
The Raymond and Beverly Sackler Faculty of Exact Sciences

The Blavatnik School of Computer Science

A Logical Investigation of

Context Dependency

This thesis is submitted in partial ful�llment of the requirements

towards the M.Sc. degree

by

Yehonathan Zohar

This thesis was prepared under the supervision of

Prof. Arnon Avron

April, 2013

Abstract

Tolerance contextual logic (TCL) is designed to deal with "tolerant"

predicates (such as "tall"). This is done by extending the language of

classical logic by a new context operator, which is meant to express the

context in which a certain claim is made. Thus in the solution of the

Sorites paradox given in TCL, a predicate like "tall" is taken to be con-

text dependent and tolerant (the latter in the sense that its corresponding

truth value is not a�ected by small changes). TCL has been introduced

in [Ga-2010], where it is characterized both semantically and proof theo-

retically. However, here we show that the deductive system and semantics

presented there do not match.

Taking TCL as our starting point, in this work we suggest three se-

mantic frameworks for handling context dependency, and provide sound

and complete proof systems for all of them. One of these semantic frame-

works is equivalent to the original (from [Ga-2010]), while the original

deductive system is sound and complete for another. The third is a more

general framework, which is included (as a consequence relation) in the

other two. After the presentation of these frameworks we investigate their

logical characteristics, as well as their relations to each other and to clas-

sical �rst order logic. We end with a solution of the Sorites paradox which

is based on the notions of context dependency and tolerance.

Contents

1 Introduction 1

1.1 Background . 1
1.2 Contributions . 1

2 Preliminaries 2

2.1 Semantics . 2
2.1.1 Classical Logic - The Substitutional Approach 2
2.1.2 Fuzzy Logic . 3

2.2 Proof Theory . 4
2.2.1 Classical Logic - HFOL . 4

3 Gaifman's Framework 4

3.1 Language . 4
3.1.1 Conventions . 5

3.2 Semantics . 5
3.2.1 The Original Framework . 5
3.2.2 The Unimportance of Inclusion . 7

3.3 Deductive System . 8
3.4 Context Independent Predicates . 8
3.5 Relation to The Original Framework . 9

4 New Semantics 10

4.1 C-Structures . 11
4.1.1 De�ning `C . 11

4.2 T -Structures . 12
4.2.1 De�ning `TC . 13
4.2.2 Another Characterization of `TC . 14

4.3 R-Structures . 15
4.3.1 Re�exive Functions . 15
4.3.2 De�ning `RC . 16
4.3.3 Another Characterization of `RC . 17
4.3.4 Relation with GS-Semantics . 17

4.4 Context Independent Predicates . 20
4.5 Summary . 20

5 Corresponding Deductive Systems 20

5.1 The Systems . 21
5.2 Soundness Theorems . 21
5.3 Completeness Theorems . 23

6 Properties of the New Consequence Relations 25

6.1 Rule N . 25
6.2 Axiom T . 27
6.3 Replacement of Equivalents . 28
6.4 Replacement of Congruent Formulas . 29
6.5 Summary . 30

7 Reduction to Classical Logic 30

7.1 Translation of Formulas . 31
7.2 Translation of Semantics . 31

8 The Sorites Paradox 35

8.1 A Rigorous Formulation of the Paradox . 35
8.2 The Solution(s) of Fuzzy Logic . 35
8.3 Gaifman's Solution . 36

8.3.1 The De�nition of feasible (C) . 37
8.3.2 The Solution . 37
8.3.3 Other Contextual Solutions . 41

8.4 Comparison between The Approaches . 42

9 Conclusion and Further Research 43

10 Appendix 43

10.1 Using The Substitutional Approach . 43
10.2 Proof of Lemma 49 . 44

1 Introduction

1.1 Background

Arti�cial Intelligence is a multidisciplinary �eld of research. From the computer scientist
view-point, it �concerns with designing ... systems that exhibit the characteristics we
associate with intelligence in human behavior� [Barr-1981]. One of those characteristics is
our ability to reason about vague predicates (e.g. �tall�). A naive formal treatment of our
use of vague predicates leads to the famous Sorites paradox. One example of this paradox,
which is a consequence of the use of the vague predicate �tall� is as follows: It is agreeable
that a man of height 210 cm is tall, and that a man of height 100 cm isn't tall. It is also
agreeable that 1 cm can't make the di�erence, i.e. that if a man of height x cm is tall,
then so is a man of height x− 1 cm. From this we can conclude that a man of height 209
cm is tall. Repeating this process 110 times provides the contradictory conclusion that a
man of height 100 cm is tall. The fact that the naive formalization of classical logic fails
to capture our ordinary use of vague predicates in natural language doesn't mean that
this use can't be modeled in a formalized way. Indeed, many formal models for the use
of vague predicates, and in particular solutions to the Sorites paradox, were proposed in
the literature. This work is mainly concerned with one of these approaches, namely the
contextual approach.1 More speci�cally, most of this work concerns with that of [Ga-2010],
where it is claimed that a main characteristic of certain vague predicates is the fact that
they are tolerant to small changes (according to some natural corresponding method of
measuring) in the objects they classify (e.g. the tall example above). Tolerant predicates
are context dependent, which means that their interpretation depends on the contexts in
which they are being used. These observations lead to the construction of a new logical
framework, namely Tolerance Contextual Logic (TCL), an extension of classical �rst order
logic, in which it is possible to express the context in which a sentence is uttered. This
thesis investigates the properties of the proposed framework and generalizes it to a more
general framework of context dependency.

1.2 Contributions

Soundness and Completeness In his work, Gaifman presents a formal language, a se-
mantics for it which captures the idea of tolerance, and a deductive system. Although
the deductive system is intended to provide a sound and complete system for the se-
mantics, we show below that it doesn't. Therefore, We present a revised deductive
system which is obtained from the original one by the addition of a single axiom
scheme. The new system is sound and complete for the original semantics. In addi-
tion, we provide a new semantics for which the original system is sound and complete,
a semantics that has a value of its own. This new semantics is then easily modi�ed
to get an alternative semantics to the original (semantic) consequence relation. It is
of course equivalent to the original semantics, but has a simpler form.

Expressive Power The new frameworks extend the language of classical logic by a new
operator. However, we present a reduction between them to classical logic.

Types of Context Dependency TCL is a general tool for dealing with context depen-
dency. One important application of it is modeling of tolerant predicates. However,
tolerance and context dependency are not the same. It is true that context depen-
dency is a common property of tolerant predicates, however the converse need not
hold - there are context dependent predicates which are not tolerant. For example,
consider the predicate �stranger�. A man might be considered a stranger in the com-
pany of a particular group of people, and familiar in the company of another group of

1A survey of some contextual approaches to vagueness may be found in [Th].

1

people. Hence the predicate �Stranger� is context dependent. However, this predicate
is not connected with any natural measuring method and hence it isn't tolerant. The
new semantics and deductive systems that we present are constructed in a modular
way: We start from a basic semantics which correspond to a basic deductive system,
and then we add semantical constraints and axioms, hence constructing other new
logics. Each axiom or semantical constraint has a speci�c role in the meaning of the
induced consequence relation.

Generalization [Ga-2010] introduces a language in which there is only a single unary
context-dependent predicate and all the rest are classical. In this work we consider
more general languages with arbitrarily many context-dependent predicates of arbi-
trary arities.2 More importantly, all predicates in these languages are potentially
context dependent, but it is possible to add special axioms and corresponding se-
mantical constraints that force a predicate to be context-independent (i.e. classical).

The Sorites Paradox As an example of the usage of contextual logic, we formalize a
solution to the Sorites paradox which is based on it.

2 Preliminaries

2.1 Semantics

In all de�nitions, L is a �rst order language.

2.1.1 Classical Logic - The Substitutional Approach

There are two main approaches to classical logic semantics: The objectual approach and
the substitutional approach. The �rst is based on assignments of objects to variables,
while the second is based on naming the objects and then substituting those names for
variables. We chose to use the substitutional approach as a basis rather than the more
common objectual approach because of technical di�culties that the latter causes in the
present context. Now we provide a short survey of the substitutional approach, based on
[Sh-1967].

De�nition 1.

1. A �rst order structure M for L consists of a domain |M | and an interpretation
function IM which interprets all constant symbols, function symbols and predicate
symbols.

2. Let M be a �rst order structure. L (M) is the �rst order language obtained from L
by adding for each individual a ∈ |M | a constant symbol a which will be called the
name of that individual. We extend IM to be de�ned on names, so that for every
individual a ∈ |M |, I (a) = a.

3. Let ϕ be a formula of L with the free variables x1, ..., xn. LetM be a �rst order struc-
ture for L. An M -instance of ϕ is a closed formula of the form ϕ {a1/x1, ..., an/xn}
in L (M), with a1, ..., an being individuals of |M |. If ϕ is a sentence (closed formula),
the only M -instance of it is itself.

Remark 1.

1. Since most of our �rst-order structures will be denoted by M , we will use I rather
than IM to denote the interpretation function of M .

2The possibility of doing this is partially noted in [Ga-2010].

2

2. We will use the word �instance� with two di�erent meanings. The �rst is for an
M -instance as was de�ned in De�nition 1. The second is for the usual notion of an
instance of an axiom scheme. To ensure that there is no confusion, we shall clarify
in every use of the word �instance� which of these two notions is meant.

De�nition 2. LetM = 〈|M | , I〉 be a �rst order structure and let ϕ be an L (M)-sentence.
The satisfaction relation between M and ϕ (in symbols: M |= ϕ) is de�ned as follows:

1. M |= P (t1, ..., tn) if 〈I (t1) , ..., I (tn)〉 ∈ I (P).

2. M |= ¬ψ if M 6|= ψ.

3. M |= ψ1 → ψ2 if either M |= ψ2 or M 6|= ψ1.

4. M |= ∀xψ if for every M -instance ψ′ of ψ M |= ψ′.

De�nition 3. LetM = 〈|M | , I〉 be a �rst order structure and let ϕ be an L-formula. The
satisfaction relation between M and ϕ (in symbols M |= ϕ) is de�ned as follows: M |= ϕ
if for every M -instance ϕ′ of ϕ M |= ϕ.

De�nition 4. Let T be a theory and ϕ be a formula. T `FOL ϕ if for every M , if M |= T
then M |= ϕ.

Lemma 1. Let M be a �rst-order structure for L, t a ground-term of L (M) and a the
name of I (t).

1. If b is a term of L (M) in which no variable except x occurs, then I (b {t/x}) =
I (b {a/x}).

2. If ϕ is a formula of L (M) in which no variable except x is free, then M |= ϕ {t/x}
i� M |= ϕ {a/x}.

2.1.2 Fuzzy Logic

Later in this work, when we present a solution to the Sorites paradox using contextual
logic, we will also present a solution given by fuzzy logic. We chose to use �ukasiewicz
fuzzy logic, since it seems to provide the simplest solution to the paradox among the main
three fuzzy logics.

De�nition 5. An L-structure M for L is a �rst order structure 〈|M | , I〉 such that I
is de�ned di�erently over predicate symbols: For every predicate symbol P of arity n,
I (P) : |M |n → [0, 1]. The de�nition of names and M -instances are the same as in �rst-
order classical structures. For every sentence ϕ, M (ϕ) ∈ [0, 1] and is de�ned as follows:3

1. M (P (t1, ..., tn)) = I (P) (〈I (t1) , ..., I (tn)〉).

2. M (ψ1 → ψ2) = min (1, 1−M (ψ1) +M (ψ2)).

3. M (¬ψ) = 1−M (ψ).

4. M (ψ1 ∧ ψ2) = min (M (ψ1) ,M (ψ2)).

5. M (ψ1 ∨ ψ2) = max (M (ψ1) ,M (ψ2)).

3We use the de�nitions from pages 179, 263 and 265 of [Be-2008], but note that we have changed them
to �t the substitutional approach.

3

6. M (∀xψ) = inf {M (ψ {a/x}) : a ∈M}.

7. M (∃xψ) = sup {M (ψ {a/x}) : a ∈M}.

M |= ϕ if M (ϕ) = 1.

Remark 2. The above de�nition can easily be generalized for formulas, but this is not
necessary for the present work.

2.2 Proof Theory

2.2.1 Classical Logic - HFOL

Any of the standard Hilbert-style deductive systems for classical logic may serve as a basis
for the sequel. Here we use the succinct and convenient system that is presented on pages
7-8 and 13 of [Ha-1998].

Rules of inference

• Modus Ponens (MP) A A→B
B

• Generalization (Gen) A
∀xA

Axiom Schemes

• ϕ→ (ψ → ϕ).

• (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)).

• (¬ϕ→ ¬ψ)→ (ψ → ϕ).

• ∀xϕ→ ϕ {t/x} where t is substitutable for x in ϕ.

• ∀x(ϕ→ ψ)→ (ϕ→ ∀xψ) where x isn't free in ϕ.

3 Gaifman's Framework

In this section we present the framework of TCL (tolerance contextual logic), which was
introduced in [Ga-2010]. Note that we have made some modi�cations to the original
presentation. At the end of this section these modi�cations will be noted. In addition,
we include a new result regarding the semantics, which shows that one of its original
requirements is redundant.

3.1 Language

De�nition 6. A C-language (C for context) is a �rst order language, extended by the
following:

1. There are two new symbols: '[' and ']'.

2. There is a new unary operator, called the context operator. It is obtained by using
'[' and ']' with a set of terms (which is called the context set) between them.

De�nition 7. Atomic formulas in L are formulas of the form R (t1, ..., tn), where R is any
predicate of any arity n.

Well-Formed Formulas (w�s) in L are de�ned recursively:

4

1. Every atomic formula is a w�.

2. If ϕ and ψ are w�s and x is a variable symbol then (¬ϕ), (ϕ→ ψ), (ϕ ∧ ψ), (ϕ ∨ ψ),
(ϕ↔ ψ), (∀xϕ) and (∃xϕ) are w�s.4

3. If ϕ is a w�, n > 0 and t1, ..., tn are terms then [t1, ..., tn] (ϕ) is a w�. All occurrences
of variables in t1, ..., tn are free in [t1, ..., tn]ϕ for each ϕ.

Remark 3. We also allow formulas of the form []ϕ, and identify []ϕ with ϕ.

3.1.1 Conventions

Let L be a C-language.

1. The complexity of an L-formula is the number of operators (connectives, quanti�ers
and nonempty context operators) in it. 5

2. We omit brackets where there is no danger for confusion.

3. We shall denote the set of predicate symbols of L by PRED (L).

4. For every term or formula A, Fv (A) is the set of free variables occurring in A.

5. A (x1, ..., xn) ranges over terms or formulas (depending on context) in which Fv (A) ⊆
{x1, ..., xn}.

6. If C = {t1, ..., tn} and C ′ = {s1, ..., sm} then [C,D] = [t1, ..., tn, s1, ..., sm].

3.2 Semantics

3.2.1 The Original Framework

De�nition 8. Let X be any set.

1. FIN (X) is the set of all �nite subsets of X.

2. FIN+ (X) := FIN (X) \ {∅}.

De�nition 9. A C-structure for L is a pair (M,F) such that:

1. M = 〈|M | , I〉 is a �rst order structure such that I interprets only constant symbols
and function symbols.

2. F : PRED (L)→
(
FIN (|M |)→

⋃∞
k=1 P

(
|M |k

))
is a function such that for every

predicate P of arity n, F (P) : FIN (|M |) → P (|M |n). F (P) is called the context
dependency function of P , or in short, the cdf of P .

De�nition 10. Let (M,F) be a C-structure and let C be a set of ground terms. I (C) =
{I (t) : t ∈ C}.

4Similarly to many texts of classical logic, we take only ¬, → and ∀ as primitives.
5The reason we only count nonempty context operators (i.e. don't count []) is that []ϕ is identi�ed

with ϕ, and hence should have the same complexity measure.

5

De�nition 11. The GS-satisfaction relation (G for Gaifman, S for subsets) between C-
structures (M,F) and sentences ϕ of L (M) (in symbols: (M,F) |=GS ϕ) is de�ned as
follows:

1. (M,F) |=GS P (t1, ..., tn) if 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (t1) , ..., I (tn)}).

2. (M,F) |=GS ψ1 → ψ2 if either (M,F) |=GS ψ2 or (M,F) 6|=GS ψ1.

3. (M,F) |=GS ¬ψ if (M,F) 6|=GS ψ.

4. (M,F) |=GS ∀xψ if for every name a of L (M), (M,F) |=GS ψ {a/x}.

5. (M,F) |=GS [t1, ..., tm]ψ for m > 0 if (M,FY) |=GS ψ where:

(a) Y := {I (t1) , ..., I (tm)}.
(b) FY := λPn.λX ∈ FIN (|M |) .F (Pn) (X ∪ Y) ∩Xn where Pn varies over pred-

icates of arity n.6

Remark 4. For convenience, we shall sometimes denote F (P) by fP and FY (P) by fPY .

De�nition 12. Let (M,F) be a C-structure and ϕ a formula. (M,F) GS-satis�es ϕ
(notation: (M,F) |=GS ϕ) if (M,F) |=C ϕ

′ for every M -instance ϕ′ of ϕ.

Lemma 2. Let (M,F) be a C-structure for L, t a ground-term of L (M) and a the name
of I (t). If b is a term of L (M) in which no variable except x occurs, then I (b {t/x}) =
I (b {a/x}).

Proof. Since we didn't change the de�nition of I over terms and function symbols, this
follows from the original lemma, whose proof can be found on pages 19-20 of [Sh-1967].

Lemma 3. Let (M,F) be a C-structure for L, t a ground-term of L (M), and a the
name of I (t). If ϕ is a formula of L (M) in which no variable except x is free, then
(M,F) |=GS ϕ {t/x} i� (M,F) |=GS ϕ {a/x}.

Proof. We use induction on the complexity of ϕ.

1. If ϕ is P (s1, ..., sn) then:
(M,F) |=GS P (s1 {t/x} , ..., sn {t/x})
i� 〈I (s1 {t/x}) , ..., I (sn {t/x})〉 ∈ fP ({I (s1 {t/x}) , ..., I (sn {t/x})})
i� 〈I (s1 {a/x}) , ..., I (sn {a/x})〉 ∈ fP ({I (s1 {a/x}) , ..., I (sn {a/x})}) (by Lemma
2) i� (M,F) |=GS P (s1 {a/x} , ..., sn {a/x}).

2. If ϕ is ¬ψ, ψ1 → ψ2, or ∀xψ then the proof is the same as on pages 19-20 of [Sh-1967].

3. If ϕ is [t1, ..., tn]ψ for n > 0 then: (M,F) |=GS ϕ {t/x} i�
(M,F) |=GS [t1 {t/x} , ..., tn {t/x}]ψ {t/x} i� (M,FY) |=GS ψ {t/x} with
Y = {I (t1 {t/x}) , ..., I (tn {t/x})} i� (M,FY ′) |=GS ψ {t/x} with
Y ′ = {I (t1 {a/x}) , ..., I (tn {a/x})} (by Lemma 2) i� (M,FY ′) |=GS ψ {a/x} with
Y ′ = {I (t1 {a/x}) , ..., I (tn {a/x})} (by the i.h.) i�
(M,F) |=GS [t1 {a/x} , ..., tn {a/x}]ψ {a/x} i� (M,F) |=GS ϕ {a/x}.

De�nition 13. An S-structure is a C structure (M,F) in which for every n ∈ N,
P ∈ PRED (L) of arity n and for every X ∈ FIN+ (|M |) fP (X) ⊆ Xn.

6i.e. for every P of arity n and for every X ∈ FIN (|M |) and Y ∈ FIN+ (|M |), FY (P) (X) =
F (P) (X ∪ Y) ∩Xn.

6

Lemma 4. Assume (M,F) is an S-structure. Let Y ∈ FIN (|M |) and let FY be the
function de�ned by the GS-satisfaction relation. Then (M,FY) is also an S-structure.

De�nition 14. Let T be a theory and ϕ be a formula. T `SGS ϕ if for every S-structure
(M,F), if (M,F) |=GS T then (M,F) |=GS ϕ.

`SGS is the consequence relation which is induced by the original semantics from [Ga-2010].

3.2.2 The Unimportance of Inclusion

In this section we show that the inclusion restriction (that fP (X) ⊆ Xn) is actually
redundant. The same satisfaction relation can be de�ned over general C-structures, with
a slight change in the de�nition. This fact makes the semantics easier and simpler to use
in some contexts, as it omits the need to check the discussed requirement of cdfs.

Theorem 1. Let |=G be the satisfaction relation obtained from |=GS by changing the def-
inition of fPY from λX ∈ FIN (|M |) .fP (X ∪ Y) ∩Xn to λX ∈ FIN (|M |) .fP (X ∪ Y).
Let `G be the consequence relation which is induced by |=G over C-structures (i.e. T `G ϕ
if for every C-structure (M,F), if (M,F) |=G T then (M,F) |=G ϕ). Then `SGS=`G.

Proof. We prove this theorem using some new de�nitions and lemmas:

Lemma. Let (M,F) be a C-structure for L, t a ground-term of L (M) and a the name
of I (t). If ϕ is a formula of L (M) in which no variable except x is free, then (M,F) |=G

ϕ {t/x} i� (M,F) |=G ϕ {a/x}.

