TeL AVIV UNIVERSITY 2'IN->XN NU'O1AIN

The Raymond and Beverly Sackler Faculty of Exact Sciences
The Blavatnik School of Computer Science

A Logical Investigation of

Context Dependency

This thesis is submitted in partial fulfillment of the requirements
towards the M.Sc. degree

by
Yehonathan Zohar

This thesis was prepared under the supervision of

Prof. Arnon Avron

April, 2013

Abstract

Tolerance contextual logic (T'C'L) is designed to deal with "tolerant"
predicates (such as "tall"). This is done by extending the language of
classical logic by a new contert operator, which is meant to express the
context in which a certain claim is made. Thus in the solution of the
Sorites paradox given in T'C'L, a predicate like "tall" is taken to be con-
text dependent and tolerant (the latter in the sense that its corresponding
truth value is not affected by small changes). T'C'L has been introduced
in [Ga-2010], where it is characterized both semantically and proof theo-
retically. However, here we show that the deductive system and semantics
presented there do not match.

Taking T'CL as our starting point, in this work we suggest three se-
mantic frameworks for handling context dependency, and provide sound
and complete proof systems for all of them. One of these semantic frame-
works is equivalent to the original (from [Ga-2010]), while the original
deductive system is sound and complete for another. The third is a more
general framework, which is included (as a consequence relation) in the
other two. After the presentation of these frameworks we investigate their
logical characteristics, as well as their relations to each other and to clas-
sical first order logic. We end with a solution of the Sorites paradox which

is based on the notions of context dependency and tolerance.

Contents

1 Introduction
1.1 Background
1.2 Contributions

2 Preliminaries

2.1 Semantics
2.1.1 Classical Logic - The Substitutional Approach
2.1.2 Fuzzy Logic

2.2 Proof Theory e
2.2.1 Classical Logic- HFOL

3 Gaifman’s Framework

3.1 Language
3.1.1 Conventions L e

3.2 Semantics
3.2.1 The Original Framework
3.2.2 The Unimportance of Inclusion

3.3 Deductive System

3.4 Context Independent Predicates

3.5 Relation to The Original Framework

4 New Semantics

4.1 C-Structures
411 Defining oo

4.2 T-Structures. e
421 DefiningFLo
4.2.2 Another Characterization of |—£

4.3 R-Structures
4.3.1 Reflexive Functions
432 Defining FE . ..o
4.3.3 Another Characterization of |—g
4.3.4 Relation with GS-Semantics

4.4 Context Independent Predicates

4.5 SUMMATY . . . o vttt e e

5 Corresponding Deductive Systems

5.1 The Systems e
5.2 Soundness Theorems
5.3 Completeness Theorems

6 Properties of the New Consequence Relations

6.1 Rule N e
6.2 Axiom T o
6.3 Replacement of Equivalents
6.4 Replacement of Congruent Formulas
6.5 Summary

7 Reduction to Classical Logic
7.1 Translation of Formulas
7.2 Translation of Semantics e

8 The Sorites Paradox

8.1 A Rigorous Formulation of the Paradox
8.2 The Solution(s) of Fuzzy Logic

8.3 Gaifman’s Solution

8.3.1 The Definition of feasible (C)

8.3.2 The Solution

8.3.3 Other Contextual Solutions
8.4 Comparison between The Approaches

9 Conclusion and Further Research

10 Appendix

10.1 Using The Substitutional Approach

10.2 Proof of Lemma 49

35
35
35
36
37
37
41
42

43

1 Introduction

1.1 Background

Artificial Intelligence is a multidisciplinary field of research. From the computer scientist
view-point, it “concerns with designing ... systems that exhibit the characteristics we
associate with intelligence in human behavior” [Barr-1981]. One of those characteristics is
our ability to reason about vague predicates (e.g. “tall”). A naive formal treatment of our
use of vague predicates leads to the famous Sorites paradox. One example of this paradox,
which is a consequence of the use of the vague predicate “tall” is as follows: It is agreeable
that a man of height 210 c¢m is tall, and that a man of height 100 ¢cm isn’t tall. It is also
agreeable that 1 cm can’t make the difference, i.e. that if a man of height x cm is tall,
then so is a man of height £ — 1 cm. From this we can conclude that a man of height 209
cm is tall. Repeating this process 110 times provides the contradictory conclusion that a
man of height 100 cm is tall. The fact that the naive formalization of classical logic fails
to capture our ordinary use of vague predicates in natural language doesn’t mean that
this use can’t be modeled in a formalized way. Indeed, many formal models for the use
of vague predicates, and in particular solutions to the Sorites paradox, were proposed in
the literature. This work is mainly concerned with one of these approaches, namely the
contextual approach.! More specifically, most of this work concerns with that of [Ga-2010],
where it is claimed that a main characteristic of certain vague predicates is the fact that
they are tolerant to small changes (according to some natural corresponding method of
measuring) in the objects they classify (e.g. the tall example above). Tolerant predicates
are context dependent, which means that their interpretation depends on the contexts in
which they are being used. These observations lead to the construction of a new logical
framework, namely Tolerance Contextual Logic (T'C'L), an extension of classical first order
logic, in which it is possible to express the context in which a sentence is uttered. This
thesis investigates the properties of the proposed framework and generalizes it to a more
general framework of context dependency.

1.2 Contributions

Soundness and Completeness In his work, Gaifman presents a formal language, a se-
mantics for it which captures the idea of tolerance, and a deductive system. Although
the deductive system is intended to provide a sound and complete system for the se-
mantics, we show below that it doesn’t. Therefore, We present a revised deductive
system which is obtained from the original one by the addition of a single axiom
scheme. The new system is sound and complete for the original semantics. In addi-
tion, we provide a new semantics for which the original system is sound and complete,
a semantics that has a value of its own. This new semantics is then easily modified
to get an alternative semantics to the original (semantic) consequence relation. It is
of course equivalent to the original semantics, but has a simpler form.

Expressive Power The new frameworks extend the language of classical logic by a new
operator. However, we present a reduction between them to classical logic.

Types of Context Dependency T'CL is a general tool for dealing with context depen-
dency. One important application of it is modeling of tolerant predicates. However,
tolerance and context dependency are not the same. It is true that context depen-
dency is a common property of tolerant predicates, however the converse need not
hold - there are context dependent predicates which are not tolerant. For example,
consider the predicate “stranger”. A man might be considered a stranger in the com-
pany of a particular group of people, and familiar in the company of another group of

' A survey of some contextual approaches to vagueness may be found in |Th).

people. Hence the predicate “Stranger” is context dependent. However, this predicate
is not connected with any natural measuring method and hence it isn’t tolerant. The
new semantics and deductive systems that we present are constructed in a modular
way: We start from a basic semantics which correspond to a basic deductive system,
and then we add semantical constraints and axioms, hence constructing other new
logics. Each axiom or semantical constraint has a specific role in the meaning of the
induced consequence relation.

Generalization [Ga-2010| introduces a language in which there is only a single unary
context-dependent predicate and all the rest are classical. In this work we consider
more general languages with arbitrarily many context-dependent predicates of arbi-
trary arities.? More importantly, all predicates in these languages are potentially
context dependent, but it is possible to add special axioms and corresponding se-
mantical constraints that force a predicate to be context-independent (i.e. classical).

The Sorites Paradox As an example of the usage of contextual logic, we formalize a
solution to the Sorites paradox which is based on it.

2 Preliminaries

2.1 Semantics

In all definitions, L is a first order language.

2.1.1 Classical Logic - The Substitutional Approach

There are two main approaches to classical logic semantics: The objectual approach and
the substitutional approach. The first is based on assignments of objects to variables,
while the second is based on naming the objects and then substituting those names for
variables. We chose to use the substitutional approach as a basis rather than the more
common objectual approach because of technical difficulties that the latter causes in the
present context. Now we provide a short survey of the substitutional approach, based on
[Sh-1967].

Definition 1.

1. A first order structure M for L consists of a domain |[M| and an interpretation
function I™ which interprets all constant symbols, function symbols and predicate
symbols.

2. Let M be a first order structure. L (M) is the first order language obtained from L
by adding for each individual a € |M| a constant symbol @ which will be called the
name of that individual. We extend I'™ to be defined on names, so that for every
individual a € | M|, I (@) = a.

3. Let ¢ be a formula of L with the free variables x1, ..., x,,. Let M be a first order struc-
ture for L. An M-instance of ¢ is a closed formula of the form ¢ {ai/x1,...,an/xn}
in L (M), with ay, ..., a, being individuals of |M|. If ¢ is a sentence (closed formula),
the only M-instance of it is itself.

Remark 1.

1. Since most of our first-order structures will be denoted by M, we will use I rather
than I™ to denote the interpretation function of M.

2The possibility of doing this is partially noted in |Ga-2010].

2. We will use the word “instance” with two different meanings. The first is for an
M -instance as was defined in Definition 1. The second is for the usual notion of an
instance of an aziom scheme. To ensure that there is no confusion, we shall clarify
in every use of the word “instance” which of these two notions is meant.

Definition 2. Let M = (|M]|, I) be a first order structure and let ¢ be an L (M)-sentence.
The satisfaction relation between M and ¢ (in symbols: M = ¢) is defined as follows:

1. M P(t, ... ty) if (I(t1),...I(t,)) € I(P).

2. M =) if M = .

3. M = 1y — 1y if either M = 4y or M - .

4. M = Var) if for every M-instance ' of ¢ M = o',

Definition 3. Let M = (|M],I) be a first order structure and let ¢ be an L-formula. The
satisfaction relation between M and ¢ (in symbols M |= ¢) is defined as follows: M | ¢
if for every M-instance ¢’ of ¢ M | .

Definition 4. Let T be a theory and ¢ be a formula. T Froy, @ if for every M, it M =T
then M = .

Lemma 1. Let M be a first-order structure for L, t a ground-term of L (M) and @ the
name of I (t).
1. If b is a term of L (M) in which no variable except x occurs, then I (b{t/x}) =

1 (b{a/z}).

2. If ¢ is a formula of L (M) in which no variable except x is free, then M | p{t/x}
if M = p{a/z}.

2.1.2 Fuzzy Logic

Later in this work, when we present a solution to the Sorites paradox using contextual
logic, we will also present a solution given by fuzzy logic. We chose to use Yukasiewicz
fuzzy logic, since it seems to provide the simplest solution to the paradox among the main
three fuzzy logics.

Definition 5. An L-structure M for L is a first order structure (|M|,I) such that I
is defined differently over predicate symbols: For every predicate symbol P of arity n,
I(P):|M|" — [0,1]. The definition of names and M-instances are the same as in first-
order classical structures. For every sentence ¢, M (¢) € [0,1] and is defined as follows:?

1. M (P (t1,tn)) = I(P) (I (t1), ..., I (t))).
2. M

4. M (1 Aba) = min (M (1), M (2)).

(
(
3. M(~) =1— M ().
(
5. M(

Y1V ap2) = max (M (Y1) , M (¢2)).

3We use the definitions from pages 179, 263 and 265 of [Be-2008], but note that we have changed them
to fit the substitutional approach.

6. M (Vzop) =inf{M (v {a/z}): a € M}.
7. M (3xy) = sup{M (¢ {a/x}): a € M}.
MEpif M(p)=1.

Remark 2. The above definition can easily be generalized for formulas, but this is not
necessary for the present work.

2.2 Proof Theory
2.2.1 Classical Logic - HFOL

Any of the standard Hilbert-style deductive systems for classical logic may serve as a basis
for the sequel. Here we use the succinct and convenient system that is presented on pages
7-8 and 13 of [Ha-1998|.

Rules of inference

e Modus Ponens (MP) %

e Generalization (Gen) WAA

Axiom Schemes
e v — (Y= o).
e (p—= (Y —=x) = ((p=v) = (¢ —= X))

o (mp =) = (¥ =)

Vzy — ¢ {t/x} where t is substitutable for x in ¢.

Va(p — ¥) — (¢ — Va) where x isn’t free in ¢.

3 Gaifman’s Framework

In this section we present the framework of TC'L (tolerance contextual logic), which was
introduced in [Ga-2010]. Note that we have made some modifications to the original
presentation. At the end of this section these modifications will be noted. In addition,
we include a new result regarding the semantics, which shows that one of its original
requirements is redundant.

3.1 Language

Definition 6. A C-language (C for context) is a first order language, extended by the
following:

1. There are two new symbols: '[" and ']’

2. There is a new unary operator, called the context operator. It is obtained by using
[and ']’ with a set of terms (which is called the context set) between them.

Definition 7. Atomic formulas in L are formulas of the form R (1, ...,t,), where R is any
predicate of any arity n.
Well-Formed Formulas (wiffs) in L are defined recursively:

4

1. Every atomic formula is a wif.

2. If ¢ and v are wifs and z is a variable symbol then (=), (¢ —), (¢ AY), (¢ V),
(o <>), (Vo) and (Fzp) are wifs.?

3. If pisawif,n > 0and t,...,t, are terms then [t1, ..., t,] (¢) is a wif. All occurrences
of variables in 1, ..., t, are free in [tq, ..., t,] ¢ for each .

Remark 3. We also allow formulas of the form [] ¢, and identify [] ¢ with ¢.

3.1.1 Conventions

Let L be a C-language.

1. The complexity of an L-formula is the number of operators (connectives, quantifiers
and nonempty context operators) in it. °

2. We omit brackets where there is no danger for confusion.
3. We shall denote the set of predicate symbols of L by PRED (L).
4. For every term or formula A, Fv (A) is the set of free variables occurring in A.

5. A(xy,...,zy) ranges over terms or formulas (depending on context) in which Fv (A) C
{z1,...xn}.

6. If C ={t1,...,tn} and C" = {51, ..., 8, } then [C, D] = [t1, ..., tn, $1, -, Sm)-

3.2 Semantics
3.2.1 The Original Framework
Definition 8. Let X be any set.
1. FIN (X) is the set of all finite subsets of X.

2. FIN* (X) := FIN (X)\ {0}.

Definition 9. A C-structure for L is a pair (M, F) such that:

1. M = (|M]|,I) is a first order structure such that I interprets only constant symbols
and function symbols.

9. F: PRED (L) — (FIN (M) = U2, P (\M|k)> is a function such that for every

predicate P of arity n, F(P) : FIN (|M]) — P (|M|"). F (P) is called the contezt
dependency function of P, or in short, the cdf of P.

Definition 10. Let (M, F') be a C-structure and let C be a set of ground terms. I (C) =
{I(t): teC}.

“*Similarly to many texts of classical logic, we take only -, — and V as primitives.
>The reason we only count nonempty context operators (i.e. don’t count []) is that []¢ is identified
with ¢, and hence should have the same complexity measure.

Definition 11. The G'S-satisfaction relation (G for Gaifiman, S for subsets) between C-
structures (M, F') and sentences ¢ of L (M) (in symbols: (M, F) Egs ¢) is defined as
follows:

| s Pty o tn) 3 (T (t1) 5oy I (8)) € F(P) ({ (t2) , oo T (t2))).
):GS WY1 — Yo if either (M, F)):GS 9 Or (M, F) %GS 1.

)
)
) Eas ¥ if (M, F) Fas .
)
)

9

[\)

(M
- (M,
3. (M,
. (M, F) l=gs Vav if for every name @ of L (M), (M, F) E=gs ¢ {a/z}.
(M

)

S T T T

Eas [ty . tm] ¥ for m > 0 if (M, Fy) E=gs @ where:

)

(@) Y :={I(t1),....1(tm)}
(b) Fy :==AP"AX € FIN (|]M|).F (P") (X UY)NX" where P" varies over pred-
icates of arity n.

Remark 4. For convenience, we shall sometimes denote F (P) by ff and Fy (P) by f{.

Definition 12. Let (M, F) be a C-structure and ¢ a formula. (M, F) GS-satisfies ¢
(notation: (M, F) Egs) if (M, F) ¢ ¢ for every M-instance ¢ of ¢.

Lemma 2. Let (M, F) be a C-structure for L, t a ground-term of L (M) and @ the name
of I(t). If b is a term of L (M) in which no variable except x occurs, then I (b{t/x}) =

I(b{a/z}).

Proof. Since we didn’t change the definition of I over terms and function symbols, this
follows from the original lemma, whose proof can be found on pages 19-20 of [Sh-1967]. [

Lemma 3. Let (M, F) be a C-structure for L, t a ground-term of L (M), and @ the
name of I(t). If ¢ is a formula of L (M) in which no variable except x is free, then

(M. F) Eas o {t/a} iff (M, F) Eas ¢{a/z}.
Proof. We use induction on the complexity of .

1. If ¢ is P (s1, ..., Sp) then:
(M,F) Egs P(s1{t/z},...,sn{t/x})
iff (7 (s1{t/2}),.... T (sa{t/2})) € f© ({T (s1{t/a}), ... T (sn{t/2})})
iff (I(s1{a/x}),....I(sn{a/z})) € fF ({I(s1{a/x}),....I(sn{a/x})}) (by Lemma
2)iff (M, F) =gs P (s1{a/z},....,sp{a/z}).

2. If is =), 1 — 19, or Va1) then the proof is the same as on pages 19-20 of [Sh-1967].

3. If pis [t1,...,tn] ¢ for n > 0 then: (M, F) Fgs ¢ {t/z} iff
(M, F) =as [t{t/z}, ... tn {t/x}] Y {t/z} iff (M, Fy) Fas ¥ {t/x} with
Y ={I(t2{t/x}), ... [(ta{t/2})} i (M, Fy) [=gs ¢ {t/x} with
Y' = {I(t1{a/x}),....I (tn{a/z})} (by Lemma 2) iff (M, Fy/) Eas ¢ {a/z} with
Y'={I(t:{a/x}),...I(t,{a/x})} (by the i.h.) iff
(M, F) Egs [t {0/2} - tn {a/a 6 {a/} iff (M, F) Fas @ {a/a).

Definition 13. An S-structure is a C structure (M, F) in which for every n € N,
P € PRED (L) of arity n and for every X € FINT (|[M|) f¥ (X) C X"

bi.e. for every P of arity n and for every X € FIN (|M|) and Y € FINT (|M|), Fy (P)(X) =
F(P)(XUY)N X"

Lemma 4. Assume (M, F) is an S-structure. Let Y € FIN (|M]) and let Fy be the
function defined by the GS-satisfaction relation. Then (M, Fy) is also an S-structure.

Definition 14. Let T be a theory and ¢ be a formula. T '_gs @ if for every S-structure
(M,F), if (M, F)):GS T then (M,F)):GS p.

I—g g is the consequence relation which is induced by the original semantics from [Ga-2010].

3.2.2 The Unimportance of Inclusion

In this section we show that the inclusion restriction (that ff (X) C X") is actually
redundant. The same satisfaction relation can be defined over general C-structures, with
a slight change in the definition. This fact makes the semantics easier and simpler to use
in some contexts, as it omits the need to check the discussed requirement of cdfs.

Theorem 1. Let =g be the satisfaction relation obtained from E=gs by changing the def-
inition of ff from AX € FIN (IM]).fZ(XUY)NX" to AX € FIN (|M]).fZ (X UY).
Let ¢ be the consequence relation which is induced by =g over C-structures (i.e. T G ¢
if for every C-structure (M, F), if (M,F) =g T then (M,F) =g ¢). Then F2¢=t¢.

