >
t {t,>} {f} {t,>}
f {f} {f} {f}
> {t,>} {f} {t,>}

OF (∨) t f >
t {t,>} {t,>} {t,>}
f {t,>} {f} {t,>}
> {t,>} {t,>} {t,>}

OF (⊃) t f >
t {t,>} {f} {t,>}
f {t,>} {t,>} {t,>}
> {t,>} {f} {t,>}

OF (¬)

t {t,>, f}
f {t,>}
> {t,>, f}

Now, in order to construct an ordinary analytic sequent calculus from an Nmatrix, the

Nmatrix should be sufficiently expressive, in the sense that we must be able to distinguish

between the different truth values using the connectives themselves and the disjoint sets of

designated and undesignated values (see [25] for a precise definition). This is not the case

for (M2
CLuN)F , as we cannot distinguish this way between t and >. To be able to do that,

we need to perform a refinement. The minimal refinement that would allow for this dis-

tinction between truth values,7 that we denote byM3
CLuN = 〈{t,>, f} , {t,>} ,O3

CLuN〉,
is given by O3

CLuN(�) = OF (�) for every � ∈ {∧,∨,⊃}, while O3
CLuN(¬) is given by:

O3
CLuN(¬)

t {f}
f {t,>}
> {t,>}

Now, for every M3
CLuN-valuation v, we have the following:

• v(p) = t iff v(p) is designated and v(¬p) is not

• v(p) = > iff both v(p) and v(¬p) are designated

• v(p) = f iff v(p) is not designated

7There is a second minimal refinement that is dual to this one. It will be described and used in
Section 6.4.2.
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As we shall see, this makesM3
CLuN a good basis for the addition of the most useful axioms

in paraconsistent logics (including the above axioms). Each axiom is first translated into a

semantic condition, that in turn induces a refinement ofM3
CLuN. The refinement is then

translated to a Gentzen-type rule. By collecting all the resulting rules that correspond to

a given axiomatic extension of CLuN, we obtain a cut-free {¬}-1-analytic pure calculus

for it.

Note that although M3
CLuN is a non-strongly preserving rexpansion of M2

CLuN, it

can be shown that the two Nmatrices are equivalent, and both induce CLuN (see, e.g.,

[14]).

Let us now examine the effect of (c) on M3
CLuN, rather than on M2

CLuN. If p is

assigned f , then in order for (c) to be satisfied, we must have that ¬¬p is also assigned

f , which is only possible if ¬p is assigned t. This simply means that the negation of f

should be {t} and not {t,>}. We thus obtain a simple refinement of M3
CLuN, that we

denote by Mc = 〈{t, f,>} , {t,>} ,Oc〉, and is obtained by replacing O3
CLuN(¬) with:

Oc(¬)

t {f}
f {t}
> {t,>}

By applying the algorithm from [25], we get a calculus Gc for `Mc , which is the extension

of GCLuN with the rule (¬¬ ⇒) of G L3
(see Example 2.2.8). Let us see how we obtain

this rule directly from the semantics:8 The only change that was made from M3
CLuN is

setting the negation of f to be t. This means that if v(p) = f then v(¬p) = t. Going

back to the characterization above using designated and undesignated values, we get

that if v(p) is undesignated, then v(¬p) is designated and v(¬¬p) is not. Translating

“designated” to being on the right side of a sequent, and ”undesignated” to being on the

left, we obtain p⇒ / ⇒ ¬p and p⇒ /¬¬p⇒ . The first is already included in GCLuN,

and the second is the new rule (¬¬ ⇒). This is how the rule (¬¬ ⇒) is constructed

from (c). By using similar arguments, we get that the refinement associated with (nl
∧) is

obtained fromM3
CLuN by setting O(∧)(t, t) to {t} (instead of {t,>}), which is similarly

translated to the rule (¬∧ ⇒) of G L3
.

A particularly interesting simple refinement Mca = 〈{t, f,>} , {t,>} ,Oca〉 of Mc is

obtained by Oca(¬) = Oc(¬), and for the rest of the connectives Oca is given by:

8Actually, (¬¬ ⇒ ) could have been “guessed” from (c), without rexpansions. This is not always the
case. Some axioms do not naturally translate into sequent rules, and then the method of [25], that goes
through Nmatrices, is essential. We shall see an example for this in the next section.
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Oca(∧) t f >
t {t} {f} {t,>}
f {f} {f} {f}
> {t,>} {f} {t,>}

Oca(∨) t f >
t {t} {t} {t,>}
f {t} {f} {t,>}
> {t,>} {t,>} {t,>}

Oca(⊃) t f >
t {t} {f} {t,>}
f {t} {t} {t,>}
> {t,>} {f} {t,>}

The Nmatrix Mca has a very important role in the family of paraconsistent logics that

are characterized by three-valued matrices. Theorem 42 of [4] characterizes all three-

valued strictly paraconsistent logics in the language CL (see Definition 6.3.2) that admit

some natural properties. These logics coincide with the CL-fragments of the family of 8K

conservative extensions of positive classical logic studied in [38] and [39]. The three-valued

matrices that induce these logics are exactly the deterministic simple refinements ofMca.

When applying the same rexpansion function F from above onM{∧,∨,⊃}
CL , rather than on

M2
CLuN, we see that Mca (and also Mc) is an extension to CL of an F -rexpansion of

M{∧,∨,⊃}
CL . As a consequence of Lemma 6.3.1, all these logics are conservative over positive

classical logic.

Each of the simple refinements of Mca, including all the deterministic ones studied

in [4], can be given a cut-free {¬}-1-analytic pure calculus, using the method of [25], or

by translating the semantic conditions that correspond to each axiom into pure rules.

Calculi for the most important such refinements are explicitly given in [4]. One of these

logics is called PAC, and is the axiomatic extension of CLuN with all the axioms (c),

(e) and (bx
� ) such that � ∈ {∧,∨,⊃} and x ∈ {l, r} above. The characteristic matrix

MPAC for PAC is the extension to CL of MLP, obtained by setting:

O(⊃) t f >
t t f >
f t t t

> t f >
A calculus GPAC for this logic is obtained from the calculus G L3

(see Example 2.2.8) by

replacing the rules (¬ ⇒), (⊃ ⇒) L3
and (⇒ ⊃) L3

with the rule (⇒ ¬).

6.4.2 Logics of Formal (In)consistency

Let us revisit the construction of GC1 (Example 2.2.9) in [27]. We shall relate GC1 to

a calculus that we call GBKca (for reasons to be clarified below), obtained from GC1 by

dismissing the rule

(¬∧ ⇒)(l) ⇒ p1; ⇒ ¬p1 /¬(p1 ∧ ¬p1)⇒
GC1 and GBKca are just two of various sequent calculi that were introduced in [27]

for paraconsistent logics of the family of Logics of Formal Inconsistency (LFIs) [38, 39]
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(see also [28, 29]). While [27] did not explicitly use rexpansions, we show that they were

actually being implicitly used, and had a very important role in the various constructions

of [27] (and in particular, that of GC1 and of GBKca). As sketched at the beginning of

this chapter, the calculi of [27] are constructed uniformly, by first finding a characteristic

Nmatrix, and then extracting a sequent calculus from it. The underlying language is

CL◦ = CL ∪ {◦}, where ◦ is a unary connective which is intended to classify a given

proposition as consistent (that is, ◦ϕ should be read as “ϕ is consistent”). The most

basic properties of the consistency connective ◦ are represented by the following two

axioms:

(b) ◦ ϕ ⊃ ((ϕ ∧ ¬ϕ) ⊃ ψ) (k) ◦ ϕ ∨ (ϕ ∧ ¬ϕ)

The first means that the law of contradiction is valid for consistent formulas. The second

means that every formula is either consistent or both it and its negation hold. Accord-

ingly, the most basic logic that is investigated in [27] is called BK, and is obtained from

CLuN by the addition of these two axioms. It is proven there to be characterized by the

NmatrixMBK , which is the extension to CL◦ of the NmatrixM3
CLuN from Section 6.4.1,

given by:

O(◦)
t {t,>}
f {t,>}
> {f}

Note that if we replace the symbol ¬ in M2
CLuN from Section 6.4.1, we again obtain an

F -rexpansion ofM2
CLuN (for the same F that was used there, that is F (t) = {t,>} and

F (f) = {f}), where in the performed refinement, the roles of t and > are exchanged.

BK serves as a basis for the modular construction of more powerful paraconsistent

logics, that are obtained by including the axioms from Section 6.4.1, as well as basic

properties of the consistency operator, such as:

• Inconsistency: (i) ¬ ◦ ϕ ⊃ (ϕ ∧ ¬ϕ)

• Propagation laws: (a) (◦ϕ]◦ψ) ⊃ ◦(ϕ]ψ) for ] ∈ {∧,∨,⊃}

Accordingly, a set A0 of well-known axioms for LFIs is considered (that includes, among

others, those just mentioned, as well as the axioms from Section 6.4.1), and is modularly

incorporated into this Nmatrix: each subset of A0 induces a simple refinement of MBK .

As we have already seen in Section 6.4.1, the addition of the axiom (c) amounts to setting

O(¬)(f) to {t} (instead of {t,>}). The result is the extension to CL◦ of the Nmatrix

Mc from Section 6.4.1 with the above table for ◦. Further, the addition of (a) amounts

to ensuring that ϕ]ψ is given a value from {t, f} whenever both ϕ and ψ are given values
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from {t, f}, for each ] ∈ {∧,∨,⊃}. Accordingly, the Nmatrix that corresponds to the

logic BKca, obtained by the addition of (c) and (a) to BK, is the extension to CL◦ of

the Nmatrix Mca from Section 6.4.1, obtained by including the same truth table for ◦
above. We denote the resulting Nmatrix by MBKca = 〈{t,>, f} , {t,>} ,OBKca〉:

OBKca(∧) t f >
t {t} {f} {t,>}
f {f} {f} {f}
> {t,>} {f} {t,>}

OBKca(∨) t f >
t {t} {t} {t,>}
f {t} {f} {t,>}
> {t,>} {t,>} {t,>}

OBKca(⊃) t f >
t {t} {f} {t,>}
f {t} {t} {t,>}
> {t,>} {f} {t,>}

OBKca(¬)

t {f}
f {t}
> {t,>}

OBKca(◦)
t {t,>}
f {t,>}
> {f}

Using the algorithm of [25], a cut-free pure calculus for BKca is obtained from the

calculus Gc (see Section 6.4.1) by the addition of several rules for the binary connectives.

For example, the additional rule for ∧ is (¬∧ ⇒) from G L3
(see Example 2.2.8). Unlike

the case of (c), the rules that correspond to (a) are not natural translations of it. In fact,

the connective ◦ does not even occur in the resulting rules. To obtain them, the method

of [25], or the translation of axioms to semantic conditions and then to rules, is essential.

Things become more complicated when the following two well-known axioms of LFIs

are added to A0:

(l) ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ and (d) ¬(¬ϕ ∧ ϕ) ⊃ ◦ϕ

It was shown in [15] that most of the systems in the family induced by A0 ∪ {(l), (d)}
that include at least one of {(l), (d)} cannot be characterized by a finite Nmatrix. This

means that they go beyond the reach of MBK and its refinements. For this reason, an-

other rexpansion is performed on MBK (whose ◦-free fragment is itself a rexpansion of

M2
CLuN), that incorporates infinitely many copies of each of its two designated truth val-

ues. This is done by employing the following three (disjoint) sets: T =
{
tji | i ≥ 0, j ≥ 0

}
,

I =
{
>ji | i ≥ 0, j ≥ 0

}
, and F = {f}. An expansion function G is then defined by

G = λx ∈ {t, f,>} .