Proof. This is proved in a similar manner to the proof of Lemma 3.

De�nition. Let (M,F) be a C-structure.

1. Let P ∈ PRED (L) be a predicate of arity n.
(F (P))∗ = λX ∈ FIN (|M |) . (F (P)) (X) ∩Xn.

2. F ∗ = λP ∈ PRED (L) . (F (P))∗.

Remark. Let (M,F) be a C-structure. Then (M,F ∗) is an S-structure.

Lemma. Let (M,F) be a C-structure, let ϕ be an L (M) sentence and let Y ∈ FIN+ (|M |).
Then (FY)∗ = (F ∗)Y where FY is de�ned in De�nition 11 (i.e. for |=GS and not for |=G).

Proof. Let P ∈ PRED (L) be any predicate of arity n. We need to prove that (FY (P))∗ =
(F ∗)Y (P). LetX ∈ FIN (|M |). We need to prove that ((FY (P))∗) (X) = ((F ∗)Y (P)) (X).
(FY (P))∗ (X) = (FY (P)) (X) ∩ Xn = F (P) (X ∪ Y) ∩ Xn ∩ Xn = F (P) (X ∪ Y) ∩
Xn. ((F ∗)Y (P)) (X) = F ∗ (P) (X ∪ Y) ∩ Xn = F (P) (X ∪ Y) ∩ (X ∪ Y)n ∩ Xn =
F (P) (X ∪ Y) ∩Xn .

Lemma. Let ϕ be a sentence. Then for every C-structure (M,F), (M,F) |=G ϕ i�
(M,F ∗) |=GS ϕ.

Proof. We prove this by induction on the complexity of ϕ.

1. If ϕ = P (t1, ..., tn) then: For every C-structure (M,F), (M,F) |=G P (t1, ..., tn)
i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (t1) , ..., I (tn)})
i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (t1) , ..., I (tn)}) ∩ {I (t1) , ..., I (tn)}n
= (F (P))∗ ({I (t1) , ..., I (tn)}) i� (M,F ∗) |=GS P (t1, ..., tn).

7

2. If ϕ is ¬ψ, ψ → φ or ∀xψ then this is done as usual. As an example, let us assume
that ϕ = ∀xψ: For every C-structure (M,F), (M,F) |=G ∀xψ i� for every a ∈ |M |
(M,F) |=G ψ {a/x} i� for every a ∈ |M |, (M,F ∗) |=GS ψ {a/x} (by the i.h.) i�
(M,F ∗) |=GS ∀xψ.

3. If ϕ = [C]ψ then: let (M,F) be a C-structure. (M,FY) with Y = I (C) is also a
C-structure. Now: (M,F) |=G [C]ψ i� (M,FY) |=G ψ i� (M, (FY)∗) |=GS ψ (by the
i.h.) i� (M, (F ∗)Y) |=GS ψ (by the previous lemma) i� (M,F ∗) |=GS [C]ψ.

Corollary. Let ϕ be a formula. Then for every C-structure (M,F), (M,F) |=G ϕ i�
(M,F ∗) |=GS ϕ.

End of proof of Theorem 1. Let T be a theory and let ϕ be a formula. We First assume
T `G ϕ and prove T `SGS ϕ. Let (M,F) be an S-structure such that (M,F) |=GS T . Since
(M,F) is an S-structure, (M,F) = (M,F ∗). By the above corollary, (M,F) |=G T . By
our assumption, (M,F) |=G ϕ, and again by the previous corollary, (M,F) |=GS ϕ. For the
converse, we assume T `SGS ϕ and prove T `G ϕ. Let (M,F) be a C-structure such that
(M,F) |=G T . By the above corollary, (M,F ∗) |=GS T . Since T `SGS ϕ, (M,F ∗) |=GS ϕ,
and again by the above corollary, (M,F) |=G ϕ.

3.3 Deductive System

Now we present the deductive system given in [Ga-2010].

De�nition 15. HCT is the deductive system obtained from HFOL (Section 2.2.1) by
the addition of the following axiom schemes:

• (CC) [C] [C ′]ϕ↔ [C,C ′]ϕ.

• (C¬) [C]¬ϕ↔ ¬ [C]ϕ.

• (C→) [C] (ϕ→ ψ)↔ ([C]ϕ→ [C]ψ) .

• (C∀) [C]∀xϕ↔ ∀x [C]ϕ if x doesn't occur in C.

• (T) P (x1, ..., xn)↔ [x1, ..., xn]P (x1, ..., xn).

Remark 5. Note that axiom T holds only for atomic formulas, i.e. it doesn't hold that
`HCT ϕ (x1, ..., xn) ↔ [x1, ..., xn]ϕ (x1, ..., xn) for every ϕ (x1, ..., xn). This property will
be discussed in Section 6.2.

3.4 Context Independent Predicates

Similarly to to the possible existence of crisp predicates in fuzzy logic, there can exist
context independent predicates in contextual logics. In fuzzy logic, the crisp predicates have
an interpretation function whose range is {0, 1} (rather than [0, 1] for fuzzy predicates). In
this section we provide a similar semantical condition and an equivalent proof-theoretical
condition for context independent predicates.

The axiom scheme which best describes the context independence of a predicate R is
now de�ned:

De�nition 16. INDR is the following axiom Scheme:

(INDR) R (x1, ..., xn)↔ [C]R (x1, ..., xn)

for every context set C.

8

Hence, if one would like to construct a theory in which R is considered context inde-
pendent, every instance of (INDR) should be a theorem of that theory. Now we provide
a characterization of the S-structures which models the instances of (INDR).

De�nition 17. Let (M,F) be an S-structure and let R be any n-ary predicate. We say
that R is context independent in (M,F) if for every 〈a1, ..., an〉 ∈ |M |n and for every
X ∈ FIN (|M |), 〈a1, ..., an〉 ∈ fR (X ∪ {a1, ..., an}) i� 〈a1, ..., an〉 ∈ fR ({a1, ..., an}).

Lemma 5. Let (M,F) be an S-structure and let R be any n-ary predicate. R is context
independent in (M,F) i� fR = λX.

{
〈a1, ..., an〉 ∈ Xn : 〈a1, ..., an〉 ∈ fR ({a1, ..., an})

}
.

Proof. Assume R is context independent in (M,F). Let X ∈ FIN (|M |). We prove that
fR (X) =

{
〈a1, ..., an〉 ∈ Xn : 〈a1, ..., an〉 ∈ fR ({a1, ..., an})

}
. Let 〈a1, ..., an〉 ∈ fR (X).

We show that 〈a1, ..., an〉 ∈ fR ({a1, ..., an}) ∩Xn. Since fR (X) ⊆ Xn, 〈a1, ..., an〉 ∈ Xn

and hence X = X ∪ {a1, ..., an}. This means that 〈a1, ..., an〉 ∈ fR (X ∪ {a1, ..., an}).
Therefore, since R is context independent in (M,F), 〈a1, ..., an〉 ∈ fR ({a1, ..., an}). For the
other direction, let 〈a1, ..., an〉 ∈ fR ({a1, ..., an})∩Xn. We show that 〈a1, ..., an〉 ∈ fR (X).
Since R is context independent in (M,F), 〈a1, ..., an〉 ∈ fR (X ∪ {a1, ..., an}) ∩Xn. Since
{a1, ..., an} ⊆ X, 〈a1, ..., an〉 ∈ fR (X).

Lemma 6. Let (M,F) be an S-structure. Then R is context independent in (M,F) i�
for every C (M,F) |=GS R (x1, ..., xn)↔ [C]R (x1, ..., xn).

Proof. Assume that R is context independent in (M,F). Let
R (a1, ..., an)↔ [t1, ..., tm]R (a1, ..., an) be anM -instance ofR (x1, ..., xn)↔ [C]R (x1, ..., xn).
(M,F) |=GS R (a1, ..., an) i� 〈a1, ..., an〉 ∈ fR ({a1, ..., an}) i�
〈a1, ..., an〉 ∈ fR ({a1, ..., an, I (t1) , ..., I (tm)}) ∩ {a1, ..., an}n = fRY ({a1, ..., an}) with Y =
{I (t1) , ..., I (tm)} i� (M,FY) |=GS R (a1, ..., an) i� (M,F) |=GS [t1, ..., tm]R (a1, ..., an).
Now assume (M,F) |=GS R (x1, ..., xn) ↔ [C]R (x1, ..., xn). Let {b1, ..., bm} ∈ FIN (|M |)
and let a1, ..., an ∈ |M |. Then (M,F) |=GS R (a1, ..., an) ↔

[
b1, ..., bm

]
R (a1, ..., an).

This means that (M,F) |=GS R (a1, ..., an) i� (M,F) |=GS

[
b1, ..., bm

]
R (a1, ..., an) i�

(M,FY) |=GS R (a1, ..., an) with Y = {b1, ..., bm}. Therefore, 〈a1, ..., an〉 ∈ fR ({a1, ..., an})
i� 〈a1, ..., an〉 ∈ fR ({a1, ..., an} ∪ {b1, ..., bm}) ∩ {a1, ..., an}n i�
〈a1, ..., an〉 ∈ fR ({a1, ..., an} ∪ {b1, ..., bm}).

3.5 Relation to The Original Framework

The framework presented in the previous sections is a modi�ed version of the original
framework from [Ga-2010]. Some of the modi�cations were introduced in order to provide
a more general and modular framework, while others where introduced for simplicity. In
this section the di�erences between the two frameworks are described.

1. In the original language, the set of predicates is divided into two subsets: Context
dependent predicates and context independent predicates. The semantical interpre-
tation of context independent predicates is classical (i.e. the interpretation function
of a context independent predicate is a set of tuples), where the semantical inter-
pretation of context dependent predicates is not. In addition, the original deductive
system contains INDR as an axiom scheme for every context independent predicate
R. In our version, the set of predicates is not divided into two subsets, and all pred-
icates are treated the same, semantically and proof theoretically. Whenever there
is a need to declare a predicate R as context-independent, one simply adds INDR

as a special axiom. Obviously, this does not change anything proof theoretically,
as it is possible to include INDR for a special set of predicates and hence obtain
the original version. Semantically, it makes our presentation more general, uniform

9

and succinct, as our satisfaction relation doesn't distinguish between types of pred-
icates. The semantical characterization of context independent predicates (Section
3.4) ensures that they are handled properly in our version of the semantics.

2. In [Ga-2010], inside the context operator there are �nite lists of terms while here we
use �nite sets of terms. This does not change the meaning of the context operator,
both semantically and proof theoretically: Semantically, the interpretation functions
are indi�erent to the order of the terms inside the context operator (this holds for
all interpretation functions, both in our version and in the original version). Proof
theoretically, this is ensured by the inclusion of the following axiom scheme in the
original deductive system:

[x1, ...xn]ϕ→
[
x′1, ..., x

′
m

]
ϕ

where {x1, ..., xn} = {x′1, ..., x′m}.

3. In [Ga-2010], the semantics and deductive system are described for the special case
where there exists a single context dependent predicate which is unary. It is noted
there that a generalization to many predicates of di�erent arities is possible, and
some comments as for the way such a generalization could be achieved are given. In
this work we use a generalized form of the framework from the beginning.

4. The semantics of [Ga-2010] is de�ned using the objectual approach, while we use
the substitutional approach. One of the main contributions of this work is the intro-
duction of a new framework for context dependency, which is based on the original
framework. In our new framework, all our semantics are de�ned using the substitu-
tional approach, because of technical di�culties that the objectual approach causes
in our de�nitions. For the purpose of showing the connection between our framework
and the original framework, we chose to present the latter using the substitutional
approach as well. It is routine to see that using the substitutional approach in this
semantics doesn't change anything in its induced consequence relation. A detailed
proof of this fact can be found in the appendix (Section 10.1).

4 New Semantics

In this section we present new semantics for C-languages (De�nition 6). We start by in-
troducing a new satisfaction relation between C-structures (De�nition 9) and formulas.
Then, we present several kinds of C-structures, each induces (along with the new satis-
faction relation) a di�erent consequence relation. We shall generally call these semantical
frameworks �C-semantics� (as opposed to Gaifman's �G-semantics�).

The C-satisfaction relation is based on classical �rst-order semantics, with two excep-
tions: the interpretation of the context operator (which does not exist in classical logic)
and the interpretation of predicates.

In the C-satisfaction relation, a predicate's interpretation isn't a set of tuples, but
rather a function which assigns to every context (�nite set of objects) a special set of
tuples. This means that the interpretation may be di�erent for every context. Classical
predicates (or context independent predicates) form a special case - their interpretation is
constant, and is not a�ected by context.

Throughout this section, L is a C-language.

10

4.1 C-Structures

4.1.1 De�ning `C

De�nition 18. The C-satisfaction relation between C-structures (M,F) and L (M)-
sentences ϕ (in symbols: (M,F) |=C ϕ) is de�ned as follows, for m, k ≥ 0 and n > 0:

1. (M,F) |=C [s1, ..., sm]P (t1, ..., tn) if 〈I (t1) , ..., I (tn)〉 ∈ fP ({I (s1) , ..., I (sm)}).

2. (M,F) |=C [s1, ..., sm] (ψ1 → ψ2) if either (M,F) |=C [s1, ..., sm]ψ2 or (M,F) 6|=C

[s1, ..., sm]ψ1.

3. (M,F) |=C [s1, ..., sm]¬ψ if (M,F) 6|=C [s1, ..., sm]ψ.

4. (M,F) |=C [s1, ..., sm] ∀xψ if for every name a of L (M),
(M,F) |=C [s1, ..., sm] (ψ {a/x}).7 8

5. (M,F) |=C [s1, ..., sm] [t1, ..., tk]ψ if (M,F) |=C [s1, ..., sm, t1, ..., tk]ψ.

De�nition 19. Let (M,F) be a C-structure and ϕ a formula. (M,F) C-satis�es ϕ (no-
tation: (M,F) |=C ϕ) if (M,F) |=C ϕ

′ for every M -instance ϕ′ of ϕ.

Now we prove that our structures interpret names as expected.

Lemma 7. Let (M,F) be a C-structure for L, t a ground-term of L (M) and a the name
of I (t). If ϕ is a formula of L (M) in which no variable except x is free, then (M,F) |=C

ϕ {t/x} i� (M,F) |=C ϕ {a/x}.

Proof. We use induction on the complexity of ϕ. Throughout this proof, m,n > 0.

1. If ϕ is P (s1, ..., sn) then:
(M,F) |=C P (s1 {t/x} , ..., sn {t/x})
i� 〈I (s1 {t/x}) , ..., I (sn {t/x})〉 ∈ fP (∅)
i� 〈I (s1 {a/x}) , ..., I (sn {a/x})〉 ∈ fP (∅) (by Lemma 2)
i� (M,F) |=C P (s1 {a/x} , ..., sn {a/x}).

2. If ϕ is ¬ψ, ψ1 → ψ2, or ∀xψ then the proof is the same as on pages 19-20 of [Sh-1967].

3. If ϕ is [s1, ..., sm]P (t1, ..., tn) then:
(M,F) |=C [s1 {t/x} , ..., sm {t/x}]P (t1 {t/x} , ..., tn {t/x})
i� 〈I (t1 {t/x}) , ..., I (tn {t/x})〉 ∈ fP ({I (s1 {t/x}) , ..., I (sm {t/x})})
i� 〈I (t1 {a/x}) , ..., I (tn {a/x})〉 ∈ fP ({I (s1 {a/x}) , ..., I (sm {a/x})}) (by Lemma
2) i� (M,F) |=C [s1 {a/x} , ..., sm {a/x}]P (t1 {a/x} , ..., tn {a/x})

4. If ϕ is [s1, ..., sm] (ψ1 → ψ2) then:
(M,F) |=C [s1 {t/x} , ..., sm {t/x}] (ψ1 {t/x} → ψ2 {t/x})
i� either (M,F) |=C [s1 {t/x} , ..., sm {t/x}]ψ2 {t/x}
or (M,F) 6|=C [s1 {t/x} , ..., sm {t/x}]ψ1 {t/x}
i� either (M,F) |=C [s1 {a/x} , ..., sm {a/x}]ψ2 {a/x}
or (M,F) 6|=C [s1 {a/x} , ..., sm {a/x}]ψ1 {a/x} (by the i.h. and Lemma 2)
i� (M,F) |=C [s1 {a/x} , ..., sm {a/x}] (ψ1 {a/x} → ψ2 {a/x}).

5. If ϕ is [s1, ..., sm]¬ψ then the proof is similar.

7Note that since this de�nition concerns only the cases where ϕ is a sentence, x doesn't occur in
[s1, ..., sm].

8It seemed very di�cult to provide a de�nition for the satisfaction of formulas of this form using the
more standard objectual approach. This was the main reason for preferring the substitutional approach.

11

6. If ϕ is [s1, ..., sm]∀yψ then: Assume �rst x = y. In this case, (M,F) |=C ϕ {t/x}
i� (M,F) |=C [s1 {t/x} , ..., sm {t/x}]∀xψ (since x isn't free in ∀xψ)
i� for every name b (M,F) |=C [s1 {t/x} , ..., sm {t/x}]

(
ψ
{
b/x
})

i� for every name b (M,F) |=C [s1 {a/x} , ..., sm {a/x}]
(
ψ
{
b/x
})

(by the i.h. and
Lemma 2)
i� (M,F) |=C [s1 {a/x} , ..., sm {a/x}] (∀xψ) i� (M,F) |=C ϕ {a/x}.
Now assume x 6= y. (M,F) |=C ϕ {t/x}
i� for every name b (M,F) |=C [s1 {t/x} , ..., sm {t/x}]ψ

{
t/x , b/y

}
i� for every name b (M,F) |=C [s1 {a/x} , ..., sm {a/x}]

(
ψ
{
a/x , b/y

})
(by the i.h.

and Lemma 2)
i� (M,F) |=C [s1 {a/x} , ..., sm {a/x}]∀yψ {a/x} i� (M,F) |=C ϕ {a/x}.

7. If ϕ is [s1, ..., sm] [t1, ..., tn]ψ then:
(M,F) |=C [s1 {t/x} , ..., sm {t/x}] [t1 {t/x} , ..., tn {t/x}]ψ {t/x}
i� (M,F) |=C [s1 {t/x} , ..., sm {t/x} , t1 {t/x} , ..., tn {t/x}]ψ {t/x}
i� (M,F) |=C [s1 {a/x} , ..., sm {a/x} , t1 {a/x} , ..., tn {a/x}]ψ {a/x} (by the i.h.)
i� (M,F) |=C [s1 {a/x} , ..., sm {a/x}] [t1 {a/x} , ..., tn {a/x}]ψ {a/x}.

Lemma 8. Let (M,F) be a C-structure, let ϕ1, ϕ2 be sentences and let t1, ..., tn be ground
terms. then:

1. (M,F) |=C [t1, ..., tn]¬ϕ1 i� (M,F) |=C ¬ [t1, ..., tn]ϕ1.

2. (M,F) |=C [t1, ..., tn] (ϕ1 → ϕ2) i� (M,F) |=C [t1, ..., tn]ϕ1 → [t1, ..., tn]ϕ2.

3. (M,F) |=C [t1, ..., tn] ∀xϕ1 i� (M,F) |=C ∀x [t1, ..., tn]ϕ1.

4. (M,F) |=C [t1, ..., tn] (ψ1 ↔ ψ2) i� it holds that
(M,F) |=C [t1, ..., tn]ψ1 i� (M,F) |=C [t1, ..., tn]ψ2.

De�nition 20. Let T be a theory and ϕ be a formula. T `C ϕ if for every C-structure
(M,F), if (M,F) |=C T then (M,F) |=C ϕ.

`C is our most basic semantic consequence relation. Restricting it to special kinds of
C-structures yields more useful consequence relations. The importance of `C lies in its
generality, and it will serve as a basis for our modular construction of other consequence
relations.

4.2 T -Structures

`C is neither equivalent to the consequence relation induced by the original semantics
from [Ga-2010], nor to the one induced by the original deductive system. In this section we
restrict |=C to a subclass of C-structures. This induces the same consequence relation as the
one induced by the deductive system from [Ga-2010]. There is also an intuitive motivation
for this restriction. Since a context is a set of objects to be taken under consideration, it is
reasonable (but not necessary) to demand that P (c) would hold whenever [c]P (c) holds.
However, the above semantics doesn't require this restriction. This example is formalized
in the next lemma:

Lemma 9. 6`C P (c)↔ [c]P (c).

Proof. We present a C-structure (M,F) such that (M,F) 6|=C P (c) ↔ [c]P (c): |M | =
{1}, I (c) = 1. fP (∅) = ∅, fP ({1}) = {1}. Clearly, (M,F) |=C [c]P (c). However,
(M,F) 6|=C P (c).

12

4.2.1 De�ning `TC
We now present a semantics that is adequate for the above intuitive requirement.

De�nition 21. A T -structure is a C-structure (M,F) in which for every P ∈ PRED (L) of
arity n and for every a1, ..., an ∈ |M |, 〈a1, ..., an〉 ∈ fP (∅) i� 〈a1, ..., an〉 ∈ fP ({a1, ..., an}).
Lemma 10. Let (M,F) be a T -structure and let t1, ..., tn be ground terms. (M,F) |=C

P (t1, ..., tn) i� 〈I (t1) , ..., I (tn)〉 ∈ fP ({I (t1) , ..., I (tn)}).
De�nition 22. Let T be a theory and ϕ be a formula. T `TC ϕ if for every T -structure
(M,F), if (M,F) |=C T then (M,F) |=C ϕ.