Proof. We prove this theorem using some new definitions and lemmas:

Lemma. Let (M, F) be a C-structure for L, t a ground-term of L (M) and @ the name
of I(t). If ¢ is a formula of L (M) in which no variable except x is free, then (M, F) =g
e {t/z} iff (M, F) e ¢ {a/z}.

Proof. This is proved in a similar manner to the proof of Lemma 3.
Definition. Let (M, F') be a C-structure.

1. Let P € PRED (L) be a predicate of arity n.
(F (P))* = A\X € FIN (|M]).(F (P)) (X)n X"

9. F* = \P € PRED (L).(F (P))*.
Remark. Let (M, F') be a C-structure. Then (M, F*) is an S-structure.

Lemma. Let (M, F) be a C-structure, let o be an L (M) sentence and letY € FIN* (|M]).
Then (Fy)" = (F*)y where Fy is defined in Definition 11 (i.e. for =gs and not for =q).

Proof. Let P € PRED (L) be any predicate of arity n. We need to prove that (Fy (P))*
(F*)y (P). Let X € FIN (]M]|). We need to prove that ((Fy (P))") (X) = ((F*)y (P)) (X).
(Fy () (X) = (B (P)(0) 0 X7 = F(P)(XUY) 0X7 0 X" = F(P)(XUY) 1
Xm ((F)y (P))(X) = F*(P)(XUY) N X" = F(P)(XUY)N (XUY)" N X" =
F(P)(XUY)nX".

Lemma. Let ¢ be a sentence. Then for every C-structure (M, F), (M,F) Ea ¢ iff
(M7 F*)):GS P

Proof. We prove this by induction on the complexity of ¢.

1. If ¢ = P (t1,...,ty) then: For every C-structure (M, F), (M, F) =g P (t1,...,tn)
< ()7 7I(tn)> ()({I (tl)) 7I(tn)})
(L (t), ., I (tn)) € () L (t1) 5 oo () }) VT (12) 5 s T (E0)}"
((P)" ({1 (t2) - I (tn)}) M (M,) =g P (L1, .o tn).

2. If pis =), Y — ¢ or Vo) then this is done as usual. As an example, let us assume
that ¢ = Vae): For every C-structure (M, F'), (M, F) =g Ya iff for every a € |M]|
(M, F) ¢ ¢{a/z} iff for every a € |M|, (M,F*) [=gs ¢ {a/x} (by the i.h.) iff
(M, F*) =g Vaip.

3. If ¢ = [C] % then: let (M, F) be a C-structure. (M, Fy) with Y = I(C) is also a
C-structure. Now: (M, F) ¢ [C]¢ iff (M, Fy) g ¥ iff (M, (Fy)") Eas ¥ (by the

h.) iff (M, (F*)y) Eags ¢ (by the previous lemma) iff (M, F*) =gs [C] Y

Corollary. Let ¢ be a formula. Then for every C-structure (M, F), (M,F) =g ¢ iff
(M7 F*)):GS P

End of proof of Theorem 1. Let T be a theory and let ¢ be a formula. We First assume
T ¢ ¢ and prove T l—gs @. Let (M, F') be an S-structure such that (M, F') Egs T. Since
(M, F) is an S-structure, (M, F) = (M, F*). By the above corollary, (M, F) =g T. By
our assumption, (M, F') ¢ ¢, and again by the previous corollary, (M, F) =gs ¢. For the
converse, we assume T’ F2.¢ ¢ and prove T ¢ . Let (M, F) be a C-structure such that
(M, F) =g T. By the above corollary, (M, F*) =gs T. Since T Fgg ¢, (M, F*) s ¢,
and again by the above corollary, (M, F') ¢ ¢.

O

3.3 Deductive System
Now we present the deductive system given in [Ga-2010].

Definition 15. HCT is the deductive system obtained from HFOL (Section 2.2.1) by
the addition of the following axiom schemes:

CO) [C]CTe < [C,C e

(
(C-) [Cl ¢ & = [CTe.
e (Co) [Cl(p = 9) & ([Cle = [ClY) .
(
(

Cy) [C]Vzp <> Va [C] ¢ if x doesn’t occur in C.

T) P(x1,.cc,xp) <> [x1, ooy 2] P (21, ..y).

Remark 5. Note that axiom T holds only for atomic formulas, i.e. it doesn’t hold that
Faor o (X1, .y @p) < 21,0y 2n] @ (21, ..., Ty) for every ¢ (x1, ..., 2,). This property will
be discussed in Section 6.2.

3.4 Context Independent Predicates

Similarly to to the possible existence of crisp predicates in fuzzy logic, there can exist
context independent predicates in contextual logics. In fuzzy logic, the crisp predicates have
an interpretation function whose range is {0, 1} (rather than [0, 1] for fuzzy predicates). In
this section we provide a similar semantical condition and an equivalent proof-theoretical
condition for context independent predicates.

The axiom scheme which best describes the context independence of a predicate R is
now defined:

Definition 16. INDp is the following axiom Scheme:
(INDg) R(z1,....2pn) <> [C]R(z1,...,2p)

for every context set C.

Hence, if one would like to construct a theory in which R is considered context inde-
pendent, every instance of (INDpg) should be a theorem of that theory. Now we provide
a characterization of the S-structures which models the instances of (INDpg).

Definition 17. Let (M, F') be an S-structure and let R be any n-ary predicate. We say
that R is context independent in (M, F) if for every (a1,...,a,) € |M|" and for every
X € FIN (|M)), {a1,...,an) € fB(X U{aq,...,an}) iff (a1,...,a,) € fF({ay,...,an}).

Lemma 5. Let (M, F) be an S-structure and let R be any n-ary predicate. R is context
independent in (M, F) iff f®=AX.{(a1,...,an) € X" : (a1,...,a,) € fE({a1,....,an})}.

Proof. Assume R is context independent in (M, F'). Let X € FIN (|M]). We prove that
fR(X) = {{a1,..yan) € X" {a1,...,an) € [R({a1,...,an})}. Let {a1,...,an) € fR(X).
We show that {(ai,...,a,) € f®({a1,...,a,}) N X" Since f&(X) C X", (ay,...,a,) € X"
and hence X = X U {a1,...,a,}. This means that {(ay,...,a,) € fR(XU{a1,...,an}).
Therefore, since R is context independent in (M, F), {(ay, ...,a,) € f®({a1,...,an}). For the
other direction, let (a1, ..., a,) € ff ({a1,...,a,})NX™. We show that (a,...,a,) € f7(X).
Since R is context independent in (M, F), (a1, ...,a,) € f# (X U{a1,...,an}) N X™. Since
{a1,...,a,} C X, {a1,...,a,) € fR(X). O

Lemma 6. Let (M, F) be an S-structure. Then R is context independent in (M, F) iff
for every C (M, F) =gs R (z1,...,x5) <> [C] R (1, ..., Tn).

Proof. Assume that R is context independent in (M, F'). Let

R (@1, ...,an) < [t1, ..., tm) R (a1, ..., @) be an M-instance of R (x1, ..., zp) <> [C] R (z1, ..., Tn).
(M, F)):GS R(Tl, ,@) iff <a1, ...,an> S fR ({al, ...,an}) iff

(a1, an) € fR({ar, oy an, L(t1) ooy I (tm)}) N {an, .y an}™ = ff ({a1,...,an}) with Y =
{I(t1),.... 1 (tm)} iff (M, Fy) Egs R(a1,....an) iff (M,F) Egs [ty tm] R (a1, ..., a0).
Now assume (M, F') =gs R (1, ...,xn) <> [C] R (x1,...,zp). Let {b1,...,b;m} € FIN (|M])
and let ay,...,a, € |M|. Then (M,F) Egs R(a1,....an) < [E,...,E]R((Tl,...,@).
This means that (M,F) Eqs R(ar,..,an) iff (M,F) Ecs [b1,....bm] R (a1, ...,a5) iff
(M, Fy) |=gs R (@1, ..., @) with Y = {by, ..., by, }. Therefore, (a1, ...,a,) € f¥({a1,...,an})
iff (ay,...,an) € f2({a1,...,an} U{b1,....;bn}) N{ay,...,an}" iff

(a1, ...;an) € fR{a1,....any U{b1, ... b }). O

3.5 Relation to The Original Framework

The framework presented in the previous sections is a modified version of the original
framework from [Ga-2010]. Some of the modifications were introduced in order to provide
a more general and modular framework, while others where introduced for simplicity. In
this section the differences between the two frameworks are described.

1. In the original language, the set of predicates is divided into two subsets: Context
dependent predicates and context independent predicates. The semantical interpre-
tation of context independent predicates is classical (i.e. the interpretation function
of a context independent predicate is a set of tuples), where the semantical inter-
pretation of context dependent predicates is not. In addition, the original deductive
system contains IN Dp as an axiom scheme for every context independent predicate
R. In our version, the set of predicates is not divided into two subsets, and all pred-
icates are treated the same, semantically and proof theoretically. Whenever there
is a need to declare a predicate R as context-independent, one simply adds INDpg
as a special axiom. Obviously, this does not change anything proof theoretically,
as it is possible to include INDpg for a special set of predicates and hence obtain
the original version. Semantically, it makes our presentation more general, uniform

and succinct, as our satisfaction relation doesn’t distinguish between types of pred-
icates. The semantical characterization of context independent predicates (Section
3.4) ensures that they are handled properly in our version of the semantics.

2. In [Ga-2010], inside the context operator there are finite lists of terms while here we
use finite sets of terms. This does not change the meaning of the context operator,
both semantically and proof theoretically: Semantically, the interpretation functions
are indifferent to the order of the terms inside the context operator (this holds for
all interpretation functions, both in our version and in the original version). Proof
theoretically, this is ensured by the inclusion of the following axiom scheme in the
original deductive system:

(1, ..xn] @ — [.I'/l, ,:U;n] ©

where {21, ..., 2} = {2}, ..., 2, }.

3. In [Ga-2010], the semantics and deductive system are described for the special case
where there exists a single context dependent predicate which is unary. It is noted
there that a generalization to many predicates of different arities is possible, and
some comments as for the way such a generalization could be achieved are given. In
this work we use a generalized form of the framework from the beginning.

4. The semantics of [Ga-2010] is defined using the objectual approach, while we use
the substitutional approach. One of the main contributions of this work is the intro-
duction of a new framework for context dependency, which is based on the original
framework. In our new framework, all our semantics are defined using the substitu-
tional approach, because of technical difficulties that the objectual approach causes
in our definitions. For the purpose of showing the connection between our framework
and the original framework, we chose to present the latter using the substitutional
approach as well. It is routine to see that using the substitutional approach in this
semantics doesn’t change anything in its induced consequence relation. A detailed
proof of this fact can be found in the appendix (Section 10.1).

4 New Semantics

In this section we present new semantics for C-languages (Definition 6). We start by in-
troducing a new satisfaction relation between C-structures (Definition 9) and formulas.
Then, we present several kinds of C-structures, each induces (along with the new satis-
faction relation) a different consequence relation. We shall generally call these semantical
frameworks “C-semantics” (as opposed to Gaifman’s “G-semantics”).

The C-satisfaction relation is based on classical first-order semantics, with two excep-
tions: the interpretation of the context operator (which does not exist in classical logic)
and the interpretation of predicates.

In the C-satisfaction relation, a predicate’s interpretation isn’t a set of tuples, but
rather a function which assigns to every context (finite set of objects) a special set of
tuples. This means that the interpretation may be different for every context. Classical
predicates (or context independent predicates) form a special case - their interpretation is
constant, and is not affected by context.

Throughout this section, L is a C-language.

10

4.1 (C-Structures
4.1.1 Defining ¢

Definition 18. The C-satisfaction relation between C-structures (M, F) and L (M)-
sentences ¢ (in symbols: (M, F') [=c ¢) is defined as follows, for m,k > 0 and n > 0:

1. (M, F) EC (815 0oy $m] P (b1, oo tn) i (T(t1) s oos T (t2)) € FP (LI (51) 4o I (5m)})-

2. (M,F) Ec¢ [S1,. Sm] (1 = o) if either (M, F) E=c [S1,...s Sm| P2 or (M, F) ¢
[S1y ey S W1

3. (M,F) Ec [S1y. Sm| 0 it (M, F) e [S1, ey Sm] -
4. (M,F) Ec¢ [s1,..y Sm) Vat) if for every name @ of L (M),
(M, F) f=c [s1, .. sm] (¥ {@/x})." 8
5. (M,F) Ec [S1y e Sm) [t1y ooy ti] 0 i (M, F) = [$15 ey Sy t1y +ony i)

Definition 19. Let (M, F) be a C-structure and ¢ a formula. (M, F') C-satisfies ¢ (no-
tation: (M, F) Ec @) it (M, F) |=c ¢ for every M-instance ¢’ of ¢.

Now we prove that our structures interpret names as expected.

Lemma 7. Let (M, F) be a C-structure for L, t a ground-term of L (M) and @ the name
of I(t). If ¢ is a formula of L (M) in which no variable except x is free, then (M, F) =c¢
p{t/x}t iff (M, F) =c ¢ {a/x}.

Proof. We use induction on the complexity of ¢. Throughout this proof, m,n > 0.

1. If ¢ is P (s1,..., Sp) then:
(M,F) Ec P (s1{t/x},...,sn{t/z})
iff (I (s1{t/x}),.... T (s, {t/x})) € fF (D)
iff (I (s1{a/x}),.... 1 (sn{a/z})) € (0
iff (M,F)=c¢ P(s1{a/z},...,sn{a/z}).

2. If pis =), Y1 —)9, or Vaeh then the proof is the same as on pages 19-20 of [Sh-1967].

) (by Lemma 2)

3. If g is [s1,...,sm] P (t1,..., t,) then:
(M,F) Ec [si{t/x},...;sm {t/z}| P (t1 {t/z}, ..., tn {t/x})
iff (7 (t1 {t/x}), .o, I (tn {t/2})) € F7 ({I (s1{t/2}) e T (3 {t/2})})
iff (I(t1{a/x}),....I(tn{a/z})) € fF ({I(s1{a/x}),....I(sm{@/x})}) (by Lemma
2)iff (M, F) =c [si{a/x},....sm{a/x}] P (t1 {a/x}, ... t, {a/x})

4. If ¢ is [s1, ..., Sm) (Y1 — 1b2) then:
(M, F) [=c [si{t/x}, o sm {t/2}] (1 {t/x} = 2 {t/z})
iff either (M, F) ¢ [s1{t/x}, ..., sm {t/x}]| o {t/x}
or (M,F) fEc [si{t/z},...;sm {t/x} 1 {t/z}
iff either (M, F) =c¢ [s1{a/z},...,sm {a/x}] 2 {a/x}
or (M, F) e [s1{a/z},...,sm{a/z}| 1 {a/x} (by the ih. and Lemma 2)
it (M, F) = [51{0/2}, 05 {3/2}] (1 {0/} — o {a/2}).

5. If v is [s1, ..., Sm] 1 then the proof is similar.

"Note that since this definition concerns only the cases where ¢ is a sentence, = doesn’t occur in
[81, ceey Sm].

8Tt seemed very difficult to provide a definition for the satisfaction of formulas of this form using the
more standard objectual approach. This was the main reason for preferring the substitutional approach.

11

6. If v is [s1,..., Sm]| Vytb then: Assume first z = y. In this case, (M, F) Ec ¢ {t/z}

iff (M, F) Ec [s1{t/z},...;sm {t/2}] Yoy (since x isn’t free in Vi)

iff for every name b (M, F) Ec [si{t/z}, ..., sm {t/x}] (¥ {b/ﬁx})

ifffor eVQe)ry name b (M, F) =c [si{a/z},...,sm {a/x}] (v {b/z}) (by the i.h. and
ifft (M, F) ¢ [si{a/z},...,sm{a/x}] (V) iff (M, F) e ¢{a/z}.

Now assume x # y. (M, F) Ec ¢ {t/z} ~

iff for every name lz(M, F) Ec [s1{t/z}, ..., sm {t/z}]) ¥ {t/z, b/yf}

iff(goi every g?me b (M,F) =c [s1{a/a},....sm{a/z}] (¥ {a/z, b/y}) (by the ih.

iff (M, F) c [s1 {a/a} s {@/a}) Yyt {a/e) i (M, F) o ¢ {a/a).

7. If @ iS [S1, ..y Sm) [t1, vy o] ¥ then:
(M, F) o [si{t/a}, ..o sm{t/a}] [t {t/a}, o tn {t/x}] P {t/x}
iff (M,F)Ec[si{t/x},....sm{t/z} t1{t/x}, .. tn{t/x}]{t/x}
iff (M,F)Ec¢[s1{a/x},...,sm{a/x}, t1{a/x},....tn{a/x}] ¢ {a/z} (by the i.h.)
iff (M,F) ¢ [si{a/z},...;sm{a/x}][ti{a/x},....tn{a/x}] Y {a/z}.

O

Lemma 8. Let (M, F) be a C-structure, let p1, @2 be sentences and let tq, ..., t, be ground
terms. then:

1. (M,F) ¢ [tr, s tn] ~p1 iff (M, F) =¢ = [ty oo ta] ©1.
2. (M,F) =c [t1, o tn] (01 = ©2) iff (M, F) =c [t1s oo tn] ©1 = [t oo tn] 2.
3. (M,F) =c [t1, . tn) Va1 iff (M, F) =c Y [ty ..., ta) ©1.
4. (M, F) Ec [ty tn] (1 > 1b2) iff it holds that
(M, F) =c [tr, - ta] Y1 iff (M, F) e [t ta] Y2

Definition 20. Let T be a theory and ¢ be a formula. T ¢ ¢ if for every C-structure
(MvF)7 if (MaF)):C T then (MvF) 'ZC P-

F¢ is our most basic semantic consequence relation. Restricting it to special kinds of
C-structures yields more useful consequence relations. The importance of ¢ lies in its
generality, and it will serve as a basis for our modular construction of other consequence
relations.

4.2 T-Structures

Fc is neither equivalent to the consequence relation induced by the original semantics
from [Ga-2010], nor to the one induced by the original deductive system. In this section we
restrict =¢ to a subclass of C-structures. This induces the same consequence relation as the
one induced by the deductive system from [Ga-2010]. There is also an intuitive motivation
for this restriction. Since a context is a set of objects to be taken under consideration, it is
reasonable (but not necessary) to demand that P (¢) would hold whenever [¢] P (¢) holds.
However, the above semantics doesn’t require this restriction. This example is formalized
in the next lemma:

Lemma 9. t/c P (c) <> [c] P (¢).

Proof. We present a C-structure (M, F') such that (M, F) ¢ P(c) <> [¢] P(c): |M| =
{1}, I(c) = 1. fP®) =0, f£({1}) = {1}. Clearly, (M,F) ¢ [c] P(c). However,
(M, F) teo P (o) -

12

: T
4.2.1 Defining 5

We now present a semantics that is adequate for the above intuitive requirement.

Definition 21. A T-structure is a C-structure (M, F') in which for every P € PRED (L) of
arity n and for every ay, ...,a, € |[M|, (a1, ...,a,) € fF(0)iff (a1,...,a,) € fF ({a1,...,an}).