T x = t

F x = f

I x = >
The G-expansion (MBK)G = 〈T ∪ I ∪ F , T ∪ I,OG〉 of MBK is given by:
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OG(∧)(a, b) =

F a ∈ F or b ∈ F
D∞BK otherwise

OG(∨)(a, b) =

D∞BK a ∈ D∞BK or b ∈ D∞BK
F otherwise

OG(¬)(a) =

F a ∈ T
D∞BK a ∈ F ∪ I

OG(◦)(a) =

D∞BK a ∈ F ∪ T
F otherwise

OG(⊃)(a, b) =

D∞BK a ∈ F or b ∈ D∞BK
F otherwise

Now, (l) and (d) deal with the conjunction of a formula with its own negation. We

thus need to reflect the difference between an atom and its own negation (and not only

negations of formulas that were assigned the same value) in the truth tables. For that, we

do not treat the negation of every copy of > the same way, but distinguish between the

different copies. One way to do this is to set the negation of >ji to >j+1
i . However, since

we would like to modularly add (l) and (d) to all the logics considered above, our starting

point should be an Nmatrix for the most basic logic BK. We would therefore want to

have a strongly preserving rexpansion of MBK . The above choice for the negation of

>ji is not enough, as then there is no copy of t in the negation of >ji , although t is one

of the values in the negation of > in MBK . We therefore add also the corresponding

copy of t, namely tj+1
i . The result, which is now a strongly preserving G-rexpansion of

MBK , is denoted by M∞
BK = 〈V∞BK ,D∞BK ,O∞BK〉, and is defined by V∞BK = T ∪ I ∪ F ,

D∞BK = T ∪ I, and O∞BK is obtained from OG by setting:

O∞BK(¬)(a) =


F a ∈ T
D∞BK a ∈ F{
>j+1
i , tj+1

i

}
a = >ji

We stress that while this is the actual Nmatrix that was built in [27], it was built there

without explicitly taking into account the arguments concerning strongly preserving rex-

pansions. As we can see, these turn out to be essential. Now, not onlyM∞
BK is a strongly

preserving G-rexpansion of MBK , but also every subset A of A0 induces a simple refine-

ment of M∞
BK , that is a strongly preserving G-rexpansion of the simple refinement of

MBK that is associated with A. In particular, without (l) and (d), we obtain an infinite

characteristic Nmatrix for each system, equivalent to the three-valued one. Moreover, by

applying the corresponding semantic arguments for the construction of the Gentzen-type

systems on the infinite Nmatrices, we obtain the same rules. For example, going back to

BKca, we obtain the Nmatrix M∞
BKca = 〈V∞BK ,D∞BK ,O∞BKca〉, where O∞BKca is obtained
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from O∞BK by setting O∞BKca(¬)(f) = T , and ensuring that ϕ]ψ is given a value from

T ∪ F , whenever both ϕ and ψ are given values from T ∪ F , for every ] ∈ {∧,∨,⊃}:

O∞BKca(∧)(a, b) =


F a ∈ F or b ∈ F
T a, b ∈ T
D∞BK otherwise

O∞BKca(∨)(a, b) =


T a ∈ T and b ∈ T ∪ F
T a ∈ T ∪ F and b ∈ T
F a, b ∈ F
D∞BK otherwise

O∞BKca(¬)(a) =


F a ∈ T
T a ∈ F{
>j+1
i , tj+1

i

}
a = >ji

O∞BKca(◦)(a) =

D∞BK a ∈ F ∪ T
F otherwise

O∞BKca(⊃)(a, b) =


T a ∈ F and b ∈ T ∪ F
T a ∈ T ∪ F and b ∈ T
F a ∈ D∞BK and b ∈ F
D∞BK otherwise

It is routine to verify that M∞
BKca is a strongly preserving G-rexpansion MBKca. Also,

the calculus for the induced logic can be similarly reconstructed, based on the semantic

conditions of M∞
BKca, that are natural extensions of those of MBKca.

When either (l) or (d) are included, however, what is obtained is again a preserving

rexpansion of the corresponding three-valued Nmatrix, but not a strongly preserving one.

For example, the refinement that is associated with (l) amounts to the requirement that

ϕ ∧ ψ is assigned a value from T whenever ϕ is assigned >ji and ψ is assigned either

>j+1
i or tj+1

i . Thus, the logic BKcal (obtained from BKca by the addition of (l)) is

characterized by the Nmatrix M∞
BKcal = 〈V∞BK ,D∞BK ,O∞BKcal〉, which is obtained from

M∞
BKca by setting

O∞BKcal(∧) =


F a ∈ F or b ∈ F
T a, b ∈ T
T a = >ji and b ∈

{
>j+1
i , tj+1

i

}
D∞BK otherwise

M∞
BKcal is indeed a preserving G-rexpansion of MBKca, but not a strongly preserving

one. For example, G(>) ∩ O∞BKcal(∧)(>ji ,>j+1
i ) = ∅, although > ∈ OBKca(∧)(>,>).

Since M∞
BKcal is infinite, it falls out of the method of [25]. However, [27] employs a

similar technique and translates this semantic requirement to the rule (¬∧ ⇒)(l) above,

in a similar manner to the reconstruction of the rules in Section 6.4.1. This is how a

calculus GBKcal for BKcal has been constructed in [27]. The calculus GC1 was obtained
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by simply dismissing the rules for ◦, as C1 is proven in [27] to be characterized by the

◦-free fragment of MBKcal.

Note that the route that we have taken here started with the NmatrixMBK for BK.

Then, a strongly preserving rexpansion was performed to obtainM∞
BK , that was refined

according to (c), (a), and (l), resulting with M∞
BKcal. The calculus GBKcal was built

according to the semantic conditions of the resulting Nmatrix. An alternative route would

be to first refine BK according to (c) and (a), and then perform a strongly preserving

rexpansion to obtain M∞
BKca. Only then, (l) would be added, and the corresponding

refinement would result with exactly the same NmatrixMBKcal, and consequently, with

the same sequent calculus.

6.4.3 Conservative Extensions of Sequent Calculi

Suppose that we are looking for a sequent calculus for a logic L2 = 〈L2,`L2〉, which is

a conservative extension of a logic L1 = 〈L1,`L1〉, and that we already have a calculus

G1 for L1. When this is the case, we can keep all the rules of G1, and be sure that they

are sound and complete for the L1-fragment of L2. The task of finding a calculus for L2

then reduces to finding rules that involve connectives from L2 \L1. In order to make this

intuition more formal, we extend Definitions 6.1.4 and 6.1.6 to sequents.

Definition 6.4.1. LetM be an Nmatrix. AnM-valuation v is anM-model of a sequent

Γ⇒ ∆ (in symbols: v �M Γ⇒ ∆) if v 6�M ϕ for some ϕ ∈ Γ or v �M ϕ for some ϕ ∈ ∆.

It is an M-model of a set S of sequents (in symbols: v �M S) if v �M s for every s ∈ S.

A sequent s is an M-consequence of a set S of sequents (in symbols: S `M s) if every

M-model of S is an M-model of s. We say that a sequent calculus G is sound for

an Nmatrix M if S `G s implies S `M s for every sequent s and set S of sequents.

We say that G is complete for M if the converse holds. A pure calculus G2 for L2 is

conservative over a pure calculus G1 for L1 if L1 ⊆ L2, and for every set S of L1-sequents

and L1-sequent s it holds that S `G1 s iff S `G2 s.

Using these definitions, we obtain the following variant of Corollary 6.2.9 for sequents,

rather than formulas:

Corollary 6.4.2. Let L1 and L2 be propositional languages such that L1 ⊆ L2, M1 a

(N)matrix for L1, and M2 an extension to L2 of some (strongly) preserving rexpansion

of M1. Then S `M1 s iff S `M2 s for every set S of L1-sequents and L1-sequent s.9

Proof. It suffices to verify that Proposition 6.1.8 and theorem 6.2.7 are correct also

for sequents. Proposition 6.1.8 still follows from the structure of Nmatrices also when

9The left-to-right direction holds for all rexpansions.
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considering sequents. As for Theorem 6.2.7, we have that also for sequents it suffices to

prove that for everyM1-valuation v there exists anM2-valuation v′ such that v �M1 s iff

v′ �M2 s for every L-sequent s. This follows from the corresponding claim for formulas.

From here the proof carries as before.

We are now able to lift the sufficient criterion for conservativity of Corollary 6.2.9

from Nmatrices to sequent calculi:

Proposition 6.4.3. Let L1 and L2 be propositional languages such that L1 ⊆ L2, G1 a

pure L1-calculus and G2 a pure L2-calculus. Suppose G1 is sound and complete for some

(N)matrixM1 for L1, and that G2 is sound for some NmatrixM2 which is an extension

to L2 of some (strongly) preserving rexpansion of M1. Then G1 ∪ G2 is conservative

over G1.

Proof. Let S be a set of L1-sequents and s an L1-sequent. Clearly, if S `G1 s then

S `G1∪G2 s. Now suppose S `G1∪G2 s. We prove that S `G1 s.

We start by proving that S `M2 s. Let v be an M2-model of S. We prove that

v �M2 s by induction on the derivation of s from S in G1 ∪G2. The cases where s ∈ S,

or s is the conclusion of an application of (id), (weak) or (cut) are trivial. Suppose

s is the conclusion of an application
σ(s′1) ∪ c1 ... σ(s′n) ∪ cn
σ(s0) ∪ c1 ∪ ... ∪ cn

of some rule s1, ... , sn / s0 of

G1. Clearly, s′1, ... , s
′
n `G1 s0. Since G1 is sound for M1, we have s′1, ... , s

′
n `M1 s0. By

Corollary 6.4.2, we have s′1, ... , s
′
n `M2 s0, and hence σ(s′1), ... , σ(s′n) `M2 σ(s0). By the

induction hypothesis, v �M2 σ(s′i) ∪ ci for every 1 ≤ i ≤ n. Then, either v �M2 ci for

some 1 ≤ i ≤ n or v �M2 σ(s′i) for every 1 ≤ i ≤ n. Either way, v �M2 s. It is left to

consider the case where s is the conclusion of an application
σ(s′1) ∪ c1, ... , σ(s′n) ∪ cn

σ(s0) ∪ c1, ... , cn
of

some rule s1, ... , sn / s0 of G2. By the induction hypothesis, v �M2 σ(s′i) ∪ ci for every

1 ≤ i ≤ n. Since G2 is sound for M2, we must have v �M2 s.

Since S `M2 s and S ∪ {s} consists of L1-sequents, we use Corollary 6.4.2 again, and

get that S `M1 s. And since G1 is complete for M1, we conclude that S `G1 s.

Proposition 6.4.3 provides a technique to conservatively extend a given sequent cal-

culus, as illustrated in the next example.

Example 6.4.4. The {∧,∨,⊃,¬}-fragment of the four-valued logic of bilattices from

[3] (see Example 2.2.8) is characterized by the matrix M4 = 〈{t, f,>,⊥} , {>,⊥} ,O4〉,
where O4 is given by:



134 Chapter 6. Rexpansions of Non-deterministic Matrices

O4(∧) t f >⊥
t t f >⊥
f f f f f

> > f > f

⊥ ⊥ f f ⊥

O4(∨) t f >⊥
t t t t t

f t f >⊥
> t>> t

⊥ t⊥ t ⊥

O4(⊃) t f >⊥
t t f >⊥
f t t t t

> t f >⊥
⊥ t t t t

O4(¬)

t f

f t

> >
⊥ ⊥

Let us consider the task of designing a calculus for this logic. What should be our starting

point? It is routine to verify that the {∧,⊃}-fragment ofM4 is a preserving G-rexpansion

of the same fragment of MPAC (see Section 6.4.1), for G(t) = {t}, G(f) = {f,⊥}, and

G(>) = {>}. This means that we can start with the {∧,⊃}-fragment of GPAC (or

of LK), and focus on finding rules for ∨ and ¬. But perhaps there is an even better

starting point? Define an expansion function F for M{∧,∨,⊃}
CL by F (f) = {f,⊥} and

F (t) = {t,>}. It is easy to see that M4 is an extension to {∧,∨,⊃,¬} of a simple

refinement of (M{∧,∨,⊃}
CL )F = 〈{t,>, f,⊥} , {t,>} ,O〉, where

O(∧) t f > ⊥
t {t,>} {f,⊥} {t,>} {f,⊥}
f {f,⊥} {f,⊥} {f,⊥} {f,⊥}
> {t,>} {f,⊥} {t,>} {f,⊥}
⊥ {f,⊥} {f,⊥} {f,⊥} {f,⊥}

O(∨) t f > ⊥
t {t,>} {t,>} {t,>} {t,>}
f {t,>} {f,⊥} {t,>} {f,⊥}
> {t,>} {t,>} {t,>} {t,>}
⊥ {t,>} {f,⊥} {t,>} {f,⊥}

O(⊃) t f > ⊥
t {t,>} {f,⊥} {t,>} {f,⊥}
f {t,>} {t,>} {t,>} {t,>}
> {t,>} {f,⊥} {t,>} {f,⊥}
⊥ {t,>} {t,>} {t,>} {t,>}

We thus obtain that `M4 is conservative over CL{∧,∨,⊃}, and that when constructing a

calculus for it, one may focus on rules for negation. There is no need for new rules that

involve disjunction (without negation). And indeed, [3] introduced the calculus G4 (see

Example 2.2.8) for this logic, which is obtained from the positive fragment of LK by the

addition of the new rules for GPAC, except for (⇒ ¬). Thus, G4 is conservative over the

positive fragment of LK. Note that only soundness of the rules from G4 \LK forM4 is

needed in order to use Proposition 6.4.3 and obtain conservativity.