Restricting the C-satisfaction relation to T -structures provides the rational requirement
that P (c) would hold whenever [c]P (c) holds. In particular, the induced consequence
relation has this restriction as a valid formula:

Lemma 11. `TC P (x1, ..., xn)↔ [x1, ..., xn]P (x1, ..., xn).

Proof. Let (M,F) be a T -structure and let P (a1, ..., an) ↔ [a1, ..., an]P (a1, ..., an) be
an M -instance of P (x1, ..., xn) ↔ [x1, ..., xn]P (x1, ..., xn). (M,F) |=C P (a1, ..., an) i�
〈a1, ..., an〉 ∈ fP (∅) i� 〈a1, ..., an〉 ∈ fP ({a1, ..., an}) (since (M,F) is a T -structure) i�
(M,F) |=C [a1, ..., an]P (a1, ..., an).

However, this equivalence need not hold in every context:

Lemma 12. 6`TC [d] (P (c)↔ [c]P (c)).

Proof. We present a T -structure (M,F) such that (M,F) 6|=C [d] (P (c)↔ [c]P (c)): |M | =
{1, 2}. I (c) = 1 and I (d) = 2. fP ({2}) = fP (∅) = {2}, fP ({1, 2}) = {1}, fP ({1}) =
∅. (M,F) |=C [d] (P (c)↔ [c]P (c)) i� the following holds: (M,F) |=C [d]P (c) i�
(M,F) |=C [d] [c]P (c). Now, (M,F) 6|=C [d]P (c) since I (c) = 1 /∈ {2} = fP ({2}) =
fP ({I (d)}). (M,F) |=C [d] [c]P (c) is equivalent to (M,F) |=C [d, c]P (c). (M,F) |=C

[d, c]P (c) since I (c) = 1 ∈ {1} = fP ({1, 2}) = fP ({I (c) , I (d)}). Hence, (M,F) 6|=C

[d] (P (c)↔ [c]P (c)).

T -structures provide a formal treatment to context dependent predicates which are not
necessarily tolerant, i.e. predicates whose meaning depends on the context in which they
are used, but aren't sensitive to small changes in the predicated objects. Now we provide
two examples in which T -structures are useful.

Example 1. Consider the predicate �Stranger� which was discussed in the introduction
and denote it as P . It is indeed possible that a will be considered a stranger in the context
[a1, a2, a3], but will be considered a non-stranger in the context [a, a1, a2, a3]. For example,
imagine Gulliver arriving at Lilliput. Before he has arrived, he was a stranger. But after
he stayed there for a while, he was no longer considered a stranger. `TC is appropriate for
describing situations of this sort, as they allow the case where a is P in [a1, a2, a3] but not
in [a, a1, a2, a3]. We shall later return to the Guliver example.

Example 2. Consider the predicate �True� (for the set of English sentences) and denote
it as P . Interpret a as the sentence �all sentences written on the board are false� and
read [C]ϕ as �when the elements of C are written on the board, ϕ holds�. Consider
the sentence [a1, ..., an]P (a) (for simplicity, assume ai 6= a for every 1 ≤ i ≤ n). This
sentence is true or false, depending on the truth values of a1, ..., an. However, the sentence
[a, a1, ..., an]P (a) provides us with a version of the liar paradox, and hence in this situation
[a1, ..., an]P (a)↔ [a, a1, ..., an]P (a) doesn't have to hold.

Lemma 13. `C(`TC .
Proof. Obviously, `C⊆`TC . By Lemmas 9 and 11 `C 6=`TC .

13

4.2.2 Another Characterization of `TC
It is possible to obtain the same consequence relation as `TC , without the restriction to
T -structures. This is done by making a small modi�cation to the de�nition of |=C .

Theorem 2. Let |=CT be the satisfaction relation obtained from |=C by introducing the
following change: (M,F) |=CT P (t1, ..., tn) if 〈I (t1) , ..., I (tn)〉 ∈ fP ({I (t1) , ..., I (tn)}).
Let `CT be the consequence relation induced by |=CT over C-structures (i.e. T `CT ϕ if
for every C-structure (M,F), if (M,F) |=CT T then (M,F) |=CT ϕ). Then `TC=`CT .

Proof. We introduce some new de�nitions and lemmas:

Lemma. Let (M,F) be a C-structure for L, t a ground-term of L (M) and a the name of
I (t). If ϕ is a formula of L (M) in which no variable except x is free, then (M,F) |=CT

ϕ {t/x} i� (M,F) |=CT ϕ {a/x}.

Proof. This is proved in a similar manner to the proof of Lemma 7.

De�nition.

1. Let D be a set, let n ∈ N and let f : FIN (D)→ P (Dn).

f∗ := λX ∈ FIN (D) .

{{
〈a1, ..., an〉 ∈ |M |n : 〈a1, ..., an〉 ∈ fP ({a1, ..., an})

}
X = ∅

fP (X) otherwise

2. Let (M,F) be a C-structure. F ∗ := λP ∈ PRED (L) .
(
fP
)∗
.

Lemma. Let (M,F) be a C-structure. Then (M,F ∗) is a T -structure.

Lemma. Let (M,F) be a C-structure and let ϕ be a sentence. (M,F) |=CT ϕ i�
(M,F ∗) |=C ϕ.

Proof. By induction on the complexity of ϕ. We denote fP by f .

1. If ϕ is P (t1, ..., tn) then: (M,F) |=CT P (t1, ..., tn) i�
〈I (t1) , ..., I (tn)〉 ∈ f ({I (t1) , ..., I (tn)}) i� 〈I (t1) , ..., I (tn)〉 ∈ f∗ (∅) i�
(M,F ∗) |=C P (t1, ..., tn).

2. If ϕ is [s1, ..., sm]P (t1, ..., tn) with m > 0 then: (M,F) |=CT [s1, ..., sm]P (t1, ..., tn)
i� 〈I (t1) , ..., I (tn)〉 ∈ f ({I (s1) , ..., I (sm)})
i� 〈I (t1) , ..., I (tn)〉 ∈ f∗ ({I (s1) , ..., I (sm)})
i� (M,F ∗) |=C [s1, ..., sm]P (t1, ..., tn).

3. Otherwise, the proof is trivial, by the de�nition of f∗, and by the fact that on other
forms of sentences, |=C and |=CT are de�ned identically.

Corollary. Let (M,F) be a C-structure and let ϕ be a formula. (M,F) |=CT ϕ i�
(M,F ∗) |=C ϕ.

End of proof of Theorem 2. Let T be a theory and ϕ be a formula. Assume T `TC ϕ. Let
(M,F) be a C-structure and assume (M,F) |=CT T . By the above corollary, (M,F ∗) |=C

T . By our assumption, (M,F ∗) |=C ϕ. Again, by the above corollary, (M,F) |=CT ϕ.
Now assume T `CT ϕ. Let (M,F) be a T -structure and assume (M,F) |=C T . By the
de�nition of

(
fP
)∗

and the fact that (M,F) is a T -structure, (M,F) = (M,F ∗). By the
above corollary, (M,F) |=CT T . By our assumption, (M,F) |=CT ϕ. And again by the
above corollary, (M,F) |=C ϕ.

14

4.3 R-Structures

A special kind of context dependent predicates is tolerant predicates. In this section we
present a re�nement of C-semantics for this kind. We also prove that this semantics is
equivalent to the original semantics from [Ga-2010], `SGS .

According to the de�nition of `TC , [a1, ..., an]P (a) is not equivalent to [a1, ..., an, a]P (a).
This means that {a1, ..., an} and {a1, ..., an, a} impose two di�erent meanings on the predi-
cate P , and those meanings may handle a di�erently. Let us consider the tolerant predicate
�tall� and denote it by P . Does it make sense to consider a as tall in the context {a1, ..., an}
but not in {a1, ..., an, a}? Let us return to the Gulliver example. When all the tiny people
look at Gulliver for the �rst time, they classify him as tall. It is more than reasonable to
think that after he stays with them for a while, he will still be classi�ed as tall. This is
not what reasoning according to `TC implies, as [a1, ..., an]P (a)↔ [a1, ..., an, a]P (a) isn't
C-valid in all T structures. In the Gulliver case, this means that when he has just arrived,
he was considered tall, but when considering him among them, the tiny people changed
their mind regarding his tallness.

Now we re�ne `TC to a new semantics which is adequate for this situation, and induces
the same consequence relation as the original semantics from [Ga-2010]. Namely, we restrict
the C-satisfaction relation to a special kind of T -structures. Before doing so, we introduce
re�exive functions, which are essential for the de�nition of the re�ned consequence relation.

4.3.1 Re�exive Functions

De�nition 23. Let D be any set and let f : FIN (D) → P (Dn) for some n ∈ N.
f is re�exive if for every 〈a1, ..., an〉 ∈ Dn and X ∈ FIN (D), 〈a1, ..., an〉 ∈ f (X) i�
〈a1, ..., an〉 ∈ f (X ∪ {a1, ..., an}).

Example 3. Obviously, every f : FIN (D) → P (Dn) which is a constant function is
re�exive.

Example 4. Assume D = N and n = 1. De�ne f : FIN (N) → P (N) as f = λX ∈
FIN (N) .

{
x : x < maxX

2

}
. f is re�exive: Assume x ∈ f (X). Then x <

maxX

2
and hence

x < maxX. Therefore, maxX = max (X ∪ {x}) and hence x <
max (X ∪ {x})

2
, which

means that x ∈ f (X ∪ {x}). Now assume x ∈ f (X ∪ {x}). Then x < max (X ∪ {x})
2

<

max (X ∪ {x}). Therefore max (X ∪ {x})
2

=
maxX

2
. Therefore, x ∈ f (X).

De�nition 24. Let D be any set and let n ∈ N.

1. rn = λg : FIN (D)→ P (Dn) .λX ∈ FIN (D) . {〈a1, ..., an〉 : 〈a1, ..., an〉 ∈ g (X ∪ {a1, ..., an})}.

2. r =
⋃∞
n=1 rn.

Lemma 14. Let D be any set and let f : FIN (D) → P (Dn) be a re�exive function.
Then r (f) = f .

Proof. 〈a1, ..., an〉 ∈ r (f) (X) i� 〈a1, ..., an〉 ∈ f (X ∪ {a1, ..., an}) i� 〈a1, ..., an〉 ∈ f (X)
(since f is re�exive).

Lemma 15. Let D be any set and let n ∈ N. Then
rn [FIN (D)→ P (Dn)] = {f : FIN (D)→ P (Dn) : f is reflexive}.

15

Proof. Let g : FIN (D)→ P (Dn). We show that rn (g) is re�exive. Let 〈a1, ..., an〉 ∈ Dn

and let X ∈ FIN (D). Then 〈a1, ..., an〉 ∈ rn (g) (X) i� 〈a1, ..., an〉 ∈ g (X ∪ {a1, ..., an})
i� 〈a1, ..., an〉 ∈ g (X ∪ {a1, ..., an} ∪ {a1, ..., an}) i� 〈a1, ..., an〉 ∈ rn (g) (X ∪ {a1, ..., an}).
Now let f be a re�exive function. By Lemma 14, rn (f) = f . Hence f = rn (f) ∈
rn [FIN (D)→ P (Dn)] .

Corollary 1. r [
⋃∞

n=1 (FIN (D)→ P (Dn))] = {f ∈
⋃∞

n=1 (FIN (D)→ P (Dn)) : f is reflexive}.

Example 5. Assume D = N and n = 1. De�ne f : FIN (N) → P (N) as f = λX ∈
FIN (N) .

{
x ∈ X : x < maxX

2

}
. f isn't re�exive. For example: 2 /∈ f ({1, 5}), but 2 ∈

f ({1, 5} ∪ {2}). Let us consider r (f).

r (f) = λX ∈ FIN (N) . {x : x ∈ f (X ∪ {x})}

= λX ∈ FIN (N) .

{
x : x <

max (X ∪ {x})
2

}
= λX ∈ FIN (N) .

{
x : x <

maxX

2

}
We obtained the re�exive function from example 4.

De�nition 25. Let (M,F) be a C-structure. r (F) = λP ∈ PRED (L) .r (F (P)).

4.3.2 De�ning `RC
De�nition 26. An R-structure is a C-structure in which for every predicate P , fP is
re�exive.

Lemma 16. Let (M,F) be a C-structure. Then (M, r (F)) is an R-structure.

Lemma 17. Every R-structure is a T -structure.

De�nition 27. Let T be a theory and ϕ be a formula. T `RC ϕ if for every R-structure
(M,F), if (M,F) |=C T then (M,F) |=C ϕ.

The requirement that the cdfs must be re�exive captures the essence of the Gulliver
problem. This requirement explicitly forces all interpretations of P to be indi�erent to the
addition of the examined objects to the context. In particular, the induced consequence
relation has this requirement as a valid formula:

Lemma 18. `RC [y1, ..., ym] (P (x1, ..., xn)↔ [x1, ..., xn]P (x1, ..., xn)).

Proof. Let (M,F) be an R-structure and let
[a1, ..., am]

(
P
(
b1, ..., bn

)
↔
[
b1, ..., bn

]
P
(
b1, ..., bn

))
be an M -instance of

[y1, ..., yn] (P (x1, ..., xn)↔ [x1, ..., xn]P (x1, ..., xn)).
(M,F) |=C [a1, ..., am]P

(
b1, ..., bn

)
i� 〈b1, ..., bn〉 ∈ fP ({a1, ..., am}) i�

〈b1, ..., bn〉 ∈ fP ({a1, ..., am, b1, ..., bn}) (since fP is re�exive) i�
(M,F) |=C

[
a1, ..., am, b1, ..., bn

]
P
(
b1, ..., bn

)
i�

(M,F) |=C [a1, ..., am]
[
b1, ..., bn

]
P
(
b1, ..., bn

)
.

Lemma 19. `TC(`RC .

Proof. By Lemmas 12, 17 and 18.

16

4.3.3 Another Characterization of `RC
The requirement that all cdfs must be re�exive re�ects the intended use of tolerant pred-
icates, such as �tall�. This de�nition is also useful when proving properties of the con-
sequence relation. However, generating R-structures for speci�c purposes is not a trivial
task, as it requires to check that all of the proposed cdfs are re�exive. One way to overcome
this obstacle is to use the function r that was de�ned in De�nition 24. Another way will
be presented in this section, namely, introducing a small change in the de�nition of the C
satisfaction relation.

Theorem 3. Let |=CR be the satisfaction relation obtained from |=C by introducing the
following change: (M,F) |=CR [s1, ..., sm]P (t1, ..., tn) if
〈I (t1) , ..., I (tn)〉 ∈ fP ({I (t1) , ..., I (tn) , I (s1) , ..., I (sm)}) for m ≥ 0. Let `CR be the
consequence relation induced by |=CR over C-structures (i.e. T `CR ϕ if for every C-
structure (M,F), if (M,F) |=CR T then (M,F) |=CR ϕ). Then `RC=`CR.

Proof. We introduce some new de�nitions and lemmas:

Lemma. Let (M,F) be a C-structure for L, t a ground-term of L (M) and a the name of
I (t). If ϕ is a formula of L (M) in which no variable except x is free, then (M,F) |=CR

ϕ {t/x} i� (M,F) |=CR ϕ {a/x}.

Proof. This is proved in a similar manner to the proof of Lemma 7.

Lemma. Let (M,F) be a C-structure and let ϕ be a sentence. Then (M,F) |=CR ϕ i�
(M, r (F)) |=C ϕ.

Proof. By induction on the complexity of ϕ.

1. If ϕ = [s1, ..., sm]P (t1, ..., tn) (for m ≥ 0) then (M,F) |=CR ϕ
i� 〈I (t1) , ..., I (tn)〉 ∈ fP ({I (s1) , ..., I (sm)} ∪ {I (t1) , ..., I (tn)})
i� 〈I (t1) , ..., I (tn)〉 ∈ r

(
fP
)

({I (s1) , ..., I (sm)}) i� (M, r (F)) |=C ϕ.

2. Otherwise, the de�nitions of the two satisfaction relation are de�ned identically.

Corollary. Let (M,F) be a C-structure and let ϕ be a formula. Then (M,F) |=CR ϕ i�
(M, r (F)) |=C ϕ.

End of proof of Theorem 3. Let T be a theory and ϕ be a formula. Assume that T `RC ϕ.
Let (M,F) be a C structure such that (M,F) |=CR T . We prove that (M,F) |=CR ϕ.
By the above corollary, (M, r (F)) |=C T , and hence by our assumption (M, r (F)) |=C ϕ.
Again, by the above corollary, (M,F) |=CR ϕ. Now, assume that T `CR ϕ. Let (M,F) be
an R-structure such that (M,F) |=C T . We prove that (M,F) |=C ϕ. Note that (M,F)
is an R-structure, and hence for every P , fP is re�exive. By Lemma 14, for every P ,
r
(
fP
)

= fP . This means that r (F) = F . Hence, by the above corollary, (M,F) |=CR T .
By our assumption, (M,F) |=CR ϕ. Again, by the above corollary and by the fact that
(M, r (F)) = (M,F), (M,F) |=C ϕ.

4.3.4 Relation with GS-Semantics

Our construction has led us to de�ning `RC . In this section, we show that this consequence
relation is the same consequence relation as the one presented in [Ga-2010] (`SGS), hence
providing another semantical characterization of the original semantics for tolerance. We
start with a preliminary lemma:

17

Lemma 20. Let (M,F) be an S-structure, P ∈ PRED (L) of arity n, X ∈ FIN (|M |)
and Y, Y ′ ∈ FIN+ (|M |). Then

(
FYY ′ (P)

)
(X) = (FY ∪Y ′ (P)) (X).

Proof.(
FYY ′ (P)

)
(X) = (FY (P))

(
X ∪ Y ′

)
∩Xn = (F (P))

(
X ∪ Y ′ ∪ Y

)
∩
(
X ∪ Y ′

)n ∩Xn

= (F (P))
(
X ∪ Y ∪ Y ′

)
∩Xn = (FY ∪Y ′ (P)) (X)

Now we prove that `SGS⊆`RC .

De�nition 28. Let P ∈ PRED (L) be a predicate of arity n and let (M,F) be a C-
structure. F ∗ (P) = λX ∈ FIN (|M |) .F (P) (X) ∩Xn.

Lemma 21. (M,F) be an R-structure. Then (M,F ∗) is an S-structure.

Lemma 22. Let ϕ be a sentence and let (M,F) be an R-structure. Then (M,F) |=C ϕ
i� (M,F ∗) |=GS ϕ.

Proof. By induction on the complexity of ϕ.

1. If ϕ is P (t1, ..., tn) then: (M,F) |=C P (t1, ..., tn)
i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (t1) , ..., I (tn)})
i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (t1) , ..., I (tn)}) ∩ {I (t1) , ..., I (tn)}n
i� 〈I (t1) , ..., I (tn)〉 ∈ (F ∗ (P)) ({I (t1) , ..., I (tn)}) i� (M,F ∗) |=GS P (t1, ..., tn).

2. If ϕ is ψ → φ, ¬ψ or ∀xψ then the proof is usual.

3. If ϕ is [s1, ..., sm]ψ for m > 0, then the proof is by an inner induction on the
complexity of ψ:

(a) If ψ is P (t1, ..., tn) then: (M,F) |=C [s1, ..., sm]P (t1, ..., tn)
i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (s1) , ..., I (sm)})
i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (s1) , ..., I (sm) , I (t1) , ..., I (tn)}) (since F (P)
is re�exive) i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (s1) , ..., I (sm) , I (t1) , ..., I (tn)})∩
{I (s1) , ..., I (sm) , I (t1) , ..., I (tn)}n i�
〈I (t1) , ..., I (tn)〉 ∈ F ∗ (P) ({I (s1) , ..., I (sm) , I (t1) , ..., I (tn)}) i�
〈I (t1) , ..., I (tn)〉 ∈ F ∗ (P) ({I (s1) , ..., I (sm) , I (t1) , ..., I (tn)})∩
{I (t1) , ..., I (tn)}n = (F ∗)Y (P) ({I (t1) , ..., I (tn)}) with Y = {I (s1) , ..., I (sm)}
i� (M, (F ∗)Y) |=GS P (t1, ..., tn) i� (M,F ∗) |=GS [s1, ..., sm]P (t1, ..., tn).

(b) If ψ is ψ1 → ψ2, ¬φ or ∀xφ, then the proof is usual. We show the case where ψ is
∀xφ as an example: (M,F) |=C [s1, ..., sm] ∀xφ i� for every name a (M,F) |=C

[s1, ..., sm]φ {a/x} i� for every name a (M,F ∗) |=GS [s1, ..., sm]φ {a/x} (by the
i.h.) i� for every name a (M, (F ∗)Y) |=GS φ {a/x} with Y = {I (s1) , ..., I (sm)}
i� (M, (F ∗)Y) |=GS ∀xφ i� (M,F ∗) |=GS [s1, ..., sm] ∀xφ.