Lemma 10. Let (M, F) be a T-structure and let tq,...,t, be ground terms. (M,F) E¢
P (t1, o) iff (1 (5) o D (00) € £7 (L (1) 2o T (E0))).

Definition 22. Let T be a theory and ¢ be a formula. T I—:g p if for every T-structure
(MaF)7 if (MaF)):C T then (MvF) ’:C -

Restricting the C-satisfaction relation to T-structures provides the rational requirement
that P (c¢) would hold whenever [¢] P (c¢) holds. In particular, the induced consequence
relation has this restriction as a valid formula:

Lemma 11. FL P (21, ...,2n) ¢ [T1, .0y 2] P (21, 00,).

Proof. Let (M, F) be a T-structure and let P (ay,...,a,) > [a1,...,a,] P (a1, ...,a,) be
an M-instance of P (z1,...,%n) < [T1,...,zp) P (21, ...,zp). (M, F) ¢ P(ai,...,ay) iff
(a1, ...,an) € fF(0) iff {ay,...,an) € fF ({a1,...,a,}) (since (M, F) is a T-structure) iff
(M. F) Lot [a1, o] P (@, ..). n
However, this equivalence need not hold in every context:

Lemma 12. /% [d] (P (c) < [c] P (c)).

Proof. We present a T-structure (M, F') such that (M, F) ¢ [d] (P (c) < [¢] P (¢)): |M| =
{1,2}. I(c)=1and I(d) =2. fF({2}) = f7(0) = {2}, /7 ({1,2}) = {1}, 7 ({1}) =
0. (M,F) ¢ [d(P(c) < [c]P(c)) iff the following holds: (M, F) k¢ [d] P (c) iff
(M,F) ¢ [d][] P (c). Now, (M,F) ic [d] P(c) since I(c) =1 ¢ {2} = f"({2}) =
fPI(d)}). (M,F) l=c [d][c] P(c) is equivalent to (M, F) ¢ [d,c] P(c). (M,F) ¢
[d,c] P(c) since I(c) =1 ¢€ {1} = fF({1,2}) = fF({I(c),1(d)}). Hence, (M, F) ¢
[d] (P (c) < [c] P (c))- O

T-structures provide a formal treatment to context dependent predicates which are not
necessarily tolerant, i.e. predicates whose meaning depends on the context in which they
are used, but aren’t sensitive to small changes in the predicated objects. Now we provide
two examples in which T-structures are useful.

Example 1. Consider the predicate “Stranger” which was discussed in the introduction
and denote it as P. It is indeed possible that a will be considered a stranger in the context
[a1, a2, as], but will be considered a non-stranger in the context [a, a1, a2, as]. For example,
imagine Gulliver arriving at Lilliput. Before he has arrived, he was a stranger. But after
he stayed there for a while, he was no longer considered a stranger. I—g is appropriate for
describing situations of this sort, as they allow the case where a is P in [a1, ag, ag] but not
in [a, a1, az,as). We shall later return to the Guliver example.

Example 2. Consider the predicate “True” (for the set of English sentences) and denote
it as P. Interpret a as the sentence “all sentences written on the board are false” and
read [C]¢ as “when the elements of C' are written on the board, ¢ holds”. Consider
the sentence [ay,...,a,] P (a) (for simplicity, assume a; # a for every 1 < i < n). This
sentence is true or false, depending on the truth values of aq, ..., a,. However, the sentence
la,ai, ...,a,] P (a) provides us with a version of the liar paradox, and hence in this situation
[a1,...,an] P (a) < [a,aq,...,a,] P (a) doesn’t have to hold.

Lemma 13. kcgkfg.
Proof. Obviously, %cgg. By Lemmas 9 and 11 I—C;él—:g. O

13

4.2.2 Another Characterization of I—g

It is possible to obtain the same consequence relation as F5, without the restriction to
T-structures. This is done by making a small modification to the definition of |=¢.

Theorem 2. Let |=cr be the satisfaction relation obtained from [=¢ by introducing the
following change: (M, F) l=cr P (t1,....tn) if (I(t1),....] (tn)) € fX{I(t1),....I(ty)}).
Let Fop be the consequence relation induced by E=cr over C-structures (i.e. T For ¢ if
for every C-structure (M, F), if (M, F) =cr T then (M, F) =or). Then Fh=Fcr.

Proof. We introduce some new definitions and lemmas:
Lemma. Let (M, F) be a C-structure for L, t a ground-term of L (M) and @ the name of

I(t). If ¢ is a formula of L (M) in which no variable except x is free, then (M, F) Ecr
p {t/z} ff (M, F) For ¢{a/x}.

Proof. This is proved in a similar manner to the proof of Lemma 7.

Definition.

1. Let D be a set, let n € Nand let f: FIN (D) — P (D").

{{a1,...;an) € IM|" : (a1, ...,an) € f¥ ({a1,...;an})} X =0

ff=AX €eFIN(D). {fp (X) otherwise

2. Let (M, F) be a C-structure. F* := AP € PRED (L). (fP)*.
Lemma. Let (M, F) be a C-structure. Then (M, F*) is a T-structure.

Lemma. Let (M, F) be a C-structure and let ¢ be a sentence. (M, F) =cr ¢ iff
(M, F*) o ¢

Proof. By induction on the complexity of ¢. We denote f¥ by f.

1. If ¢ is P (t1,...,t,) then: (M, F) =cr P (t1,...,t,) iff
(I(t1),.s I(tn)) € fFI(t1), s I (tn)}) HE (I (t1),..., L (tn)) € f*(0) iff
(M,F*) Ec P (t1, ..., tn).
2. If ¢ is [s1,..ey Sm| P (t1, ..., tn) with m > 0 then: (M, F) Ecor [S1, .y Sm] P (t1, ..., tn)
(T (1), .., I (tn)) € fF{TL(81) ., L (8m)})
(T (t1) .., I (t)) € f*({I (51) -y I (8m)})
iff (M, F*) ‘:C [81, ...,Sm] P(tl, ...,tn).

3. Otherwise, the proof is trivial, by the definition of f*, and by the fact that on other
forms of sentences, [=¢ and [=cr are defined identically.

Corollary. Let (M,F) be a C-structure and let ¢ be a formula. (M,F) E=cr ¢ iff
(M> F*)):C P

End of proof of Theorem 2. Let T be a theory and ¢ be a formula. Assume T I—g . Let
(M, F) be a C-structure and assume (M, F) =cr T. By the above corollary, (M, F*) ¢
T. By our assumption, (M, F*) =c ¢. Again, by the above corollary, (M, F) Ecr .
Now assume T For . Let (M, F) be a T-structure and assume (M, F) |=c T. By the
definition of (fp)* and the fact that (M, F) is a T-structure, (M, F) = (M, F*). By the
above corollary, (M, F) Ecr T. By our assumption, (M, F) =cr ¢. And again by the
above corollary, (M, F') ¢ ¢.

O

14

4.3 R-Structures

A special kind of context dependent predicates is tolerant predicates. In this section we
present a refinement of C-semantics for this kind. We also prove that this semantics is
equivalent to the original semantics from [Ga-2010], F2q.

According to the definition of +%, [ar, ..., @,] P (@) is not equivalent to [ar, ..., an, @) P (a).
This means that {a1, ...,a,} and {ay, ..., an, a} impose two different meanings on the predi-
cate P, and those meanings may handle a differently. Let us consider the tolerant predicate
“tall” and denote it by P. Does it make sense to consider a as tall in the context {aq, ..., a,}
but not in {ay, ..., an,a}? Let us return to the Gulliver example. When all the tiny people
look at Gulliver for the first time, they classify him as tall. It is more than reasonable to
think that after he stays with them for a while, he will still be classified as tall. This is
not what reasoning according to % implies, as [a1, ..., a) P (a) <> [a1, ..., an,a] P (a) isn’t
C-valid in all T structures. In the Gulliver case, this means that when he has just arrived,
he was considered tall, but when considering him among them, the tiny people changed
their mind regarding his tallness.

Now we refine I—g to a new semantics which is adequate for this situation, and induces
the same consequence relation as the original semantics from [Ga-2010]. Namely, we restrict
the C-satisfaction relation to a special kind of T-structures. Before doing so, we introduce
reflexive functions, which are essential for the definition of the refined consequence relation.

4.3.1 Reflexive Functions

Definition 23. Let D be any set and let f : FIN (D) — P (D") for some n € N.
[is reflexive if for every (ai,...,a,) € D™ and X € FIN (D), {(a1,....,an) € f(X) iff
(a1, ...,an) € f(X U{a1,...,an}).

Example 3. Obviously, every f : FIN (D) — P (D") which is a constant function is
reflexive.

Example 4. Assume D = N and n = 1. Define f : FIN(N) - P(N) as f = AX €

X
FIN (N). {z: 2 < 22X} fisreflexive: Assume z € f (X). Then z < mar
mazx (X U{x})

and hence

x < mazxX. Therefore, maxX = max (X U{z}) and hence z < , which
XU
means that € f (X U{z}). Now assume z € f (X U{z}). Then z < M <
XU X
mazx (X U{x}). Therefore maz 5 {z}) = mag . Therefore, x € f (X).

Definition 24. Let D be any set and let n € N.
1. rn =Xg: FIN (D) = P(D").AX € FIN (D) .{{a1,...,an) : {a1,...;an) € g(X U{a1,...,an})}.

2. r=U2 -

Lemma 14. Let D be any set and let f : FIN (D) — P (D™) be a reflexive function.
Then r (f) = f.

Proof. (a1,...,an) € r(f)(X) iff (a1,...,an) € f(X U{a1,...,an}) iff (a1,...,an) € f(X)
(since f is reflexive). O

Lemma 15. Let D be any set and let n € N. Then
o [FIN (D) — P(D™)]={f: FIN (D) — P(D") : fisreflexive}.

15

Proof. Let g : FIN (D) — P (D™). We show that 7, (¢) is reflexive. Let (ay,...,a,) € D"
and let X € FIN (D). Then (ai,...,an) € r, (9) (X) iff (a1,...,an) € g(X U{a,...,an})
iff (a1,...,an) € g(X U{a1,...;an} U{a1,...;an}) iff (a1,a,) € 7 (9) (X U{ay,...,an}).
Now let f be a reflexive function. By Lemma 14, r, (f) = f. Hence f = r, (f) €
ro [FIN (D) — P (D")] . O

Corollary 1. r[J,—, (FIN (D) — P(D"))] ={f € Us—, (FIN (D) — P (D")) : fisreflexive}.

Example 5. Assume D = N and n = 1. Define f : FIN(N) - P(N) as f = A\X €
FIN(N).{z € X : 2 < ™2X} fisn’t reflexive. For example: 2 ¢ f({1,5}), but 2 €
f({1,5} U{2}). Let us consider r (f).

r(f) = M eFINN) {z:ze€ f(XU{x})}

-)\XeFIN(N).{x::c<nm();LJ{x})}

max X }

=)\XGFIN(N).{a: .

We obtained the reflexive function from example 4.

Definition 25. Let (M, F') be a C-structure. r (F) = AP € PRED (L) .r (F (P)).

4.3.2 Defining I—g

Definition 26. An R-structure is a C-structure in which for every predicate P, f' is
reflexive.

Lemma 16. Let (M, F) be a C-structure. Then (M,r (F')) is an R-structure.

Lemma 17. FEvery R-structure is a T-structure.

Definition 27. Let T be a theory and ¢ be a formula. T F£ ¢ if for every R-structure
(M, F),if (M,F) ¢ T then (M, F) Ec .

The requirement that the cdfs must be reflexive captures the essence of the Gulliver
problem. This requirement explicitly forces all interpretations of P to be indifferent to the
addition of the examined objects to the context. In particular, the induced consequence
relation has this requirement as a valid formula:

Lemma 18. FE [y1, ..., ym] (P (21, ooy ¥0) < [T1, ooy Tp) P (21, o0y T0)).

Proof. Let (M, F') be an R-structure and let

[at, ..., Gm) (P (E, ,E) YRS [E, ,E} P (E, ,E)) be an M-instance of

(Y1, ooy Un] (P (21, ooy Tn) 3 [T1, ony Tn) P (X1, 0y).

(M, F) Ec [at, ... am) P (b1, ..., by) iff (b1, ...,bn) € fF ({ar, ..., an}) iff

(b1, ..y bn) € fP ({ar, .., am, b1, ..., by }) (since f7 is reflexive) iff

(M, F) l=c [at, ..., @m, b1, ... by| P (b1, ..., by) iff

(M,F) Ec [a1, ... am) [b1,....bn] P (b1, ..., bn). O

Lemma 19. FLCHE.

Proof. By Lemmas 12, 17 and 18. O

16

4.3.3 Another Characterization of I—g

The requirement that all cdfs must be reflexive reflects the intended use of tolerant pred-
icates, such as “tall”. This definition is also useful when proving properties of the con-
sequence relation. However, generating R-structures for specific purposes is not a trivial
task, as it requires to check that all of the proposed cdfs are reflexive. One way to overcome
this obstacle is to use the function r that was defined in Definition 24. Another way will
be presented in this section, namely, introducing a small change in the definition of the C
satisfaction relation.

Theorem 3. Let =cpr be the satisfaction relation obtained from =c by introducing the
following change: (M, F) |=cr [S1, ., Sm] P (t1, ...y tn) if

(I(t1), ..., I(tn)) € fFEEI(t1) s I (tn) I (51) ;. I (5m)}) for m > 0. Let For be the
consequence relation induced by FEcr over C-structures (i.e. T Fogr ¢ if for every C-
structure (M, F), if (M, F) Ecr T then (M, F) Ecgr ¢). Then FE=Fcp.

Proof. We introduce some new definitions and lemmas:
Lemma. Let (M, F) be a C-structure for L, t a ground-term of L (M) and a the name of

I(t). If ¢ is a formula of L (M) in which no variable except x is free, then (M, F) Ecr
p{t/x} iff (M, F) =cr ¢ {a/x}.

Proof. This is proved in a similar manner to the proof of Lemma 7.

Lemma. Let (M, F) be a C-structure and let ¢ be a sentence. Then (M,F) Ecr ¢ iff
(M7 (F)) Fo ¢

Proof. By induction on the complexity of .

1. Ifcp:[s Sm] P (t1, ..., tn) (for m > 0) then (M, F) Ecgr ¢
£(1(h).. () €SP (s1) oo T (sm)}ULT (1) 00 T (t0)})
(I (tr) .. I (ta)) €7 (F7) ({1 (1) o (5)}) if (M, 7 (F)) e .

2. Otherwise, the definitions of the two satisfaction relation are defined identically.

Corollary. Let (M, F) be a C-structure and let ¢ be a formula. Then (M, F) E=cr ¢ iff
(M, (F)) Fc ¢

End of proof of Theorem 8. Let T be a theory and ¢ be a formula. Assume that T I—g ®
Let (M, F) be a C structure such that (M, F) =cr T. We prove that (M, F) =cr ¢.
By the above corollary, (M, r (F)) ¢ T, and hence by our assumption (M,r (F)) Ec .
Again, by the above corollary, (M, F) Ecr ¢. Now, assume that T kg ¢. Let (M, F) be
an R-structure such that (M, F') =¢ T. We prove that (M, F) =c ¢. Note that (M, F)
is an R-structure, and hence for every P, f¥ is reflexive. By Lemma 14, for every P,
T (fp) = fP. This means that 7 (F) = F. Hence, by the above corollary, (M, F) =cgr T.
By our assumption, (M, F) Ecgr ¢. Again, by the above corollary and by the fact that
(M,r(F))=(M,F), (M,F) Ec ¢

O

4.3.4 Relation with GS-Semantics

Our construction has led us to defining I—g. In this section, we show that this consequence
relation is the same consequence relation as the one presented in [Ga-2010] (F2), hence
providing another semantical characterization of the original semantics for tolerance. We
start with a preliminary lemmas:

17

Lemma 20. Let (M, F) be an S-structure, P € PRED (L) of arity n, X € FIN (|M])
and Y,Y' € FINT ([M]). Then (Fy,, (P)) (X) = (Fyuy (P)) (X).

Proof.

(Fy,, (P))(X) = (Fy (P))(XUuY)NnX"=(F(P)(XuY'uY)n(XuYy’)"nx»

= (F(P)(XUYUY')nX" = (Fyuy (P))(X)

Now we prove that }—S C}—R

Definition 28. Let P € PRED (L) be a predicate of arity n and let (M, F) be a C-

structure.

F*(P) = A\X € FIN (|M]).F (P) (X)n X"

Lemma 21. (M, F) be an R-structure. Then (M, F*) is an S-structure.

Lemma 22. Let ¢ be a sentence and let (M, F) be an R-structure. Then (M, F) |=c ¢
iff (M, F*) =as ¢

Proof. By induction on the complexity of .

1. If pis P (ty,...

tp) then: (M, F) ¢ P (t1,....tp)

- tn)
iff (I (t1) ..., (tn)) € F(P)({L(t1), ..., 1 (tn)})
iff <I (tl)v 7I(tn)> ()({I (tl) 7I()}) n {I (tl)) "'7I(tn)}n
it (I (t1) .., L (tn)) € (F* (P)) ({L (1), -, L (tn)}) i (M, F7) |=as Pty ooy tn).

2. If pis Y — ¢, 7p or Ve then the proof is usual.

3. If ¢ is [s1,...,8m|? for m > 0, then the proof is by an inner induction on the
complexity of 1:

(a) If ¢ is P (ty,...,tp) then: (M, F) = [s1, ey Sm] P (t1, ..y tn)
it (I (t1) ..., 1 (tn)) € F(P)({I (s1),. I(Sm)})
it (I(t1),....1(tn)) € F(P)({I(s1), ..,I(sm) ,I(tl) I (tn)}) (smce F (P)
is reﬂexwe) (T (t1), .., I (tn)) € F(P)({I (1) ees L (8m), I (t1) 5oy I (tn)}) D
{I(s1) s I (8m), L (t1) .oy I (tn)}" iff
(I(t1), ...,I(tn)> e F*(P)({I(s1),-r, I (Sm),L(t1),.... I (tn)}) iff
(I(t1),...,I(tn)) € F*(P)({I(s1), ...,I(s), I(t1), ... I(ty)})N
{L(t1) - I (tn)}" = (F")y (P)({f (tl) T(t)}) with Y = {1 (s1) s T (50))
iff (M, (F*)y) Eas P (t1, ..., t,) iff (M) Eas [$15 - 8m] P (t1, ..., tn)

(b) If ¢ is ¢y — b9, =@ or Ve, then the proof is usual. We show the case where v is
Vz¢ as an example: (M, F) =¢ [s1, ..., $m] V¢ iff for every name a (M, F) ¢
[S1y ..y Sm] @ {@/x} iff for every name @ (M, F*) Egs [s1, ..., Sm] ¢ {a/x} (by the
i.h.) iff for every name @ (M, (F*)y) Eas ¢ {a/x} withY = {I(s1),...,1 (sm)}
iff (M, (F*)y) Egs Veo it (M, F*) =gs [S1, ..., Sm] V2.