A similar process to the one described in Example 6.4.4 can be done for the construc-

tion of the other calculi presented in this chapter, by starting with the positive fragment

of LK, and then adding additional rules, according to the particular rexpansion that

was employed. Then, only soundness of the new rules for that rexpansion is needed for
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conservativity. For example, since the extension of CLuN with (c) from section 6.4.1

is conservative over positive classical logic, we may start with the positive fragment of

LK and focus our search on rules that include negation. And indeed, the additional rule

(¬¬ ⇒) includes negation, and also, it is sound for Mc.

As another example, notice that the single connective that causesMBKcal to be only

a preserving rexpansion of MBKca (and not a strongly preserving one) is ∧ (see Sec-

tion 6.4.2). Thus, by Corollary 6.2.9, the logic that is induced byMBKcal is conservative

over the ∧-free fragment of MBKca. Therefore, a calculus for the former logic only re-

quires new rules that manipulate ∧. And indeed, GBKcal is obtained from GBKca by

the addition of the rule (¬∧ ⇒)(l), that involves ∧. By Proposition 6.4.3, the calculus

GBKcal is conservative over the ∧-free fragment of GBKca. Note again that while GBKcal

is sound and complete for MBKcal, only soundness of (¬∧ ⇒)(l) is required to establish

conservativity.

6.5 Negations for Gödel Logic

The goal of this section is to develop reasonable logics in the language CL⊥ that simul-

taneously have two properties that were discussed in Section 6.3: paraconsistency and

fuzziness, in a way that would then enable the construction of corresponding analytic

Gentzen-type systems. The main problem we face in achieving this goal is that standard

fuzzy logics (like the two described in Example 6.1.3) are defined via matrices with a

single designated value. However, it is well known [4] that a logic which is induced by

such a matrix cannot be paraconsistent. Therefore, none of the standard fuzzy logics is

paraconsistent. In order to develop logics that are both paraconsistent and fuzzy, it is

necessary to replace the standard method of defining a fuzzy consequence relation by a

weaker one. An additional step that can be made is to take ¬ as a primitive connective,

and use new semantic interpretations for it. (In the standard fuzzy logics ¬ψ is defined

as ψ ⊃ ⊥.)

The first attempt to achieve the goal of this section according to the above lines

was made by [52]. Its main idea was to follow a recent approach [36] to defining fuzzy

consequence relations, that instead of preserving absolute truth (i.e. the truth value 1),

preserve degrees of truth. Given a matrixM (whose truth values are [0, 1]) which induces

the ordinary (i.e. truth-preserving) fuzzy logic L, this means that a formula ψ follows

from a set of formulas T if there is a finite subset {ϕ1, ... , ϕn} ⊆ T such that the truth

value which is assigned to ψ by someM-valuation v is always greater than or equal to the

minimal truth value that v assigns to ϕ1, ... , ϕn. For the standard matrices used in fuzzy

logics, the latter condition is equivalent to demanding the formula (ϕ1 ∧ ...∧ ϕn) ⊃ ψ to
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be valid in the corresponding truth-preserving logic L (see, e.g., [36]). This fact implies

that L≤, the degree-preserving logic induced by M, has the same set of valid formulas

as the truth-preserving logic L which is induced byM. This makes L≤ a natural variant

of L.

A good example of the method of [52] is provided by  Lukasiewicz logic  L∞ (Example

6.1.3). The interpretation of ¬ there (where ¬ is taken as a defined connective, as

explained above) is: O(¬)(a) = 1−a. As said above,  L∞ itself cannot be paraconsistent.

However, its degree-preserving variant  L∞
≤ is paraconsistent, as can be seen by any

valuation v such that v(p) = v(¬p) = 1/2 and v(q) = 1
4
.  L∞

≤ is also subclassical (as

it is contained in  L∞, which is subclassical), and thus it is even strictly (though not

boldly) paraconsistent (see Definition 6.3.2). Moreover, it validates some basic classical

equivalences connected with negation, like De Morgan laws and the double negation

laws. Unfortunately,  L≤∞ has some serious drawbacks as well. The main one is that

Modus Ponens (M.P.) for ⊃ is not valid in it: ψ does not necessarily follow from ϕ and

ϕ ⊃ ψ. (This is exemplified by any valuation v in which v(ϕ) = 0.5, v(ψ) = 0.4 and

v(ϕ ⊃ ψ) = 0.9.) Thus ⊃ cannot be regarded in  L≤∞ as an implication connective of any

sort.

Is there a standard fuzzy logic L such that M.P. for ⊃ is valid in L≤? Of the three

basic fuzzy logics ( Lukasiewicz logic, Gödel logic and product logic), only in Gödel logic ⊃
has this property (see, e.g., [60]). Hence it seems better to try to use G≤ instead of  L∞

≤.

However, in its original language (of {∧,∨,⊃,⊥}) G≤ is identical to G. In particular, G≤

is not paraconsistent with respect to the official negation of G. To obtain a paraconsistent

variant of G, one should employ also the second idea mentioned above (and used in [52]):

to augment the language with a new negation connective. A particularly appealing choice

is to augment G≤ with the involutive  Lukasiewicz negation. Denote the resulting logic

by G≤¬ . As a paraconsistent fuzzy logic, G≤¬ has all the nice properties of  L≤∞ that were

mentioned above. On the other hand it does not have its main shortcoming, because ⊃
is in it a true implication connective: ϕ ⊃ ψ follows in G≤¬ from T iff ψ follows in it

from T ∪ {ϕ}. What is more: G≤¬ is a conservative extension to a richer language of the

basic fuzzy logic G. However, even G≤¬ still has some serious drawbacks. Thus like  L∞
≤

it is not boldly paraconsistent.10 Even more significant is the fact that (again like  L∞
≤)

ϕ∨¬ϕ is not valid in it. As explained in Section 6.4.1, this is very important, as since we

are seeking here paraconsistency and thus giving up the law of contradiction, we should

keep intact at least the other basic principle of classical negation: the law of excluded

middle.

10In both logics q ∨ ¬q is not valid, but it follows from {p,¬p}, as the minimum value assigned to
{p,¬p} is at most 1/2, while the value assigned to q ∨ ¬q is at least 1/2.
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In this section we use rexpansions of the Gödel matrix MG for constructing even

better paraconsistent fuzzy logics which are based on G. Based on the ideas described

in previous sections, the use of rexpansions paves the way not only for constructing such

logics, but also for obtaining proof systems for them (see Section 6.5.4 below). Before

describing our method, here is the list of properties that we would like a paraconsistent

fuzzy logic L to have:

(i) L should be boldly paraconsistent;

(ii) L should be subclassical (and so, by (i), strictly paraconsistent);

(iii) L should be conservative over G;

(iv) ⊃, ∧, and ∨ should respectively be an implication, a conjunction, and a disjunction

for L. This means that for every T , ϕ, ψ, and φ we should have:

(iv).A T ∪ {ϕ} `L ψ iff T `L ϕ ⊃ ψ;

(iv).B T `L ϕ ∧ ψ iff T `L ϕ and T `L ψ;

(iv).C T ∪ {ϕ ∨ ψ} `L φ iff T ∪ {ϕ} `L φ and T ∪ {ψ} `L φ;

(v) L should validate ϕ ∨ ¬ϕ;

(vi) L should validate the basic classical equivalences concerning ¬, ∨, and ∧: ϕ ≡ ¬¬ϕ,

¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ), and ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ);

(vii) L should validate the following connections between negation and implication:

(vii).A ϕ ⊃ (¬ψ ⊃ ¬(ϕ ⊃ ψ))

(vii).B ¬(ϕ ⊃ ψ) ⊃ ¬ψ
(vii).C (ϕ ⊃ ψ) ⊃ (¬(ϕ ⊃ ψ) ⊃ ϕ)

A word of explanation is needed for the last item in this list. Ideally, we would have

liked to add to item (vi) of the list above also the classical equivalence that connects ¬
and ⊃: ¬(ϕ ⊃ ψ) ≡ (ϕ ∧ ¬ψ). This, in turn, is equivalent to the validity of (vii).A,

(vii).B and

(vii).C’ ¬(ϕ ⊃ ψ) ⊃ ϕ

Unfortunately, we cannot include (vii).C’ in our list, since together with items (iv) and

(v), it immediately entails the validity of ϕ∨ (ϕ ⊃ ψ), contradicting item (iii) of our list.

So instead of (vii).C’ we include a weaker version, which is valid in G≤¬ , as well as in all

the standard fuzzy logics (in which ¬ψ is taken as ψ ⊃ ⊥).
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6.5.1 The Nmatrix MG
t
¬ and Its Refinements

The method of rexpansions allows us to present a better approach to the construction of

paraconsistent conservative extensions of Gödel logic, which stays within the framework

of truth-preservation. This is achieved by relaxing the principle of truth-functionality,

and the preservation of absolute truth. The former is done by basing our construction

on Nmatrices, and the latter by replacing “completely true” with “true enough”, that is,

taking a larger set of designated truth values. Formally:

Definition 6.5.1. Let 0 < t ≤ 1. MG
t is the Nmatrix for {∧,∨,⊃,⊥} obtained from

MG by:

1. Taking [t, 1] as the designated values.

2. Changing O (⊃) to O (⊃) (a, b) =

[t, 1] a ≤ b or b ≥ t

{b} a > b and b < t
.

MG
t
¬ is the extension of MG

t to {∧,∨,⊃,⊥,¬}, in which O(¬)(a) = 1− a.

The next theorem shows that MG
t
¬ provides a satisfactory basis for constructing

paraconsistent fuzzy logics.

Theorem 6.5.2. Let 0 < t ≤ 1 and letM = 〈V ,D,O〉 be a simple refinement ofMG
t
¬.

Then:

1. `M satisfies (iii), (iv).B, (iv).C, and (vi) (that is, it is conservative over G, ∧ is

a conjunction, ∨ is a disjunction, and De Morgan and double negation laws are

valid).11

2. If 1 ∈ O(⊃)(x, y) whenever either x = 0 or y = 1 then `M satisfies (ii).

3. If t > 1/2 then `M satisfies neither of (i), (iv), and (v).

4. If t ≤ 1/2 then `M satisfies (i) and (v).

Proof. Suppose M = 〈V ,D,O〉 and MG
t
¬ = 〈V t,Dt,Ot〉.

1. It is straight-forward to verify (iv).B, (iv).C and (vi). As for (iii), one verifies that

MG
t is a simple F -rexpansion of MG, for F = λx ∈ [0, 1] .

[t, 1] x = 1

{t · x} x < 1
. By

Corollary 6.2.9, every simple refinement ofMG
t
¬ induces a logic that is conservative

over G.