(c) If ψ is [t1, ..., tn]φ then: (M,F) |=C [s1, ..., sm] [t1, ..., tn]φ i�
(M,F) |=C [s1, ..., sm, t1, ..., tn]φ i� (M,F ∗) |=GS [s1, ..., sm, t1, ..., tn]φ (by
the i.h.) i� (M, (F ∗)Y ∪Y ′) |=GS φ with Y = {I (s1) , ..., I (sm)} and Y ′ =

{I (t1) , ..., I (tn)}. By Lemma 20, this holds i�
(
M, (F ∗)YY ′

)
|=GS φ i�

(M, (F ∗)Y) [t1, ..., tn]φ i� (M,F ∗) |=GS [s1, ..., sm] [t1, ..., tn]φ.

18

Corollary 2. Let ϕ be a formula and let (M,F) be an R-structure. Then (M,F) |=C ϕ
i� (M,F ∗) |=GS ϕ.

Lemma 23. `SGS⊆`RC .

Proof. Let T be a theory and let ϕ be a formula. Assume T `SGS ϕ. Let (M,F) be an
R-structure and assume (M,F) |=C T . Then by Corollary 2 (M,F ∗) |=GS T . By our
assumption, (M,F ∗) |=GS ϕ, and again by Corollary 2, (M,F) |=C ϕ. Hence T `RC ϕ.

Now we turn to prove the other direction.

Lemma 24. Let ϕ be a sentence and let (M,F) be an S-structure. Then (M,F) |=GS ϕ
i� (M, r (F)) |=C ϕ.

Proof. By induction on the complexity of ϕ.

1. If ϕ is P (t1, ..., tn) then: (M,F) |=GS P (t1, ..., tn)
i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (t1) , ..., I (tn)}) i�
〈I (t1) , ..., I (tn)〉 ∈ {〈a1, ..., an〉 | 〈a1, ..., an〉 ∈ F (P) ({I (t1) , ..., I (tn)} ∪ {a1, ..., an})}
i� 〈I (t1) , ..., I (tn)〉 ∈ ((r (F)) (P)) ({I (t1) , ..., I (tn)}) i� (M, r (F)) |=C P (t1, ..., tn).

2. If ϕ is ψ → φ, ¬ψ or ∀xψ then the proof is similar to the proof of Lemma 22.

3. If ϕ is [s1, ..., sm]ψ for m > 0 then we prove this by an inner induction on the
complexity of ψ:

(a) If ψ is P (t1, ..., tn) then: (M,F) |=GS [s1, ..., sm]P (t1, ..., tn) i� (M,FY) |=GS

P (t1, ..., tn) with Y = {I (s1) , ..., I (sm)}
i� 〈I (t1) , ..., I (tn)〉 ∈ FY (P) ({I (t1) , ..., I (tn)})
i� 〈I (t1) , ..., I (tn)〉 ∈ F (P) ({I (t1) , ..., I (tn) , I (s1) , ..., I (sm)})∩
{I (t1) , ..., I (tn)}n i� 〈I (t1) , ..., I (tn)〉 ∈
{〈a1, ..., an〉 | 〈a1, ..., an〉 ∈ F (P) ({I (s1) , ..., I (sm)} ∪ {a1, ..., an})}
i� 〈I (t1) , ..., I (tn)〉 ∈ r (F) (P) ({I (s1) , ..., I (sm)})
i� (M, r (F)) |=C [s1, ..., sm]P (t1, ..., tn).

(b) If ψ is ¬φ then: (M, r (F)) |=C [s1, ..., sm]¬φ i� (M, r (F)) 6|=C [s1, ..., sm]φ i�
(M,F) 6|=GS [s1, ..., sm]φ (by the i.h.) i� (M,FY) 6|=GS φ with
Y = {I (s1) , ..., I (sm)} i� (M,FY) |=GS ¬φ i� (M,F) |=GS [s1, ..., sm]¬φ.

(c) If ψ is ψ1 → ψ2 then the proof is similar.

(d) If ψ is ∀xφ then: (M, r (F)) |=C [s1, ..., sm]∀xφ i� for every a ∈ |M |,
(M, r (F)) |=C [s1, ..., sm]φ {a/x} i� for every a ∈ |M |
(M,F) |=GS [s1, ..., sm]φ {a/x} (by the i.h.) i� for every a ∈ |M | (M,FY) |=GS

φ {a/x} with Y = {I (s1) , ..., I (sm)} i� (M,FY) |=GS ∀xφ i� (M,F) |=GS

[s1, ..., sm]∀xφ.
(e) If ψ is [t1, ..., tk]φ for k > 0 then: (M, r (F)) |=C [s1, ..., sm] [t1, ..., tk]φ i�

(M, r (F)) |=C [s1, ..., sm, t1, ..., tk]φ i� (M,F) |=GS [s1, ..., sm, t1, ..., tk]φ (by
the i.h.) i� (M,FY ∪Y ′) |=GS φ with Y = {I (s1) , ..., I (sm)} and
Y ′ = {I (t1) , ..., I (tk)} i�

(
M,FYY ′

)
|=GS φ (by Lemma 20) i� (M,FY) |=GS

[t1, ..., tk]φ i� (M,F) |=GS [s1, ..., sm] [t1, ..., tk]φ.

Corollary 3. Let ϕ be a formula and let (M,F) be an S-structure. Then (M,F) |=GS ϕ
i� (M, r (F)) |=C ϕ.

Lemma 25. `RC⊆`SGS.

19

Proof. Similar to the proof of Lemma 23.

Theorem 4. `RC=`SGS.

Proof. By Lemmas 23 and 25.

4.4 Context Independent Predicates

Similarly to Section 3.4, Now we study context independent predicates in C-semantics.

De�nition 29. Let R be a predicate and let (M,F) be a C-structure. We say that R is
context independent in (M,F) if fR is a constant function.

Lemma 26. Let (M,F) be a C-structure. Then R is context independent in (M,F) i�
for every C (M,F) |=C R (x1, ..., xn)↔ [C]R (x1, ..., xn). 9

Proof. Assume R is context independent in (M,F). Let
R (a1, ..., an)↔ [t1, ..., tm]R (a1, ..., an) be an M -instance of
R (x1, ..., xn)↔ [C]R (x1, ..., xn). (M,F) |=C R (a1, ..., an)
i� 〈a1, ..., an〉 ∈ fR (∅) = fR ({I (t1) , ..., I (tm)}) (since fR is constant) i�
(M,F) |=C [t1, ..., tm]R (a1, ..., an).
Now assume (M,F) |=C R (x1, ..., xn)↔ [C]R (x1, ..., xn).
Let {b1, ..., bm} 6= {c1, ..., ck} ∈ FIN (|M |) and let a1, ..., an ∈ |M |. Then
(M,F) |=C R (a1, ..., an)↔

[
b1, ..., bm

]
R (a1, ..., an) and

(M,F) |=C R (a1, ..., an)↔ [c1, ..., ck]R (a1, ..., an). This means that
(M,F) |=C

[
b1, ..., bm

]
R (a1, ..., an)↔ [c1, ..., ck]R (a1, ..., an). Therefore,

(M,F) |=C

[
b1, ..., bm

]
R (a1, ..., an) i� (M,F) |=C [c1, ..., ck]R (a1, ..., an) and hence

〈a1, ..., an〉 ∈ fR ({b1, ..., bm}) i� 〈a1, ..., an〉 ∈ fR ({c1, ..., ck}). This is true for every
{b1, ..., bm} 6= {c1, ..., ck} ∈ FIN (|M |) and a1, ..., an ∈ |M | and hence fR is a constant
function, which means that R is context independent in (M,F).

4.5 Summary

The main theme of this section was a modular construction of a new consequence relation,
`RC , which is equivalent to Gaifman's semantical consequence relation `SGS . We started
with the most basic consequence relation `C . This consequence relation is induced by
the |=C satisfaction relation over C-structures. By restricting it to a special sub-class of
C-structures (T -structures) we obtained a new, di�erent consequence relation `TC . This
consequence relation will later be proved to be equivalent to the consequence relation which
is induced by Gaifman's original deductive system. Finally, restricting |=C to a sub-class
of T -structures (R-structures) induced `RC . `RC was proved to be equivalent to `SGS . Later
on, we shall provide an adequate deductive system for it.

5 Corresponding Deductive Systems

In this section we present several deductive systems adequate for the semantics proposed
in Section 4.

Throughout this section, L is a C-language.

9Recall that this is equivalent to INDR (De�nition 16) being valid in (M,F).

20

5.1 The Systems

All of the discussed deductive systems are obtained from HFOL by the addition of some
new axiom schemes. The new axiom schemes that will be used are:

• (CC) [C] [C ′]ϕ↔ [C,C ′]ϕ.

• (C¬) [C]¬ϕ↔ ¬ [C]ϕ.

• (C→) [C] (ϕ→ ψ)↔ ([C]ϕ→ [C]ψ) .

• (C∀) [C]∀xϕ↔ ∀x [C]ϕ if x doesn't occur in C.

• (T) P (x1, ..., xn)↔ [x1, ..., xn]P (x1, ..., xn) for every P .

• (R) [C] (P (x1, ..., xn)↔ [x1, ..., xn]P (x1, ..., xn)) for every context set C for every
predicate P .

De�nition 30.

1. HC = HFOL+ CC + C¬ + C→ + C∀.

2. HCT = HC + T .

3. HCR = HC +R.

Remark 6. HCT is the deductive system from [Ga-2010], that was introduced in De�nition
15. It will be shown that it is complete for `TC . HCR will be proved to be complete for
`SGS (and `RC). HC is the most basic deductive system, and it will proved to be equivalent
to `C , which is the most basic semantical consequence relation.

Lemma 27. Let C be a context set and let ϕ and ψ be formulas. Let # ∈ {∧,∨,↔}. Then
`HC [C] (ϕ#ψ)↔ ([C]ϕ# [C]ψ).

Proof. By axioms C¬ and C→.

5.2 Soundness Theorems

In this section we prove the soundness of the above deductive systems with respect to the
semantics which were presented in Section 4. Before doing so, we prove a lemma which
will be useful for this purpose:

Lemma 28. Let ϕ be one of the axioms of HC. Let (M,F) be a C-structure. Let ϕ′ be
an M -instance of ϕ. Then ϕ′ is an instance of the same axiom scheme as ϕ.

Proof. We assume that the free variables of ϕ are: x1, ..., xn.

1. If ϕ is an instance of a propositional axiom, then this can be shown easily. For ex-
ample, suppose ϕ = ψ → (φ→ ψ). Then ϕ′ = (ψ → (φ→ ψ)) {a1/xx, ..., an/xn} for
some names a1, ..., an, i.e. ϕ

′ is
ψ {a1/x1, ..., an/xn} → (φ {a1/x1, ..., an/xn} → ψ {a1/x1, ..., an/xn}), which is in-
deed an instance of the same axiom scheme.

2. If ϕ is an instance of a �rst-order axiom, then:

21

(a) If ϕ = ∀xψ → ψ {t/x} where t is substitutable for x in ψ, then: Assume �rst
that for every 1 ≤ i ≤ n xi 6= x. In that case, ϕ′ is ∀xψ {a1/x1, ..., an/xn} →
ψ {a1/x1, ..., an/xn} {t {a1/x1, ..., an/xn} /x} for some a1, ..., an, which is an in-
stance of the same axiom scheme as ϕ. Now, if xk = x for some 1 ≤ k ≤ n,
then without loss of generality k = 1 and ϕ′ is

∀xψ {x, a2/x2..., an/xn} → ψ {t {a1/x1, ..., an/xn} /x, a2/x2, ..., an/xn}

which is an instance of the same axiom scheme as ϕ. If there is more then one
k for which xk = x then the proof is similar.

(b) If ϕ = ∀x (ψ → φ) → (ψ → ∀xφ) where x isn't free in ψ, then for every
1 ≤ i ≤ n, xi 6= x (x isn't free in ψ, and therefore any occurrence of it in
ϕ is bound). Let a1, ..., an be names. We denote ψ {a1/x1, ..., an/xn} by ψi

and φ {a1/x1, ..., an/xn} by φi. Then for some a1, ..., an, ϕ
′ is ∀x

(
ψi → φi

)
→(

ψi → ∀xφi
)
, which is an instance of the same axiom scheme as ϕ.

3. If ϕ is an instance of one of the new axiom schemes of HC, then again, this can be
shown easily. For example, suppose ϕ = [C]∀xψ ↔ ∀x [C]ψ where x doesn't occur
in C. Denote C {a1/x1, ..., an/xn} by C ′. Then ϕ′ is
[C ′]∀xψ {a1/x1, ..., an/xn} ↔ ∀x [C ′]ψ {a1/x1, ..., an/xn} for some a1, ..., an, since x
doesn't occur in C ′. Indeed ϕ′ is an instance of the same axiom scheme as ϕ.

Theorem 5. Let T be a theory and let ϕ be a formula.

1. Assume T `HC ϕ. Then T `C ϕ.

2. Assume T `HCT ϕ. Then T `TC ϕ.

3. Assume T `HCR ϕ. Then T `RC ϕ.

Proof.

1. By induction on ϕ's proof from T in HC.

(a) If ϕ ∈ T then by de�nition T `HC ϕ.
(b) If ϕ is an instance of an axiom of the system then we need to prove that for

every (M,F) and for every M -instance of ϕ ϕ′,(M,F) |=C ϕ′. Let (M,F)
be a C-structure and let ϕ′ be an M -instance of ϕ. By Lemma 28, we may
assume that ϕ′ is an instance of the same axiom scheme as ϕ. There are two
possibilities:

ϕ′ is a propositional or �rst-order axiom In this case, this is shown simi-
larly to the usual proof of the soundness theorem for HFOL.

ϕ′ is a new axiom In this case, this is true by Lemma 8.

(c) If ϕ was derived by Modus Ponens or by the generalization rule, then this is
done as in the proof of the soundness theorem for HFOL.

2. By Item 1, it is left to show that for every T -structure (M,F),
(M,F) |=C P (x1, ..., xn) ↔ [x1, ..., xn]P (x1, ..., xn). This immediately follows from
Lemma 11.

3. By Item 2, it is left to show that for every R-structure (M,F),
(M,F) |=C [C] (P (x1, ..., xn)↔ [x1, ..., xn]P (x1, ..., xn)). This immediately follows
from Lemma 18.

22

5.3 Completeness Theorems

Theorem 6. Let T be an L-theory and let ϕ be an L-formula.

1. Assume T `C ϕ. Then T `HC ϕ.

2. Assume T `TC ϕ. Then T `HCT ϕ.

3. Assume T `RC ϕ. Then T `HCR ϕ.

We prove this theorem in a similar manner to the usual proof of the completeness
theorem for HFOL. We will quote results from that proof and explicitly prove the required
modi�cations.

Lemma 29. Let `∈
{
`HC ,`HCT ,`HCR,`C ,`TC ,`RC

}
. Then T ` ϕ i� ∀T ` ∀ϕ.

The inner structure of the formulas doesn't a�ect the classical proof of this lemma.
Syntactically, this is justi�ed by the generalization rule of inference and the axiom ∀xA→
A {t/x}.

Therefore, as in the usual proof of the completeness theorem, we may assume that
T ∪ {ϕ} consists of sentences.

We continue with the proof:
Let `∈ {`HC ,`HCT ,`HCR} and assume that in L, T 0 ϕ.
Let L′ be the language obtained from L by the addition of ℵ0 new constants (namely

d1, d2, ...).

Lemma 30. In L′, T 0 ϕ still holds.

Lemma 31. There exists an L′ theory T` which satis�es the following requirements:

1. T ⊆ T`.

2. T` is a maximal theory in L′ (in terms of inclusion) such that T` 0 ϕ, i.e. T` 0 ϕ
and for each ψ /∈ T` T` ∪ {ψ} ` ϕ.

3. T ′ is a Henkin theory, i.e. if T ′ ` ∃xψ then there is a term t such that T ′ ` ψ {t/x}.

We construct T` in the usual way.

Lemma 32. T` is `complete, i.e. for every sentence A, either T` ` A or T` ` ¬A.

Lemma 33. For every sentence ψ, T` ` ψ if and only if ψ ∈ T`.

De�nition 31. (Countermodel) Let (M,F)` be the following C-structure:

1. |M | is Herbrand space of L′, i.e. |M | consists of all ground terms of L′.

2. I is de�ned as in the usual proof.

3. For every P of arity m,

fP = λX ∈ FIN (|M |) .
{
〈s1, ..., sm〉 : [X]P (s1, ..., sm) ∈ T`

}
Remark 7. fP (∅) =

{
〈s1, ..., sm〉 : P (s1, ..., sm) ∈ T`

}
.

23

Lemma 34. For every sentence φ, (M,F)` |=C φ if and only if φ ∈ T`.

Proof. For convenience, denote (M,F)` by (M,F). The proof is by induction on the
complexity of φ. Let n ≥ 0. Recall that []ψ = ψ for every ψ.

1. If φ = [t1, ..., tn]P (s1, ..., sm) then: (M,F) |=C [t1, ..., tn]P (s1, ..., sm)
i� 〈I (s1) , ..., I (sm)〉 ∈ fP ({I (t1) , ..., I (tn)}) (by de�nition)
i� 〈s1, ..., sm〉 ∈ fP ({t1, ..., tn}) (by I's construction)
i� [t1, ..., tn]P (s1, ..., sm) ∈ T` (by f 's construction).

2. If φ = [t1, ..., tn]¬φ1 then: (M,F) |=C [t1, ..., tn]¬φ1 i� (M,F) 6|=C [t1, ..., tn]φ1 i�
[t1, ..., tn]φ1 /∈ T` (by the i.h.) i� ¬ [t1, ..., tn]φ1 ∈ T` (since T` is complete and
since `HC ¬¬A→ A) i� [t1, ..., tn]¬φ1 ∈ T` (by axiom C¬).

3. If φ = [t1, ..., tn] (φ1 → φ2) then the proof is similar, using axiom C→.

4. If φ = [t1, ..., tn] (∀xφ1) then: Assume (M,F) |=C [t1, ..., tn]∀xφ1. Then for ev-
ery ground term t of L′, (M,F) |=C [t1, ..., tn]φ1 {t/x}. By the i.h. it follows
that for every such t, [t1, ..., tn]φ1 {t/x} ∈ T`. Now assume for contradiction that
[t1, ..., tn]∀xφ1 /∈ T`. By axiom C∀ and the fact that t1, ..., tn don't contain x (as
they are ground terms), this means that ∀x [t1, ..., tn]φ1 /∈ T`. Since T` is com-
plete, ¬∀x [t1, ..., tn]φ1 ∈ T`, which means that ∃x¬ [t1, ..., tn]φ1 ∈ T`. Since T` is a
Henkin theory, there exists a ground term t′ such that (¬ [t1, ..., tn]φ1) {t′/x} ∈ T`,
which means that ¬ [t1, ..., tn]φ1 {t′/x} ∈ T`. Hence T` is inconsistent and in
particular, ϕ ∈ T`, which is a contradiction. For the other direction, assume
[t1, ..., tn]∀xφ1 ∈ T`. By C∀ (and the fact that x doesn't occur in t1, ..., tn),
∀x [t1, ..., tn]φ1 ∈ T`. Using the axiom ∀xA→ A {t/x} for every ground term t of L′,
this means that for every such t, ([t1, ..., tn]φ1) {t/x} ∈ T`, and by the i.h., it holds
that for every such t, (M,F) |=C [t1, ..., tn]φ1 {t/x}. Since |M | is the set of ground
terms of L′, (M,F) |=C ∀x [t1, ..., tn]φ1. By Lemma 8, (M,F) |=C [t1, ..., tn]∀xφ1.

5. If φ = [t1, ..., tn] [s1, ..., sm]φ1 then: (M,F) |=C [t1, ..., tn] [s1, ..., sm]φ1
i� (M,F) |=C [t1, ..., tn, s1, ..., sm]φ1 i� [t1, ..., tn, s1, ..., sm]φ1 ∈ T` (by the i.h.)
i� [t1, ..., tn] [s1, ..., sm]φ1 ∈ T` (by axiom CC).

Corollary 4. (M,F)` |=C T and (M,F)` 6|=C ϕ.

Lemma 35. Let P be any predicate of arity k and let t1, ..., tn, s1, ..., sk be terms. Then
`HCR [t1, ..., tn]P (s1, ..., sk)↔ [t1, ..., tn, s1, ..., sk]P (s1, ..., sk).

Proof. `HCR [t1, ..., tn] (P (s1, ..., sk)↔ [s1, ..., sk]P (s1, ..., sk)) (axiom CT).
`HCR [t1, ..., tn]P (s1, ..., sk)↔ [t1, ..., tn] [s1, ..., sk]P (s1, ..., sk) (Lemma 27).
`HCR [t1, ..., tn] [s1, ..., sk]↔ [t1, ..., tn, s1, ..., sk]P (s1, ..., sk) (axiom CC).
And hence `HCR [t1, ..., tn]P (s1, ..., sk)↔ [t1, ..., tn, s1, ..., sk]P (s1, ..., sk).

Lemma 36.

1. (M,F)`HCT is a T -structure.

2. (M,F)`HCR is an R-structure.

Proof. Let P be an n-ary predicate.