(c) If v is [t1, ..., tn] ¢ then: (M, F) Ec [$1,-- Sm) [t1s ey tn] ¢ Iff

(M,F)):C [81,...,Sm,t1,...,tn]¢ iff (M,F*)):GS [81,...,Sm,t1,...,tn]¢ (by
the i.h.) iff (M, (F*)y y) Fas ¢ with Y = {I(s1),....,1(sp)} and Y’ =

{I(t1),..,I(ty)}. By Lemma 20, this holds iff (M (F*)y,) as ¢ iff
(M, (F*)y)[tl,..., W6 (M, F*) s [51, o o] [, oo] 6

18

Corollary 2. Let ¢ be a formula and let (M, F) be an R-structure. Then (M,F) Ec ¢
iff (M, F*) =as ¢

Lemma 23. -2, CHE.

Proof. Let T be a theory and let ¢ be a formula. Assume T I—%S . Let (M, F) be an
R-structure and assume (M, F') =¢ T. Then by Corollary 2 (M, F*) =gs 1. By our
assumption, (M, F*) Eas ¢, and again by Corollary 2, (M, F) ¢ ¢. Hence THE . O

Now we turn to prove the other direction.

Lemma 24. Let ¢ be a sentence and let (M, F) be an S-structure. Then (M, F) Egs ¢
iff (M,r(F)) o ¢

Proof. By induction on the complexity of .

1. If pis P (t1,...,tn) then: (M, F) =gs P (t1,....tn)

(7 (t1) T (b)) € F (P) ({1 (1)1 (t0)}) iff
(I(t1),.... I (tn)) € {{a1,...,an) | (a1, ...,an) € F(P){I(t1),.... I (tn)} U{a1,...,an})}
(0o T (b)) € (0 (F)) (P)) (T (11) s s T o) D (Vo () s P (1).

2. If pis ¢ = ¢, 7 or Yz then the proof is similar to the proof of Lemma 22.

3. If ¢ is [s1,...,8m| % for m > 0 then we prove this by an inner induction on the
complexity of ¢:

(a) If ¢ is P (t1, ... tn) then: (M, F) Egs [51, . sm] P (t1, ... ta) iff (M, Fy) Ecs
P(t1,tn) with Y = {I(s1), ., I (sm)}

)
it (1 (t1), . I (tn)) € Fy (P)({I (1), ., I (tn)})
M (L (t1) s I(tn)) € F(P)({L (t1) 5o I (tn) , L (51) s L (5m)}) N
{I (), I ()} HE(L (t1), . I (2)>
{{ar,...;an) | (a1,...,an) € F(P)({I(51),., L (sm)} U{a1,...,an})}
iff (I (t1),.... I (tn)) € r (F) (P) ({1 (1) 5, I (sm)})

iff (M,T‘(F)) Ec [81y . 8m] P (t1, ...y tn).

(b) If ¢ is =¢ then: (M,r (F)) Ec[s1y ..y sSm]) 2@ iff (M,r(F)) o [s1,.., Sm] ¢ iff
(M, F) %GS [81, ...,Sm] 10} (by the i.h.) iff (M, Fy) |7éGS ¢ with
Y = {I (81)) 7I(sm)} iff (Ma FY)):GS ¢ iff (M7 F) ’:GS [Sla "'>5m] —¢.

(c) If ¢ is 11 — 1)y then the proof is similar.

(d) If ¢ is Vze then: (M,r (F)) =c [s1, ..., Sm] Voo iff for every a € |M]|,
(M,r (F)) Ec [s1y .-y sm] ¢ {a/z} iff for every a € |M]
(M, F) Egs [s1,---, Sm] ¢ {a/x} (by the i.h.) iff for every a € | M| (M, Fy) Eas
p{a/x} with Y = {I(s1),....1 (sm)} iff (M, Fy) Egs Vzo iff (M, F) =as

[S1y ey S] V.
(e) If ¥ is [t1,...,tx] ¢ for k > 0 then: (M,r(F)) FEc [S1,.s Sm] [t1, ooy ti] @ iff
(M,T(F))):C [317-“78’m7t17-"7tk]¢ iff (M7F) ':GS [817"'73m7 1 7tk]¢ (

the i.h.) iff (M, Fyuy’) Fgs ¢ with Y ={I(s1),....,I (s;)} and
Y = {I(t1),....I(tg)} iff (M, Fyy,) Fcs ¢ (by Lemma 20) iff (M, Fy) Fas
[t1, ..., tk] @ iff (M, F) =as [s1, .0 8m] [t1, s t] &

O

Corollary 3. Let ¢ be a formula and let (M, F') be an S-structure. Then (M, F) =gs ¢
iff (M,r(F)) o ¢

Lemma 25. FECHZ .

19

Proof. Similar to the proof of Lemma 23. O
Theorem 4. I—gzl—gs.

Proof. By Lemmags 23 and 25. O

4.4 Context Independent Predicates

Similarly to Section 3.4, Now we study context independent predicates in C-semantics.

Definition 29. Let R be a predicate and let (M, F) be a C-structure. We say that R is
context independent in (M, F) if 7 is a constant function.

Lemma 26. Let (M, F) be a C-structure. Then R is context independent in (M, F) iff
for every C (M, F) =¢ R (z1,...,7n) > [C] R (21, ..., p). °

Proof. Assume R is context independent in (M, F'). Let

R (a1, ...,an) < [t1,....tm] R (a1, ...,a,) be an M-instance of
R(x1,...,xn) < [C] R (21, ...,2n). (M, F) Ec R(ax,...,a,)

iff (a1,...,an) € FE(0) = fE{I(t1),...., I (tm)}) (since fE is constant) iff
(M, F) ¢ [t1s o] R (@ oo 7).

Now assume (M, F) ¢ R (z1,...,2n) ¢ [C] R (21, ..., xy).
Let {b1,...,bm} # {c1,...,cx} € FIN (|M]) and let ai,...,an € [M|. Then
(MvF)):C R(avaﬁ) [bb" 7@ R(alv and

(M,F) ¢ R(ax,...,an) < [c1,...,c5) R (a7, ..) This means that

(M, F) = [by, ... j R (a1, ...,an) < [c1, .] (@1, ..., an). Therefore,

(M, F) =c [b1,.... by] R (a1, ..., an) iff (M,) =c let, ...,) R (a1, ..., G,) and hence

(a1, ..yan) € FE({b1,...;bm}) 1ff (a1, ...,an) € fR({c1,...,ck}). This is true for every
{b1,....;b;m} # {cl,...,ck} € FIN (|M|) and ay,...,a, € |M]| and hence ff is a constant
function, which means that R is context independent in (M, F'). O

4.5 Summary

The main theme of this section was a modular construction of a new consequence relation,
I—g, which is equivalent to Gaifman’s semantical consequence relation l—gs. We started
with the most basic consequence relation F¢. This consequence relation is induced by
the ¢ satisfaction relation over C-structures. By restricting it to a special sub-class of
C-structures (T-structures) we obtained a new, different consequence relation I—g. This
consequence relation will later be proved to be equivalent to the consequence relation which
is induced by Gaifman’s original deductive system. Finally, restricting |=¢ to a sub-class
of T-structures (R-structures) induced . F& was proved to be equivalent to F¢,q. Later
on, we shall provide an adequate deductive system for it.

5 Corresponding Deductive Systems

In this section we present several deductive systems adequate for the semantics proposed
in Section 4.

Throughout this section, L is a C-language.

“Recall that this is equivalent to INDg (Definition 16) being valid in (M, F).

20

5.1 The Systems

All of the discussed deductive systems are obtained from H FOL by the addition of some
new axiom schemes. The new axiom schemes that will be used are:

e (CO)[C][CTp + [C,CT .

e (C1) [Cl=p < = [Cle.

e (C5) [Clle—=v) < ([Cle = [Cly) .

o (Cy) [C]Vayp ¢+ V2 [C] @ if z doesn’t occur in C.

o (T) P(21,....n) <> [21, ey 2] P (21, ..o,) for every P.

o (R) [C)(P (21, 2n) < [21, ... zn] P (21, ..., zn)) for every context set C' for every

predicate P.

Definition 30.
1. HC =HFOL+CC+C.+C, + Cy.
2. HCT=HC+T.
3. HCR=HC+R.

Remark 6. HCT is the deductive system from [Ga-2010], that was introduced in Definition
15. It will be shown that it is complete for I—g. HCR will be proved to be complete for
I—gs (and F2). HC is the most basic deductive system, and it will proved to be equivalent
to k¢, which is the most basic semantical consequence relation.

Lemma 27. Let C be a context set and let ¢ and ¢ be formulas. Let # € {A,V,<>}. Then
Frc [C] () ¢ ([C]e# [Cl).

Proof. By axioms C- and C_,. O

5.2 Soundness Theorems

In this section we prove the soundness of the above deductive systems with respect to the
semantics which were presented in Section 4. Before doing so, we prove a lemma which
will be useful for this purpose:

Lemma 28. Let ¢ be one of the azioms of HC. Let (M, F) be a C-structure. Let ¢ be
an M-instance of ¢. Then ¢ is an instance of the same aziom scheme as .

Proof. We assume that the free variables of ¢ are: x1, ..., xy,.

1. If ¢ is an instance of a propositional axiom, then this can be shown easily. For ex-

ample, suppose ¢ =1 — (¢ —). Then ¢’ = (Y — (¢ —) {a1/xz, ..., 05 /2y } for
some names ap, ..., an, i.€. ¢’ is

¢ {ail/xla a%/xn} - (d) {ail/xla 7%/:671,} — w {(1171/1‘1, 7@/'%”})7 which is in-
deed an instance of the same axiom scheme.

2. If ¢ is an instance of a first-order axiom, then:

21

(a)

If ¢ =Vap — ¢ {t/x} where t is substitutable for x in v, then: Assume first
that for every 1 < i < n xz; # z. In that case, ¢’ is Vo {ay/z1,...,an/zn} —
vi{at/x1, ..., an/xn } {t{a1 /1, ..., an/xyn} 2} for some @y, ..., Gy, which is an in-
stance of the same axiom scheme as . Now, if 2z = x for some 1 < k < n,
then without loss of generality k =1 and ¢’ is

Vo {x,az/xs...,an/xn} — Y {t{a1/z1,....an 20} [z, 02/ 2, ..., a0 T }

which is an instance of the same axiom scheme as . If there is more then one
k for which zp = x then the proof is similar.

If o = Ve(¢—¢) — (Y — Vep) where z isn’t free in 1), then for every
1 <i<n,z #x (xisn't free in 1, and therefore any occurrence of it in
¢ is bound). Let ag,...,a, be names. We denote v {ai/z1,...,an/Tn} by ¢
and ¢ {ai/z1,...,an/xn} by ¢'. Then for some @y, ..., an, ¢ is Vz (' — ¢') —
(W — ngbi), which is an instance of the same axiom scheme as .

3. If is an instance of one of the new axiom schemes of HC, then again, this can be
shown easily. For example, suppose ¢ = [C]Vzy <> Vo [C] 1) where x doesn’t occur
in C. Denote C {a1/x1,...,an/xn} by C'. Then ¢’ is
[C'|Vay {a1/x1, ...t /20 } <> Ve [C'] Y {a1 /21, ..., an /xn } for some a7, ..., Gy, since
doesn’t occur in C’. Indeed ¢’ is an instance of the same axiom scheme as .

O

Theorem 5. Let T' be a theory and let v be a formula.

1. Assume T Fgo . Then T F¢o .

2. Assume T Fgor w. Then T }—g ®.

3. Assume T Fgor p. Then T I—g ®.

Proof.

1. By induction on ¢’s proof from T in HC.

(a)
(b)

()

If ¢ € T then by definition T Fgc ¢.

If ¢ is an instance of an axiom of the system then we need to prove that for

every (M, F) and for every M-instance of ¢ ¢',(M,F) Ec ¢'. Let (M,F)

be a C-structure and let ¢’ be an M-instance of ¢. By Lemma 28, we may

assume that ¢’ is an instance of the same axiom scheme as ¢. There are two

possibilities:

¢’ is a propositional or first-order axiom In this case, this is shown simi-
larly to the usual proof of the soundness theorem for HFOL.

¢’ is a new axiom In this case, this is true by Lemma 8.

If ¢ was derived by Modus Ponens or by the generalization rule, then this is
done as in the proof of the soundness theorem for HFOL.

2. By Item 1, it is left to show that for every T-structure (M, F),
(M,F) Ec P(x1,...,xyn) ¢ [x1, ..., 2] P (21, ..., x,). This immediately follows from
Lemma 11.

3. By Item 2, it is left to show that for every R-structure (M, F'),
(M,F) =¢ [C](P(x1, .., xp) <> 21, .oy] P (21, ..., xy)). This immediately follows
from Lemma 18.

O

22

5.3 Completeness Theorems

Theorem 6. Let T be an L-theory and let ¢ be an L-formula.
1. Assume T Fo . Then T Fheo o.
2. Assume T FL . Then T Fyer .
3. Assume T I—g @. Then T Fgor ¢.

We prove this theorem in a similar manner to the usual proof of the completeness
theorem for H FOL. We will quote results from that proof and explicitly prove the required
modifications.

Lemma 29. Let =€ {Fyc,Fuer, Fucr,Fo, b FEY. Then T = @ iff VT F V.

The inner structure of the formulas doesn’t affect the classical proof of this lemma.
Syntactically, this is justified by the generalization rule of inference and the axiom Vz A —

A{t/x}.
Therefore, as in the usual proof of the completeness theorem, we may assume that
T U{¢} consists of sentences.

We continue with the proof:

Let Fe {Fuc,Frer,Frcor} and assume that in L, T ¥ .

Let L' be the language obtained from L by the addition of Ry new constants (namely
dy,ds,...).

Lemma 30. In L', T ¥ ¢ still holds.

Lemma 31. There exists an L' theory T™ which satisfies the following requirements:
1. TCT".

2. T™ is a mazimal theory in L' (in terms of inclusion) such that T™ ¥ ¢, i.e. T™ ¥ ¢
and for each 1 ¢ T TE U {} F ¢.

3. T' is a Henkin theory, i.e. if T' & Jx1) then there is a term t such that T b {t/x}.
We construct 7t in the usual way.

Lemma 32. T" is Fcomplete, i.e. for every sentence A, either T™ = A or T™ - —A.

Lemma 33. For every sentence ¥, T™ v if and only if v € T".

Definition 31. (Countermodel) Let (M, F)" be the following C-structure:
1. |M] is Herbrand space of L', i.e. |M| consists of all ground terms of L.
2. I is defined as in the usual proof.

3. For every P of arity m,

P = AX e FIN (|M]). {<31, s Sm) [X] P (1, 0oy $m) € TF}
Remark 7. fF(0) = {(s1, ..., sm) : P(s1,....,5m) €T }.

23

Lemma 34. For every sentence ¢, (M, F)'_ o ¢ if and only if ¢ € T".

Proof. For convenience, denote (M, F)'_ by (M, F). The proof is by induction on the
complexity of ¢. Let n > 0. Recall that []¢ = 9 for every .

1. If ¢ =[t1, ..., tn) P (51, ..., Sm) then: (M, F) ¢ [t1, ...y tn] P (S1, .., Sm)
iff (I(51) s I (sm)) € fFP({I(t1),...., I (tn)}) (by definition)
ff (s1 sm> € fP ({t1,...,tn}) (by I’s construction)
[tl, tn] P (81, ..., 8m) € T (by f’s construction).

2. If gb = [tl,.‘.,tn] —\¢1 then: (M,F) ’:C [tl,...,tn] —\qbl iff (M, F) l;éc [tl,...,tn] le iff
[t1,....tn] @1 & T (by the i.h.) iff = [t1,...,tn) o1 € T (since T" is complete and
since o ~—A — A) iff [t1,...,t,] 7¢1 € T" (by axiom C-).

3. If ¢ =[t1,...,tn] (61 — ¢2) then the proof is similar, using axiom C_,.

4. If ¢ = [t1,...,tn) (V1) then: Assume (M, F) ¢ [t1,...,tn]Veé1. Then for ev-

ery ground term t of L', (M,F) ¢ [t1,...,tn] #1{t/z}. By the i.h. it follows
that for every such ¢, [t1,...,t,] 1 {t/z} € T". Now assume for contradiction that
[t1,...,tn] V21 ¢ T". By axiom Cy and the fact that ti,...,t, don’t contain z (as
they are ground terms), this means that Vx [t1,...,t,] ¢ ¢ T". Since T" is com-
plete, =z [t1,...,t,] ¢1 € T", which means that 3z— [t1,...,t,] ¢1 € T". Since T" is a
Henkin theory, there exists a ground term ' such that (= [ty,...,t,] ¢1) {t//z} € T,
which means that —[t1,...,tn] ¢1 {t'/z} € T". Hence T" is inconsistent and in
particular, ¢ € T, which is a contradiction. For the other direction, assume
[t1,....tn] Vad1 € T". By Cy (and the fact that @ doesn’t occur in t1, ..., t,),
Va [t1,...,tn] ¢1 € T". Using the axiom Yz A — A {t/x} for every ground term ¢ of L/,
this means that for every such ¢, ([t1,...,t,] ¢1) {t/2} € T", and by the i.h., it holds
that for every such ¢, (M, F) ¢ [t1,....tn] ¢1{t/x}. Since |M| is the set of ground
terms of L', (M, F) ¢ Va [t1, ..., tn) $1. By Lemma 8, (M, F) E¢ [t1, ..., tn] VI 1.

9. Iqu) [tl, ,tn] [81,...,8m] d)l then: (M,F)):C [tl,...,tn] [81,...,Sm] (;51
()):C' [tl, veeytny S1, ...,Sm] ¢y iff [tl, veoytny S1, ...,Sm] ¢1 € T" (by the i.h.)
1ff [t1, . tn] [S1, ..., 8m] $1 € T (by axiom CC).

Corollary 4. (M,F)" =¢ T and (M, F)" ¢ .
Lemma 35. Let P be any predicate of arity k and let tq,...,tn, S1, ..., Sg be terms. Then
l_HCR [tl, ...,tn] P (81, ceny Sk) Ad [tl, ...,tn, S1yeeey Sk] P (81, ceny Sk).

Proof. Fucr [t1, . tn] (P (81, ...y Sg) <> [S1, -, Sk| P (81, ..., Sk)) (axiom CT).

l_HCR [tl, ...,tn] P(Sl, ...,Sk) <~ [tl, ...,tn] [81, ...,Sk] P(Sl, ...,Sk) (Lemma 27)

l_HCR [tl, ...,tn] [81, ...,Sk] d [tl, veestny S1, ...,Sk] P(Sl, ...,Sk) (axiom CC)

And hence Frer [ti, oy tn] P (81,0 Sk) € [t1, ey tny S1y ooy S P (81, -0y SE)- O

Lemma 36.
1. (M, F)™HCT 45 ¢ T-structure.
2. (M, F) HCE s an R-structure.

Proof. Let P be an n-ary predicate.

1. Denote (M, F)"HCT a5 (M, F) and TV HCT as T, Let ty, ..., t, € | M.
(t1,...otn) € fF({0}) iff P (t1,...,t,) € T' (by F’s construction) iff
[t1, .oy tn] P (t1, ... tn) € T' (by axiom T) iff (t1,...,t,) € fF({t1,....tn}) (by F’s
construction).