11While the left-to-right direction of (iv).A may not hold, its right-to-left direction (namely M.P.) does
hold.
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2. Suppose that T 6`CL ϕ. Then there exists a classical valuation v such that v(ψ) = 1

for every ψ ∈ T and v(ϕ) = 0. v is also an M-valuation, and thus T 6`M ϕ.

3. If v �M p and v �M ¬p, we must have v(p), 1 − v(p) ≥ t, which is impossible

for t > 1/2. Therefore, p,¬p `M q and (i) fails. Moreover, 6`M (p ∧ ¬p) ⊃ q (by

assigning 1/2 to p and 0 to q), and thus also (iv) fails. Finally, v 6�M p ∨ ¬p for

v(p) = v(¬p) = v(p ∨ ¬p) = 1/2.

4. We start with (i): First we show that ¬ is a weak negation in `M. Since 0 < t ≤ 1/2

there exists a < t such that 1 − a ≥ t. Any M-valuation v in which v(p) = 1 − a
satisfies p but not ¬p, and any M-valuation v in which v(p) = a satisfies ¬p
but not p. Thus p 6`M ¬p and ¬p 6`M p. Second, in any M-valuation v in which

v(p) = v(¬p) = 1/2 and v(q) = 0, we have v �M {p,¬p} and v 6�M q. Therefore

p,¬p 6`M q. Next, we show that `M is boldly paraconsistent. Suppose 6`M ϕ and

p /∈ At(ϕ). Then there exists an M-valuation v such that v(ϕ) < t. Define a

function v′ as follows: v′(ψ) = v(ψ) for every subformula ψ of ϕ (including ϕ

itself), and v′(p) = v′(¬p) = 1/2. Now extend v′ to an M-valuation, and obtain

that p,¬p 6`M ϕ. As for (v), for every M-valuation v, if v(ϕ) < t then v(¬ϕ) > t

and vice verse, and hence `M¬ϕ ∨ ϕ.

The proof of Theorem 6.5.2 actually provides another interesting result regarding the

Gödel matrix: the same logic would be obtained if the designated values were taken to

be any interval of the form [t, 1] for any 0 < t < 1.

Proposition 6.5.3. Let 0 < t < 1 and Mt = 〈V t,Dt,Ot〉, where V t = [0, 1], Dt = [t, 1],

and Ot = OG. Then `MG
= `Mt .

Proof. Mt is a simple refinement of MG
t, which is a simple rexpansion of MG. By

Corollary 6.2.8, we have `MG
= `Mt .

Other negations can be considered for G, and rexpansions can be used in order to

prove that the result is conservative over G. This is obtained in a similar manner to

Proposition 6.4.3.

Lemma 6.5.4. Let A be a set of axioms in CL⊥. If A is valid in MG
t
¬ then GA, the

axiomatic extension of G with A, is conservative over G.

Proof. Clearly, `G ⊆ `GA . Now let T ⊆ CL⊥ \ {¬} and ϕ ∈ CL⊥ \ {¬}. If T `GA ϕ,

then T `MG
t
¬ ϕ. And since `MG

t
¬ is conservative over G, we must have T `G ϕ.
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Like before, finding a new semantics for the augmented logic is not required, as only

soundness is needed for the proof.

Example 6.5.5. Let A be a set consisting of the axioms from property (vi) above. Then

GA is an axiomatic extension of G with a negation that satisfies the usual double negation

and De Morgan laws, and is conservative over G.

6.5.2 Two Particular Refinements of MG
1/2
¬

Theorem 6.5.2 shows that simple refinements of MG
1/2
¬ enjoy many desirable properties

one would expect from a paraconsistent fuzzy logic. However, they may lack some of

the properties mentioned above. In particular, the formulas in (vii) are not valid in

the logic that is induced by MG
1/2
¬ itself (for example, if v(ϕ) = 0.7, v(ψ) = 0.8, and

v(ϕ ⊃ ψ) = 0.7, then v does not satisfy (vii).B). Moreover, (iv) does not hold in the simple

refinement M0.7−0.8 of MG
1/2
¬ , obtained by setting O(⊃)(a, b) = 0.7 whenever b ≥ 1/2 or

a = b, and O(⊃)(a, b) = 0.8 whenever b < 1/2 and a < b. Indeed, v(¬(ϕ ⊃ ϕ)) = 0.3 < 1/2

for every M0.7−0.8-valuation v, which means that ¬(ϕ ⊃ ϕ) `M0.7−0.8 ψ. However, the

M0.7−0.8-valuation u in which u(ϕ) = u(ψ) = 0 and u(ϕ ⊃ ϕ) = 0.7, shows that

6`M0.7−0.8 ¬(ϕ ⊃ ϕ) ⊃ ψ. Property (ii) also does not hold in `M0.7−0.8 , as q follows from

¬(p ⊃ p) ⊃ ¬(⊥ ⊃ ¬(p ⊃ p)) in it, but not in classical logic.

We present two particularly interesting simple refinements of MG
1/2
¬ . The first is

obtained by refining the interpretation of ⊃ back to its original interpretation in MG.

The second is a reconstruction of a well-known semi-relevant logic [2, 49], in which all

properties (i)–(vii) hold.

Closest to The Original: det(MG
1/2
¬ )

If we refine the interpretation of ⊃ inMG
1/2
¬ to its original interpretation inMG, we ob-

tain a matrix for a paraconsistent fuzzy logic (denoted det(MG
1/2
¬ )), whose {∧,∨,⊃,⊥}-

fragment differs fromMG solely in the choice of designated values. This seems as close as

one can get to adding a paraconsistent involutive negation toMG. Moreover, `
det(MG

1/2
¬ )

strictly extends `MG
1/2
¬

, and satisfies all properties listed above, except for (vii).A. The

only property whose verification is not routine is (iv).A, which we now prove.

Proposition 6.5.6 (Deduction Theorem for `
det(MG

1/2
¬ )

). T `
det(MG

1/2
¬ )

ϕ1 ⊃ ϕ2 iff

T , ϕ1 `det(MG
1/2
¬ )

ϕ2.

Proof. The fact that T `
det(MG

1/2
¬ )

ϕ1 ⊃ ϕ2 implies T , ϕ1 `det(MG
1/2
¬ )

ϕ2 is easily verified

using the interpretation of ⊃. For the converse, suppose T 6`
det(MG

1/2
¬ )

ϕ1 ⊃ ϕ2. We prove

that T , ϕ1 6`det(MG
1/2
¬ )

ϕ2. By our assumption, there exists a det(MG
1/2
¬ )-valuation v such
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that v(ψ) ≥ 1/2 for every ψ ∈ T , and v(ϕ1 ⊃ ϕ2) < 1/2. Let r1 = v(ϕ1) and r2 = v(ϕ2).

Then: v(ϕ1 ⊃ ϕ2) = r2 < 1/2, 1− r2 > 1/2, and r1 > r2. If r1 ≥ 1/2 then v �det(MG
1/2
¬ ) ϕ1

and v 6�det(MG
1/2
¬ ) ϕ2, and thus T , ϕ1 6`det(MG

1/2
¬ )

ϕ2. Hence we assume in addition that

r1 < 1/2. We construct an appropriate countermodel by “fixing” v so that it satisfies T
and ϕ1, but still does not satisfy ϕ2. This is done by replacing r1 by 1/2, and then making

other necessary adjustments to keep the resulting valuation a det(MG
1/2
¬ )-valuation. Let

f = λx ∈ [0, 1] .


1

2r1
x x < r1

1/2 r1 ≤ x ≤ 1− r1

x−1+2r1
2r1

x > 1− r1

and let v′(ϕ) = f(v(ϕ)) for every ϕ. f is clearly an increasing function from [0, 1] to [0, 1].

Now, v′(ψ) ≥ 1/2 for every ψ ∈ T , as v(ψ) ≥ 1/2 > r1 for every such ψ. Also, v′(ϕ1) = 1/2,

and v′(ϕ2) < 1/2, as v(ϕ2) = r2 < r1. It is left to prove that v′ is a det(MG
1/2
¬ )-valuation.

Suppose det(MG
1/2
¬ ) = 〈V ,D,O〉.

1. v′(ϕ ∧ ψ) = f(v(ϕ ∧ ψ)) = f(min {v(ϕ), v(ψ)}) = min {v′(ϕ), v′(ψ)}, as f is in-

creasing.

2. Disjunction is shown similarly.

3. If v′(ϕ) ≤ v′(ψ) then v(ϕ) ≤ v(ψ), and then v′(ϕ ⊃ ψ) = f(v(ϕ ⊃ ψ)) = f(1) = 1.

v′(ϕ ⊃ ψ) = f(v(ϕ ⊃ ψ)) = f(v(ψ)) = v′(ψ).

4. We show that v′(¬ϕ) = 1 − v′(ϕ). If v(ϕ) < r1, then v(¬ϕ) > 1 − r1. In

such a case, v′(ϕ) = 1
2r1
v(ϕ) and v′(¬ϕ) = v(¬ϕ)−1+2r1

2r1
= 2r1−v(ϕ)

2r1
. In particular,

v′(ϕ)+v′(¬ϕ) = v(ϕ)+2r1−v(ϕ)
2r1

= 1. If r1 ≤ v(ϕ) ≤ 1−r1, then v′(ϕ) = v′(¬ϕ) = 1/2.

And if v(ϕ) > 1− r1, then this case is symmetric to the first case.

5. v′(⊥) = f(v(⊥)) = f(0) = 0.

A Semi-relevant Refinement: MRM⊃

The matrix for the logic RM⊃ [8], that we denote by MRM⊃ is a simple refinement of

MG
1/2
¬ in which implication is interpreted by: O(⊃)(a, b) =

{1− a} a ≤ b ≤ 1− a
{b} otherwise

.

RM⊃ is shown in [8] to be equivalent to the famous Dunn-Meyer semi-relevant logic RM

[2]. RM⊃ satisfies all of the properties listed above. (All properties but (iv).A and (vii)

follow from Theorem 6.5.2. (iv).A and (vii) were proved in [8].) In particular, it strictly
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extends `MG
1/2
¬

.12 Moreover, we show that RM⊃ is unique with respect to the properties

above:

Proposition 6.5.7. RM⊃ is the only finitary13 logic that satisfies all properties (i)–(vii)

above.

Proof. Let L be such a logic. Denote by H the Hilbert-type calculus for G from [48],

and by HRM⊃ the Hilbert-type calculus obtained from H by the addition of the axiom

schemes of (v), (vi) and (vii). Note that the only rule of inference in H and HRM⊃ is

M.P. It was shown in [8] that the set of theorems of HRM⊃ is the same as the set of

formulas that are valid in RM⊃. Since RM⊃ is finitary14 and admits the deduction

theorem, it follows that HRM⊃ is sound and complete for RM⊃, that is, ϕ is derivable

from T in HRM⊃ iff T `RM⊃ ϕ. Now, to satisfy (iii), all axiom schemes from H must

be valid in L, as otherwise, it would not be conservative over G. To satisfy (v), (vi) and

(vii), the axioms they include must be valid in L also. For (iv), M.P. must be valid in L.

Thus HRM⊃ is sound for L, and in particular, RM⊃ is contained in L. Now, if L strictly

contains RM⊃, then since M.P. is valid in RM⊃ and L is both finitary and admits the

deduction theorem (by (iv)), there exists a formula ϕ that is valid in L but not in RM⊃.

It is then a corollary of [8] that L has a finite characteristic matrix, and in particular, so

does its ¬-free fragment. Since G cannot be finitely characterized by a matrix [48], L is

not a conservative extension of G, and thus (iii) fails. Therefore, we must have that L

and RM⊃ are identical.

Table 6.1 summarizes the various logics and properties discussed in this section, and

in particular, specifies the properties that hold in each logic. In the table, “t” means

that the property holds, and “f” means that it does not. The column in the middle

(titled “Simple Refinements of MG
1/2
¬ ”) includes some cells with the symbol “>”. For

the corresponding properties, the meaning is that some simple refinements of MG
1/2
¬

satisfy them, and some do not. In contrast, property (iii) is not relevant for  L≤∞, as it

does not include any new connective. Thus it is marked with “⊥”.