1. Denote (M,F)`HCT as (M,F) and T`HCT as T ′. Let t1, ..., tn ∈ |M |.
〈t1, ..., tn〉 ∈ fP ({∅}) i� P (t1, ..., tn) ∈ T ′ (by F 's construction) i�
[t1, ..., tn]P (t1, ..., tn) ∈ T ′ (by axiom T) i� 〈t1, ..., tn〉 ∈ fP ({t1, ..., tn}) (by F 's
construction).

24

2. Denote (M,F)`HCR as (M,F) and T`HCR as T ′. Let t1, ..., tn, s1, ..., sm ∈ |M |.
〈t1, ..., tn〉 ∈ fP ({s1, ..., sm}) i� [s1, ..., sm]P (t1, ..., tn) ∈ T ′ (by F 's construction) i�
[s1, ..., sm, t1, ..., tn]P (t1, ..., tn) ∈ T ′ (by Lemma 35) i�
〈t1, ..., tn〉 ∈ fP ({s1, ..., sm, t1, ..., tn}) (by F 's construction).

End of proof of Theorem 6.

1. Assume T 6`HC ϕ. By Corollary 4, there exists a C-structure, namely (M,F)`HC

such that (M,F)`HC |=C T and (M,F)`HC 6|=C ϕ. Hence T 6`C ϕ.

2. Assume T 6`HCT ϕ. By Corollary 4 and Lemma 36, there exists a T -structure, namely
(M,F)`HCT such that (M,F)`HCT |=C T and (M,F)`HCT 6|=C ϕ. Hence T 6`TC ϕ.

3. Assume T 6`HCR ϕ. By Corollary 4 and Lemma 36, there exists an R-structure,
namely (M,F)`HCR such that (M,F)`HCR |=C T and (M,F)`HCR 6|=C ϕ. Hence
T 6`RC ϕ.

6 Properties of the New Consequence Relations

In this section we discuss some properties of the presented consequence relations. All of
the properties will be formulated in terms of semantics (e.g. for `TC rather than for `HCT).
However, by the soundness and completeness theorems from Sections 5.2 and 5.3 those
properties have proof theoretical counterparts as well.

Throughout this section, L is a C-language.

6.1 Rule N

In [Ga-2010], it is shown that for every �rst-order theorem of HCT ϕ and every context
C, [C]ϕ is also a theorem of HCT . In this section we study this property for all of our
consequence relations and for all theorems of our systems (not just �rst order ones). We
start with some preliminary de�nitions and lemmas before the actual results.

De�nition 32. Rule N is the following rule of inference: ϕ
[C]ϕ for every context set C.

De�nition 33. Let ` be a consequence relation for L.

1. Rule N is valid in ` if for every theory T , formula ϕ and context C, if T ` ϕ then
T ` [C]ϕ.

2. Rule N is admissible in ` if the above holds for T = ∅.

Lemma 37. Let M be a �rst order structure which doesn't interpret predicate symbols, let
ϕ be an L-formula and let t1, ..., tn be terms. Assume that for every F such that (M,F) is
an S-structure, (M,F) |=GS ϕ. Then for every such F , (M,F) |=GS [t1, ..., tn]ϕ.

Proof. Let [s1, ..., sn]ϕ′ be an M -instance of [t1, ..., tn]ϕ. Let Y = {I (s1) , ..., I (sn)}. Let
F be a function as de�ned in De�nition 9. Since (M,F ′) |=GS ϕ for every F ′, (M,F ′) |=GS

ϕ′ for every F ′. In particular, (M,FY) |=GS ϕ
′, which means that (M,F) |=GS [s1, ..., sn]ϕ′.

25

Corollary 5. Rule N is admissible in `SGS: Let ϕ be a formula which is GS-valid in
every S-structure and let t1, ..., tn be terms. Then [t1, ..., tn]ϕ is also GS-valid in every
S-structure.

Proof. Let (M,F) be an S-structure. Then for every F ′ such that (M,F ′) is an S-structure,
(M,F ′) |=GS ϕ. By Lemma 37, (M,F ′) |=GS [t1, ..., tn]ϕ for every such F ′ and in particular
(M,F) |=GS [t1, ..., tn]ϕ.

Lemma 38. Let ϕ be an axiom of HC. Then for every C, `HC [C]ϕ.

Proof. It is enough to show that for every C, `C [C]ϕ. Let (M,F) be a C-structure and
let C be a context set. Let [C ′]ϕ′ be an M -instance of [C]ϕ. By Lemma 28, ϕ′ is an
instance of the same axiom scheme as ϕ.

1. Assume ϕ′ = ψ′1 → (ψ′2 → ψ′1). We need to show that
(M,F) |=C [C ′] (ψ′1 → (ψ′2 → ψ′1)), i.e. that if (M,F) |=C [C ′]ψ′1 then
(M,F) |=C [C ′] (ψ′2 → ψ′1). Assume (M,F) |=C [C ′]ψ′1. In particular, it holds that
either (M,F) |=C [C ′]ψ′1 or (M,F) 6|=C [C ′]ψ′2. Hence (M,F) |=C [C ′] (ψ′2 → ψ′1).

2. If ϕ′ is an instance of another propositional axiom, then this is shown similarly.

3. Assume ϕ′ = ∀xψ′ → ψ′ {t′/x} for some ground term t′. We need to show that
(M,F) |=C [C ′] (∀xψ′ → ψ′ {t′/x}). Assume (M,F) |=C [C ′]∀xψ′. Then for every
a ∈ |M |, (M,F) |=C [C ′]ψ′ {a/x}. It is easy to see that this means that for every
ground term t, (M,F) |=C [C ′]ψ′ {t/x}, and in particular for t′.

4. If ϕ′ is an instance of another �rst order axiom then this is shown similarly.

5. Assume ϕ′ = [A′] [B′]ψ′ ↔ [A′, B′]ψ′. For clarity, we explicitly write [A] ([B]ψ)
instead of [A] [B]ψ. (M,F) |=C [C ′] ([A′] ([B′]ψ′)) i� (M,F) |=C [C ′, A′] ([B′]ψ′) i�
(M,F) |=C [C ′, A′, B′]ψ′. (M,F) |=C [C ′] ([A′, B′]ψ′) i� (M,F) |=C [C ′, A′, B′]ψ′.

6. Assume ϕ′ = [A′]¬ψ′ ↔ ¬ [A′]ψ′. We need to show that (M,F) |=C [C ′] [A′]¬ψ′
i� (M,F) |=C [C ′]¬ [A′]ψ′. (M,F) |=C [C ′] [A′]¬ψ′ i� (M,F) |=C [C ′, A′]¬ψ′ i�
(M,F) 6|=C [C ′, A′]ψ′. Now, (M,F) |=C [C ′]¬ [A′]ψ′ i� (M,F) 6|=C [C ′] [A′]ψ′ i�
(M,F) 6|=C [C ′, A′]ψ′.

7. Assume ϕ′ = [A′] (ψ′1 → ψ′2)↔ ([A′]ψ′1 → [A′]ψ′2). We need to show that (M,F) |=C

[C ′] [A′] (ψ′1 → ψ′2) i� (M,F) |=C [C ′] ([A′]ψ′1 → [A′]ψ′2).
(M,F) |=C [C ′] [A′] (ψ′1 → ψ′2) i� (M,F) |=C [C ′, A′] (ψ′1 → ψ′2) i� either (M,F) |=C

[C ′, A′]ψ′2 or (M,F) 6|=C [C ′, A′]ψ′1. (M,F) |=C [C ′] ([A′]ψ′1 → [A′]ψ′2) i� either
(M,F) |=C [C ′] [A′]ψ′2 or (M,F) 6|=C [C ′] [A′]ψ′2 i� either (M,F) |=C [C ′, A′]ψ′2 or
(M,F) 6|=C [C ′, A′]ψ′2.

8. Assume ϕ = [A]∀xψ ↔ ∀x [A]ψ where x doesn't occur in A. We need to show that
(M,F) |=C [C ′] [A′] ∀xψ′ i� (M,F) |=C [C ′]∀x [A′]ψ′. (M,F) |=C [C ′] [A′] ∀xψ′ i�
(M,F) |=C [C ′, A′]∀xψ′ i� for every a ∈ |M |, (M,F) |=C [C ′, A′]ψ′{a/x}. Now,
(M,F) |=C [C ′]∀x [A′]ψ′ i� for every a ∈ |M |, (M,F) |=C [C ′] [A′]ψ′ {a/x} i� for
every a ∈ |M |, (M,F) |=C [C ′, A′]ψ′ {a/x}.

We now turn to the actual results regarding rule N .

Lemma 39.

1. Rule N is admissible in `C .

26

2. Rule N is admissible in `RC .

3. Rule N isn't admissible in `TC .

Proof.

1. It is enough to show that Rule N is admissible in `HC . Let ϕ be a theorem of
HC and let C be any context set. We prove that [C]ϕ is also a theorem of HC by
induction on the length of the proof of ϕ in HC.

(a) If ϕ is an axiom of HC then by Lemma 38, `HC [C]ϕ.

(b) If ϕ is proved from ψ and ψ → ϕ using M.P then by the i.h., `HC [C]ψ
and `HC [C] (ψ → ϕ). By C→, `HC [C]ψ → [C]ϕ. Using M.P we get that
`HC [C]ϕ.

(c) If ϕ is proved from ψ using Gen then ϕ = ∀xψ. By the i.h., `HC [C]ψ. First
assume x doesn't appear in C. Using Gen, we get that `HC ∀x [C]ψ and using
C∀ we get that `HC [C]∀xψ. Now assume x appears in C. Assume w.l.g that
C = {x1, ..., xn} and that x = x1. Let y1, ..., yn be fresh variables. By the i.h.
`HC [y1, ..., yn]ψ. Using Gen, we get that `HC ∀x [y1, ..., yn]ψ. Using C∀ we get
that `HC [y1, ..., yn]∀xψ (since y1, ..., yn are fresh). Using Gen n more times, we
get that `HC ∀y1...∀yn ([y1, ..., yn]∀xψ). Now using the axiom ∀xA → A {t/x}
of HFOL n times we get that `HC [C]∀xψ.

2. By Corollary 5 and Theorem 4.

3. By Lemmas 11 and 12.

Lemma 40. Rule N isn't valid in `C and `RC .

Proof. For `RC , since `RC=`SGS , it is enough to present an S-structure (M,F) and a formula
ϕ such that (M,F) |=GS ϕ and (M,F) 6|=GS [C]ϕ: |M | = {1, 2}, I(c) = 1, I (d) =
2. fP (∅) = fP ({1}) = fP ({2}) = ∅, fP ({1, 2}) = {1}. (M,F) |=GS ¬P (c) since
I (c) = 1 /∈ fP ({I (c)}) = ∅. Nevertheless, (M,F) 6|=GS [d]¬P (c) since (M,FY) 6|=GS

¬P (c) with Y = {I (d)} since (M,FY) |=GS P (c) since I (c) = 1 ∈ fPY ({I (c)}) =
f ({1, 2}) ∩ {1} = {1}. For `C : We present a C-structure (M,F) and a formula ϕ such
that (M,F) |=C ϕ and (M,F) 6|=C [C]ϕ, namely the above S-structure. (M,F) |=C ¬P (c)
since I (c) = 1 /∈ fP (∅) = ∅. However, (M,F) 6|=C [c, d]¬P (c) since (M,F) |= [c, d]P (c)
since I (c) = 1 ∈ {1} = fP ({1, 2}) = fP ({I (d) , I (c)}).

6.2 Axiom T

Recall that axiom T is P (x1, ..., xn) ↔ [x1, ..., xn]P (x1, ..., xn). Another way of present-
ing this axiom is: ϕ (x1, ..., xn) ↔ [x1, ..., xn]ϕ (x1, ..., xn) for every atomic ϕ. A natural
question which arises is whether or not ϕ (x1, ..., xn) ↔ [x1, ..., xn]ϕ (x1, ..., xn) is a theo-
rem of the discussed deductive systems (or, equivalently - valid in the discussed semantic
consequence relations).

Lemma 41. Let `∈
{
`C ,`TC ,`RC

}
. Then it doesn't hold that for every ϕ (x1, ..., xn)

` ϕ (x1, ..., xn)↔ [x1, ..., xn]ϕ (x1, ..., xn).

Proof. Since `C(`TC(`RC , It is enough to present a formula ϕ (x1, ..., xn) such that
6`RC ϕ (x1, ..., xn) ↔ [x1, ..., xn]ϕ (x1, ..., xn). Let ϕ = P (x) → P (y). We present an R-
structure (M,F) such that (M,F) 6|=C (P (x)→ P (y)) ↔ [x, y] (P (x)→ P (y)): |M | =

27

{1, 2}, fP ({1}) = fP ({1, 2}) = {1, 2}, fP (∅) = fP ({2}) = {1}. (M,F) is indeed an R-
structure. Consider the following M -instance of (P (x)→ P (y))↔ [x, y] (P (x)→ P (y)):(
P
(
1
)
→ P

(
2
))
↔
[
1, 2
] (
P
(
1
)
→ P

(
2
))
. We show that (M,F) doesn't satisfy it. Since

1 ∈ fP (∅) and 2 /∈ fP (∅), (M,F) 6|=C P
(
1
)
→ P

(
2
)
. However, since 1, 2 ∈ fP ({1, 2}),

(M,F) |=C

[
1, 2
] (
P
(
1
)
→ P

(
2
))
. All together,

(M,F) 6|=C (P (x)→ P (y))↔ [x, y] (P (x)→ P (y)).

6.3 Replacement of Equivalents

Loosely speaking, a consequence relation admits replacement of equivalents if whenever
two formulas are equivalent, it is possible to replace each occurrence of the �rst with the
other. In this section we check which of our consequence relations admits this rule.

De�nition 34. Let ` be any consequence relation for L.

1. Let T be an L-theory and let A and A′ be L-formulas. A and A′ are `-equivalent in
T if T ` A↔ A′.

2. ` admits strong replacement of equivalents if for every L-theory T and L-formulas
ϕ, ϕ′, A, A′ such that ϕ′ is obtained from ϕ by replacing zero or more occurrences
of A with A′, if A and A′ are `-equivalent in T then so are ϕ and ϕ′. ` admits weak
replacement of equivalents if the above holds for T = ∅.

Lemma 42. `C and `RC admit weak replacement of equivalents.

Proof. It is enough to show that `HC and `HCR admit weak replacement of equivalents.
Let `∈ {`HC ,`HCR}. Let k ≥ 0 be the number of replacements of A by A′ made in ϕ.
If k = 0 then this is trivial. Let k > 0. If A = ϕ then ϕ′ = A′ and this is also trivial.
Hence we may assume that A 6= ϕ (i.e. that A is a distinct sub-formula of ϕ). We prove
the claim by induction on the complexity of ϕ.

1. Assume ϕ is P (t1, ..., tn). Then A = P (t1, ..., tn) and this falls under one of the
above cases.

2. If ϕ is ¬ψ, ψ1 → ψ2 or ∀xψ then this is shown similarly to the proof of the theorem
for classical �rst order logic.

3. Assume ϕ is [C]ψ for some context set C. ϕ′ = [C]ψ′, where ψ′ is a formula obtained
from ψ by replacing the same occurrences of A with A′. By the i.h., ` ψ ↔ ψ′. By
Lemma 39 and Theorem 6, ` [C] (ψ ↔ ψ′), and by Lemma 27, ` [C]ψ ↔ [C]ψ′.

Lemma 43. `TC doesn't admit weak replacement of equivalents.

Proof. We prove this claim for `HCT . Let ϕ := [d] [c]P (c) ↔ [d, c]P (c), A := [c]P (c)
and A′ := P (c). Let ϕ′ := [d]P (c) ↔ [d, c]P (c), obtained from ϕ by replacing one
occurrence of A with A′. By axiom T , `HCT A ↔ A′. However, 6`HCT ϕ ↔ ϕ′: Assume
for contradiction that `HCT ϕ↔ ϕ′. Then since `HCT ϕ (axiom CC), `HCT ϕ′, i.e. `HCT
[d]P (c) ↔ [d, c]P (c). Since `HCT [d, c]P (c) ↔ [d] [c]P (c), `HCT [d]P (c) ↔ [d] [c]P (c)
and hence `HCT [d] (P (c)↔ [c]P (c)). This means that `TC [d] (P (c)↔ [c]P (c)), but this
is not the case, as seen in Lemma 12.

Lemma 44. `C and `RC don't admit strong replacement of equivalents.

28

Proof. We start with `C . Let ϕ,ϕ′, A,A′ be the same as in Lemma 43. De�ne T :=
{A↔ A′} = {[c]P (c)↔ P (c)}. Obviously, T `C A ↔ A′. We prove that T 6`C ϕ ↔ ϕ′.
It is enough to �nd a C-structure (M,F) such that (M,F) |=C T and (M,F) 6|=C ϕ↔ ϕ′.
Consider the following C-structure (M,F): |M | = {1, 2}. I (c) = 1, I (d) = 2. fP (∅) =
fP ({1}) = fP ({1, 2}) = {1}. fP ({2}) = ∅. Clearly, (M,F) |=C [c]P (c) ↔ P (c). In
addition, (M,F) |=C [d] [c]P (c) ↔ [d, c]P (c) (by Theorem 5). However, (M,F) 6|=C

[d]P (c)↔ [d, c]P (c). Hence (M,F) 6|=C ϕ↔ ϕ′. Now we turn to `RC . If `RC would admit
strong replacement of equivalents, then we could infer that P (c) ↔ P (d) `RC [e]P (c) ↔
[e]P (d), since `RC [e]P (c) ↔ [e]P (c), and [e]P (c) ↔ [e]P (d) is obtained from it by a
replacement of one occurrence of P (c) with P (d). However, P (c)↔ P (d) 6`RC [e]P (c)↔
[e]P (d): Consider the following R-structure: |M | = {1, 2, 3}. I (c) = 1, I (d) = 2,
I (e) = 3. fP ({3}) = fP ({1, 3}) = {1}. fP (X) = ∅ for every other X ∈ FIN (|M |).
First, we show that (M,F) is indeed an R-structure, i.e. that fP is re�exive: Let x ∈ |M |
and X ∈ FIN (|M |). x ∈ fP (X) i� x = 1 and X ∈ {{3} , {1, 3}} i� x = 1 and X ∪ {x} =
{1, 3} i� x ∈ fP (X ∪ {x}). Second, (M,F) |=C P (c)↔ P (d) since I (c) = 1 /∈ fP (∅) and
I (d) = 2 /∈ fP (∅). However, (M,F) 6|=C [e]P (c)↔ [e]P (d) since I (c) = 1 ∈ fP ({I (e)})
but I (d) = 2 /∈ fP ({I (e)}).

6.4 Replacement of Congruent Formulas

We have seen that only two of the studied consequence relations admit weak replacement
of equivalents and that none of them admits strong replacement of equivalents.

We now de�ne a stronger notion of equivalence, namely congruence, in order to obtain
a more positive result.

De�nition 35. Let ` be any consequence relation for L.

1. Let T be an L-theory and let A and A′ be L-formulas. A and A′ are `-congruent in
T if for every context set C, T ` [C] (A↔ A′).

2. ` admits (strong) replacement of congruent formulas if for every L-theory T and
L-formulas ϕ, ϕ′, A, A′ such that ϕ′ is obtained from ϕ by replacing zero or more
occurrences of A with A′, if A and A′ are `-congruent in T then so are ϕ and ϕ′.

Lemma 45. Let `∈
{
`C ,`TC ,`RC

}
. Then ` admits replacement of congruent formulas.

Proof. We prove the claim for `∈ {`HC ,`HCT ,`HCR}. Let T be an L-theory and ϕ, ϕ′,
A, A′ be L-formulas such that ϕ′ is obtained from ϕ by replacing zero or more occurrences
of A with A′. Assume A and A′ are `-congruent in T . We prove that T ` [C] (ϕ↔ ϕ′)
for every C. Let k ≥ 0 be the number of replacements of A by A′ made in ϕ. If k = 0
then we need to prove that for every C, ` [C] (ϕ↔ ϕ). This is equivalent to showing that
` [C]ϕ ↔ [C]ϕ, which of course holds. Let k > 0. If A = ϕ then ϕ′ = A′ and this is
trivial. Hence we may assume that A 6= ϕ (i.e. that A is a distinct sub-formula of ϕ). We
prove the claim by induction on the complexity of ϕ.

1. Assume ϕ is P (t1, ..., tn). Then A = P (t1, ..., tn) and this falls under one of the
above cases.

2. Assume ϕ is ¬ψ. Let ψ′ be the formula which is obtained from ψ by the same k
replacements of A by A′ made in ϕ. Obviously, ϕ′ = ¬ψ′. Let C be any context
set. By the induction hypothesis, T ` [C] (ψ ↔ ψ′). Therefore, T ` [C]ψ ↔ [C]ψ′.
Since ` has all axioms and rules of HFOL, T ` ¬ [C]ψ ↔ ¬ [C]ψ′. By C¬, T `
¬ [C]ψ ↔ [C]¬ψ and T ` ¬ [C]ψ′ ↔ [C]¬ψ′. Therefore, T ` [C]¬ψ ↔ [C]¬ψ′ and
hence T ` [C] (¬ψ ↔ ¬ψ′).