24

2. Denote (M, F)™HCR as (M, F) and THCRE as T'. Let ty,....tn,51,....5m € |M]|.
(t1,.tn) € FP ({51, .0, 8m}) iff [s1, ..., 5m] P (t1, ..., t,) € T' (by F’s construction) iff
[$1, ey Sy t1y ooy tn) P (t1, .oy ty) € T" (by Lemma 35) iff
(t1, .y tn) € FE ({81, Smyt1, oy tn}) (by F’s construction).

End of proof of Theorem 6.

FrC

1. Assume T /gco . By Corollary 4, there exists a C-structure, namely (M, F')
such that (M, F) #¢ =¢ T and (M, F)™H¢ e . Hence T He .

2. Assume T gor ¢. By Corollary 4 and Lemma 36, there exists a T-structure, namely
(M, F)™H°T such that (M, F) T |=¢ T and (M, F) H°T b . Hence T HEL .

3. Assume T Hycor ¢. By Corollary 4 and Lemma 36, there exists an R-structure,
namely (M, F)"#CR guch that (M, F) #CR \=¢ T and (M, F) #° l£c o. Hence

Tb/g ®.
]

6 Properties of the New Consequence Relations

In this section we discuss some properties of the presented consequence relations. All of
the properties will be formulated in terms of semantics (e.g. for F% rather than for Fger).
However, by the soundness and completeness theorems from Sections 5.2 and 5.3 those
properties have proof theoretical counterparts as well.

Throughout this section, L is a C-language.

6.1 Rule N

In [Ga-2010], it is shown that for every first-order theorem of HCT ¢ and every context
C, [C]p is also a theorem of HCT. In this section we study this property for all of our
consequence relations and for all theorems of our systems (not just first order ones). We
start with some preliminary definitions and lemmas before the actual results.

Definition 32. Rule N is the following rule of inference: ﬁ for every context set C.

Definition 33. Let - be a consequence relation for L.

1. Rule N is walid in F if for every theory T, formula ¢ and context C, if T F ¢ then
TH[C]e.

2. Rule N is admissible in F if the above holds for T = (.

Lemma 37. Let M be a first order structure which doesn’t interpret predicate symbols, let
¢ be an L-formula and let tq, ..., t, be terms. Assume that for every F' such that (M, F) is
an S-structure, (M, F) =gs ¢. Then for every such F, (M, F) Egs [t1, ..., tn] .

Proof. Let [s1, ..., sn] ¢’ be an M-instance of [t1,...,t,] . Let Y = {I (s1),...,I (sp)}. Let
F be a function as defined in Definition 9. Since (M, F') =qs ¢ for every F', (M, F') Eas
/

¢’ for every F'. In particular, (M, Fy) Egs ¢', which means that (M, F) [Egs [s1, ., $n] ¢
0

25

Corollary 5. Rule N is admissible in ng.' Let ¢ be a formula which is GS-valid in
every S-structure and let t1,...,t, be terms. Then [t1,...,t,] ¢ is also GS-valid in every
S-structure.

Proof. Let (M, F) be an S-structure. Then for every F” such that (M, F’) is an S-structure,
(M, F") Eas . By Lemma 37, (M, F') =as [t1, ..., tn] ¢ for every such F” and in particular
(M, F) s [t - ta] . O

Lemma 38. Let ¢ be an aziom of HC. Then for every C, Fyc [C] ¢.

Proof. 1t is enough to show that for every C, F¢ [C] . Let (M, F) be a C-structure and
let C' be a context set. Let [C'] ¢’ be an M-instance of [C]¢. By Lemma 28, ¢’ is an
instance of the same axiom scheme as .

1. Assume ¢’ = 9] — (¥}, — 9}). We need to show that
(M. F) =c [C'] (1 = (¥ — 41)), Le. that if (M, F) ¢ [C'] 9] then
(M, F) ¢ [C'] (¢, — 4}). Assume (M, F) |=¢ [C']¢]. In particular, it holds that
either (M, F) |=¢ [C'] 4y or (M, F) o [C'] ¢y Hence (M, F) ¢ [C'] (g —).

2. If ¢/ is an instance of another propositional axiom, then this is shown similarly.

3. Assume ¢’ = Vo' — o/ {t'/x} for some ground term ¢'. We need to show that
(M, F) Ec [C')(Vayp" — ' {t'/z}). Assume (M, F) E¢ [C']Vazy)'. Then for every
a € |M|, (M,F) Ec [C']Y'{a/x}. Tt is easy to see that this means that for every
ground term ¢, (M, F) =¢ [C'] ¢ {t/z}, and in particular for ¢'.

4. If ¢’ is an instance of another first order axiom then this is shown similarly.

5. Assume ¢ = [A'][B']¢ < [A',B']¢/. For clarity, we explicitly write [A] ([B]v)
instead of [A] [B] 9. (M, F) |=c [C']([A'] ([B']¢") it (M, F) |=¢ [C", A ([B'] ¢') iff
(M, F) e [C', A, B (M, F) e (O (A B ¢/) it (M, F) e [C', A, B .

6. Assume ¢’ = [A']) < —[A']¢Y'. We need to show that (M, F) ¢ [C'][A] '
iff (M, F) =c [C']=[A¢". (M, F) ¢ [C][A'] " iff (M, F) |=o [C7, A]—¢" iff
(M, F) o [CF, A1 Now, (M, F) |=c [C'] - [ATYiff (M, F) Fo [CT[A] ¢ iff
(M, F) o [CF, ATy

7. Assume ¢’ = [A'] (Y] = b)) < ([A| Y] — [A’] Y}). We need to show that (M, F) =¢
[C][AT] (1 — o) iff (M, F) f=c [C'] ([A by — [A] 1))
(M, F) o [CTIA] (1 — 1) iff (M, F) Fc [C7, A'] (1 — o) iff either (M, F) =c
[C7, ATy or (M, F) (o [CF ATyh. (ML F) [=o [C7]([Agy — [AT) iff either
,F; Fo [CT[A 0, or (M, F) o [C'[A] 4y iff either (M, F) = [C7, Al or

) o [, AT b

(M
(M

8. Assume ¢ = [A]|Vay <> Va [A] 1) where x doesn’t occur in A. We need to show that
(M, F) = [C[A Vo' iff (M, F) e [C Ve [AT4. (M, F) e [C[A] Yoy iff
(M,F) ¢ [C, A'|Vzy' iff for every a € M|, (M,F) ¢ [C',A'|¢'{a/x}. Now,
(M, F) Ec [C')Vx [A'] " iff for every a € |M|, (M, F) =c [C'][A']Y' {a/z} iff for
every a € |[M|, (M, F) =¢ [C', A'| Y {a/xz}.

O
We now turn to the actual results regarding rule N.
Lemma 39.

1. Rule N 1is admissible in Fo.

26

2. Rule N 1is admissible in l—g.
8. Rule N isn’t admissible in l—g.
Proof.

1. It is enough to show that Rule N is admissible in Fgc. Let ¢ be a theorem of
HC and let C be any context set. We prove that [C] ¢ is also a theorem of HC by
induction on the length of the proof of ¢ in HC.

(a) If ¢ is an axiom of HC then by Lemma 38, Fpc [C] .

(b) If ¢ is proved from 1 and ¢ — ¢ using M.P then by the i.h., Fyc [C]¢
and Fgo [C] (¥ — ¢). By C, Fue [C]Y — [C]e. Using M.P we get that
Fruc [C]e.

(c) If ¢ is proved from 1) using Gen then ¢ = Vxip. By the i.h., Fge [C]4. First
assume x doesn’t appear in C. Using Gen, we get that F e Va [C] 4 and using
Cy we get that Fyo [C]Vay. Now assume x appears in C. Assume w.l.g that
C = {x1,...,z,} and that x = z1. Let yi,...,y, be fresh variables. By the i.h.
Fruc [y1, - yn) Y. Using Gen, we get that by Va [y1, ..., yn] ¥. Using Cy we get
that Fgo [y1, ..., Yn] Y20 (since y1, ..., y, are fresh). Using Gen n more times, we
get that Fgc Yyi..Vyn ([y1, ., Y] Y210). Now using the axiom VzA — A{t/z}
of HFOL n times we get that Fgc [C] V.

2. By Corollary 5 and Theorem 4.

3. By Lemmas 11 and 12.

Lemma 40. Rule N isn’t valid in Fo and l—g.

Proof. For F&, since I—gzl—gs, it is enough to present an S-structure (M, F') and a formula
¢ such that (M, F) Egs ¢ and (M, F) as [Cle: M| = {1,2}, I(c) = 1, I(d) =
2. [P0 = (1) = f7{2h =0, fP({1,2}) = {1}. (M,F) [Fes ~P (c) since
I(c)=1¢ fP({I(c)}) = 0. Nevertheless, (M, F) F~qs [d] =P (c) since (M, Fy) Fas
—P(c) with Y = {I(d)} since (M,Fy) s P(c) since I(c) = 1 € ff({I(c)}) =
f({1,2})n{1} = {1}. For F¢: We present a C-structure (M, F') and a formula ¢ such
that (M, F) ¢ ¢ and (M, F) F~c [C] ¢, namely the above S-structure. (M, F) ¢ =P (c)
since I (c) =1 ¢ fF(0) = (. However, (M, F) ¢ [c,d] =P (c) since (M, F) = [c,d] P (c)
since 1(c) =1 € {1} = f7 ({1,2}) = /* ({1 (d) . T (0)}). .

6.2 Axiom T

Recall that axiom T is P (z1,...,%n) <> [T1,..., Tn] P (21, ...,). Another way of present-
ing this axiom is: ¢ (21,...,2,) <> [T1,..., Zn] @ (21, ...,) for every atomic ¢. A natural
question which arises is whether or not ¢ (21, ..., z,) < [T1, ..., zn] @ (21, ..., 2,) is a theo-
rem of the discussed deductive systems (or, equivalently - valid in the discussed semantic
consequence relations).

Lemma 41. Let e {I—C, I—g, I—g}. Then it doesn’t hold that for every ¢ (z1, ..., zp)
Fo(xr, .o, zn) < [@1, o Tn] @ (1, 0y Tp).

Proof. Since FcCHLCHE, Tt is enough to present a formula ¢ (21, ..., z,,) such that
FE o (21, zn) © (21, 2] @ (21, o,). Let ¢ = P(x) — P(y). We present an R-
structure (M, F') such that (M, F) ¢ (P (z) — P (y)) < [z,y] (P (z) — P(y)): |[M| =

27

{12}, 7 (1) = P {2 = {12}, f7(0) = 7 ({2}) = {1}. (M, F) is indeed an R-
structure. Consider the following M-instance of (P (z) — P (y)) < [z,y] (P (z) — P (y)):
(P(1) = P(2)) « [1,2] (P (1) = P (2)). We show that (M, F) doesn’t satisfy it. Since
1e fP(0) and 2 ¢ f7(0), (M,F) ¢ P (1) — P (2). However, since 1,2 € fF ({1,2}),
(M,F) Ec [1,2] (P (1) — P (2)). All together,

(M, F) lec: (P (2) = P () © [£9] (P (2) > P (). a

6.3 Replacement of Equivalents

Loosely speaking, a consequence relation admits replacement of equivalents if whenever
two formulas are equivalent, it is possible to replace each occurrence of the first with the
other. In this section we check which of our consequence relations admits this rule.

Definition 34. Let - be any consequence relation for L.

1. Let T be an L-theory and let A and A’ be L-formulas. A and A’ are F-equivalent in
TifTHAw A.

2. F admits strong replacement of equivalents if for every L-theory T and L-formulas
o, ¢, A, A" such that ¢’ is obtained from ¢ by replacing zero or more occurrences
of A with A’)if A and A’ are F-equivalent in T then so are ¢ and ¢’. F admits weak
replacement of equivalents if the above holds for T' = ().

Lemma 42. o and Fg admit weak replacement of equivalents.

Proof. 1t is enough to show that Fpyc and Fyor admit weak replacement of equivalents.
Let F€ {Fuc,Fucr}. Let k > 0 be the number of replacements of A by A’ made in .
If & = 0 then this is trivial. Let k > 0. If A = ¢ then ¢/ = A’ and this is also trivial.
Hence we may assume that A # ¢ (i.e. that A is a distinct sub-formula of). We prove
the claim by induction on the complexity of ¢.

1. Assume ¢ is P (t1,...,tn). Then A = P (t1,...,t,) and this falls under one of the
above cases.

2. If v is <, Y1 — P9 or Varp then this is shown similarly to the proof of the theorem
for classical first order logic.

3. Assume g is [C] ¢ for some context set C. ¢’ = [C] ', where ¢ is a formula obtained
from v by replacing the same occurrences of A with A’. By the i.h., - ¢ < ¢/. By
Lemma 39 and Theorem 6, - [C] (¢ <+ ¢'), and by Lemma 27, - [C] ¢ + [C] .

O
Lemma 43. l—g doesn’t admit weak replacement of equivalents.

Proof. We prove this claim for Fger. Let ¢ = [d][c] P (c) <> [d,c] P (c), A := [c] P(c)
and A’ := P(c). Let ¢ := [d]P(c) + [d,c] P(c), obtained from ¢ by replacing one
occurrence of A with A’. By axiom T, Fgor A + A'. However, Yyor ¢ < ¢': Assume
for contradiction that Fyor ¢ <> ¢'. Then since Fyor ¢ (axiom CC), Fyor ¢, ie. Fgor
[d] P (c) <> [d,c] P (c). Since Fgor [d,c] P(c) + [d][c] P (¢), Facr [d] P (c) < [d] [¢] P (c)
and hence Fyor [d] (P (c) 5 [¢] P (c)). This means that % [d] (P (c) <+ [¢] P (c)), but this
is not the case, as seen in Lemma 12. O

Lemma 44. ¢ and l—g don’t admit strong replacement of equivalents.

28

Proof. We start with Fo. Let ¢, ¢, A, A’ be the same as in Lemma 43. Define T :=
{A+ A} ={[¢] P(c) <> P(c)}. Obviously, T o A +» A’. We prove that T /o ¢ < ¢’
It is enough to find a C-structure (M, F) such that (M, F) =c T and (M, F) o ¢ + ¢'.
Consider the following C-structure (M, F): |M| = {1,2}. I(c) =1, I(d) = 2. fF () =
PP = P (LN = (1) P ((2)) = 0. Clearly, (M,F) c [P(c) & P(c). Tn
addition, (M, F) E=¢ [d][c] P (c) <> [d,c] P(c) (by Theorem 5). However, (M, F) ¢
[d] P (c) <+ [d,c] P (c). Hence (M, F) l£c ¢ < ¢'. Now we turn to FE. If F2 would admit
strong replacement of equivalents, then we could infer that P (c) <+ P (d) F& [e] P (c)
[e] P (d), since FE [e] P (c) > [e] P (c), and [e] P (c) <> [e] P (d) is obtained from it by a
replacement of one occurrence of P (¢) with P (d). However, P (c) +» P (d) /& [e] P (c)
le] P(d): Consider the following R-structure: |M| = {1,2,3}. I(c) = 1, I(d) = 2,
I(e) =3. fF({3}) = fF({1,3}) = {1}. fP(X) = 0 for every other X € FIN (|M]).
First, we show that (M, F') is indeed an R-structure, i.e. that f7 is reflexive: Let z € |M|
and X € FIN (|M|). z € fP(X)if x =1 and X € {{3},{1,3}} iff r =1 and X U {2} =
{1,3}iff x € fP (X U{z}). Second, (M, F) =¢ P (c) <+ P(d) since I (c) =1 ¢ f¥ (() and
I(d)=2¢ f¥(0). However, (M, F) ¢ [e] P (c) + [e] P (d) since I (c) =1 € fF ({I(e)})
bue 1(d) =2 ¢ 17 ({1 (e)}). .

6.4 Replacement of Congruent Formulas

We have seen that only two of the studied consequence relations admit weak replacement
of equivalents and that none of them admits strong replacement of equivalents.

We now define a stronger notion of equivalence, namely congruence, in order to obtain
a more positive result.

Definition 35. Let - be any consequence relation for L.

1. Let T be an L-theory and let A and A’ be L-formulas. A and A’ are -congruent in
T if for every context set C, T+ [C] (A < A').

2. admits (strong) replacement of congruent formulas if for every L-theory T and
L-formulas ¢, ¢', A, A’ such that ¢’ is obtained from ¢ by replacing zero or more
occurrences of A with A’, if A and A’ are F-congruent in 7' then so are ¢ and ¢'.

Lemma 45. Let € {I—C, }—g, l—g}. Then = admits replacement of congruent formulas.

Proof. We prove the claim for € {Fyc,Fror,Fror}. Let T be an L-theory and ¢, ¢,
A, A’ be L-formulas such that ¢’ is obtained from ¢ by replacing zero or more occurrences
of A with A’. Assume A and A’ are F-congruent in 7. We prove that T+ [C] (¢ <> ¢')
for every C. Let k > 0 be the number of replacements of A by A’ made in . If k =0
then we need to prove that for every C, F [C] (¢ <+). This is equivalent to showing that
F [Cle + [C] e, which of course holds. Let k > 0. If A = ¢ then ¢’ = A’ and this is
trivial. Hence we may assume that A # ¢ (i.e. that A is a distinct sub-formula of). We
prove the claim by induction on the complexity of .

1. Assume ¢ is P (t1,...,tn). Then A = P (t1,...,t,) and this falls under one of the
above cases.

2. Assume ¢ is —p. Let v’ be the formula which is obtained from 1) by the same k
replacements of A by A’ made in ¢. Obviously, ¢’ = —¢’. Let C be any context
set. By the induction hypothesis, T+ [C] (¢ <> ¢'). Therefore, T + [C] 4 < [C] .
Since F has all axioms and rules of HFOL, T + = [C]¢ < = [C]Y'. By C,, T
= [C] ¢ + [C]) and T + = [C]Y' +» [C] =)' Therefore, T + [C] = > [C] =’ and
hence T+ [C] (=9 <> —)').

3. Assume ¢ is 1)1 — 9. Then this shown similarly.

29

4. Assume @ is Vaep. Let ¢ be the formula which is obtained from v by the same
k replacements of A by A’ made in ¢. Obviously, ¢’ = Vai’. Let C be any con-
text set. By the induction hypothesis, T+ [C]v¢ <« [C]¢’'. By the HFOL ax-
iom VzA — A{t/z}, T F Va[C]y — [C]¢. Hence T F Vx[C]yp — [C]Y'. By
Gen, T +Vz (Vx [C]¢ — [C]¢'). By the HFOL axiom Va (A — B) — (A — VaB)
and the fact that x isn’t free in Va [C)¢, T F Vz[C]¢Y — Vz[C]4¢'. Similarly,
T+ Vz[C]|Y — Va[C]|y. Hence T + Va [Cly + Vo [C]4'. First assume z doesn’t
appear in C. Then T + Va [C]¢ < [C]Vaxy and T + Va [C| ¢ < [C]Vay)'. Then
T b [C]Vayp « [C]Vzy' and hence T b [C] (Vayp <> Vay)'). Now assume z does
appear in C. Assume w.l.g. that C = {x1,...,z,} and that z = x;. Let y1,...,y, be
fresh variables. By the induction hypothesis, Tt [y1,...,yn] ¥ < [Y1, ..., yn]?’'. By
Gen, T EVz ([y1,....;yn] ¥ < [Y1, ..., yn]). Since F contains all axioms and rules of
HFOL, , TV [y,;yn) ¥ <>V [y1, ..., yn] ¥'. Now, by Cy, T FVx [y1, ..., yn] ¥ <>
(Y1, e, Yn) Vb and T E V2 [y1, .oy yn] ' < (Y1, -y Yn] Vo) (since y1, ..., y,, are fresh).
All together, T'F [y1, ..., yn] Vb <> [y1, ..., yn| V', Using Gen and the instantiation
axiom we obtain T+ [C]Vzy + [C]Vay' and hence T + [C] (Vayp < Vai)').