12The axiomatic extension of RM⊃ with (vii).C’, that we did not include in our list of requirements,
is also considered in [8], and is proven to be equivalent to the 3-valued logic PAC (see Section 6.4.1),
that is also known as RM3.

13A logic L is called finitary if the compactness theorem holds for it, that is: T `L ϕ iff Γ `L ϕ for
some finite Γ ⊆ T .

14This follows from the equivalence between RM⊃ and RM shown in [8], together with the fact that
RM itself is finitary. The latter follows from the (strong) soundness and completeness theorem that was
proven for RM in [18].
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Property  L∞
≤ G≤ Simple

Refinements

of MG
1/2
¬

det(MG
1/2
¬ ) RM⊃

(i) f f t t t

(ii) t t > t t

(iii) ⊥ t t t t

(iv) f t > t t

(v) f f t t t

(vi) t t t t t

(vii) t f > f t

Figure 6.1: Summary of properties for paraconsistent fuzzy logics

6.5.3 What is the Cardinality of
{
`MG

t
¬
| 0 < t ≤ 1

}
?

In this section we investigate the relation between the different logics that are induced

by the Nmatrices MG
t
¬ (see Definition 6.5.1) themselves. These logics are minimal in

the family of logics that are studied in Theorem 6.5.2, as different refinements of them

may induce different extensions. The main result of this section can be summarized as

follows:

1. All the Nmatrices MG
t
¬ for 0 < t ≤ 1/2 induce the same logic;

2. There are exactly two logics that are induced for t > 1/2.

3. All together, the answer to the above question is: three.15

The rest of this section is devoted to the proof of this result. We start by introducing

the notion of 〈t1, t2〉-expanding functions in Definition 6.5.8, and prove that they char-

acterize all strongly preserving rexpansions between elements of
{
MG

t
¬ | 0 < t ≤ 1

}
in

Lemma 6.5.9. This fact is then used in Lemma 6.5.10, where the logics that are induced

by these Nmatrices are identified, thus obtaining the aforementioned result in Corollary

6.5.11.

Definition 6.5.8. Let 0 < t1 < t2 ≤ 1. An expansion function F : [0, 1] → P ([0, 1]) is

called 〈t1, t2〉-expanding if:

(1)
⋃
x∈[0,1] F (x) = [0, 1] and

⋃
x∈[t2,1] F (x) = [t1, 1].

15We stress that the logics that are considered here are those that are induced by the NmatricesMG
t
¬

themselves, not their refinements.
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(2) F is increasing: if x < y then x′ < y′ for every x′ ∈ F (x) and y′ ∈ F (y).

(3) F (1 − x) = {1− y | y ∈ F (x)} for every x ∈ [0, 1] (that is, y ∈ F (x) iff

1− y ∈ F (1− x)).

(4) F (x) is a singleton whenever x < t2 (and so because of (3), also when x > 1− t2).

Lemma 6.5.9. Let F : [0, 1] → P ([0, 1]) and 0 < t1 < t2 ≤ 1. Then the following

statements are equivalent:

1. F is 〈t1, t2〉-expanding.

2. MG
t1
¬ is an F -rexpansion of MG

t2
¬ .

3. MG
t1
¬ is a strongly preserving F -rexpansion of MG

t2
¬ .

Proof. Suppose MG
t1
¬ = 〈[0, 1] , [t1, 1] ,O1〉, MG

t2
¬ = 〈[0, 1] , [t2, 1] ,O2〉 and

(MG
t2
¬ )F = 〈VF ,DF ,OF 〉.

(1⇒ 3) : Let us calculate (MG
t2
¬ )F : VF = [0, 1] and DF = D1 = [t1, 1],

because of property (1). As for OF : Using property (2), we have that

OF (∧)(x, y) = F (min
{
F̃ [x], F̃ [y]

}
) and OF (∨)(x, y) = F (max

{
F̃ [x], F̃ [y]

}
). By

property (3), we have OF (¬)(x) = F (1 − F̃ [x]). Combining properties (2) and (4)

gives us OF (⊃)(x, y) =

[t1, 1] x ≤ y or y ≥ t1

{y} x > y and y < t1
.

Finally, OF (⊥) = F (0).

We show that MG
t1
¬ is a (simple) refinement of (MG

t2
¬ )F :

1. O1(∧)(x, y) ⊆ OF (∧)(x, y): Assume w.l.g. that x ≤ y.

Since F is increasing, F̃ [x] ≤ F̃ [y], which means that

O1(∧)(x, y) = {x} ⊆ F (F̃ [x]) = F (min
{
F̃ [x], F̃ [y]

}
) = OF (∧)(x, y).

2. O1(∨)(x, y) ⊆ OF (∨)(x, y): this is shown similarly.

3. O1(¬)(x) ⊆ OF (¬)(x): using property (3), we have that

O1(¬)(x) = {1− x} ⊆
{

1− y | y ∈ F (F̃ [x])
}

= F (1− F̃ [x]) = OF (¬)(x).

4. O1(⊃)(x, y) ⊆ OF (⊃)(x, y): If x ≤ y or y ∈ [t1, 1] then

O1(⊃)(x, y) = [t1, 1] = OF (⊃)(x, y). Otherwise, O1(⊃)(x, y) = {y}, which

conforms with the calculation of OF (⊃) above.
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5. O1(⊥) ⊆ OF (⊥): We show that 0 ∈ F (0) (= OF (⊥)). Since Im(F ) = [0, 1],

0 ∈ F (x) for some x. Assume for contradiction that x > 0. Since F is an ex-

pansion function, there exists some y ∈ F (0). By property (2), 0 > y, which is a

contradiction.

Next, we prove that MG
t1
¬ is a strongly preserving F -rexpansion of MG

t2
¬ . Clearly,

it is preserving (as it is simple). The interpretations of all the connectives in MG
t1
¬

are deterministic, with the exception of ⊃. Therefore, the only thing that needs to

be verified is that F (z) ∩ O1(⊃)(x, y) 6= ∅ whenever z ∈ O2(⊃)(F̃ [x], F̃ [y]) and either

x ≤ y or y ∈ [t1, 1]. Let z ∈ O2(⊃)(F̃ [x], F̃ [y]). Since x ≤ y or y ∈ [t1, 1], we have

F̃ [x] ≤ F̃ [y] or F̃ [y] ∈ [t2, 1]. Therefore, z ∈ [t2, 1], and so F (z) ⊆ [t1, 1]. Since in this

case, O1(⊃)(x, y) = [t1, 1], we have F (z) ∩ O1(⊃)(x, y) = F (z) 6= ∅.

(3⇒ 2) : Clearly, every strongly preserving F -rexpansion is an F -rexpansion.

(2⇒ 1) : Suppose MG
t1
¬ is an F -rexpansion of MG

t2
¬ . We prove that F is 〈t1, t2〉-

expanding, by verifying the four properties:

1. The correctness of property (1) is trivial.

2. If F is not increasing, then there exist x, x′, y, y′ ∈ [0, 1] such that x < y, x′ ∈ F (x),

y′ ∈ F (y) and x′ ≥ y′. Since F is an expansion function, x′ 6= y′, thus x′ > y′. Now,

sinceMG
t1
¬ is an F -rexpansion ofMG

t2
¬ , y′ ∈ O1(∧)(x′, y′) ⊆ OF (∧)(x′, y′) = F (x).

This is impossible, as x 6= y, y′ ∈ F (y), and F is a rexpansion function.

3. Let x ∈ [0, 1]. We prove that F (1 − x) = {1− y | y ∈ F (x)}.
For every z ∈ F (1− x), since MG

t1
¬ is an F -rexpansion of MG

t2
¬ ,

1 − z ∈ O1(¬)(z) ⊆ ⋃
z′∈O2(¬)(1−x) F (z′) = F (x), and therefore

z ∈ {1− y | y ∈ F (x)}. And for every z ∈ {1− y | y ∈ F (x)}, 1 − z ∈ F (x), and

therefore z ∈ O1(¬)(1− z) ⊆ ⋃z′∈O2(¬)(x) F (z′) = F (1− x).

4. If F (x) is not a singleton for some x < t2, then let y1, y2 ∈ F (x) such that y1 < y2.

In particular, y1, y2 < t1. Therefore, since MG
t1
¬ is an F -rexpansion of MG

t2
¬ ,

y1 ∈ O1(⊃)(y2, y1) ⊆ ⋃z∈O2(⊃)(x,x) F (z) = [t1, 1], which is a contradiction.

Now we apply Lemma 6.5.9 and Theorem 6.2.7 to the matrices MG
t
¬ for various

values of t.

Lemma 6.5.10.

1. `MG
t
¬ = `MG

1/2
¬

for every 0 < t < 1/2.



146 Chapter 6. Rexpansions of Non-deterministic Matrices

2. `MG
t1¬

= `MG
t2¬

for every 1/2 < t1 < t2 < 1.

3. `MG
t
¬ ( `MG

1
¬

for every 1/2 < t < 1.

4. `MG
1/2
¬
6⊆ `MG

t
¬ and `MG

t
¬ 6⊆ `MG

1/2
¬

for every 1/2 < t ≤ 1.

Proof.

1. We construct an expansion function F that maps [0, 1/2) to [0, t) and (1/2, 1] to

(1− t, 1]. The remaining value 1/2 is duplicated to the remaining segment [t, 1− t].
Namely:

F = λx ∈ [0, 1] .


{2tx} x < 1/2

[t, 1− t] x = 1/2

{2tx+ 1− 2t} x > 1/2

F : [0, 1] → P ([0, 1]) since t < 1/2. By Lemma 6.5.9 and Theorem 6.2.7,

it suffices to prove that F is 〈t, 1/2〉-expanding. F is clearly an increasing

expansion function with
⋃
Im(F ) = [0, 1] and

⋃
x∈[1/2,1] F (x) = [t, 1]. To

see that property (3) is satisfied, we distinguish three cases: If x < 1/2,

1 − x > 1/2, and then F (1 − x) = {1− 2tx} = {1− y | y ∈ F (x)}. If

x = 1/2, 1 − x = 1/2 and then F (1 − x) = [t, 1− t]. Note that

for every y, y ∈ [t, 1− t] iff 1 − y ∈ [t, 1− t]. Hence in this case,

F (1−x) = {1− y | y ∈ [t, 1− t]} = {1− y | y ∈ F (x)}. If x > 1/2, 1−x < 1/2, and

then F (1− x) = {2t(1− x)} = {1− y | y ∈ {2tx+ 1− 2t}} = {1− y | y ∈ F (x)}.
Finally, property (4) clearly holds, as F (x) is a singleton whenever x < 1/2.

2. We construct a rexpansion function that maps [t2, 1] to [t1, 1], [0, 1−t2) to [0, 1−t1),

and [1− t2, t2) to [1− t1, t1). Consider the following function:

f = λx ∈ [0, 1] .


1−t1
1−t2 · x x < 1− t2
2t1−1
2t2−1

· x+ t2−t1
2t2−1

1− t2 ≤ x < t2
1−t1
1−t2 · x+ t1−t2

1−t2 x ≥ t2

Let F = λx ∈ [0, 1] . {f(x)}. By Lemma 6.5.9 and Theorem 6.2.7, it suf-

fices to show that F is 〈t1, t2〉-expanding. F is clearly an increasing expan-

sion function,
⋃
Im(F ) = [0, 1], and F (x) is always a singleton. In addition,⋃

x∈[t2,1] F (x) = f([t2, 1]) = [t1, 1]. Finally, F (1 − x) = {1− y | y ∈ F (x)}, as

f(1− x) = 1− f(x) for every x ∈ [0, 1].

3. To show that `MG
t
¬ ⊆ `MG

1
¬
, we prove that for everyMG

1
¬-valuation v there exists
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a MG
t
¬-valuation v′ such that for every formula ϕ, v �MG

1
¬ ϕ iff v′ �MG

t
¬ ϕ.16 Let

v be a MG
1
¬-valuation. We construct v′ by mapping the values that are strictly

below 1 to being strictly below t, in a way that conforms with the interpretation of

¬. By making this mapping an increasing one, we conform with the interpretation

of the other connectives. This is defined as follows: Let f be defined by:

f = λx ∈ [0, 1] .