3. Assume ϕ is ψ1 → ψ2. Then this shown similarly.

29

4. Assume ϕ is ∀xψ. Let ψ′ be the formula which is obtained from ψ by the same
k replacements of A by A′ made in ϕ. Obviously, ϕ′ = ∀xψ′. Let C be any con-
text set. By the induction hypothesis, T ` [C]ψ ↔ [C]ψ′. By the HFOL ax-
iom ∀xA → A {t/x}, T ` ∀x [C]ψ → [C]ψ. Hence T ` ∀x [C]ψ → [C]ψ′. By
Gen, T ` ∀x (∀x [C]ψ → [C]ψ′). By the HFOL axiom ∀x (A→ B) → (A→ ∀xB)
and the fact that x isn't free in ∀x [C]ψ, T ` ∀x [C]ψ → ∀x [C]ψ′. Similarly,
T ` ∀x [C]ψ′ → ∀x [C]ψ. Hence T ` ∀x [C]ψ ↔ ∀x [C]ψ′. First assume x doesn't
appear in C. Then T ` ∀x [C]ψ ↔ [C]∀xψ and T ` ∀x [C]ψ′ ↔ [C] ∀xψ′. Then
T ` [C] ∀xψ ↔ [C] ∀xψ′ and hence T ` [C] (∀xψ ↔ ∀xψ′). Now assume x does
appear in C. Assume w.l.g. that C = {x1, ..., xn} and that x = x1. Let y1, ..., yn be
fresh variables. By the induction hypothesis, T ` [y1, ..., yn]ψ ↔ [y1, ..., yn]ψ′. By
Gen, T ` ∀x ([y1, ..., yn]ψ ↔ [y1, ..., yn]ψ′). Since ` contains all axioms and rules of
HFOL, , T ` ∀x [y1, ..., yn]ψ ↔ ∀x [y1, ..., yn]ψ′. Now, by C∀, T ` ∀x [y1, ..., yn]ψ ↔
[y1, ..., yn]∀xψ and T ` ∀x [y1, ..., yn]ψ′ ↔ [y1, ..., yn]∀xψ′ (since y1, ..., yn are fresh).
All together, T ` [y1, ..., yn] ∀xψ ↔ [y1, ..., yn] ∀xψ′. Using Gen and the instantiation
axiom we obtain T ` [C]∀xψ ↔ [C] ∀xψ′ and hence T ` [C] (∀xψ ↔ ∀xψ′).

5. Assume ϕ is [D]ψ. Let ψ′ be the formula which is obtained from ψ by the same k
replacements of A by A′ made in ϕ. Obviously, ϕ′ = [D]ψ′. Let C be any context set.
By the induction hypothesis, T ` [C,D] (ψ ↔ ψ′) and hence T` [C,D]ψ ↔ [C,D]ψ′.
By CC, T ` [C,D]ψ ↔ [C] [D]ψ and T ` [C,D]ψ′ ↔ [C] [D]ψ′. This means that
T ` [C] [D]ψ ↔ [C] [D]ψ′, and hence T ` [C] ([D]ψ ↔ [D]ψ′).

6.5 Summary

The following table summarizes the results of this section. r.o.e. stands for replacement of
equivalents and r.o.c stands for replacement of congruent formulas.

`C `TC `RC
rule N admissible not admissible admissible

axiom T valid for atomic formulas valid for atomic formulas valid for atomic formulas

r.o.e holds weakly doesn't hold holds weakly

r.o.c holds holds holds

7 Reduction to Classical Logic

In this section we show that although in the frameworks of C-languages it is more conve-
nient to express the role of context in propositions, its expressive power is not greater than
the expressive power of �rst order classical logic.

Throughout this section we consider an arbitrary C-language L. For the purpose of
reducing to classical logic, it is easier to use a slightly di�erent version of C-languages than
the one de�ned in De�nition 6 and to make some assumptions:

1. Like in [Ga-2010], we use �nite sequences of terms, rather than �nite sets of terms.
Proof theoretically, this requires the addition (or more precisely, the reinstatement)
of the axiom scheme [x1, ..., xn]ϕ → [x′1, ..., x

′
m]ϕ where {x1, ..., xn} = {x′1, ..., x′m}.

Semantically, this does not matter, since the cdfs are de�ned over �nite sets and not
over �nite sequences.

2. We use |= with no subscripts for the satisfaction relation for classical �rst order logic
(De�nition 2).

3. We assume that L has an in�nite number of variable symbols, and that all the terms
of L are ordered by some well ordering, which we denote by �≤�.

30

7.1 Translation of Formulas

De�nition 36. The �rst order language tr (L) is obtained from L by the following steps:

1. Omitting the context operator.

2. Replacing every predicate symbol P of arity n with ℵ0 predicate symbols, namely
Pm,n for every m ∈ N ∪ {0}. The arity of Pm,n is m+ n.

De�nition 37. Let ϕ be a formula (in L or tr (L)). sfv (ϕ) 10 is the smallest variable
which is bigger than all the variables that occur (free or bound) in ϕ (with respect to the
well ordering of the terms of L).

De�nition 38. Let ϕ be an L-formula. tr (ϕ) is a tr (L)-formula, and is de�ned by
induction on the complexity of ϕ. In what follows m ≥ 0 and n, k > 0.

1. If ϕ is [s1, ..., sm]P (t1, ..., tn) then tr (ϕ) is Pm,n (s1, ..., sm, t1, ..., tn).

2. If ϕ is [s1, ..., sm] (¬ψ) then tr (ϕ) is ¬ (tr ([s1, ..., sm]ψ)).

3. If ϕ is [s1, ..., sm] (ψ1 → ψ2) then tr (ϕ) is (tr ([s1, ..., sm]ψ1))→ (tr ([s1, ..., sm]ψ2)).

4. If ϕ is ∀xψ then tr (ϕ) is ∀x (tr (ψ)).

5. If ϕ is [s1, ..., sk]∀xψ then tr (ϕ) is ∀y (tr ([s1, ..., sm]ψ {y/x})) where y = sfv (ϕ).

6. If ϕ is [t1, ..., tk] [s1, ..., sm]ψ then tr (ϕ) is tr ([t1, ..., tk, s1, ..., sm]ψ).

Remark 8. Precedence of the tr operator in the meta language: tr (ψ1)→ ψ2 = (tr (ψ1))→
ψ2, ψ1 → tr (ψ2) = ψ1 → (tr (ψ2)), ¬tr (ψ) = ¬ (tr (ψ)), ∀xtr (ψ) = ∀x (tr (ψ)), [C] tr (ψ) =
[C] (tr (ψ)).

Lemma 46. Let ϕ be an L-formula. Then Fv (ϕ) = Fv (tr (ϕ)).

Proof. The only case of De�nition 38 in which some variables are changed is case 5. In
this case, the only variables that are changed are bound variables, and they are replaced
with other (fresh) bound variables.

Remark 9. Our translation reduces the number of operators in a given formula, since it
eliminates all context operators and doesn't change any classical connective or quanti�er.
However, the translated formula is dramatically longer than the original formula.

7.2 Translation of Semantics

De�nition 39. Let (M,F) be a C-structure for L. tr (M) := 〈|M | , tr (I)〉 such that:

1. For every constant symbol c and function symbol g tr (I) (c) = I (c) and tr (I) (g) =
I (g).

2. For every m ≥ 0, n > 0 and predicate symbol Pm,n of arity m+ n:

tr (I) (Pm,n) =
{
〈b1, ..., bm, a1, ..., an〉 : 〈a1, ..., an〉 ∈ fP ({b1, ..., bm})

}

10Short for �smallest fresh variable�

31

De�nition 40. Let M = 〈|M | , I〉 be a �rst order structure for tr (L).

1. M is a CC-structure if M |= Pm,n (y1, ..., ym, x1, ..., xn) ↔ Pk,n (z1, ..., zk, x1, ..., xn)
for every P ∈ PRED (L), m, k ≥ 0, n > 0 and x1, ..., xn,y1, ..., ym,z1, ..., zk such that
{y1, ..., ym} = {z1, ..., zk}.

2. M is a CT -structure if it is a CC-structure and in addition, M |= P0,n (x1, ..., xn)↔
Pn,n (x1, ..., xn, x1, ..., xn) for every P ∈ PRED (L), n > 0 and x1, ..., xn.

3. M is a CR-structure if it is a CC-structure, and in addition,
M |= Pm,n (y1, ..., ym, x1, ..., xn) ↔ Pm+n,n (y1, ..., ym, x1, ..., xn, x1, ..., xn) for every
P ∈ PRED (L), m ≥ 0, n > 0 and y1, ..., ym, x1, ..., xn.

Lemma 47.

1. The mapping tr from C-structures for L to �rst-order structures for tr (L) is onto
the class of CC-structures for tr (L).

2. The mapping tr from T -structures for L to �rst-order structures for tr (L) is onto
the class of CT -structures for tr (L).

3. The mapping tr from R-structures for L to �rst-order structures for tr (L) is onto
the class of CR-structures for tr (L).

Proof. We start by constructing a structure which we shall use in all the parts of this proof.
Let M = 〈|M | , I〉 be a CC-structure for tr (L). Then (M ′, F ′) is de�ned as follows:

• |M ′| = |M |.

• I ′'s interpretation of constant symbols and function symbols is the same as I's.

• F ′ is de�ned as follows:

F ′ = λP ∈ PRED (L) .λX ∈ FIN
(∣∣M ′∣∣) .

{〈a1, ..., an〉 : ∃b1, ..., bm. {b1, ..., bm} = X ∧ 〈b1, ..., bm, a1, ..., an〉 ∈ I (Pm,n)}

Now we turn to the actual proof.

1. Let M be a CC-structure. Obviously, (M ′, F ′) is a C-structure. We claim that
tr (M ′, F ′) = M . By de�nition, tr (I ′) and I are identical over constant and function
symbols, and |M ′| = |M |. Let P ∈ PRED (L) and let m ≥ 0 and n > 0. We
need to show that tr (I ′) (Pm,n) = I (Pm,n). 〈b1, ..., bm, a1, ..., an〉 ∈ tr (I ′) (Pm,n) i�
a1, ..., an ∈ F ′ (P) ({b1, ..., bm}) i� 〈c1, ..., cm, a1, ..., an〉 ∈ I (Pm,n) for some
{c1, ..., cm} = {b1, ..., bm} (by F ′'s construction) i� 〈b1, ..., bm, a1, ..., an〉 ∈ I (Pm,n)
(since M is a CC-structure).

2. Let M be a CT -structure for tr (L). Consider the C-structure (M ′, F ′) which was
de�ned above. It is now clear that tr (M ′, F ′) = M . We claim that (M ′, F ′)
is a T -structure. 〈a1, ..., an〉 ∈ F ′ (∅) i� 〈a1, ..., an〉 ∈ I (P0,n) (by F ′'s construc-
tion) i� 〈a1, ..., an, a1, ..., an〉 ∈ I (Pn,n) (since M is a CT -structure) i� 〈a1, ..., an〉 ∈
F ′ (P) ({a1, ..., an}) (by F ′'s construction).

3. Let M be a CR-structure for tr (L). Consider the C-structure (M ′, F ′) which was
de�ned above. It is now clear that tr (M ′, F ′) = M . We claim that (M ′, F ′)
is an R-structure, i.e. that for every P ∈ PRED (L), F ′ (P) is re�exive. Let
P ∈ PRED (L) be an n-ary predicate and let {b1, ..., bm} ∈ FIN (|M |). 〈a1, ..., an〉 ∈

32

F ′ (P) ({b1, ..., bm}) i� 〈d1, ..., dm, a1, ..., an〉 ∈ I (Pm,n) with {d1, ..., dm} = {b1, ..., bm}
(by F ′'s construction) i� 〈d1, ..., dm, a1, ..., an, a1, ..., an〉 ∈ I (Pm+n,n) (since M is
a CR-structure) i� 〈b1, ..., bm, a1, ..., an, a1, ..., an〉 ∈ I (Pm+n,n) (since M is a CC-
structure) i� 〈a1, ..., an〉 ∈ F ′ (P) ({b1, ..., bm, a1, ..., an}) (by F ′'s construction).

Lemma 48. Let (M,F) be a C-structure.

1. tr (M,F) is a CC-structure.

2. If (M,F) is a T -structure then tr (M,F) is a CT -structure.

3. If (M,F) is an R-structure then tr (M,F) is a CR-structure.

Proof.

1. Assume {b1, ..., bm} = {c1, ..., ck}. 〈b1, ..., bm, a1, ..., an〉 ∈ tr (I) (Pm,n)
i� 〈a1, ..., an〉 ∈ fP ({b1, ..., bm}) = fP ({c1, ..., ck})
i� 〈c1, ..., ck, a1, ..., an〉 ∈ tr (I) (Pk,n).

2. 〈a1, ..., an〉 ∈ tr (I) (P0,n) i� 〈a1, ..., an〉 ∈ fP (∅)
i� 〈a1, ..., an〉 ∈ fP ({a1, ..., an}) (since (M,F) is a T -structure)
i� 〈a1, ..., an, a1, ..., an〉 ∈ tr (I) (Pn,n).

3. 〈b1, ..., bm, a1, ..., an〉 ∈ tr (I) (Pm,n) i� 〈a1, ..., an〉 ∈ fP ({b1, ..., bm})
i� 〈a1, ..., an〉 ∈ fP ({a1, ..., an, b1, ..., bm}) (since fR is re�exive)
i� 〈b1, ..., bm, a1, ..., an, a1, ..., an〉 ∈ tr (I) (Pm+n,n).

Lemma 49. Let (M,F) be a C-structure, let a1, ..., an ∈ |M | and let ϕ be an L-formula
such that Fv (ϕ) ⊆ {x1, ..., xn}. Then tr (M,F) |= (tr (ϕ)) {a1/x1, ..., an/xn} i�
tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}).

The proof is tedious and routine, and is detailed in the appendix (Section 10.2).

Lemma 50. Let (M,F) be a C-structure for L and let ϕ be an L-sentence.
Then (M,F) |=C ϕ i� tr (M,F) |= tr (ϕ).

Proof. By induction on the complexity of ϕ.

1. (M,F) |=C P (t1, ..., tn) i� 〈I (t1) , ..., I (tn)〉 ∈ fP (∅) i� 〈tr (I) (t1) , ..., tr (I) (tn)〉 ∈
tr (I) (P0,n) i� tr (M,F) |= P0,n (t1, ..., tn) i� tr (M,F) |= tr (P (t1, ..., tn)).

2. (M,F) |=C ∀xψ i� for every a ∈ |M |, (M,F) |=C ψ {a/x} i� for every a ∈ |M |
tr (M,F) |= tr (ψ {a/x}) (by the i.h.) i� for every a ∈ |M | tr (M,F) |= tr (ψ) {a/x}
(by Lemma 49) i� tr (M,F) |= ∀x (tr (ψ)) i� tr (M,F) |= tr (∀xψ).

3. (M,F) |=C [s1, ..., sm]P (t1, ..., tn) (with m > 0) i�
〈I (t1) , ..., I (tn)〉 ∈ fP ({I (s1) , ..., I (sm)}) i�
〈tr (I) (s1) , ..., tr (I) (sm) , tr (I) (t1) , ..., tr (I) (tn)〉 ∈ tr (I) (Pm,n) i�
tr (M,F) |= Pm,n (s1, ..., sm, t1, ..., tn) i� tr (M,F) |= tr ([s1, ..., sm]P (t1, ..., tn)).

4. (M,F) |=C [s1, ..., sm]¬ψ (with m ≥ 0) i� (M,F) 6|=C [s1, ..., sm]ψ i� tr (M,F) 6|=
tr ([s1, ..., sm]ψ) (by the i.h.) i� tr (M,F) |= ¬tr ([s1, ..., sm]ψ) i� tr (M,F) |=
tr ([s1, ..., sm]¬ψ).

5. For [s1, ..., sm] (ψ1 → ψ2) (with m ≥ 0) the proof is similar.

33

6. For ϕ = [s1, ..., sm] ∀xψ (with m > 0): Let y := sfv (ϕ). (M,F) |=C [s1, .., sm]∀xψ
i� for every a ∈ |M |, (M,F) |=C [s1, ..., sm]ψ {a/x} i� for every a ∈ |M |, tr (M,F) |=
tr ([s1, ..., sm]ψ {a/x}) (by the i.h.) i� for every a ∈ |M |,
tr (M,F) |= tr ([s1, ..., sm]ψ {y/x} {a/y}) i� for every a ∈ |M |,
tr (M,F) |= tr (([s1, ..., sm]ψ {y/x}) {a/y}) (since y doesn't occur in s1, ..., sm) i� for
every a ∈ |M |, tr (M,F) |= tr ([s1, ..., sm]ψ {y/x}) {a/y} (by Lemma 49) i�
tr (M,F) |= ∀y (tr ([s1, ..., sm]ψ {y/x})) i� tr (M,F) |= tr ([s1, ..., sm] ∀xψ).

7. (M,F) |=C [s1, ..., sm] [t1, ..., tn]ψ (with m,n > 0) i�
(M,F) |=C [s1, ..., sm, t1, ..., tn]ψ i�
tr (M,F) |= tr ([s1, ..., sm, t1, ..., tn]ψ) (by the i.h.) i�
tr (M,F) |= tr ([s1, ..., sm] [t1, ..., tn]ψ).

Lemma 51. Let (M,F) be a C-structure for L and let ϕ be an L-formula.
Then (M,F) |=C ϕ i� tr (M) |= tr (ϕ).

Proof. Let x1, ..., xn be the free variables of ϕ. (M,F) |=C ϕ i� for every a1, ..., an ∈ |M |,
(M,F) |=C ϕ {a1/x1, ..., an/xn} i� for every a1, ..., an ∈ |M |,
tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}) (by Lemma 50) i� for every a1, ..., an ∈ |M |,
tr (M,F) |= tr (ϕ) {a1/xn, ..., an/xn} (by Lemma 49) i� tr (M,F) |= tr (ϕ) (by Lemma
46).

De�nition 41.

1. A :=

{Pm,n (y1, ..., ym, x1, ..., xn)↔ Pk,n (z1, ..., zk, x1, ..., xn) :

{y1, ..., ym} = {z1, ..., zk} , P ∈ PRED (L) ,m, k ≥ 0, n > 0}

2. B :=

{P0,n (x1, ..., xn)↔ Pn,n (x1, ..., xn, x1, ..., xn) : P ∈ PRED (L) , n > 0}

3. C :=

{Pm,n (y1, ..., ym, x1, ..., xn)↔ Pm+n,n (y1, ..., ym, x1, ..., xn, x1, ..., xn) :

P ∈ PRED (L) ,m ≥ 0, n > 0}

4. Let T be an L-theory. tr (T) := {tr (ϕ) : ϕ ∈ T}.

Theorem 7. Let T be an L-theory and let ϕ be an L-formula.

1. T `C ϕ i� tr (T) ∪A `FOL tr (ϕ).

2. T `TC ϕ i� tr (T) ∪A ∪B `FOL tr (ϕ).

3. T `RC ϕ i� tr (T) ∪A ∪B ∪ C `FOL tr (ϕ).

Proof. We prove the case of `C . Other cases are similar. Assume T `C ϕ. Let M be a
�rst-order model of tr (T)∪A. In particular, M |= A and hence M is a CC-structure. By
Lemma 47, there exists a C-structure (M ′, F ′) such that M = tr (M ′, F ′). By Lemma 51,
(M ′, F ′) |=C T . By our assumption, (M ′, F ′) |=C ϕ and again by Lemma 51, M |= tr (ϕ).
Hence tr (T)∪A `FOL tr (ϕ). Now assume T 6`C ϕ. Then there exists a C-structure (M,F)
such that (M,F) |=C T and (M,F) 6|=C ϕ. By Lemma 51 and the fact that tr (M,F) is a
CC-structure (by Lemma 48), tr (M,F) |= tr (T) ∪ A and tr (M,F) 6|= tr (ϕ). Therefore,
tr (T) ∪A 0FOL tr (ϕ).

34

8 The Sorites Paradox

As mentioned, one of the motivations for developing TCL has been the fact that in clas-
sical logic the use of tolerant predicates can lead to the Sorites paradox. TCL o�ers a
formulation in which the paradox can be avoided. We start this section with a rigorous
presentation of the Sorites paradox. Then, we present a solution of fuzzy logic to the para-
dox. After that, we formalize Gaifman's original solution to the paradox using TCL.11 We
end this section with a comparison between the di�erent approaches.

8.1 A Rigorous Formulation of the Paradox

Let L be a �rst order language. Let n be any natural number and let a0, ..., an be constant
symbols for L. Let P be a unary predicate and let NP be a binary predicate. Let T be
the theory which consists of the following axioms:

1. axiom A: P (a0).

2. axiom B: ¬P (an).

3. for every 0 ≤ i ≤ n− 1 axiom Ci is: NP (ai, ai+1).

4. axiom TC: NP (ai, aj)→ (P (ai)→ P (aj)).
12

Lemma 52. T is unsatis�able in classical logic.

However, if we consider P as a vague predicate and NP as its nearness relation (i.e.
NP (x, y) should hold if x is close to y), then T seems true. For example:

Example 6. Assume n = 200. Interpret P as �short�, NP as the nearness relation of
�short� (e.g. NP (x, y) means �x and y are at most 1 centimeters apart in their heights�)
and a0, ..., a200 as a series of people such that: For each 0 ≤ i ≤ 200 ai denotes a person
whose height is i.