5. Assume ¢ is [D]4. Let 1)’ be the formula which is obtained from ¢ by the same k
replacements of A by A’ made in . Obviously, ¢’ = [D]4'. Let C be any context set.
By the induction hypothesis, T'+ [C, D] (¢ <> ¢') and hence T+ [C, D] ¢ < [C, D] .
By CC, T+ [C,D]¢ < [C][D]¢ and T [C, D] ¢’ + [C][D]4'. This means that
T+ [C][D] 9 «+ [C][D] ', and hence T + [C] ([D] v <> [D]).

O

6.5 Summary

The following table summarizes the results of this section. r.o.e. stands for replacement of
equivalents and r.o.c stands for replacement of congruent formulas.

| | o | -z \ ¢ |
rule N admissible not admissible admissible
axiom T | valid for atomic formulas | valid for atomic formulas | valid for atomic formulas
r.o.e holds weakly doesn’t hold holds weakly
r.0.c holds holds holds

7 Reduction to Classical Logic

In this section we show that although in the frameworks of C-languages it is more conve-
nient to express the role of context in propositions, its expressive power is not greater than
the expressive power of first order classical logic.

Throughout this section we consider an arbitrary C-language L. For the purpose of
reducing to classical logic, it is easier to use a slightly different version of C-languages than
the one defined in Definition 6 and to make some assumptions:

1. Like in [Ga-2010], we use finite sequences of terms, rather than finite sets of terms.
Proof theoretically, this requires the addition (or more precisely, the reinstatement)
of the axiom scheme [z1, ..., 2] @ — [2], ..., 2),] ¢ where {z1,...,2z,} = {2, ..., 2], }.
Semantically, this does not matter, since the cdfs are defined over finite sets and not

over finite sequences.

2. We use = with no subscripts for the satisfaction relation for classical first order logic
(Definition 2).

3. We assume that L has an infinite number of variable symbols, and that all the terms
of L are ordered by some well ordering, which we denote by “<”.

30

7.1 Translation of Formulas
Definition 36. The first order language tr (L) is obtained from L by the following steps:
1. Omitting the context operator.

2. Replacing every predicate symbol P of arity n with Ry predicate symbols, namely
Py, for every m € NU{0}. The arity of Py, is m + n.

Definition 37. Let ¢ be a formula (in L or tr (L)). sfv () 'V is the smallest variable
which is bigger than all the variables that occur (free or bound) in ¢ (with respect to the
well ordering of the terms of L).

Definition 38. Let ¢ be an L-formula. t¢r(p) is a tr(L)-formula, and is defined by
induction on the complexity of ¢. In what follows m > 0 and n, k > 0.

1. IF 08 [51, o) Sma] P (L1, ooy tn) then t7 () 08 P (515 0oy Sy 1, s bn).
2. If 8 [51, ..., Sm] (—0) then tr (9) is = (¢ ([81, -ors $m]).

3. Tf @ is [81, .0, Sm] (01 —) then tr (@) i (47 ([81, ooy Sm] 1)) = (1 ([81, ey Sm] 12))-
4. 1f ¢ is Voo then tr (o) is Va (tr (1))

5. Tf @ is [s1, ..., 8] Vab then tr () is Yy (tr ([51, ..., sm] ¥ {y/2})) where y = sfv ().
6. Tf 0 iS [t1, ooos th] [S10 oons Spn] ¥ them £ (9) 18 £ ([t ooes Eoy S14 oees]).

Remark 8. Precedence of the ¢r operator in the meta language: tr (¢1) — 2 = (tr (¢1)) —
W, by = tr (P2) = by = (br (P2)), ~tr () = = (br (), Vatr (¢) = Va (tr (¢)), [Clir () =
[C] (tr ().

Lemma 46. Let ¢ be an L-formula. Then Fv (p) = Fv (tr (p)).

Proof. The only case of Definition 38 in which some variables are changed is case 5. In
this case, the only variables that are changed are bound variables, and they are replaced
with other (fresh) bound variables. O

Remark 9. Our translation reduces the number of operators in a given formula, since it
eliminates all context operators and doesn’t change any classical connective or quantifier.
However, the translated formula is dramatically longer than the original formula.

7.2 Translation of Semantics

Definition 39. Let (M, F') be a C-structure for L. tr (M) := (|M|,tr (I)) such that:

1. For every constant symbol ¢ and function symbol g tr (I) (¢) = I (¢) and tr (I) (g) =
1(g).

2. For every m > 0, n > 0 and predicate symbol P, ,, of arity m + n:

tr (1) (Prn) = {(b1, ooy bins @1, oy @) 2 (a1, ey @) € f7 ({b1, b }) }

10Ghort for “smallest fresh variable”

31

Definition 40. Let M = (|M|,I) be a first order structure for ¢tr (L).

1. M is a CC-structure if M = Prpyp (Y15, Yms 1, o0y Tn) < Py (21,00 285, T15 o0, Tn)
for every P € PRED (L), m,k > 0,n > 0 and x1, ..., Tn,Y1, -, Ym,21, ---, 2k sSuch that
{y1 o umt = {21, 2}

2. M is a CT-structure if it is a CC-structure and in addition, M = Py, (21, ..., zp) <>
Py (z1,...i T, 21, ..., xy) for every P € PRED (L), n > 0 and z1, ..., Tp.

3. M is a C'R-structure if it is a CC-structure, and in addition,

M = Pon Y1y oo Yms X1y ooy Tn) > Prgnn (Y15 oo Yoy T4 ooy Ty, T4 -, Ty) fOr every
P e PRED (L), m>0,n>0and y1, ..., Ym, T1, ..., Tn.

Lemma 47.

1. The mapping tr from C-structures for L to first-order structures for tr (L) is onto
the class of CC-structures for tr (L).

2. The mapping tr from T-structures for L to first-order structures for tr (L) is onto
the class of CT-structures for tr (L).

3. The mapping tr from R-structures for L to first-order structures for tr (L) is onto
the class of CR-structures for tr (L).

Proof. We start by constructing a structure which we shall use in all the parts of this proof.
Let M = (|M|,I) be a CC-structure for tr (L). Then (M', F’) is defined as follows:

o M| = |M].
e [”’s interpretation of constant symbols and function symbols is the same as I’s.

e I is defined as follows:

F' = MPePRED(L).AX € FIN (|M']).
{<a1, ...,an> : by, ..., by, {bl, ,bm} =XA <b1, ey b, a1, ...,CLn> € I(Pm,n)}

Now we turn to the actual proof.

1. Let M be a CC-structure. Obviously, (M’, F') is a C-structure. We claim that
tr (M',F") = M. By definition, tr (I’) and I are identical over constant and function
symbols, and |M'| = |[M|. Let P € PRED (L) and let m > 0 and n > 0. We
need to show that tr (I') (Ppyn) = I (Pmp). (b1, ..cibm,at, ...;an) € tr (I') (Ppy) iff
ai,...,an € F'(P) ({b1,.... b }) iff (1, ..., cm,a1,...,ap) € I (P, p) for some
{c1, .y em} = {b1, ..., b} (by F”’s construction) iff (by,...,bm,a1,...,an) € I (Ppn)
(since M is a C'C-structure).

2. Let M be a CT-structure for tr (L). Consider the C-structure (M’, F’) which was
defined above. It is now clear that tr (M', F') = M. We claim that (M’ F")
is a T-structure. (a1,...,an) € F'(0) iff (a1,...,a,) € I(FPoy) (by F"’s construc-
tion) iff (a1, ...,an,a1,...,an) € I (P,) (since M is a CT-structure) iff (a1, ...,a,) €
F'(P)({ai,...,an}) (by F"’s construction).

3. Let M be a CR-structure for tr (L). Consider the C-structure (M’, F’) which was
defined above. It is now clear that tr (M', F') = M. We claim that (M’ F")
is an R-structure, i.e. that for every P € PRED (L), F'(P) is reflexive. Let
P € PRED (L) be an n-ary predicate and let {b1,...,b,,} € FIN (|M|). (a1, ...,an) €

32

F'(P) ({b1, oo, by }) HE(d1, .., diy @1, oy an) € I (Prp) with {1, ooy dyn} = {b1, ey b}
(by F"’s construction) iff (di,...,dm,a1,....,an,a1,...,an) € I (Ppiynn) (since M is
a CR-structure) iff (by,...,bm,a1,...,an,a1,...,an) € I (Ppinn) (since M is a CC-
structure) iff (a1, ...,an) € F' (P) ({b1, ..., bm, a1, ...,an}) (by F"’s construction).

O

Lemma 48. Let (M, F) be a C-structure.

1
2.

3.

tr (M, F) is a CC-structure.
If (M, F) is a T-structure then tr (M, F') is a CT-structure.

If (M, F) is an R-structure then tr (M, F') is a CR-structure.

Proof.

1.

Assume {b1,....,bn} = {c1,...,ck}. (b1, ..;bm, a1, ...;an) € tr (1) (Pyp)

iff (ar, ..., an) € f7 ({01, .. 0m}) = f7 ({e1, s cr})
iff (c1,...,ch,a1,...,an) € tr (L) (Pry).

(a1, ..., an) € tr (I) (Poy) iff (a1, ...,an) € f£(0)
iff (a1,...,a,) € fF ({ai,...,a,}) (since (M, F) is a T-structure)
iff (a1,...,an,a1,...;an) €tr(I) (Pyn).

. <b1, eiis b, an, ...,CLn> etr (I) (Pm,n) if <a1, ...,an> € fP ({bl, ,bm})

iff (a1, ...,a,) € ¥ ({ai,...,an,b1,...,bm}) (since ff is reflexive)
iff (b1,....bm, a1, ..., an, a1, ...;an) € tr (1) (Prgnn)-

O

Lemma 49. Let (M, F) be a C-structure, let aq,...,a, € |M| and let ¢ be an L-formula
such that Fv () C {x1,...,xn}. Then tr (M, F) = (tr (¢)) {a1/z1, ..., an/xn} iff
tr (M7 F)): tr (SO {Tl/mlv a@/xn})

The proof is tedious and routine, and is detailed in the appendix (Section 10.2).

Lemma 50. Let (M, F) be a C-structure for L and let ¢ be an L-sentence.
Then (M, F) |=c ¢ iff tr (M, F) = tr (o).

Proof. By induction on the complexity of .

1.

(M, F) b= P (t1, o ty) i (I(t1) . I (t)) € fE(0) iff (8 (D) (t1) , ... tr (1) (tn)) €
tr (I) (Pyn) iff tr (M, F) (= Py (t1, .., tn) iff tr (M, F) |= tr (P (t1, ..., t)).

. (M,F) ¢ Yz iff for every a € |M|, (M,F) ¢ ¥ {a/x} iff for every a € |M]|

tr (M, F) = tr (¥ {a/z}) (by the i.h.) iff for every a € |M| tr (M, F) = tr (¢) {a/z}
(by Lemma 49) iff tr (M, F) =V (tr (¢)) iff tr (M, F) = tr (Ya).

(M, F) Ec [$1y .y 8Sm]| P (t1, ..., tp) (with m > 0) iff

(I(t1), ... (tp)) € fP({I(51),.... I (5m)}) iff

(tr (L) (s1),ontr (L) (sm) , tr (1) (1), oostr (1) (tn)) € tr (1) (Prmpn) ifE

tr (M, F) = Pon (15 ey Sms t1y ooy ty) i tr (M, F) = tr ([s1, .oy Sm] P (t1, -5 tn))-

(M, F) ¢ [S1y ey Sm) ¢ (with m > 0) iff (M, F) Fc [s1,...,sm] ¢ iff tr (M, F)

tr([s1y ..., sm]¥) (by the ih.) iff tr (M, F) E —tr([s1,...,sm]|) iff tr (M, F)
tr ([s1, .., Sm] 7).

For [s1, ..., Sm]| (11 — 12) (with m > 0) the proof is similar.

33

6. For ¢ = [s1,...,8m] VY (with m > 0): Let y := sfv (). (M, F) Ec [s1,-., Sm] Vzp
iff for every a € |M|, (M, F) =c [s1, ..., sm] ¥ {a/x} iff for every a € |M]|, tr (M, F) =
tr ([s1, ..., sm] ¥ {a/z}) (by the i.h.) iff for every a € | M|,
tr (M, F) = tr([s1,....,sm| ¥ {y/x} {a/y}) iff for every a € |M],
tr (M, F) = tr (([s1y .., sm] ¥ {y/z}) {a/y}) (since y doesn’t occur in sy, ..., Sp,) iff for
every a € |M|, tr (M, F) =tr([s1,....,sm]) ¥ {y/z}) {a/y} (by Lemma 49) iff
tr (M, F) =Yy (tr ([s1, ..., sm] ¥ {y/x})) i tr (M, F) = tr([s1, ..., Sm] Vx).

7. (M,F) =c [s1y - Sm] [t1, -, tn] ¥ (with m,n > 0) iff
(M F) ’:C [81,...,Sm,t1,...,tn]w iff
tr (M, F) = tr ([s1,...; Sm, t1, .-, tn]) (by the i.h.) iff
tr (M7 F) ’: tr([slv "'asm] [tlv 7tn] d))

Lemma 51. Let (M, F) be a C-structure for L and let ¢ be an L-formula.
Then (M, F) [=c ¢ iff tr (M) = tr (p).

Proof. Let x1,...,x, be the free variables of p. (M, F') =¢ ¢ iff for every ay, ..., a, € | M|,
(M, F) =c p{ai/x1,...,an/x,} iff for every ay,...,a, € | M|,

tr (M, F) = tr (p{ai/z1,...,an/x,}) (by Lemma 50) iff for every aq, ..., a, € | M|,
tr(M,F) = tr(p){ai/zn, ...,an/xn} (by Lemma 49) iff tr (M, F) = tr (¢) (by Lemma
46). O

Definition 41.

1. A:=
{Pon (Y1, oy Yms 15 ooy Tn) > Propy (21500, 25 T1y oo, Ty)
{y1, -, ym} =A{z1, ..., 2z} ,P € PRED (L), m,k > 0,n > 0}
2. B:=
{Pon (1, ey tp) <> Pop (T1, .0y T, @1, .oy y) : P € PRED (L) ,n > 0}
3. C:=

{Prn (U1, s Yms 15 oo Tn) <> P (U1, ooy Yy Ty ooy Ty Ty ooy)
P e PRED(L),m > 0,n > 0}

4. Let T be an L-theory. tr (T) := {tr (p): ¢ € T}.
Theorem 7. Let T be an L-theory and let ¢ be an L-formula.

1. Trepiff tr(T)UAFrpor tr(p).

2. THEL o iff tr (T)UAU B Frop tr (p).

3. Tl—g e ifftr(T)UAUBUC Fror tr(p).

Proof. We prove the case of -¢. Other cases are similar. Assume T F¢o ¢. Let M be a
first-order model of ¢r (T) U A. In particular, M = A and hence M is a CC-structure. By
Lemma 47, there exists a C-structure (M’', F’) such that M = tr (M', F’). By Lemma 51,
(M',F") =¢ T. By our assumption, (M', F') ¢ ¢ and again by Lemma 51, M [tr ().
Hence tr (T)UA Fror tr (¢). Now assume 7't/ . Then there exists a C-structure (M, F')
such that (M, F) ¢ T and (M, F) ¢ ¢. By Lemma 51 and the fact that tr (M, F) is a
CC-structure (by Lemma 48), tr (M, F) = tr (T) U A and tr (M, F) = tr (p). Therefore,
tr(T)U AFror tr(p). O

34

8 The Sorites Paradox

As mentioned, one of the motivations for developing T'C'L has been the fact that in clas-
sical logic the use of tolerant predicates can lead to the Sorites paradox. TCL offers a
formulation in which the paradox can be avoided. We start this section with a rigorous
presentation of the Sorites paradox. Then, we present a solution of fuzzy logic to the para-
dox. After that, we formalize Gaifman’s original solution to the paradox using TCL.!! We
end this section with a comparison between the different approaches.

8.1 A Rigorous Formulation of the Paradox

Let L be a first order language. Let n be any natural number and let ag, ..., a, be constant
symbols for L. Let P be a unary predicate and let Np be a binary predicate. Let T be
the theory which consists of the following axioms:

1. axiom A: P (ap).

2. axiom B: =P (ay).

3. for every 0 <i <mn — 1 axiom C; is: Np (a;,a;t1).

4. axiom TC: Np (a;,a;) — (P (a;) — P (a;))."?
Lemma 52. T is unsatisfiable in classical logic.

However, if we consider P as a vague predicate and Np as its nearness relation (i.e.
Np (z,y) should hold if z is close to y), then T seems true. For example:

Example 6. Assume n = 200. Interpret P as “short”, Np as the nearness relation of
“short” (e.g. Np (z,y) means “x and y are at most 1 centimeters apart in their heights”)
and ag, ..., aspp as a series of people such that: For each 0 < i < 200 a; denotes a person
whose height is 3.

The fact that T seems true by some interpretations although it is not satisfiable is one
way to present the famous Sorites paradox.

8.2 The Solution(s) of Fuzzy Logic

The framework of [Ga-2010] may be viewed as a response to a collection of solutions to the
Sorites paradox, offered by Fuzzy Logic'®. In order to have a better understanding of the
motivation for the contextual framework, we present an example for a solution from fuzzy
logic.

We use the solution of fukasiewicz fuzzy logic as it is presented on pages 263-271 of
[Be-2008| as a basis. We made some modifications in order for it to be as similar as possible
to our formulation of the paradox.

This solution shows (after well-defining the relevant notions) that 7" is “almost” satisfi-
able, by presenting an L-structure (Definition 5) which assigns to each axiom of T" a very
high truth value (at least 1 — %) This solves the paradox, by showing the acceptable fact
that T is indeed not satisfiable, but all of its formulas have a high truth value.

We present the following L-structure:

1. |M| = {0,...,n}.

HHowever, we feel that this solution is not yet satisfactory and that further research is in order here.

'2TC stands for the tolerance conditional. A more exact notation would be e.g. TC; ;, however we will
use T'C' to denote every such instance.

13Gaifman uses the term “Degree Theory”.