0 x = 0

(2t− 1)x+ 1− t 0 < x < 1

1 x = 1

f : [0, 1]→ [0, 1] is strongly increasing and f(1− x) = 1− f(x) for every x ∈ [0, 1].

Define v′(ψ) = f(v(ψ)) for every ψ. First, we prove that v′ is a MG
t
¬-valuation:

For ∧, we have v′(ϕ∧ψ) = f(v(ϕ∧ψ)) = f(min {v(ϕ), v(ψ)}) = min {v′(ϕ), v′(ψ)},
as f is increasing. ∨ is shown similarly. In addition,

v′(¬ψ) = f(v(¬ψ)) = f(1 − v(ψ)) = 1 − f(v(ψ)) = 1 − v′(ψ) and

v′(⊥) = f(v(⊥)) = f(0) = 0. Next, we show that the implication con-

straints are satisfied: If v′(ϕ) ≤ v′(ψ), then since f is increasing, v(ϕ) ≤ v(ψ).

Since v is a MG
1
¬-valuation, v(ϕ ⊃ ψ) = 1, and hence v′(ϕ ⊃ ψ) = 1 > t. If

v′(ψ) ≥ t, then by the definition of f , v′(ψ) = 1, which means that v(ψ) = 1, and

again, v′(ϕ ⊃ ψ) = 1 > t. Finally, if v′(ϕ) > v′(ψ) and v′(ψ) < t then we have

v(ϕ) > v(ψ) and v(ψ) < 1. Since v is a MG
1
¬-valuation, v(ϕ ⊃ ψ) = v(ψ) < 1,

and hence v′(ϕ ⊃ ψ) = f(v(ψ)) = v′(ψ). Second, we prove that v �MG
1
¬ ψ iff

v′ �MG
t
¬ ψ, for every formula ψ. If v �MG

1
¬ ψ then v(ψ) = 1. In this case, v′(ψ) = 1

as well, and in particular, v′ �MG
t
¬ ψ. In addition, if v′ �MG

t
¬ ψ, then v′(ψ) ≥ t,

that is, f(v(ψ)) ≥ t. By f ’s definition, we must have v′(ψ) = f(v(ψ)) = 1, which

means that v(ψ) = 1. Therefore, v �MG
1
¬ ψ.

To show that `MG
t
¬ 6= `MG

1
¬
, note that p ⊃ q `MG

1
¬
¬q ⊃ ¬p, as for every

MG
1
¬-valuation v such that v(p ⊃ q) = 1, we must have that v(p) ≤ v(q).

In particular, v(¬q) ≤ v(¬p), and thus v(¬q ⊃ ¬p) = 1. How-

ever, p ⊃ q 6`MG
t
¬ ¬q ⊃ ¬p, as can be seen by the following MG

t
¬-valuation:

v(p) = 1, v(q) = t, v(¬p) = 0, v(¬q) = 1− t, v(p ⊃ q) = t, v(¬q ⊃ ¬p) = 0.

4. By Theorem 6.5.2, we have that p,¬p `MG
t
¬ q but p,¬p 6`MG

1/2
¬
q, and

`MG
1/2
¬
¬ϕ ∨ ϕ but 6`MG

t
¬ ¬ϕ ∨ ϕ.

16The proof of this item does not use rexpansions: by Proposition 6.2.4, MG
1
¬ is not a rexpansion of

MG
t
¬, as there is no function f : [0, 1]→ [0, 1] satisfying x ∈ {1} iff f(x) ∈ [t, 1].
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Corollary 6.5.11.
{
`MG

t
¬ | 0 < t ≤ 1

}
=

{
`MG

1/2
¬
,`
MG

3
4¬
,`MG

1
¬

}
, and its cardinality

is 3.

6.5.4 On The Construction of Corresponding Proof Systems

We conclude by describing the current and potential development of analytic proof sys-

tems for the logics investigated in this section. We shall not repeat all general arguments

laid down in previous sections regarding the usage of rexpansions for the construction of

proof systems, but focus instead on an example that illustrates these principles in the

context of paraconsistent fuzzy logics.

Since all of the logics that were investigated here are conservative over G, our starting

point should be a proof system for it. There are several Gentzen-type systems for this

logic (see, e.g., [7, 10, 19, 43, 50, 51, 94]), and each of them can be used as a starting point.

As an example, we employ here the system from [10], which is the most important of this

list, and was already used for extending Gödel logic with quantifiers and modalities (see,

e.g. [31]). A (additive) variant of the system from [10], which we call GLC is presented

in Figure 6.2. GLC goes beyond ordinary sequent calculi, and employs a more complex

data structure: hypersequents. In our variant of GLC, hypersequents are taken to be

finite sets of sequents. For a hypersequent H and a sequent s, we write H | s to denote

the hypersequent H ∪{s}. The hypersequents in GLC are single-conclusion, in the sense

that for every hypersequent in a derivation of GLC, all sequents comprising it are single-

conclusion. The structural rules of GLC are obtained from obvious variants of the usual

structural rules of ordinary sequent calculi, by the addition of the communication rule

(com) and external weakening (ew), that operate on the hypersequent level. All the

logical rules of GLC except for (⇒ ∨) are obtained from those of LK (with the same

names) by:

(1) Restricting them to single-conclusion sequents

(2) Adding a context hypersequent that is copied from the premises to the conclusion.

Equivalently, they are obtained from the logical rules of the propositional fragment of

Gentzen’s calculus LJ for intuitionistic logic by (2) alone.

We are thus again in a situation where a semantics and a corresponding Gentzen-type

system exist for some basic logic (in this case, Gödel logic), and we would like to extend

this logic in several ways, thus obtaining a family of logics (in this case, logics induced

by simple refinements of MG
1/2
¬ ), as well as corresponding proof systems.
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Structural Rules:

(id)
H | Γ, ϕ⇒ ϕ

(cut)
H | Γ⇒ ϕ H | Γ, ϕ⇒ ψ

Γ⇒ ψ

(iw)
H | Γ⇒ ϕ

H | Γ,Γ′ ⇒ ϕ
(ew)

H

H | Γ⇒ ϕ

(com)
H | Γ,Γ′ ⇒ ϕ H | Γ,Γ′ ⇒ ψ

H | Γ⇒ ϕ | Γ′ ⇒ ψ
Logical Rules:

(∧ ⇒)
H | Γ, ϕ, ψ ⇒ φ

H | Γ, ϕ ∧ ψ ⇒ φ
(⇒ ∧)

H | Γ⇒ ϕ H | Γ⇒ ψ

H | Γ⇒ ϕ ∧ ψ

(∨ ⇒)
H | Γ, ϕ⇒ φ H | Γ, ψ ⇒ φ

H | Γ, ϕ ∨ ψ ⇒ φ
(⇒ ∨)

H | Γ⇒ ϕ | Γ⇒ ψ

H | Γ⇒ ϕ ∨ ψ

(⊃ ⇒)
H | Γ⇒ ϕ H | Γ, ψ ⇒ φ

H | Γ, ϕ ⊃ ψ ⇒ φ
(⊃ ⇒)

H | Γ, ϕ⇒ ψ

H | Γ⇒ ϕ ⊃ ψ

(⊥ ⇒)
H | Γ,⊥ ⇒ φ

Figure 6.2: The hypersequent calculus GLC

The first step, which is performing the right rexpansion for the base logic, was al-

ready done, and the various properties of the various refinements were identified in The-

orem 6.5.2. What is left is to augment GLC with appropriate rules for each logic.

All the arguments laid down in Section 6.4, and in particular Proposition 6.4.3, can

be extended to other families of proof systems besides pure calculi, and in particular to

hypersequent calculi. Accordingly, since every simple refinement ofMG
1/2
¬ is conservative

over G, only rules that involve ¬ should be considered when constructing calculi for

refinements of MG
1/2
¬ .

As an example, we consider RM⊃, which is the most promising refinement (taking

into consideration properties (i)–(vii) above). A calculus for this logic was recently

constructed, which we call GRM⊃ .17 As expected by the above arguments, GRM⊃ is

obtained from GLC by the addition of rules that involve negation. These additional

rules are described in Figure 6.3. There is a strong connection between GRM⊃ and G4

(see Example 2.2.8), which is similar to the connection between GLC and LK: the rules

(¬¬ ⇒), (⇒ ¬¬), (¬∧ ⇒), (¬∨ ⇒) and (⇒ ¬∨) of GRM⊃ are obtained from the rules

with the same names of G4 by making the changes (1) and (2) described above.

17GRM⊃ was given by Arnon Avron in an unpublished manuscript. It is presented here with his
permission.
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(⇒ ¬)
H | Γ⇒ ϕ | Γ⇒ ¬ϕ

(¬¬ ⇒)
H | Γ, ϕ⇒ ψ

H | Γ,¬¬ϕ⇒ ψ
(⇒ ¬¬)

H | Γ⇒ ϕ

H | Γ⇒ ¬¬ϕ

(¬∧ ⇒)
H | Γ,¬ϕ⇒ φ H | Γ,¬ψ ⇒ φ

H | Γ,¬(ϕ ∧ ψ)⇒ φ
(⇒ ¬∧)

H | Γ⇒ ¬ϕ | Γ⇒ ¬ψ
H | Γ⇒ ¬(ϕ ∧ ψ)

(¬∨ ⇒)
H | Γ,¬ϕ,¬ψ ⇒ φ

H | Γ,¬(ϕ ∨ ψ)⇒ φ
(⇒ ¬∨)

H | Γ⇒ ¬ϕ H | Γ⇒ ¬ψ
H | Γ⇒ ¬(ϕ ∨ ψ)

(¬ ⊃ ⇒)1
H | Γ, ϕ⇒ ψ H | Γ, ϕ⇒ φ

H | Γ,¬(ϕ ⊃ ψ)⇒ φ
(⇒ ¬ ⊃)1

H | Γ⇒ ϕ H | Γ⇒ ¬ψ
H | Γ⇒ ¬(ϕ ⊃ ψ)

(¬ ⊃ ⇒)2
H | Γ,¬ψ ⇒ φ

H | Γ,¬(ϕ ⊃ ψ)⇒ φ
(⇒ ¬ ⊃)2

H | Γ, ϕ ⊃ ψ ⇒ ¬(ϕ ⊃ ψ)

H | Γ⇒ ¬(ϕ ⊃ ψ)

Figure 6.3: Additional rules for ¬ in GRM⊃

When searching for proof systems for other refinements of MG
1/2
¬ , we have an even

better starting point than GLC. Indeed, let M be such a refinement. Then M differs

from MRM⊃ solely in the interpretation of ⊃. By Proposition 6.1.8, `M is conservative

over the ⊃-free fragment of RM⊃. Thus, when designing a hypersequential calculus for

M, it suffices to focus on finding alternatives to the implication rules of GRM⊃ .



Chapter 7

Summary and Further Work

In this thesis we studied and utilized analyticity in general families of propositional

Gentzen-type proof systems. Our research included pure calculi and their extensions

with modal operators, as well as intuitionistic calculi. For each of them, we defined a

parametrized notion of a subformula that led to a general definition of analyticity, that,

while preserving the main advantages of the usual subformula property, applies for a

much wider collection of calculi. Decidable sufficient criteria for analyticity in pure cal-

culi were given, and analyticity was used in order to develop and implement a uniform

SAT-based decision procedure for the family of analytic pure calculi. The connection

between cut-admissibility and analyticity was also studied, and it was shown that the

two properties are equivalent for a wide sub-family. This result was also proved for

intuitionistic calculi. We then extended pure calculi with well-known impure rules for

modal operators, and proved that this extension preserves the analyticity of the base

pure calculus. An extension of the decision procedure for pure calculi was given, that

accommodates the addition of modal operators of a certain type. While all of the afore-

mentioned results are syntactic in nature, their proofs were based on general semantic

frameworks. Thus, general soundness and completeness theorems were used to identify

and prove semantic counterparts of the desired syntactic properties. In particular, we

investigated a useful semantic framework, namely Nmatrices, and introduced the rexpan-

sion operation on them. This operation was shown to be useful in the construction of

pure analytic sequent calculi for families of non-classical logics. The constructed calculi,

being pure and analytic, are of course subject to the reduction to SAT, as well as to the

(analyticity-preserving) extension with modal operators. We have also shown that this

operation is interesting in its own right, and used it to introduce a general method to ob-

tain conservative extensions of a given logic. In particular, we constructed paraconsistent

conservative extensions of Gödel fuzzy logic using rexpansions. For them, hypersequent

calculi were considered, rather than ordinary sequent calculi.