The fact that T seems true by some interpretations although it is not satis�able is one
way to present the famous Sorites paradox.

8.2 The Solution(s) of Fuzzy Logic

The framework of [Ga-2010] may be viewed as a response to a collection of solutions to the
Sorites paradox, o�ered by Fuzzy Logic13. In order to have a better understanding of the
motivation for the contextual framework, we present an example for a solution from fuzzy
logic.

We use the solution of �ukasiewicz fuzzy logic as it is presented on pages 263-271 of
[Be-2008] as a basis. We made some modi�cations in order for it to be as similar as possible
to our formulation of the paradox.

This solution shows (after well-de�ning the relevant notions) that T is �almost� satis�-
able, by presenting an L-structure (De�nition 5) which assigns to each axiom of T a very
high truth value (at least 1− 1

n). This solves the paradox, by showing the acceptable fact
that T is indeed not satis�able, but all of its formulas have a high truth value.

We present the following L-structure:

1. |M | = {0, ..., n}.
11However, we feel that this solution is not yet satisfactory and that further research is in order here.
12TC stands for the tolerance conditional. A more exact notation would be e.g. TCi,j , however we will

use TC to denote every such instance.
13Gaifman uses the term �Degree Theory�.

35

2. I (ai) = i.

3. I (P) = λx ∈ |M | .n−xn .

4. I (NP) = λ 〈x, y〉 ∈ |M |2 .

{
1 |x− y| ≤ 1

0 otherwise

Let us calculate the truth values M assigns to the axioms of T :

1. M (P (a0)) = I (P) (0) = n−0
n = 1.

2. M (¬P (an)) = 1−M (P (an)) = 1− n−n
n = 1.

3. M (NP (ai, ai+1)) = 1 since |I (ai)− I (ai+1)| = 1.

4. M (NP (ai, aj)→ (P (ai)→ P (aj))) =
min {1, 1−M (NP (ai, aj)) +M (P (ai)→ P (aj))}. If M (NP (ai, aj)) = 0, then we
are looking for min {1, 1− 0 +M (P (ai)→ P (aj))} = 1 (as M (P (ai)→ P (aj)) is
non-negative). Let us now assume M (NP (ai, aj)) = 1 (recall that 0 and 1 are the
only two options for NP (ai, aj)). In this case, we are looking for

min {1, 1− 1 +M (P (ai)→ P (aj))} =

min {1,M (P (ai)→ P (aj))} =

min {1,min {1, 1−M (P (ai)) +M (P (aj))}} =

min {1, 1−M (P (ai)) +M (P (aj))} =

min

{
1, 1− n− i

n
+
n− j
n

}
= min

{
1, 1− i− j

n

}
Since we are under the assumption that M (NP (ai, aj)) = 1, |i− j| = 1. Therefore,

min
{

1, 1− i−j
n

}
≥ 1− 1

n . All together,M (NP (ai, aj)→ (P (ai)→ P (aj))) ≥ 1− 1
n .

Remark 10. Note that in the above example, NP 's interpretation is �crisp�. However, it
is possible that the notion of nearness is vague itself. There is a similar solution to the
paradox which uses a fuzzy interpretation of NP .

8.3 Gaifman's Solution

While the solution of fuzzy logic conforms with the fact that T is not satis�able and solves
the paradox by presenting an interpretation which doesn't fully satisfy T but almost does,
Gaifman claims that T should be re-formulated in a new kind of language (C-language),
resulting in a new theory T ∗. T ∗ is (GS-) satis�able, and hence the paradox is avoided.

For convenience, we assume the existence of a single context-dependent predicate P ,
which is unary. In addition, we use NP to denote the binary nearness relation for P .

De�nition 42. (From pages 8-9 of [Ga-2010]) A Sorites chain (for P) is a �nite sequence
of objects such that:

1. The �rst falls under P .

2. The last does not.

3. The di�erence between any two successive objects is so small that if one falls under
P so does the other.

Remark 11. Here are two of the several equivalent de�nitions of a feasible context (inside
square brackets are our comments):

36

1. �A context is feasible if its members can be partitioned into P 's and non-P 's without
violating any instance of the tolerance conditional [TC] or any of the semantic axioms
governing P � (page 21 of [Ga-2010]).

2. �In all the standard examples of tolerant predicates, this [being a feasible context]
is equivalent to the requirement that the context does not contain a Sorites chain�
(page 17 of [Ga-2010]).

Proposition 1. �For any given C we can express in the formal language the condition that
C is feasible� (page 21 of [Ga-2010]).

Remark 12. We denote the expression which states that C is a feasible context by
feasible (C).14

8.3.1 The De�nition of feasible (C)

In this section we provide our15 de�nition of the formula feasible (C), which is meant to
state that a certain context is a feasible one.

A context is feasible if it does not contain a Sorites chain. This means that if the
context has an element which is considered P in that context and another element which
is considered not P in that context, then there must be a gap between these two elements.
This is formulated as follows:

1. For every q ≥ 2: feasibleq ({t1, ..., tq}) =∧
π∈Sq

((
[t1, ..., tq]P

(
tπ(1)

)
∧ [t1, ..., tq]¬P

(
tπ(q)

))
→
∨q−1
i=1

(
¬NP

(
tπ(i), tπ(i+1)

)))
2. For singletons: feasible1 ({t}) may be any `SGS valid formula (i.e. for every t,
`SGS feasible1 ({t})).

3. feasible (C) = feasible|C| (C).

8.3.2 The Solution

The main idea of the solution is the division of contexts into feasible ones and unfeasible
ones. The ordinary use of tolerant predicates is restricted to feasible contexts. This
is justi�ed by the claim that �unfeasible contexts do not arise in practice� (page 17 of
[Ga-2010]).

We de�ne a new theory T ∗ in the C-language, rather than in the language of classical
logic. T ∗ will keep the intuitiveness of all claims in T , but will restrict them to certain
contexts. This way, the natural acceptance of T 's axioms will be legitimate, only with
minor acceptable changes. These changes will in fact turn our theory to a satis�able one.

T ∗ is:

1. axiom A∗: [C]P (a0) for every context set C (including ∅).

2. axiom B∗: [C]¬P (an) for every context set C (including ∅).

3. for every 0 ≤ i ≤ n− 1 axiom Ci is: NP (ai, ai+1).

4. The axiom INDNP
(De�nition 16).

14In fact, for every n ∈ N , there exists a formula feasiblen (t1, ..., tn), which expresses the fact that
{t1, ..., tn} is feasible. Moreover, feasiblen (t1, ..., tn) depends also on P and NP (P 's nearness relation).
We ignore these dependencies since here we use a language in which the only context dependent predicate
is P , and it has one associated nearness relation NP .

15There was a �aw in the original construction of this formula in [Ga-2010] (con�rmed by Gaifman in a
personal communication).

37

5. axiom scheme TC∗: ((feasible (C) ∧NP (ai, aj))→ [C] (P (ai)→ P (aj))) for every
context set C which includes ai and aj .

Remark 13.

1. The formulas of the form feasible (C) are only used in axiom scheme TC∗. The
reason for that is the strong connection between feasible contexts and tolerance.
According to [Ga-2010], �tolerance is, by de�nition, tolerance in all feasible contexts�
(page 17 of [Ga-2010]). This means that unfeasible contexts are allowed, as long as
tolerance isn't needed. If we introduce unfeasible contexts, we lose tolerance. This
is why feasible (C) is only used in the tolerance conditional TC∗.

2. A more general formulation of TC∗ would be:

∀x∀y ((x ∈ C ∧ y ∈ C ∧ feasible (C) ∧NP (x, y))→ [C] (P (x)→ P (y)))

Using this scheme requires a language with the identity sign, in order to express �∈�.
This is not essential to the paradox nor its solutions. For technical simplicity, we use
instead the scheme that was formalized above.

3. Note that in this solution (similarly to the solution of fuzzy logic that we presented
above), NP is context-independent. However, there can be situations in which NP is
context-dependent, but we shall not pursuit this here.

Lemma 53. T ∗ is satis�able in TCL (i.e. GS-satis�able by an S-structure).

Proof. We present an S structure which GS-satis�es T ∗. 16

We de�ne (M,F) as follows:

1. |M | = {0, ..., n}.

2. I (ai) = i for every 0 ≤ i ≤ n.

3. fNP (X) =
{
〈i, j〉 ∈ X2 : |i− j| ≤ 1

}
for every X ∈ FIN (|M |).

4. The de�nition of fP (X) is a bit more complicated:

(a) For every 0 ≤ i ≤ n− 1 fP ({i}) = {i}.
(b) fP ({n}) = ∅.
(c) For every X ∈ FIN (|M |) which is not a singleton, if there exists x, y ∈ X

such that x < y − 1, and there isn't any z ∈ X such that x < z < y, then
fP (X) = {w ∈ X : w ≤ x} for the minimal x for which there exists such y. 17

(d) For every other X ∈ FIN (|M |) which is not a singleton, if n ∈ X,
fP (X) = {0} ∩X. Otherwise, fP (X) = X.

Let us now show that (M,F) indeed models T ∗. Let ϕ be an axiom of T ∗. Let ϕ′

be an M -instance of it. ϕ′ may have 5 forms. We verify that in each possible form,
(M,F) |=GS ϕ

′:

16Despite the fact that it is more convenient to work with R-structures once they are de�ned, it is easier
to actually de�ne S-structures, since for every �nite subset X of |M |, one only needs to assign a subset
of X. By Theorem 4, there also exists an R-structure which C-satis�es T ∗, but it seems to have a more
cumbersome de�nition.

17For clarity: If X isn't a singleton and it contains a gap (with respect to ≤ of the natural numbers),
then all elements �left� to the gap are considered P in X.

38

1. ϕ′ = [C]P (a0): If C = ∅ then (M,F) |=GS P (a0) since 0 ∈ fP ({0}). Other-
wise, it is easy to see that for every X such that 0 ∈ X, 0 ∈ fP (X). Hence
0 ∈ fP (I (C) ∪ {0})∩{0} for every C. This means that for every C,

(
M,FI(C)

)
|=GS

P (a0) and hence (M,F) |=GS [C]P (a0).

2. ϕ′ = [C]¬P (an): If C = ∅ then (M,F) |=GS ¬P (an) since n /∈ fP ({n}). Otherwise,
n in never an element of f (X) for any X. Therefore, for every C,
n /∈ fP (I (C) ∪ {n}) ∩ {n}, which means that for every C,

(
M,FI(C)

)
|=GS ¬P (an)

and hence (M,F) |=GS [C]¬P (an).

3. ϕ′ = NP (ai, ai+1): Let 1 ≤ i ≤ n− 1. |i− (i+ 1)| = 1. Hence
〈i, i+ 1〉 ∈ fNP ({i, i+ 1}) and therefore (M,F) |=GS NP (ai, ai+1).

4. ϕ′ = INDNP
: By Lemma 6, it is enough to show that NP is context independent in

(M,F). Indeed, let X ∈ FIN (|M |). 〈x, y〉 ∈ fNP (X ∪ {x, y}) i� both
x, y ∈ X ∪ {x, y} and |x− y| ≤ 1, i� |x− y| ≤ 1 i� 〈x, y〉 ∈ fNP ({x, y}).

5. ϕ′ = (feasible (C) ∧NP (ai, aj)) → [C] (P (ai)→ P (aj)): Assume (M,F) |=GS

feasible (C) ∧ NP (ai, aj). Then (M,F) |=GS feasible (C) and |i− j| ≤ 1. Let
Y = I (C). We need to prove that (M,FY) |=GS P (ai) → P (aj). We therefore
assume (M,FY) |=GS P (ai) and prove (M,FY) |=GS P (aj). Note that since
(M,FY) |=GS P (ai), i ∈ fP (I (C) ∪ {i}) ∩ {i}. In particular, i ∈ fP (I (C) ∪ {i}).
In addition, the examined axiom should hold only when ai and aj are elements of
C. Therefore, I (C) ∪ {i, j} = I (C), and hence i ∈ fP (I (C)). Similarly, in order to
prove that (M,FY) |=GS P (aj), it is enough to show that j ∈ fP (I (C)). Now we
check every possible case:

(a) i < j (j = i+ 1):

i. C = {ai, aj}: Assume j = n. In this case, fP ({i, j}) = {i, j}∩{0}. If i = 0
then (M,F) |=GS [C]P (a0), (M,F) |=GS [C]¬P (a1) and (M,F) 6|=GS

¬NP (a0, a1). Therefore, (M,F) 6|=GS feasible (C) which is a contradiction
to our assumption. Hence i 6= 0, which means that fP ({i, j}) = ∅. There-
fore, i /∈ fP (I (C)), which is also a contradiction to our assumptions. Now
assume j 6= n. Then fP ({i, j}) = {i, j} and hence j ∈ fP (I (C)).

ii. |C| > 2: First assume there exists k 6= i such that k ∈ fP (I (C)). Then
since i, k ∈ fP (I (C)), fP (I (C)) 6= {0} and fP (I (C)) 6= ∅. This means
that one of the two following options must hold: The �rst: there exists a
minimal x ∈ I (C) for which there exists y ∈ I (C) such that x < y − 1,
and there isn't any z ∈ I (C) such that x < z < y. The second: n /∈ I (C).
Assume that the �rst option holds. Since i ∈ fP (I (C)), i ≤ x. In addition,
x 6= i, since i + 1 = j ∈ I (C) (and there are no elements between x and
y in I (C)). Therefore i < x and hence j = i + 1 ≤ x. This means that
j ∈ fP (I (C)). If the second option holds (and the �rst one doesn't),
fP (I (C)) = I (C). As said, j ∈ I (C) and hence j ∈ fP (I (C)). Now
assume {i} = fP (I (C)). Then there are two possibilities: The �rst: i is
the smallest x ∈ I (C) for which there exists y ∈ I (C) such that x < y − 1
and there is no z ∈ I (C) such that x < z < y. This case is impossible, as
i + 1 = j ∈ I (C) and j < y. The second: i = 0 and n ∈ I (C). In this
case, I (C) = |M | and hence (M,F) 6|=GS feasible (C), which contradicts
our assumption.

(b) j < i (i = j + 1):

i. C = {ai, aj}: i 6= n since i ∈ fP (I (C)) and n /∈ fP (X) for every X ∈
FIN (|M |). Hence n /∈ I (C) and hence fP (I (C)) = I (C). In particular,
j ∈ fP (I (C)).

39

ii. |C| > 2: Similarly to item a.ii, �rst assume that there exists k 6= i such that
k ∈ fP (I (C)). Then fP (I (C)) 6= {0} and fP (I (C)) 6= ∅. This means
that either there exists a minimal x ∈ I (C) for which there exists y ∈ I (C)
such that x < y − 1, and there isn't any z ∈ I (C) such that x < z < y, or
n /∈ I (C). Assume that the �rst option holds. Since i ∈ fP (I (C)), i ≤ x.
Since j < i, j < x and hence j ∈ fP (I (C)). If the second option holds
(and the �rst one doesn't), fP (I (C)) = I (C) and hence j ∈ fP (I (C)).
Now assume {i} = fP (I (C)). Since i = j + 1, i 6= 0. Therefore, i is the
smallest x ∈ I (C) for which there exists y ∈ I (C) such that x < y− 1 and
there is no z ∈ I (C) such that x < z < y. In this case, j < i = x and hence
j ∈ fP (I (C)). This is a contradiction since j 6= i.

(c) i = j: This case is trivial, as we are under the assumption that i ∈ fP (I (C))
and need to prove that j ∈ fP (I (C)).

A Remark Regarding the Solution

It would be useful to emphasize a special characteristic of the above solution. Notice
that axiom scheme TC∗ requires that ai, aj ∈ C. At �rst, this seems redundant, as the use
of axiom R of HCR is supposed to guarantee that the presence of the considered elements
in the context is not important. However, axiom R only refers to atomic formulas, and
not to complex ones. Now we show that omitting this requirement (of TC∗) results in an
unsatis�able theory. In the foregoing, we denote by T ∗∗ the theory obtained from T ∗ by
omitting that requirement from axiom TC∗.

Lemma 54. `HCR ([C]P (t)→ [C]P (s))→ ([C, t]P (t)→ [C, s]P (s)).

Proof. By Lemma 35, `HCR [C]P (t) ↔ [C, t]P (t) and `HCR [C]P (s) ↔ [C, s]P (s).
Since `HCR admits weak replacement of equivalents (Lemma 42 and the soundness and
completeness theorems for `HCR), `HCR ([C]P (t)→ [C]P (s))↔ ([C, t]P (t)→ [C]P (s))
and `HCR ([C, t]P (t)→ [C]P (s))↔ ([C, t]P (t)→ [C, s]P (s)).
All together, `HCR ([C]P (t)→ [C]P (s))↔ ([C, t]P (t)→ [C, s]P (s)).

Lemma 55. T ∗∗ is not satis�able.

Proof. It is enough to show that T ∗∗ is inconsistent. Let C be {a0}. Clearly, `HCR
feasible (C). In addition, for every 1 ≤ i ≤ n, T ∗∗ `HCR feasible (C, ai). For every
0 ≤ i ≤ n− 1, denote by Deductioni the following proof in HCR:

Line # Formula Justi�cation

7i+ 1 [C, ai]P (ai)
If i = 0 : axiom A

Otherwise: Repetition of line

7 (i− 1) + 7
7i+ 2 feasible (C) ∧NP (ai, ai+1) C = {a0} and axiom Ci

7i+ 3 (feasible (C) ∧NP (ai, ai+1))→
[C] (P (ai)→ P (ai+1))

axiom TC∗

7i+ 4 [C] (P (ai)→ P (ai+1)) M.P lines 7i+ 2 and 7i+ 3
7i+ 5 [C]P (ai)→ [C]P (ai+1) M.P of axiom C→ of HCR and line 7i+ 4
7i+ 6 [C, ai]P (ai)→

[C, ai+1]P (ai+1)
M.P. of Lemma 54 and line 7i+ 5

7i+ 7 [C, ai+1]P (ai+1) M.P lines 7i+ 1, 7i+ 6

Deduction0, Deduction1,...,Deductionn−1 is a proof [C, an]P (an) from T ∗∗ in HCR,
which means that T ∗∗ `HCR [C, an]P (an). In addition, the single-line proof
�¬ [C, an]P (an)� shows that T ∗∗ `HCR ¬ [C, an]P (an).

40

T ∗∗ is not satis�able, but seems true, just like the original T . Therefore, the requirement
that ai, aj ∈ C in axiom TC is crucial.

8.3.3 Other Contextual Solutions

Obviously, the proposed construction of feasible (C) is not intended for an actual appli-
cation - it isn't feasible to check whether a context is feasible using this construction. This
fact shouldn't be too disturbing, because of the following two reasons:

1. The contextual framework can be used in situations where unfeasible contexts do not
arise. This means that TCL should be used to describe tolerant predicates, in most
of their ordinary usage (which is usually in feasible contexts). Moreover, as quoted
above, unfeasible contexts do not arise in practice. This suggests the solution to the
Sorites, by which the paradoxical inference does not arise in practice in its contextual
form.

2. There exists a solution to the Sorites which uses the contextual approach without
using the concept of feasible contexts at all. This solution appears in [Th] in a general
explanation. We shall now present (our rigorous formulation of) this solution.

Thomason's Solution

The following description of Thomason's approach is based on pages 5-6 of [Th] and
re�ects our understanding of these pages.

For technical simpli�cation, we make the intuitive assumption that n > 1. We de�ne
a new theory T ′ which is obtained from T ∗ by changing axiom TC∗ to:
NP (ai, aj)→ [ai, aj] (P (ai)→ P (aj)).

Now, the following deduction in HCR fails to derive the paradoxical conclusion:

Line # Formula Justi�cation

1 [a0, a1]P (a0) axiom A∗

2 NP (a0, a1) axiom C0

3 NP (a0, a1)→ [a0, a1] (P (a0)→ P (a1)) axiom TC∗

4 [a0, a1] (P (a0)→ P (a1)) M.P lines 2, 3

5 [a0, a1] (P (a0)→ P (a1))↔ ([a0, a1]P (a0)→ [a0, a1]P (a1)) C→
6 [a0, a1]P (a0)→ [a0, a1]P (a1) M.P. lines 4,5

7 [a0, a1]P (a1) M.P lines 1, 6
8 NP (a1, a2) axiom C1

9 NP (a1, a2)→ [a1, a2] (P (a1)→ P (a2)) axiom TC∗

10 [a1, a2] (P (a1)→ P (a2)) M.P lines 8, 9

11 [a1, a2] (P (a1)→ P (a2))↔ ([a1, a2]P (a1)→ [a1, a2]P (a2)) C→
12 [a1, a2]P (a1)→ [a1, a2]P (a2) M.P. lines 10,11

Obviously, it isn't possible to apply M.P. on lines 7 and 12. Hence, the paradoxical
deduction is avoided. Indeed,

Lemma 56. T ′ is satis�able in TCL (i.e. GS-satis�able by an S-structure).

Proof. Consider the following structure (M,F): |M | = {0, ..., n}. For every 1 ≤ i ≤ n,
I (ai) = i. fNP (X) =

{
〈i, j〉 ∈ X2 : |i− j| ≤ 1

}
for every X ∈ FIN (|M |).

fP = λX ∈ FIN (|M |) .