35

2. I(al) =1.
3. I(P)=Xxe|M|.=2

1 Jz—yl <1

4. I1(Np) = X{z,y) € |[M|*.
(Ne) (x.9) € [M] {0 otherwise

Let us calculate the truth values M assigns to the axioms of 7"
LM (P (a0)) = I(P)(0) = 20 =1.
2. M (=P (an)) =1 =M (P (an)) =1 - 232 = 1.

n

w

. M(Np (ai,ai+1)) =1 since]I(al) — I(CLZ‘+1)| =1.

e

- M (Np (ai,a;) = (P (a;) = P (a;))) =
min{1,1 — M (Np (ai,a;)) + M (P (a;) = P (a;))}. It M (Np (ai,a;)) =0, then we
are looking for min {1,1 — 0+ M (P (a;) = P (a;))} =1 (as M (P (a;) = P (aj)) is
non-negative). Let us now assume M (Np (a;,a;)) = 1 (recall that 0 and 1 are the
only two options for Np (a;,a;)). In this case, we are looking for

)

min {1, M (P (a;) — P (a;)

min {1,min{1,1 — M (P (a;)) + M (P (a;))
min{1,1 — M (P (a;)) + M (P (a;)

n—i n-—j

mm{l,l— 'y } - min{l,l—l_j}
n n n

Since we are under the assumption that M (Np (a;,a;)) =1, |i — j| = 1. Therefore,
min {1, 1 %ﬂ} > 1-L. All together, M (Np (ai, a;) — (P (a;) = P (a;))) > 1—L.

Remark 10. Note that in the above example, Np’s interpretation is “crisp”. However, it
is possible that the notion of nearness is vague itself. There is a similar solution to the
paradox which uses a fuzzy interpretation of Np.

8.3 Gaifman’s Solution

While the solution of fuzzy logic conforms with the fact that 7" is not satisfiable and solves
the paradox by presenting an interpretation which doesn’t fully satisfy T" but almost does,
Gaifman claims that 7" should be re-formulated in a new kind of language (C-language),
resulting in a new theory T*. T* is (G S-) satisfiable, and hence the paradox is avoided.

For convenience, we assume the existence of a single context-dependent predicate P,
which is unary. In addition, we use Np to denote the binary nearness relation for P.

Definition 42. (From pages 8-9 of [Ga-2010]) A Sorites chain (for P) is a finite sequence
of objects such that:

1. The first falls under P.
2. The last does not.

3. The difference between any two successive objects is so small that if one falls under
P so does the other.

Remark 11. Here are two of the several equivalent definitions of a feasible context (inside
square brackets are our comments):

36

1. “A context is feasible if its members can be partitioned into P’s and non-P’s without
violating any instance of the tolerance conditional [T'C| or any of the semantic axioms
governing P” (page 21 of [Ga-2010]).

2. “In all the standard examples of tolerant predicates, this [being a feasible context]
is equivalent to the requirement that the context does not contain a Sorites chain”
(page 17 of [Ga-2010]).

Proposition 1. “For any given C we can ezxpress in the formal language the condition that

C' is feasible” (page 21 of [Ga-2010]).

Remark 12. We denote the expression which states that C' is a feasible context by
feasible (C).14

8.3.1 The Definition of feasible (C)

In this section we provide our'® definition of the formula feasible (C), which is meant to
state that a certain context is a feasible one.

A context is feasible if it does not contain a Sorites chain. This means that if the
context has an element which is considered P in that context and another element which
is considered not P in that context, then there must be a gap between these two elements.
This is formulated as follows:

1. For every ¢ > 2: feasibleg ({t1,...,t4}) =
s, (st P (x(n) Al s ted =P (b)) = VIZ! (SNE (triys i))

2. For singletons: feasible; ({t}) may be any 2.4 valid formula (i.e. for every ¢,
2. feasibler ({t})).

3. feasible (C) = feasible,c| (C).

8.3.2 The Solution

The main idea of the solution is the division of contexts into feasible ones and unfeasible
ones. The ordinary use of tolerant predicates is restricted to feasible contexts. This
is justified by the claim that “unfeasible contexts do not arise in practice” (page 17 of
[Ga-2010]).

We define a new theory 7™ in the C-language, rather than in the language of classical
logic. T™ will keep the intuitiveness of all claims in 7', but will restrict them to certain
contexts. This way, the natural acceptance of T’s axioms will be legitimate, only with
minor acceptable changes. These changes will in fact turn our theory to a satisfiable one.

T is:

1. axiom A*: [C] P (ag) for every context set C (including ().
2. axiom B*: [C]—P (a,) for every context set C' (including).
3. for every 0 <i <n —1 axiom C; is: Np (a;,a;t1).

4. The axiom INDy, (Definition 16).

YIn fact, for every n € N, there exists a formula feasible, (t1,...,t,), which expresses the fact that
{t1,...,tn} is feasible. Moreover, feasible, (t1,...,t,) depends also on P and Np (P’s nearness relation).
We ignore these dependencies since here we use a language in which the only context dependent predicate
is P, and it has one associated nearness relation Np.

"5There was a flaw in the original construction of this formula in [Ga-2010] (confirmed by Gaifman in a
personal communication).

37

5. axiom scheme T'C*: ((feasible (C) A Np (ai,a;)) = [C] (P (a;) — P (a;))) for every
context set C' which includes a; and a;.

Remark 13.

1. The formulas of the form feasible (C) are only used in axiom scheme 7'C*. The
reason for that is the strong connection between feasible contexts and tolerance.
According to |Ga-2010], “tolerance is, by definition, tolerance in all feasible contexts”
(page 17 of [Ga-2010]). This means that unfeasible contexts are allowed, as long as
tolerance isn’t needed. If we introduce unfeasible contexts, we lose tolerance. This
is why feasible (C) is only used in the tolerance conditional T'C*.

2. A more general formulation of TC* would be:
VaVy ((x € C Ny € C A feasible (C) N Np (z,y)) — [C] (P (z) = P (y)))

Using this scheme requires a language with the identity sign, in order to express “€”.
This is not essential to the paradox nor its solutions. For technical simplicity, we use
instead the scheme that was formalized above.

3. Note that in this solution (similarly to the solution of fuzzy logic that we presented
above), Np is context-independent. However, there can be situations in which Np is
context-dependent, but we shall not pursuit this here.

Lemma 53. T* is satisfiable in TCL (i.e. GS-satisfiable by an S-structure).

Proof. We present an S structure which GS-satisfies T*. 16
We define (M, F) as follows:

1. |M|={0,....,n}.

2. I(a;) =i for every 0 <i <n.

3. N (X) ={(i,j) € X*: |i — j| < 1} for every X € FIN (|M]).
4. The definition of f¥ (X) is a bit more complicated:

(a) For every 0 <i <n—1 fF({i}) = {i}.

(b) 7 ({n}) =0.

(c) For every X € FIN (|M]) which is not a singleton, if there exists =,y € X
such that x < y — 1, and there isn’t any z € X such that x < z < y, then
P (X)={we X : w <z} for the minimal = for which there exists such y. 17

(d) For every other X € FIN (|M]) which is not a singleton, if n € X,
P (X)={0}n X. Otherwise, f¥(X)=X.

Let us now show that (M, F) indeed models T*. Let ¢ be an axiom of T*. Let ¢’
be an M-instance of it. ¢’ may have 5 forms. We verify that in each possible form,

(M, F) Eas ¢

5Despite the fact that it is more convenient to work with R-structures once they are defined, it is easier
to actually define S-structures, since for every finite subset X of |M|, one only needs to assign a subset
of X. By Theorem 4, there also exists an R-structure which C-satisfies T, but it seems to have a more
cumbersome definition.

Y"For clarity: If X isn’t a singleton and it contains a gap (with respect to < of the natural numbers),
then all elements “left” to the gap are considered P in X.

38

. ¢ = [C]P(ag): If C = 0 then (M,F) |Egs P (ag) since 0 € fF({0}). Other-
wise, it is easy to see that for every X such that 0 € X, 0 € fP(X). Hence
0 € f2(I(C)u{0})N{0} for every C. This means that for every C, (M, Fyc)) Fas
P (ap) and hence (M, F) =qs [C] P (ao).

. ¢/ = [C] =P (ay): If C =) then (M, F) l=gs =P (ay) sincen ¢ fF ({n}). Otherwise,
n in never an element of f(X) for any X. Therefore, for every C,

n¢ fF(I(C)U{n})N{n}, which means that for every C, (M, Fyc)) Fas ~P (an)
and hence (M, F) =gs [C] =P (an).

. ¢ = Np(aj,a;41): Let 1 <i<n-—1.]i—(i+1)| = 1. Hence
(i,i+1) € fNP ({i,i + 1}) and therefore (M, F) =as Np (ai, a;y1).

. ¢/ = INDy,: By Lemma 6, it is enough to show that Np is context independent in
(M, F). Indeed, let X € FIN (|M]). (z,y) € f¥? (X U{z,y}) iff both
r,y € XU {z,y}and |z —y| < 1,iff |z —y| < 1iff (z,y) € V7 ({z,y}).

. ¢’ = (feasible (C) A Np (ai,aj)) — [C](P(a;) = P(aj)): Assume (M,F) Fgs
feasible (C) A Np (a;,aj). Then (M, F) =gs feasible(C) and [i —j| < 1. Let
Y = I(C). We need to prove that (M, Fy) [=gs P (a;) = P (aj). We therefore
assume (M, Fy) [=gs P (a;) and prove (M, Fy) =ags P (a;). Note that since

(M, Fy) [Egs P(a;), i € fP(I(C)u{i})n{i}. In particular, i € fF(I(C) U {i}).
In addition, the examined axiom should hold only when a; and a; are elements of
C. Therefore, I (C)U{i,j} = I(C), and hence i € f (I (C)). Similarly, in order to
prove that (M, Fy) Egs P (aj), it is enough to show that j € fF (I (C)). Now we
check every possible case:

(a) i<j(j=1i+1):

i. C = {aj,a;}: Assume j = n. In this case, f¥ ({i,5}) = {i,7}N{0}. Ifi =0
then (M, F) kas [C]P (a0), (M,F) as [C]-P (a1) and (M, F) Kas
—Np (ag,a1). Therefore, (M, F) =gs feasible (C) which is a contradiction
to our assumption. Hence i # 0, which means that fF ({i,j}) = 0. There-
fore, i ¢ f¥ (I(C)), which is also a contradiction to our assumptions. Now
assume j # n. Then fF ({i,7}) = {i,j} and hence j € f¥ (I (C)).

ii. |C| > 2: First assume there exists k # i such that k € f¥ (I (C)). Then
since i,k € fF(1(0)), fX(I(C)) # {0} and f¥ (I(C)) # 0. This means
that one of the two following options must hold: The first: there exists a
minimal z € I (C) for which there exists y € I (C) such that z < y — 1,
and there isn’t any z € I (C) such that x < z < y. The second: n ¢ I (C).
Assume that the first option holds. Since i € f¥ (I (C)), i < x. In addition,
x #i,since i +1 = j € I(C) (and there are no elements between = and
y in I(C)). Therefore i < x and hence j = i + 1 < x. This means that
j € fP(I(C)). If the second option holds (and the first one doesn’t),
fPI(0)) = 1(C). As said, j € 1(C) and hence j € fF(I(C)). Now
assume {i} = f7 (I(C)). Then there are two possibilities: The first: i is
the smallest « € I (C') for which there exists y € I (C) such that x <y —1
and there is no z € I (C) such that x < z < y. This case is impossible, as
i+1=35€I(C)and j <y. The second: i = 0 and n € I(C). In this
case, I (C) = |M| and hence (M, F') ~gs feasible (C), which contradicts
our assumption.

(b)y j<i(i=j+1):

i. C = {aj,a;}: i # nsince i € fF(I(C)) and n ¢ f¥(X) for every X €
FIN (|M]). Hence n ¢ I (C) and hence f¥ (I (C)) = I(C). In particular,
je).

39

ii. |C| > 2: Similarly to item a.ii, first assume that there exists k # ¢ such that
k€ fP(I(C)). Then fF(I(C)) # {0} and fF (I(C)) # 0. This means
that either there exists a minimal x € I (C') for which there exists y € I (C)
such that z < y — 1, and there isn’t any z € I (C) such that z < z < y, or
n ¢ I(C). Assume that the first option holds. Since i € f¥ (I (C)), i < =.
Since j < i, j < x and hence j € f (I(C)). If the second option holds
(and the first one doesn’t), f¥ (I (C)) = I(C) and hence j € fF (1(C)).
Now assume {i} = f7 (I (C)). Since i = j + 1, i # 0. Therefore, i is the
smallest z € I (C) for which there exists y € I (C) such that z <y —1 and
there is no z € I (C) such that z < z < y. In this case, j < i = = and hence
j € fP(I(C)). This is a contradiction since j # i.

(c) i = j: This case is trivial, as we are under the assumption that i € £ (I (C))
and need to prove that j € f¥ (I(C)).

A Remark Regarding the Solution

It would be useful to emphasize a special characteristic of the above solution. Notice
that axiom scheme T'C* requires that a;,a; € C. At first, this seems redundant, as the use
of axiom R of HCR is supposed to guarantee that the presence of the considered elements
in the context is not important. However, axiom R only refers to atomic formulas, and
not to complex ones. Now we show that omitting this requirement (of TC*) results in an
unsatisfiable theory. In the foregoing, we denote by T™* the theory obtained from 7™ by
omitting that requirement from axiom T'C*.

Lemma 54. Fror ([C] P (1) = [C] P (s)) = ([C 1] P (t) = [C,s] P (s)).

Proof. By Lemma 35, Fycr [C] P (t) < [C,t] P (t) and Frcr [C] P (s) < [C,s] P (s).
Since Fycr admits weak replacement of equivalents (Lemma 42 and the soundness and
completeness theorems for Fyor), Fror ([C] P (t) — [C] P (s)) <> ([C,t] P (t) — [C] P (s))
and Fgor ([C,t] P (t) — [C] P (s)) < ([C,t] P (t) — [C,s] P (s)).

All together, Fror ([C]1 P (t) — [C] P (s)) « ([C,t] P (t) — [C,s] P (s)). O

Lemma 55. T** is not satisfiable.

Proof. Tt is enough to show that 7%* is inconsistent. Let C be {ap}. Clearly, Fpcr
feasible (C). In addition, for every 1 < ¢ < n, T** Fycgr feasible (C,a;). For every
0 < i <n-—1, denote by Deduction; the following proof in HCR:

’ Line # \ Formula \ Justification ‘
If i =0: axiom A

Ti+1 [C,a;] P (a;) Otherwise: Repetition of line
T(i—-1)+7

i+ 2 feasible (C) A Np (a;,a;t1) C = {ap} and axiom C;

Ti+3 (feasible (C') AN Np (a;,ai+1)) — axiom T'C*

[C] (P (ai) = P (ait1))

Ti+4 [C] (P (a;) — P (ai+1)) M.P lines 7 + 2 and 7i + 3

Ti+5 [C] P (a;) = [C] P (a;+1) M.P of axiom C_, of HCR and line 7i + 4

7i+6 [C,a;] P(a;) — M.P. of Lemma 54 and line 7i + 5

[C;aiy1] P (ait1)
747 [C, CLH_l] P (ai+1) M.P lines 7i + 1, 7+ 6

Deductiongy, Deductiony,...,Deduction,_ is a proof [C,ay] P (a,) from T** in HCR,
which means that 7** Fycr [C, an] P (a,). In addition, the single-line proof
“=[C, an] P (ay)” shows that T** Fror = [C, an] P (an). O

40

T** is not satisfiable, but seems true, just like the original T'. Therefore, the requirement
that a;,a; € C in axiom T'C' is crucial.

8.3.3 Other Contextual Solutions

Obviously, the proposed construction of feasible (C) is not intended for an actual appli-
cation - it isn’t feasible to check whether a context is feasible using this construction. This
fact shouldn’t be too disturbing, because of the following two reasons:

1. The contextual framework can be used in situations where unfeasible contexts do not
arise. This means that T'C'L should be used to describe tolerant predicates, in most
of their ordinary usage (which is usually in feasible contexts). Moreover, as quoted
above, unfeasible contexts do not arise in practice. This suggests the solution to the
Sorites, by which the paradoxical inference does not arise in practice in its contextual
form.

2. There exists a solution to the Sorites which uses the contextual approach without
using the concept of feasible contexts at all. This solution appears in [Th] in a general
explanation. We shall now present (our rigorous formulation of) this solution.

Thomason’s Solution
The following description of Thomason’s approach is based on pages 5-6 of [Th| and
reflects our understanding of these pages.
For technical simplification, we make the intuitive assumption that n > 1. We define
a new theory 7" which is obtained from 7™ by changing axiom T'C* to:
Np (ai, a5) = lai, a5] (P (ai) = P (a;))-
Now, the following deduction in HCR fails to derive the paradoxical conclusion:

| Line # | Formula | Justification |
1 [ao, a1] P (ao) axiom A*
2 Np (ao, al) axiom CO
3 Np (CL(], al) — [CL()7 al] (P (G,()) — P (al)) axiom TC*
4 [ag,a1] (P (ag) — P (a1)) M.P lines 2, 3
5 [ao, al] (P (CL()) — P (al)) 4 ([a()7 al] P (ao) — [CL(], al] P (al)) C*)
6 lag, a1] P (ap) — [ag,a1] P (a1 M.P. lines 4,5
7 [ag,a1] P (a1) M.P lines 1, 6
8 Np (a1, a9) axiom Cy
9 Np (a1, a2) = [a1,a2] (P (a1) = P (a3)) axiom TC*
10 [(Zl,ag] (P (al) — P(ag)) M.P lines 8, 9
11 [a1,a2) (P (a1) = P(a2)) < ([a1,a2] P (a1) — [a1,as] P (a2)) c.,
12 [(11,(12} P(al) — [al,ag] P(ag) M.P. lines].O,].].

Obviously, it isn’t possible to apply M.P. on lines 7 and 12. Hence, the paradoxical
deduction is avoided. Indeed,

Lemma 56. T’ is satisfiable in TCL (i.e. GS-satisfiable by an S-structure).

Proof. Consider the following structure (M, F): |M| = {0,...,n}. For every 1 < i < n,
I(a;) =i. fN7(X)={(i,j) € X?: |i —j| <1} for every X € FIN (|M]).

{0,1} 0,1€X
fP=AXeFIN(M|).{{0} 0eX,1¢X
0 0¢ X

We prove that (M, F) Egs T'. Let ¢ € T" and let ¢’ be an M-instance of ¢. We check
every case:

41

1. (M,F) Egs [C]P(ap): If C = then this holds since 0 € f¥ ({0}). Assume
C # 0. (M,F) Egs [C]P(ap) iff (M,Fy) Egs P(ap) with Y = I(C) iff 0 €
P ({0} U I(C)) N {0}, which is true by f’s construction.

2. (M, F) l=gs = [C] P (ay): If C = 0 then this holds since n ¢ f¥ ({n}). Now assume
C £0. (M, F) Eas ~[C] P(an) it (M, F) Yogs [C] P (an) iff (M, Fy) s P (an)
with Y = I(C) iff n ¢ fF (1 (C)U{n}) N {n}, which is true by f’s construction
and by the fact that n > 1.

3. (M,F) =gs Np(ai,a;4+1) and (M, F) =gs INDy,: Since fVP is defined exactly
like in Lemma 53, the proof is the same.