151
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We believe that the usefulness of our generic approach was demonstrated in this

thesis, and that future Gentzen-type systems for new non-classical logics will be able to

be proven analytic, and also to be given decision procedures using our results. The quest

for generic theorems and tools that capture families of logics at once is still at its early

stages of development, and there are several open problems and directions for further

research. The general direction is to further extend, refine and generalize the results

of this thesis, thus making them more robust across families of non-classical logics. In

particular, this includes the following:

Modal and Intuitionistic Calculi For pure calculi, the picture is quite clear. Our in-

vestigation provides a comprehensive study of analyticity and cut-admissibility, and

also a uniform SAT-based decision procedure. These results should be imported

in their full generality also to the extension of pure calculi with modal operators,

and to intuitionistic calculi. For example, while the SAT-based decision procedure

for pure calculi was extended here to Next-operators, the inclusion of other modal

operators, as well as intuitionistic calculi are both left for future work. As an-

other example, the results of Section 2.6 and chapter 5 were proven for a notion

of analyticity that is parametrized by a binary relation ≺. To what extent this

could be done for other parts of the thesis is another area for future research. In

particular, a corresponding “≺-local” relation should be found, that will carry the

results of Section 4.4. The connection between cut-admissibility and analyticity

in calculi for modal logics should also be investigated, using a similar approach

to the one taken here for intuitionistic calculi. We note, however, that such an

approach is expected to have certain limitations, as some analytic calculi for modal

logics (e.g., S5 and B [85, 96, 101]) do not admit cut-admissibility. The connection

between pure calculi and their intuitionistic variants should also be studied, with

the following questions in mind: Does ≺-analyticity imply Int-≺-analyticity? Does

cut-admissibility imply Int-cut-admissibility? Do either of the converses hold?

First-order Languages Our general investigation focused on the propositional level of

non-classical logics. We believe, however, that the ideas presented here could be

elevated to the first-order level as well. In particular, the investigation of analyticity

and cut-admissibility in a first-order setting could be accomplished by studying

partial first-order structures, as well as three-valued first-order structures. Note

that for the case of classical logic, the latter was done already by Schütte in [90].

In turn, a uniform decision procedure for first-order non-classical logics would rely

on automated first-order theorem provers, rather than on SAT-solvers.

Further Development of Gen2sat Our tool Gen2sat, that implements the suggested
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decision procedure, could be further developed in several ways. Having logic re-

searchers in mind, the ability to generate actual derivations of provable sequents

could be of great help. As an artifact of its semantic approach, however, Gen2sat

currently cannot provide such derivations. This can be overcome by integrating

Gen2sat with other existing propositional theorem provers so that for unprovable

sequents, the theorem prover will not have to search for a proof, while for prov-

able sequents, the search space can be potentially reduced by exploiting Gen2sat’s

capability of supplying a sufficient subset of rules. For applications, it is interest-

ing to study more useful logics that can be reduced to efficient fragments of SAT

(e.g., 2SAT). Finally, the sufficient criteria for analyticity that were proposed in

Section 2.5 could be implemented and incorporated into the tool, thus asking the

user for an analyticity assumption only in case the tool itself did not succeed in

finding one.

An Extended Study of Rexpansions Theorem 6.2.7 provides a sufficient condition

for two Nmatrices to induce the same consequence relation. However, in Sec-

tion 6.4.1 we have seen that M3
CLuN induces the same logic as M2

CLuN without

being a strongly preserving rexpansion of it. An interesting direction for further re-

search is to find a necessary and sufficient criterion for two Nmatrices to induce the

same logic, of which being a strongly preserving rexpansion is a particular instance.

In addition, rexpansions can be used to construct paraconsistent conservative ex-

tensions of fuzzy logics other than G, using a similar methodology to the one of

Section 6.5. Finally, new sequent and hypersequent calculi for non-classical logics,

and in particular, for more interesting refinements ofMG
1/2
¬ should be constructed,

taking the guidelines of Sections 6.4 and 6.5.4 into account.
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on Information Based Logics, pages 15–43, Cham, 2016. Springer International

Publishing.

[19] A. Avron and B. Konikowska. Decomposition proof systems for Gödel-Dummett
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[60] P. Hájek. Metamathematics of fuzzy logic. Springer Science & Business Media,

1998.
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תחשיבים עבור שניתן הגנרי האלגוריתם את להכליל גם לנו מאפשר והרחבתם טהורים

מסויים. מסוג מודאליים אופרטורים ידי על להרחבתם גם טהורים,

קריפקה מסגרות הוא זה מסוג תחשיבים של לחקירה שמשמש המרכזי הסמנטי הכלי

בעוד המקורי, הטהור התחשיב לפי נקבעת הסמנטיקה עולם בכל חלקיות. דו־ערכיות

המודאליים. האופרטורים של הגלובלית הסמנטיקה את קובעים המודאליים שהכללים

בסמנטיקה. גם משתקפת המודאלי והחלק הטהור החלק בין הסינטקטית ההפרדה כך,

נובעת המורחב התחשיב של האנליטיות את גוררת טהור תחשיב של שאנליטיות העובדה

מסגרות להרחיב היכולת את מבטיחה חלקיות השמות להרחיב שהיכולת מהעובדה

חלקיות. קריפקה

אינטואיציוניסטיים תחשיבים

משום טהור, אינו האינטואיציוניסטית הלוגיקה עבור גנצן של LJ הסקוונטים תחשיב

ששקול יותר מאוחר תחשיב אולם, חד־מסקנתיים. סקוונטים ורק אך מאפשר שהוא

וגרירה. שלילה של מימין ההכנסה לכללי ורק אך הזו הדרישה את מצמצם ,LJ ′ לו,

עבור רבים תחשיבים וכוללת ,LJ ′ את שמכלילה תחשיבים של משפחה מגדירים אנו

תחשיבים בשם אלה תחשיבים מכנים אנו אחרות. ידועות קונסטרוקטיביות לוגיקות

אינטואיציוניסטיים.

ואנליטיות חתך שסילוק מראים אנו טהורים, לתחשיבים בדומה אלה, תחשיבים עבור

רחבה. משפחה תת עבור שקולות תכונות הן

קריפקה מסגרות הוא זו משפחה עבור משתמשים אנו בו המרכזי הסמנטי הכלי

דו־ קריפקה מסגרות כמו שלא תלת־ערכית. השמה כולל עולם כל בהן תלת־ערכיות,

והסמנטיקה מודאליים, אופרטורים כוללת לא זה בפרק משתמשים אנו בה השפה ערכיות,

המקורית. השפה של הקשרים של קבוצה תת משמשת הגלובלית
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חלקיות השמות להרחיב היכולת ובין האנליטיות תכונת בין מקשר זה אפיון מוגבלת.

הספיקות לבעיית הרדוקציה את שמאפשר המרכזי הרכיב הוא כן, כמו מלאות. להשמות

החתך. כלל ללא טהורים לתחשיבים מתאימות מלאות תלת־ערכיות השמות הקלאסית.

בהשמות השלישי בערך השימוש ובין הדו־ערכיות ההשמות של החלקי התחום בין הקשר

כמקרה ואנליטיות. חתך סילוק בין הקשר את לחקור לנו מאפשר התלת־ערכיות

פעולות מציגים ובפרט דטרמיניסטיות, לא מטריצות לעומק חוקרים אנו ושימושי, פרטי

תחשיבי של לבנייה כללית לשיטה מובילה זו חקירה עליהן. לבצע שניתן שימושיות

מראים, שאנו כפי דטרמיניסטיות. לא מטריצות דרך ואנליטיים, טהורים סקוונטים

במפורש. זאת לציין מבלי זו שיטה לפי נבנו קלאסיות לא לוגיקות עבור רבים תחשיבים

כללית שיטה להציג לנו מאפשרות דטרמיניסטיות לא מטריצות על אלה פעולות בנוסף,

מוביל זו שיטה של ביותר החשוב השימוש נתונה. לוגיקה של משמרות הרחבות לבניית

על רבים יתרונות שכולל ועמומות, פרה־קונסיסטנטיות לוגיקות של חדש מסוג לבנייה

זו. לבעיה קיימים פתרונות פני

מודאליים אופרטורים עם טהורים תחשיבים

כוללים הם שכן טהורים, אינם מודאליים אופרטורים עבור הידועים הסקוונטים כללי

בחקירה כלולים אינם לפיכך, כאלה, תחשיבים ההקשר. נוסחאות על מגבלות מספר

תחשיבים על תוצאות להכליל ניתן כיצד מראים אנו כן, פי על אף לעיל. שתוארה

נעשה זה דבר מודאליים. לאופרטורים טהורים לא כללים עם הרחבתם עבור טהורים

האופרטורים את שכולל החלק ובין התחשיב של הטהור החלק בין הפרדה ידי על

כללים עם טהור תחשיב של הרחבה מנוונים, מקרים שלמעט מוכיחים אנו המודאליים.

הוא אנליטי, הוא טהור תחשיב אם כלומר, אנליטיות. משמרת מודאליים לאופרטורים

עם יחד זו, תוצאה מודאליים. אופרטורים עבור כללים עם הרחבתו לאחר כך יישאר

גם אנליטיות לזיהוי פשוטים קריטריונים נותנת טהורים, תחשיבים על הפרק תוצאות

תחשיבים בין זה קשר כאלה. תחשיבים לבניית שיטה גם כמו הזה, מהסוג בתחשיבים
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בשלוש והשלכותיה האנליטיות תכונת של שיטתית חקירה היא המרכזית תרומתנו

סקוונטים: תחשיבי של כלליות משפחות

טהורים תחשיבים

כל את כוללים הם .LK של הפסוקי לחלק דומה צורני מבני בעלי סקוונטים תחשיבי אלה

הקשורים ההיסק וכללי והחלפה), כיווץ החלשה, חתך, (זהות, הנפוצים המבניים הכללים

עבור מאוד שימושית זו משפחה ההקשר. נוסחאות את כלל מגבילים לא הלוגים לקשרים

רבות. פרה־קונסיסטנטיות ללוגיקות וכן וארבע־ערכיות, תלת־ערכיות לוגיקות

תנאים אנליטיות. שמבטיחים וכריעים פשוטים תנאים מספקים אנו זו, משפחה עבור

בהרבה פשוט באופן אוטומטית, בצורה או חוקרים ידי על בקלות להיבדק יכולים אלה

טהורים תחשיבים של לבניה שיטות מספקים גם אלה תנאים חתך. סילוק מהוכחות

תחשיבים של גם כמו רבים, ידועים תחשיבים של האנליטיות תכונת חדשים. ואנליטיים

אלה. כללים תנאים באמצעות מוכחת זו, בעבודה מציגים שאנו חדשים

שקולים. למעשה חתך וסילוק אנליטיות רחבה, משפחה תת שעבור מראים אנו בנוסף,

גם אנליטיות עבור מספקים שאנו הקריטריונים מן בחלק להשתמש מאפשרת זו תוצאה

שכן חשוב, תיאורטי ערך יש זו לתוצאה לכך, מעבר חתך. סילוק של פשוטה להוכחה

שונות נראות ראשון שבמבט סקוונטים, תחשיבי של יסודיות תכונות שתי בין מזהה היא

מזו. זו

בכל סקוונטים של יכיחות להכרעת גנרי אלגוריתם מספקים אנו האלגוריתמי, בצד

כלים לה הקלאסית, הספיקות לבעיית רדוקציה על שמבוסס ואנליטי, טהור תחשיב

ריצה זמני של וניתוח מדידה גם כמו המימוש, ופרטי מומש, זה אלגוריתם ויעילים. רבים

כן. גם מתוארים

תחשיבים לגבי תוצאותנו רוב מסתמכות עליהם המרכזיים הסמנטים הכלים שני

השמות מלאות. תלת־ערכיות השמות וכן חלקיות, דו־ערכיות השמות הם טהורים

בהן להשתמש שמותר הנוסחאות קבוצת בהן הוכחות מאפיינות חלקיות דו־ערכיות
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אף המקורית, התת־נוסחה תכונת כמו בדיוק וקונסיסטנטיות כריעות להוכחת שימושיות

לוגיקות עבור רבים תחשיבים בפרט, תחשיבים. של יותר רחב מגוון כוללות שהן פי על

נהנים כן אך התת־נוסחה, מתכונת נהנים אינם פרה־קונסיסטנטיות ולוגיקות רב־ערכיות

תוארה. עתה שזה המוכללת מהתכונה

על מבוססות שהן העובדה הוא זו בעבודה ההוכחות מרבית של חשוב מאפיין

טעויות, לפחות חשופות יותר, קריאות להיות נוטות סמנטיות הוכחות סמנטיים. כלים

הסמנטית השיטה בנוסף, סינטקטיות. הוכחות מאשר יותר רבות הכללות ומאפשרות

נוספות לתובנות להוביל שיכולה השונים, התחשיבים על נוספת מבט נקודת מספקת

לגביהם.