{0, 1} 0, 1 ∈ X
{0} 0 ∈ X, 1 /∈ X
∅ 0 /∈ X

We prove that (M,F) |=GS T
′. Let ϕ ∈ T ′ and let ϕ′ be an M -instance of ϕ. We check

every case:

41

1. (M,F) |=GS [C]P (a0): If C = ∅ then this holds since 0 ∈ fP ({0}). Assume
C 6= ∅. (M,F) |=GS [C]P (a0) i� (M,FY) |=GS P (a0) with Y = I (C) i� 0 ∈
fP ({0} ∪ I (C)) ∩ {0}, which is true by fP 's construction.

2. (M,F) |=GS ¬ [C]P (an): If C = ∅ then this holds since n /∈ fP ({n}). Now assume
C 6= ∅. (M,F) |=GS ¬ [C]P (an) i� (M,F) 6|=GS [C]P (an) i� (M,FY) 6|=GS P (an)
with Y = I (C) i� n /∈ fP (I (C) ∪ {n}) ∩ {n}, which is true by fP 's construction
and by the fact that n > 1.

3. (M,F) |=GS NP (ai, ai+1) and (M,F) |=GS INDNP
: Since fNP is de�ned exactly

like in Lemma 53, the proof is the same.

4. (M,F) |=GS NP (ai, aj)→ [ai, aj] (P (ai)→ P (aj)): Assume (M,F) |=GS NP (ai, aj).
Let Y = {i, j}. We prove that (M,FY) |=GS P (ai) → P (aj). If i = j then this
is obvious, and hence we assume i 6= j. Assume (M,FY) |=GS P (ai). Then ei-
ther i = 0 or i = 1. If i = 0 then since (M,F) |=GS NP (ai, aj), j = 1 and
1 ∈ fP ({0, 1} ∪ {1}) ∩ {1}. This means that (M,FY) |=GS P (aj). Now assume
i = 1. Then either j = 0 or j = 2. If j = 0, then since 0 ∈ fP ({0, 1} ∪ {0}) ∩ {0},
(M,FY) |=GS P (aj). If j = 2 then 1 /∈ fP ({i, j} ∪ {i}) ∩ {i} and hence
(M,FY) 6|=GS P (ai), which is a contradiction to our assumption.

8.4 Comparison between The Approaches

We have discussed above two approaches to the Sorites: one of fuzzy logic and one of
TCL (`SGS). Each approach suggests more than one solution to the paradox, out of which
we have seen one for fuzzy logic and two for TCL. There are three main di�erences
between these approaches. The �rst is concerned with the notion of truth degrees. In
the semantics of fuzzy logic, each formula is assigned a truth value from [0, 1], while the
contextual approach sticks to the classical use of only two truth values. The contextual
approach is an extension of classical logic in another sense too: Classical logic is contained
in contextual logic (in fact, both logics are identical when restricted to formulas without
the context operator). Moreover, contextual logic can be reduced to classical logic (as was
shown in Section 7). The second main di�erence is that in TCL the tolerance conditional,
which states that if x and y are close to each other then if x is P then so is y, is acceptable
(in principle). Indeed, this conditional expresses a �part of the semantic norms governing
the use of tolerant predicates� [Ga-2010]. One should however be careful with the exact
formalization of the conditional in order to take into account the e�ect of context on the
meaning of tolerant predicates. Hence the contextual approach uses a richer language.
Using the enriched language we obtain a new version of the tolerance conditional, which
is satis�able (along with the other axioms of the Sorites). In contrast, according to the
solution of fuzzy logic, the tolerance conditional is not acceptable, i.e. not all of its instances
are assigned the maximum truth value. By this solution, the tolerance conditional isn't
true, and the paradox is avoided by lowering its truth value. To conclude this di�erence:
The solution of TCL is based on a reformulation of the assumptions, while the solution
of fuzzy logic is based on the denial of the absolute truth of the tolerance conditional.
Another important di�erence between the approaches of fuzzy logic and TCL is that the
solution of TCL strongly relies on the notion of feasibility. When formalizing the tolerance
conditional in TCL, it is meant to hold only in feasible contexts. This is justi�ed by the
claim that unfeasible contexts do not arise in practice. On the other hand, in the solution
of fuzzy logic, the claims of the Sorites are formalized in general and are not restricted
to particular cases. Note however that TCL is useful even when neglecting the notion of
feasible contexts, as can be seen by the solution of Thomason.

42

9 Conclusion and Further Research

In this work we have reconstructed Gaifman's logic for context dependency in a modular
way.

Below is a graph which summarizes the explored deductive systems and their relations
to the explored semantics. A one directional arrow from A to B (A → B) means A (B.
A bidirectional arrow between A to B (A ↔ B) means A = B. If A ⊆ B and B ⊆ C we
omit the arrow from A to C.

`C

��

// `HC

��

oo

`TC

��

// `HCT

��

oo

`SGS // `RCoo // `HCRoo

Recall that HCT is the deductive system from [Ga-2010] and that `RC and `SGS are
equivalent to the semantical consequence relation from [Ga-2010]. We have seen that
indeed, HCT is not complete for `RC , but rather for `TC . We have also seen that the new
system HCR is complete for `RC .

In addition, we have studied several properties of the consequence relations, including
a reduction to classical logic.

In Section 8, two main approaches for the Sorites paradox were presented: fuzzy logic
and TCL. The �rst is based on an in�nite set of truth values, where the second is based
on an extended language. A combination between the approaches can be achieved by
extending fuzzy logic semantics to handle contexts and context dependent predicates. 18

10 Appendix

10.1 Using The Substitutional Approach

In this small section we show that the objectual approach is equivalent to the substitutional
approach when using TCL (see end of Section 3).

Let L be a C-language.

De�nition 43. Let (M,F) be an S-structure. Let n > 0, let ϕ (x1, ..., xn) be any formula
and let {ai}ni=1 ⊆ |M |. v{ai}ni=1

: V AR (L)→ |M | is de�ned as follows: for every 1 ≤ i ≤ n
v′ (xi) = ai and for every other x ∈ V AR (L), v{ai}ni=1

(x) = a1.

Notations:

1. v′ := v{ai}ni=1

2. for any term t, t′ := t {a1/x1, ..., an/xn}.

Lemma 57. Let t (x1, ..., xn) be any term in L and let a1, ..., an ∈ |M |. Then I (t′) = v′ (t).

18In his paper, Gaifman initiates a similar project, by presenting a combination between TCL and
another logic which is meant to model borderline vagueness by modal logic. In this logic, the truth degrees
of fuzzy logic are replaced by iterated modalities, retaining two truth values.

43

Proof. By induction on the complexity of t:

1. If t = x1 then I (t {a1/x1}) = I (a1) = a1 = v′ (x1).

2. If t = c then this is obvious.

3. If t = f (t1, ..., tm) then I (f (t1, ..., tm) {a1/x1, ..., an/xn}) = I (f (t′1, ..., t
′
m))

= I (f) (I (t′1) , ..., I (t′m)) = I (f) (v′ (t1) , ..., v
′ (tm)) (by the induction hypothesis),

which equals to v′ (f (t1, ..., tm)).

De�nition 44. Let (M,F) be an S-structure and let ϕ be a formula. (M,F) |=S
GS ϕ if

(M,F) models ϕ in the substitutional approach and (M,F) |=O
GS ϕ if (M,F) models ϕ in

the objectual approach. `SOGS is the consequence relation induced by |=O
GS and `SGS is the

consequence relation induced by |=S
GS .

Lemma 58. Let ϕ (x1, ..., xn) be any formula. Then for every S-structure (M,F) and
a1, ..., an ∈ |M |, (M,F) |=S

GS ϕ {a1/x1, ..., an/xn} i� (M,F, v′) |=O
GS ϕ.

Proof. By induction on the complexity of ϕ.

1. (M,F) |=S
GS P (t1, ..., tm) {a1/x1, ..., an/xn} i�

〈I (t′1) , ..., I (t′m)〉 ∈ fP ({I (t′1) , ..., I (t′m)}) i�
〈v′ (t1) , ..., v′ (tm)〉 ∈ fP ({v′ (t1) , ..., v′ (tm)}) (by Lemma 57) i� (M,F, v′) |=O

GS

P (t1, ..., tm).

2. If ϕ has the form ψ1 → ψ2, ¬ψ or ∀xψ, then this is routine.

3. If ϕ has the form [t1, ..., tm]ψ, then: (M,F) |=S
GS ([t1, ..., tm]ψ) {a1/x1, ..., an/xn} i�

(M,FY) |=S
GS ψ

′ with Y = {I (t′1) , ..., I (t′m)} = {v′ (t1) , ..., v′ (tm)} (Lemma 57) i�
(M,FY , v

′) |=O
GS ψ (by the induction hypothesis) i� (M,F, v′) |=O

GS [t1, ..., tm]ψ.

Lemma 59. Let ϕ (x1, ..., xn) be any formula. Then for every S-structure (M,F).
(M,F) |=S

GS ϕ i� (M,F) |=O
GS ϕ.

Proof. (M,F) |=S
GS ϕ i� for every a1, ..., an ∈ |M | (M,F) |=S

GS ϕ {a1/x1, ..., an/xn} i� for
every a1, ..., an ∈ |M | (M,F, v′) |=O

GS ϕ (by Lemma 58) i� for every v (M,F, v) |=O
GS ϕ

(since v′'s de�nition on variables other than x1, ..., xn is irrelevant) i� (M,F) |=O
GS ϕ.

Corollary 6. `SOGS=`SGS.

10.2 Proof of Lemma 49

Recall Lemma 49:

Lemma. Let (M,F) be a C-structure, let a1, ..., an ∈ |M | and let ϕ be an L-formula such
that Fv (ϕ) ⊆ {x1, ..., xn}. Then tr (M,F) |= (tr (ϕ)) {a1/x1, ..., an/xn} i�
tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}).

Proof. By induction on the complexity of ϕ. Note that ϕ {a1/x1, ..., an/xn} is a sentence,
and by Lemma 46, so are tr (ϕ) {a1/x1, ..., an/xn} and tr (ϕ {a1/x1, ..., an/xn}).

1. If ϕ is P (s1, ..., sm) then: tr (M,F) |= (tr (ϕ)) {a1/x1, ..., an/xn}
i� tr (M,F) |= P0,m (s1, ..., sm) {a1/x1, ..., an/xn}
i� tr (M,F) |= P0,m (s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn})
i� tr (M,F) |= tr (P (s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn}))
i� tr (M,F) |= tr (P (s1, ..., sm) {a1/x1, ..., an/xn})
i� tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}).

44

2. If ϕ is ∀yψ then: First assume xi 6= y for every 1 ≤ i ≤ n:
tr (M,F) |= (tr (ϕ)) {a1/x1, ..., an/xn} i�
tr (M,F) |= (∀y (tr (ψ))) {a1/x1, ..., an/xn} i�
tr (M,F) |= ∀y (tr (ψ) {a1/x1, ..., an/xn}) i� for every a ∈ |M |,
tr (M,F) |= (tr (ψ) {a1/x1, ..., an/xn}) {a/y} i� for every a ∈ |M |,
tr (M,F) |= tr (ψ) {a1/x1, ..., an/xn, a/y} i� for every a ∈ |M |,
tr (M,F) |= tr (ψ {a1/x1, ..., an/xn, a/y}) (by the i.h.) i� for every a ∈ |M |,
tr (M,F) |= tr (ψ {a1/x1, ..., an/xn} {a/y}) i� for every a ∈ |M |,
tr (M,F) |= tr (ψ {a1/x1, ..., an/xn}) {a/y} (by the i.h.) i�
tr (M,F) |= ∀y (tr (ψ {a1/x1, ..., an/xn})) i�
tr (M,F) |= tr (∀y (ψ {a1/x1, ..., an/xn})) i�
tr (M,F) |= tr ((∀yψ) {a1/x1, ..., an/xn}) (since xi 6= y for every i) i�
tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}). Now assume xi = y for some i. Without loss
of generality, assume i = 1. tr (M,F) |= (tr (ϕ)) {a1/x1, ..., an/xn} i�
tr (M,F) |= (∀x1 (tr (ψ))) {a1/x1, ..., an/xn} i�
tr (M,F) |= ∀x1 (tr (ψ) {a2/x2, ..., an/xn})
(since x1 doesn't occur free in ∀x1 (tr (ψ))) i� for every a ∈ |M |,
tr (M,F) |= (tr (ψ) {a2/x2, ..., an/xn}) {a/x1}. From here, the proof continues simi-
larly to the previous case.

3. If ϕ is [l1, ..., lk]P (s1, ..., sm) with k > 0 then:
tr (M,F) |= (tr (ϕ)) {a1/x1, ..., an/xn}
i� tr (M,F) |= Pk,m (l1, ..., lk, s1, ..., sm) {a1/x1, ..., an/xn}
i�

tr (M,F) |= Pk,m(l1 {a1/x1, ..., an/xn} , ..., lk {a1/x1, ..., an/xn} ,
s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn})

i�

tr (M,F) |= tr([l1 {a1/x1, ..., an/xn} , ..., lk {a1/x1, ..., an/xn}]
P (s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn}))

i� tr (M,F) |= tr (([l1, ..., lk]P (s1, ..., sm)) {a1/x1, ..., an/xn}) i�
tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}).

4. If ϕ is [s1, ..., sm]¬ψ with m ≥ 0 then: tr (M,F) |= (tr (ϕ)) {a1/x1, ..., an/xn} i�
tr (M,F) |= (¬ (tr ([s1, ..., sm]ψ))) {a1/x1, ..., an/xn} i�
tr (M,F) |= ¬ ((tr ([s1, ..., sm]ψ)) {a1/x1, ..., an/xn}) i�
tr (M,F) 6|= (tr ([s1, ..., sm]ψ)) {a1/x1, ..., an/xn} (since it is a sentence) i�
tr (M,F) 6|= tr (([s1, ..., sm]ψ) {a1/x1, ..., an/xn}) (by the i.h.)
i� tr (M,F) |= ¬ (tr (([s1, ..., sm]ψ) {a1/x1, ..., an/xn})) (since it is a sentence)
i� tr (M,F) |= tr (¬ (([s1, ..., sm]ψ) {a1/x1, ..., an/xn}))
i� tr (M,F) |= tr ((¬ [s1, ..., sm]ψ) {a1/x1, ..., an/xn})
i� tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}).

5. If ϕ is [s1, ..., sm] (ψ1 → ψ2) with m ≥ 0 then the proof is similar.

6. If ϕ is [s1, ..., sm]∀yψ with m > 0 then: Let z := sfv (ϕ),
z′ := sfv ([s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn}] ∀yψ {a1/x1, ..., an/xn}).
Now, If for every 1 ≤ i ≤ n xi 6= y and xi 6= z then the latter holds
i� tr (M,F) |= ∀z ((tr ([s1, ..., sm]ψ {z/y})) {a1/x1, ..., an/xn}) i� for every a ∈ |M |,

45

tr (M,F) |= ((tr ([s1, ..., sm]ψ {z/y})) {a1/x1, ..., an/xn}) {a/z} i� for every a ∈ |M |,
tr (M,F) |= (tr ([s1, ..., sm]ψ {z/y})) {a1/x1, ..., an/xn} {a/z} i� for every a ∈ |M |,
tr (M,F) |= (tr ([s1, ..., sm]ψ {z/y})) {a1/x1, ..., an/xn, a/z} i� for every a ∈ |M |,
tr (M,F) |= tr (([s1, ..., sm]ψ {z/y}) {a1/x1, ..., an/xn, a/z}) (by the i.h. and the fact
that xi 6= z for every i) i� for every a ∈ |M |,
tr (M,F) |= tr (([s1, ..., sm]ψ {z/y}) {a1/x1, ..., an/xn} {a/z}) i� for every a ∈ |M |,
tr (M,F) |= (tr (([s1, ..., sm]ψ {z/y}) {a1/x1, ..., an/xn})) {a/z} (by the i.h. and the
fact that z is the only free variable in tr (([s1, ..., sm]ψ {z/y}) {a1/x1, ..., an/xn}))
i� tr (M,F) |= ∀z (tr (([s1, ..., sm]ψ {z/y}) {a1/x1, ..., an/xn}))
i�

tr (M,F) |= ∀z(tr(([s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn}]
ψ {z/y} {a1/x1, ..., an/xn})))

i�

tr (M,F) |= ∀z(tr([s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn}]
ψ {a1/x1, ..., an/xn} {z/y}))

i�

tr (M,F) |= ∀z′(tr([s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn}]
ψ {a1/x1, ..., an/xn}

{
z′/y

}
))

(by rule α) i�

tr (M,F) |= tr([s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn}]
∀y (ψ {a1/x1, ..., an/xn}))

i� tr (M,F) |= tr (([s1, ..., sm] ∀yψ) {a1/x1, ..., an/xn}) (since xi 6= y for every i)
i� tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}).
Similar arguments can be given to each of the 3 other cases (e.g. there exists i such
that xi = y and for every 1 ≤ j ≤ n xj 6= z).

7. If ϕ is [s1, ..., sm] [l1, ..., lk]ψ with m, k > 0 then:
tr (M,F) |= (tr (ϕ)) {a1/x1, ..., an/xn}
i� tr (M,F) |= (tr ([s1, ..., sm, l1, ..., lk]ψ)) {a1/x1, ..., an/xn}
i� tr (M,F) |= tr (([s1, ..., sm, l1, ..., lk]ψ) {a1/x1, ..., an/xn}) (by the i.h.)
i�

tr (M,F) |= tr([s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn} ,
l1 {a1/x1, ..., an/xn} , ..., lk {a1/x1, ..., an/xn}]ψ {a1/x1, ..., an/xn})

i�

tr (M,F) |= tr([s1 {a1/x1, ..., an/xn} , ..., sm {a1/x1, ..., an/xn}]
[l1 {a1/x1, ..., an/xn} , ..., lk {a1/x1, ..., an/xn}]ψ {a1/x1, ..., an/xn})

i� tr (M,F) |= tr (([s1, ..., sm] [l1, ..., lk]ψ) {a1/x1, ..., an/xn})
i� tr (M,F) |= tr (ϕ {a1/x1, ..., an/xn}).

46

References

[Ga-2010] Gaifman, H. (2010). Vagueness, Tolerance and Contextual Logic. Synthese,
174, 5-46.

[Ha-1998] Hajek P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers,
1998.

[Sh-1967] Shoen�eld, J.R., Mathematical Logic, Association for Symbolic Logic, 1967.

[Be-2008] Bergmann, M., An Introduction to Many-Valued and Fuzzy Logic - Semantics,
Algebras, and Derivation Systems, Cambridge University Press, 2008.

[Barr-1981] Barr, A & Feigenbaum, E.A, The Handbook of Arti�cial Intelligence,
Addison-Wesley Publishing Company, 1981.

[Th] Thomason, R.H. (2005). Contextual E�ects on Vagueness and the Sorites
Paradox: A Preliminary Study. Proceedings of the CRR'05 Workshop on
Context Representation and Reasoning.

47

תקציר

"סובלניים" פרדיקטים עם להתמודד מיועדת (TCL) סובלנות של הקשרית לוגיקה
הלוגיקה של לשפה חדש הקשר אופרטור הוספת ידי על נעשה הדבר "גבוה"). (כגון
פרדוקס של בפתרון כך נאמרת. מסוימת טענה שבו ההקשר את לבטא שנועד הקלאסית,
במובן (האחרון וסובלני תלוי־הקשר נחשב "גבוה" כמו פרדיקט TCL ידי על הערימה
,[Ga-2010]ב־ הוצגה TCL קטנים). משינויים מושפע אינו לו המתאים האמת שערך
מראים אנו כאן אולם הוכחה. מערכת ידי על והן סמנטי באופן הן מאופיינת היא שם

זו. את זו תואמות אינן הללו והסמנטיקה ההוכחה שמערכת
ומסופקות בהקשר, בתלות לטיפול סמנטיקות שלוש כאן מוצעות מוצא, כנקודת TCL עם
(מ־ המקורית לסמנטיקה שקולה אחת סמנטיקה עבורן. ונאותות שלמות הוכחה מערכות
יותר, כללית היא השלישית ואילו המקורית, ההוכחה למערכת שקולה שנייה ,([Ga-2010]
נחקרים הללו הלוגיות המערכות הצגת לאחר האחרות. בשתיים נביעה) (כיחס ומוכלת
ראשון. מסדר קלאסית לוגיקה ובין בינן וכן עצמן ובין בינן קשרים שלהן, מאפיינים מספר

בהקשר. ותלות סובלנות על שמבוסס הערימה פרדוקס של פתרון מוצג לסיום,

סאקלר ובברלי ריימונד ע"ש מדויקים למדעים הפקולטה
בלבטניק ע"ש המחשב ללימודי הספר בית

הקשרית תלות של לוגית חקירה

גמר כעבודת הוגש זה חיבור
אוניברסיטה" "מוסמך התואר לקראת

המחשב במדעי
תל־אביב באוניברסיטת

ידי על

זוהר יהונתן

של בהדרכתו הוכנה העבודה

אברון ארנון פרופ'

תשע"ג אייר,