4. (M, F) =gs Np (ai,aj) = [ai, a;] (P (a;) = P (aj)): Assume (M, F') =gs Np (ai, a;).
Let Y = {i,j}. We prove that (M, Fy) Egs P (a;) = P(a;). If i = j then this
is obvious, and hence we assume ¢ # j. Assume (M, Fy) Fgs P(a;). Then ei-
ther i = 0 or ¢ = 1. If i = 0 then since (M,F) Egs Np(ai,a;), j = 1 and
1 € f2({0,1}u{1}) N {1}. This means that (M, Fy) F=gs P (a;). Now assume
i = 1. Then either j = 0 or j = 2. If j = 0, then since 0 € fF ({0,1} U {0}) N {0},
(M, Fy) Egs P(a;). If j =2 then 1 ¢ f¥ ({i,j} U {i}) N {i} and hence
(M, Fy) ~as P (a;), which is a contradiction to our assumption.

8.4 Comparison between The Approaches

We have discussed above two approaches to the Sorites: one of fuzzy logic and one of
TCL (I—gs). Each approach suggests more than one solution to the paradox, out of which
we have seen one for fuzzy logic and two for TC'L. There are three main differences
between these approaches. The first is concerned with the notion of truth degrees. In
the semantics of fuzzy logic, each formula is assigned a truth value from [0, 1], while the
contextual approach sticks to the classical use of only two truth values. The contextual
approach is an extension of classical logic in another sense too: Classical logic is contained
in contextual logic (in fact, both logics are identical when restricted to formulas without
the context operator). Moreover, contextual logic can be reduced to classical logic (as was
shown in Section 7). The second main difference is that in TC'L the tolerance conditional,
which states that if and y are close to each other then if x is P then so is y, is acceptable
(in principle). Indeed, this conditional expresses a “part of the semantic norms governing
the use of tolerant predicates” [Ga-2010]. One should however be careful with the exact
formalization of the conditional in order to take into account the effect of context on the
meaning of tolerant predicates. Hence the contextual approach uses a richer language.
Using the enriched language we obtain a new version of the tolerance conditional, which
is satisfiable (along with the other axioms of the Sorites). In contrast, according to the
solution of fuzzy logic, the tolerance conditional is not acceptable, i.e. not all of its instances
are assigned the maximum truth value. By this solution, the tolerance conditional isn’t
true, and the paradox is avoided by lowering its truth value. To conclude this difference:
The solution of T'C'L is based on a reformulation of the assumptions, while the solution
of fuzzy logic is based on the denial of the absolute truth of the tolerance conditional.
Another important difference between the approaches of fuzzy logic and TCL is that the
solution of T'C'L strongly relies on the notion of feasibility. When formalizing the tolerance
conditional in T'C'L, it is meant to hold only in feasible contexts. This is justified by the
claim that unfeasible contexts do not arise in practice. On the other hand, in the solution
of fuzzy logic, the claims of the Sorites are formalized in general and are not restricted
to particular cases. Note however that T'C'L is useful even when neglecting the notion of
feasible contexts, as can be seen by the solution of Thomason.

42

9 Conclusion and Further Research

In this work we have reconstructed Gaifman’s logic for context dependency in a modular
way.

Below is a graph which summarizes the explored deductive systems and their relations
to the explored semantics. A one directional arrow from A to B (A — B) means A C B.
A bidirectional arrow between A to B (A <> B) means A= B. If AC B and B C C we
omit the arrow from A to C.

b > o
)_g< ... >Fuor
|_g8<_>}_g< ... > Hnen

Recall that HCOT is the deductive system from [Ga-2010] and that FZ and -2 are
equivalent to the semantical consequence relation from [Ga-2010]. We have seen that
indeed, HC'T is not complete for I—g, but rather for l—g. We have also seen that the new
system HCR is complete for Fg.

In addition, we have studied several properties of the consequence relations, including
a reduction to classical logic.

In Section 8, two main approaches for the Sorites paradox were presented: fuzzy logic
and T'CL. The first is based on an infinite set of truth values, where the second is based
on an extended language. A combination between the approaches can be achieved by
extending fuzzy logic semantics to handle contexts and context dependent predicates. 8

10 Appendix

10.1 Using The Substitutional Approach

In this small section we show that the objectual approach is equivalent to the substitutional
approach when using TC'L (see end of Section 3).
Let L be a C-language.

Definition 43. Let (M, F') be an S-structure. Let n > 0, let ¢ (21, ..., x,) be any formula
and let {a;};_; C |M|. vigyn : VAR(L) — |M]is defined as follows: for every 1 <i <n
v' (%;) = a; and for every other z € VAR (L), vy 3 (7) = a1

Notations:
Lov i=wvgym

2. for any term ¢, t' := t{ay/x1,...,an/Tn}

Lemma 57. Lett (x1,...,xy) be any term in L and let ay, ...,a, € |[M|. Then I (t') =o' (t).

'8In his paper, Gaifman initiates a similar project, by presenting a combination between T'C'L and
another logic which is meant to model borderline vagueness by modal logic. In this logic, the truth degrees
of fuzzy logic are replaced by iterated modalities, retaining two truth values.

43

Proof. By induction on the complexity of t:
1. If t = oy then I (t{a1/z1}) =1 (a1) = a1 = v’ (21).
2. If t = c then this is obvious.

3. It = f(t1,.e,tim) then I (f (t1,...,tm){al/xl, wwln/xn}) =T (f (¢, ..,t,))
=I(f)It)),...T{,)) =1(f) @ (t1),....;0" (tm)) (by the induction hypothesis),
which equals to v’ (f (t1, ..., tm))-

U
Definition 44. Let (M, F) be an S-structure and let ¢ be a formula. (M, F) =2¢ ¢ if
(M, F) models ¢ in the substitutional approach and (M, F) ES¢ ¢ if (M, F) models ¢ in

the objectual approach. I—g% is the consequence relation induced by):85 and I—gs is the
consequence relation induced by }:gs

Lemma 58. Let ¢ (z1,...,x,) be any formula. Then for every S-structure (M, F) and
a1y eey@y € [M|, (M, F) E2g 0 {@1/21, s n/z0} iff (M, F,0") ESg ¢.

Proof. By induction on the complexity of ¢.

1. (M, F) ng P(tl,...,tm) {a1/x1,...yanfzn} iff

((#), It w)) € ST QL) T (1,)}) iff

(W' (t1) ;¥ (tm)) € f7 ({0 (t1) 0" (tm)}) (by Lemma 57) iff (M, F,v') &g
P(tl,...,t).

2. If ¢ has the form 1 — 9, =1 or Vaep, then this is routine.

3. If ¢ has the form [t1, ..., t,] 9, then: (M, F) E2q ([t, ..o tm) ¥) {@1 /71, ... G f2n } iff
(M, Fy) Egg ¥ with Y = {I(#)),...., I (t},)} = {v' (t1) ...,V (tm)} (Lemma 57) iff
(M, Fy,v'") EZg ¢ (by the induction hypothesis) iff (M, F,v") EQg [t1, ..., tm] 1.

O
Lemma 59. Let ¢ (z1,...,zy) be any formula. Then for every S-structure (M, F).

Proof. (M, F) 2 ¢ iff for every ay, ...,an € |M| (M, F) B2 ¢ {ai/x1, ..., an/z,} iff for
every ai,...,an € |M| (M, F,v") Qg ¢ (by Lemma 58) iff for every v (M, F,v) ES¢ ¢
(since v"’s definition on variables other than x1, ..., x,, is irrelevant) iff (M, F) ESq ¢. O

SO_.S
Corollary 6. FZg=F2g.

10.2 Proof of Lemma 49
Recall Lemma 49:

Lemma. Let (M, F) be a C-structure, let ay,...,an, € |M| and let ¢ be an L-formula such
that Fv (@) C {x1,....,xn}. Thentr (M, F) = (tr (¢)){ai/z1,...,an/xn} iff

tr (M, F) |= tr (p{ai/a1, .. an/en}).

Proof. By induction on the complexity of ¢. Note that ¢ {ai/x1,...,a,/x,} is a sentence,
and by Lemma 46, so are tr () {a1/z1, ..., an/xn} and tr (p{@1/z1, ..., a0 /20 }).

1. If ¢ is P(s1,..., Sm) then: tr (M, F) E (tr (¢)) {a1/z1, ..., an/xn}

iff tr (M, F) = Pom (s1,..., Sm){@1/x1,...,an /Tn}

iff tr (M, F) = Pom (s1{ai/x1,....an/xn}, ..., sSm{a1/x1, ...,an/xn})
iff tr (M, F)Etr(P(si{ai/x1,...,an/Tn} ooy Sm{ai/x1,...,an/xn}))
iff tr (M, F) = tr(P(s1,...,5m){a1/x1,....00/n})

iff tr (M, F) = tr(e{ai/z1,...,an/xn}).

44

2. If v is Yyt then: First assume x; # y for every 1 <1i¢ < n:
tr (M, F) = (tr (9) (a7 /1, . fn}

= (Yy (tr (¥) {ai/x1, ., @/} iff

=Yy (tr (v) {a1/x1, ..., an /2, }) iff for every a € | M|,
(tr (¢) {a1/z1, ..., an/xn}) {a/y} iff for every a € |M]|,

Etr (V) {ai/z1,....an/xn, a/y} iff for every a € | M|,

(W {a1/z1,...,an/xn,a/y}) (by the i.h.) iff for every a € |M]|,

(Y {ai/z1,...,an/xn} {a/y}) iff for every a € |M]|,

(Y {ai/z1,...,an/xn}) {a/y} (by the i.h.) iff

(tT (1/] {al/xh - 7@/‘%”})) iff

(Vy (Y {ar/y, .. @n/wn})) iff

((Vyy){at/z1,...,an/xn}) (since z; # y for every i) iff

tr (M, F) = tr (p{ai/z1,...,an/zn}). Now assume z; = y for some i. Without loss

of generality, assume i = 1. tr (M, F) = (tr (p)) {ai/x1, ..., an /2y } iff

tr (M, F) = (V1 (tr () {a1/z1, ..., @n)z} iff

tr (M, F) =Yy (tr (V) {az/za, ..., an/xn})

(since x; doesn’t occur free in Va; (tr (¢))) iff for every a € |M]|,

tr (M, F) = (tr (v) {az/x2, ...,an/xn}) {a/x1}. From here, the proof continues simi-

larly to the previous case.

333333333v
gﬁ : : ;* :

=
=
’;
=
’;
=

t
t

3 3

3. f wis [l1,...,li) P (81, ..., S) with k > 0 then:
i (M, F) = (tr (o)) {a 1, . T 0}
iff tr (M, F) lZ Pk,m (ll, ...,lk,Sl, ...,Sm) {ch/ml, ,@/wn}
iff
tr (MaF) ’: Pk‘,m(ll {ail/l'l’"'a@/l‘n}a'“vlk {(Tl/$1>~--7@/$n}a

si{ar/x1,..yan/xn} ooy Sm{@r/x1, . n/xn})

iff

tr (M, F)): tT([ll {ch/xl, ,@/:cn} sy lg; {ch/xl, ,@/xn}]
P(si{ai/z1,....an/xn} ..., Sm{ai/x1, ..., an/xn}))

iff tr (M, F) =tr(([l1,.... k] P (S1,-.., $Sm)) {@1/1, ..., @ /2y }) iff
tr (M, F) = tr (p{ai/z1,...,an/xn}).

4. If ¢ is [s1, ..., Sm] —¢ with m > 0 then: tr (M, F) | (tr (¢)) {a1/z1, ..., @5 /xn } iff
tr (M, F) = (= (tr ([s1, ...) {ar/x1, ..., an/x, } iff

Sm

> 8m]
tr (M,) b= = ((tr (51, $m] 6)) {7/, s)) i
tr (M, F) W= (tr ([s1, ..., sSm)¥)) {@1 /21, ..., an/xn} (since it is a sentence) iff
tr (M, F) W= tr (([s1 .-y Sm) ¥) {@1 /1, ..., @n/xn}) (by the i.h.)
iff tr (M, F) = = (tr (([s1,-.., Sm) V) {@1/x1, ..., 0 /xn})) (since it is a sentence)
iff tr (M, F) |= tr (= (([s1, -, sm] ¥) {@1 /21, ... G /20 }))
iff tr (M, F) = tr((—[s1,..., $m] V) {@1/x1, ..., G /20 })
iff tr (M, F) = tr(p{ai/z1,....an/xn}).

5. If ¢ is [s1,..., Sm] (1 — 12) with m > 0 then the proof is similar.

6. If v is [s1, ..., Sm]| Vyb with m > 0 then: Let z := sfv (¢),

2= sfo([si{ar/z, . @u/znt s o smi@i/z, o @n /e Yy {@i/a, .. @n /20 }).
Now, If for every 1 < i < n xz; # y and x; # z then the latter holds

iff tr (M, F) =Yz ((tr ([s1,..., sm]) ¥ {z/y})) {ai/x1, ..., /xn}) iff for every a € | M|,

45

tr (M, F) = ((tr ([s1, .., sm] ¥ {z/y})) {a1/x1, ...,an/xn}) {a/z} iff for every a € | M|,
tr (M, F) = (tr ([s1,...,sm) ¥ {z/y})) {ai/x1, ...,an /xn} {a/z} iff for every a € |M]|,
tr (M, F) = (tr ([s1, ..., sm] ¥ {z/y})) {@a1 /21,,an /xn,a/z} iff for every a € | M|,

tr (M, F) = tr(([s1, .., sm|¥{z/y}) {a1/z1, ..., an/zn,a/z}) (by the i.h. and the fact

that x; # z for every i) iff for every a € | M|,

tr (M, F) = tr (([s1, .., sm|¥{z/y}) {a1/z1, ..., an/zn} {@/z}) iff for every a € | M|,
tr (M, F) = (tr (([s1, -y sm) ¥ {z/y}) {a1/x1, ...,an/zn})) {@/z} (by the i.h. and the
fact that z is the only free variable in tr (([s1, ..., sm| ¥ {z/y}) {a1/z1, ...,an/zn}))

iff tr (M, F) =Yz (tr (([s1,..., sm| ¥ {z/y}){a1/z1,....an /z0n}))
iff
tr(M,F) E Vz(tr(([si{a1/z1,...,an/Tn} .oy Sm{@1/z1, .., Gn /20 }]
v{z/yt{ai/z1, ... an/z0})))

iff
tr (M, F) E Vz(tr([si{ai/z1,....@n/zn}, ., Sm{@i/z1, ..., Gn/xn }]
{ar/ay, - an/en} {2/y}))

iff
tr(M,F) & VZ(tr([si{a/x1, . @n/Tn}, ey Sm {1/ 215 ooy G /T }]
w{ail/mlv‘"?@/xN} {Z//y}))
(by rule «) iff

tr(M,F) E tr([si{ai/x1,..,an/xn}, ..., sm{a1/x1, ..., 00 /0 }]
Yy (w {‘Tl/xlv ?%/xn}))

iff tr (M, F) = tr (([s1, ..., Sm) YY) {@1 /1, ..., @n /20 }) (since x; # y for every i)
iff tr (M, F) =tr(p{a1/z1,....,an/xn}).
Similar arguments can be given to each of the 3 other cases (e.g. there exists i such
that z; = y and for every 1 < j <n z; # 2).
I pis sty 8wl [y ey I ¥ with my k> 0 then:
tr (M, F) |= (tr (p)) {a1/x1, ... an/ 20}
iff tr (M, F) = (tr ([S1y s Smy 11y o lk) ¥0)) {@1 /21, ooy G /0 }
iff tr (M, F) = tr (([s1, .y Smy U1y - lk) ¥) {@1 /21, ...y @ /2 }) (by the i.h.)
iff
tr(M,F) E tr([si{ai/x1,..,@n/xn}, ..., Sm{a1/x1, ..., 00/ 20},
Li{at/z1,...,an/xn}, g {ar /1, oy an/an Y {ar/x1, ... @ /20 })

iff
tr(M,F) E tr([si{ai/x1,....an/xn}, ., Sm{a1/x1, s G /20 }]

1 {a1/z1,...,an/xn}, .k {a1/z1, ...y an/zn Y {a1/z1, ..., Gn /20 })

it tr (M, F) = tr (([s1y ey Sm) [l15 -y L) 0) {@1 /21, .oy @ J2n })
iff tr (M, F) = tr(p{ai/z1,....,an/xn}).

46

References

[Ga-2010] Gaifman, H. (2010). Vagueness, Tolerance and Contextual Logic. Synthese,
174, 5-46.

[Ha-1998] Hajek P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers,
1998.

[Sh-1967] Shoenfield, J.R., Mathematical Logic, Association for Symbolic Logic, 1967.

[Be-2008] Bergmann, M., An Introduction to Many-Valued and Fuzzy Logic - Semantics,
Algebras, and Derivation Systems, Cambridge University Press, 2008.

[Barr-1981] Barr, A & Feigenbaum, E.A, The Handbook of Artificial Intelligence,
Addison-Wesley Publishing Company, 1981.

[Th] Thomason, R.H. (2005). Contextual Effects on Vagueness and the Sorites
Paradox: A Preliminary Study. Proceedings of the CRR’05 Workshop on
Context Representation and Reasoning.

47

8PN

"9»35210” ©VPTI9 Y TTMINND NTYPN (T'CL) NS0 SV VPN Npnd
NPNON DY NAYY WTN WPD WO NADIN T Dy Nwy) 12T ("may’ o)
DPITIO DY PN O NN NDNIDN NIYV 1AV WPNN NN NVIAD TYNY ,PONOPN
1212 PINND) IDIDY WPN~ION 2WNY "My’ o vrTIe T'CL > Sy Nnyn
,[Ga-2010]-2 M TCL .(D)H0p DMYYN YOV IR 12 DRNINN NHRD TIYY
DN DX NI OYIN AN NN ST DY 1) P0IND 19N N MIPIND NN DY
O N TINNIN PR 190N DPPVINDM NNDINN NOIYNY
MPANDM ,IVPNI MINA NIDVO MPPVIND VIYY IR MY XM NTpId T'C'L oy
“0) PNPHRN NPPOINDY NDIPY NNX NPPOIND .1 NAY MMNI MNOY NN MIIYND
LN 7990 NN YOV DN NPNN INDINN NOIYNnY Npw v ([Ga-2010]
PN 1990 NPNON MOIYNN MINND INRD . MINKD DPNVA (NY2) DND) NYOM
IR ATON TPORIP NP0 1) 122 101 1ANY P2 192 DIVP 1OV DINOND 190N
VPN MSM MDD DY DDIANY NNPIYN OPITIS DY 1IN XN ,0POD

TeL AVIV UNIVERSITY 2'2N->XN NU'O1IIN

AOPNRD 29922 THNM V'Y DPNTHN DYTND NVNPIN
0251 vy 2VNNn PTIOD 190N A

MAYPN MYN SY INY PPN

03 NTIAYD YNNI NN
"NOOIDNN THOW” ININN NRIPY
avNnn KyTNa
1IANTON NVDIDNNA

*T Yy

A0 YN

5 1NDTNA NN NTIAYN

PIAN 1IN '9179

Y'YWUn N