הוא: תוצאתנו להוכחת הכללי המתכון

סקוונטים מערכות של משפחה לגבי סינטקטית היפותזה ניסוח .1

זו משפחה עבור כללי ונאותות שלמות משפט הוכחת .2

את תבטיח שנכונתה סמנטית היפותזה מציאת ונאותות, שלמות על בהסתמך .3

המקורית ההיפותזה נכונות

סמנטיים בכלים הסמנטית ההיפותזה הוכחת .4

המקורית ההיפותזה הסקת .5

הוא זו בעבודה משתמשים אנו בהם הסמנטיים הכלים לכל שמשותף המרכזי העיקרון

נקבע אינו מורכבת נוסחה של האמת ערך זה, עיקרון לפי האי־דטרמיניזם. עיקרון

אחרים, תנאים שלה. המיידיות הנוסחאות תתי של האמת ערכי פי על יחיד באופן

עיקרון השונים. המודלים על להשפיע יכולים אלה, נוסחאות לתתי קשורים דווקא שלאו

של משפחות של לחקירה במיוחד שמתאימה רבה, מודולריות מאפשר האי־דטרמיניזם

את לשנות צורך ואין מקומי, סמנטי לתנאי מתאים היסק כלל כל כך, הוכחה. מערכות

ההוכחה. במערכת קטן שינוי עבור הסמנטית המסגרת כל
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כך: נראה בו והשימוש התחשיב מציאת תהליך לרוב, פרה־קונסיסטנטיות. לוגיקות וכן

מסויימת לוגיקה עבור נמצא סקוונטים תחשיב .1

בתחשיב כגזיר מוכח החתך כלל .2

כמסקנה מתקבלת התת־נוסחה תכונת .3

שנמצא התחשיב סמך על נבנה בלוגיקה תקפות לקביעת אלגוריתם לעתים, .4

תכונת את מוכיחים כאשר ראשית, תואר. עתה שזה בתהליך מרכזיים חסרונות שני ישנם

התת־נוסחה תכונת את להוכיח מאפשר לא הדבר חתך, מסילוק כמסקנה התת־נוסחה

תחשיבים מספר (כגון חתך מסילוק נהנים אינם אך אותה שמקיימים תחשיבים עבור

בתחשיב מתקיימות התכונות שתי כאשר אפילו מזאת, יתרה מודאליות). ללוגיקות

סילוק משפט את מאשר התת־נוסחה תכונת את להוכיח יותר קל רבות פעמים מסויים,

נוטה הוכחה חיפוש על המבוססים אלגוריתמים של פיתוח שנית, התחשיב. עבור החתך

אחרות. ללוגיקות תחשיבים עבור להכללה ניתנות ולא אד־הוק שמפותחות שיטות לכלול

עבורה. אלגוריתם של מחדש בנייה דורשת לוגיקה כל כך,

על להסתמך מבלי התת־נוסחה, בתתכונת בעיקר מתרכזת זו עבודה זאת, לאור

יותר. גנריים אלגוריתמים לפתח בכדי זו בתכונה ומשתמשת חתך, סילוק

זו עבודה

עצמנו את מגבילים איננו קלאסיות, לא לוגיקות של שניתן ככל רחב מגוון לכסות בכדי

כך, שלה. שימושיות הכללות מספר גם מאפשרים אלא בלבד, התת־נוסחה לתכונת

של נוסחאות תתי רק לא נדרשות בהם סקוונטים תחשיבי למשל, תכלול, חקירתנו

צורותיה על המוכללת התת־נוסחה תכונת את שלהן. שלילות גם אלא המוכח, הסקוונט

אלה הכללות אנליטיים. ייקראו אותה שמקיימים ותחשיבים אנליטיות, בשם נכנה השונות

2



תקציר

NK הראשונות: הטבעית הדדוקציה מערכות שתי את הציג גנצן 1934 בשנת

הלוגיקה עבור התחשיב אינטואיציוניסטית. ולוגיקה קלאסית לוגיקה עבור NJ–ו

טענה להוכיח אפשר אם התת־נוסחה: תכונת את מקיים ,NJ האינטואיציוניסטית,

שמשתמשת הנחות קבוצת מאותה הטענה אותה של הוכחה יש אז הנחות, של מקבוצה

מתקיימת לא זו חשובה תכונה אולם, ובהנחות. בטענה המצוי הסינטקטי בחומר ורק אך

.NK עבור

וגם הקלאסי במקרה גם התת־נוסחה תכונת את שמקיימים תחשיבים להשיג בכדי

תחשיבים .LJ–ו LK אלטרנטיביים: תחשיבים שני הציג גנצן האינטואיציוניסטי, במקרה

כך ,Γ ⇒ ∆ מהצורה ביטויים הם סקוונטים הראשונים. הסקוונטים לתחשיבי היו אלה

להפרדה ששמור מיוחד סימן הוא ⇒ ו– נוסחאות, של סופיות רשימות הן ו–∆ Γ–ש

מורכבים סקוונטים לפיה אחרת בגירסה משתמשים אנחנו זו בעבודה כי (נעיר ביניהן

במקום סקוונטים עם הישירה העבודה מרשימות). ולא נוסחאות של סופיות מקבוצות

התת־ מתכונת נהנים LJ–ו LK התחשיבים ששני להוכיח לגנצן איפשרה נוסחאות עם

שכולל היחיד הכלל שהוא החתך, שכלל להוכיח צורך היה זאת, להוכיח בכדי נוסחה.

המערכות. בשתי גזיר הינו למסקנה, קשורה לא כלל להיות שעלולה נוסחה בהנחות

מאינדוקציה המורכבת סינטקטית הוכחה דרש החתך, סילוק משפט המכונה זה, משפט

מקרים) (ותתי למקרים חלוקה כללה ההוכחה התחשיבים. בשני הוכחות על כפולה

של הפסוקי שהפרגמנט ומבטיחה זה, ממשפט מיידית נובעת התת־נוסחה תכונת רבים.

יכיח אינו הריק הסקוונט (כלומר, קונסיסטנטיים הם שהתחשיבים וכן כריע, התחשיבים

הוכחת בהם).

מהווים היפר־סקוונטים) תחשיבי כגון שלהם, הכללות (וכן סקוונטים תחשיבי מאז,

והלוגיקה הקלאסית ללוגיקה בנוסף קלאסיות. לא לוגיקות של ההוכחה בתורת מרכזי כלי

לא ללוגיקות התת־נוסחה תכונת בעלי סקוונטים תחשיבי נמצאו האינטואיציוניסטית,

עמומות, לוגיקות רב־ערכיות, לוגיקות מודאליות, לוגיקות כגון אחרות, רבות קלאסיות

1



מודגם המוצעים הקריטריונים של הערך בנוסף, זו. תוצאה של פרטי כמקרה כאן

מציגים. שאנו ומועילים חדשים תחשיבים מספר של האנליטיות הוכחת ידי על

תכונות הן חתך וסילוק אנליטיות תחשיבים, של רחב מגוון שעבור מראים אנו •

ואנליטיות במידה חתך, סילוק של הוכחות לפשט יכולה זו תוצאה שקולות.

המספיקים מהקריטריונים שחלק מראים אנו זו, תוצאה באמצעות הוכחה. כבר

חתך. סילוק גם מבטיחים לאנליטיות

משפחה עבור יוניפורמי אלגוריתם לבנות בכדי האנליטיות בתכונת משתמשים אנו •

לבעיית יעילה רדוקציה על מבוסס האלגוריתם סקוונטים. תחשיבי של רחבה

תיאור גם כוללת העבודה ויעילים. רבים כלים קיימים לה הקלאסית, הספיקות

שלו. הריצה זמני וניתוח האלגוריתם מימוש של

דטרמיניסטיות, לא מטריצות של הסמנטית המסגרת את חוקרים אנו לבסוף, •

שמוגדרות לוגיקות עבור סקוונטים תחשיבי של לבנייה ככלי בה ומשתמשים

תפקיד שלה ומראים ,rexpansionה־ פעולת את מציגים אנו אחרים. באמצעים

תחשיבי של בבנייתן זו סמנטית מסגרת של בשימוש סמוי) כה עד כי (אם מכריע

קלאסיות. לא ללוגיקות אנליטיים סקוונטים
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תמצית

של רחב למגוון שמתאים ההוכחה, בתורת מרכזי כלי מהווים סקוונטים תחשיבי

קלאסיות לא לוגיקות וכן אינטואיציוניסטית, ולוגיקה קלאסית לוגיקה לרבות לוגיקות,

אנליטיות, היא שימושיים סקוונטים תחשיבי של ביותר החשובה התכונה אחרות. רבות

הוא סקוונטים תחשיב כאשר התת־נוסחה. בתכונת מסתכמת רבים במקרים אשר

תחשיבים עבור בתחשיב. ההוכחות של החיפוש מרחב על מגבלה מתקבלת אנליטי,

התחשיב של כריעותו ואז החיפוש, מרחב על סופי לחסם מוביל לרוב הדבר פסוקיים,

מיידי. באופן מתקבלת

הוכחת כלומר, חתך, סילוק הוכחת דרך עוברת אנליטיות להוכחת הסטנדרטית הדרך

וכל מהוכחות, החתכים כל את לסלק ניתן כאשר אכן, בתחשיב. החתך כלל של גזירותו

שלהם, המסקנות מתוך סינטקטי חומר ורק אך בהנחותיהם כוללים ההיסק כללי יתר

מוטיבציה בו. המצוי הסינטקטי בחומר שימוש תוך יכיח הסופי שהסקוונט נובע מיד

לחיפוש במיוחד מתאימים חתך ללא שתחשיבים העובדה היא חתך סילוק להוכחת נוספת

הוכחה.

מוכיחים כאשר כך על רק הסתמכות חתך, סילוק שבהוכחת השימושיות למרות

חתך. מסילוק נהנים לא אך אנליטיים, שהינם רבים תחשיבים כוללת אינה אנליטיות

אנליטיות להוכיח יותר שקל ייתכן חתך, סילוק להוכיח ניתן כאשר אפילו מזאת, יתרה

ישיר. באופן

המרכזית תרומתנו סקוונטים. תחשיבי של אנליטיות הוא זו עבודה של המרכזי הנושא

הבאים: הדברים את שכוללת זו, תכונה של של כללית חקירה היא

תכונת של קיומה את שמבטיחים וכריעים פשוטים קריטריונים מספקים אנו •

אנליטיות של מסובכות הוכחות להחליף יכולים אלה קריטריונים האנליטיות.

מוכחת רבים ידועים תחשיבים של האנליטיות למעשה, חתך. סילוק דרך שעוברות
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