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Abstract
While the subformula property is usually a trivial consequence of cut-admissibility in sequent calculi, it is unclear
in which cases the subformula property implies cut-admissibility. In this paper, we identify two wide families of
propositional sequent calculi for which this is the case: the (generalized) subformula property is equivalent to cut-
admissibility. For this purpose, we employ a semantic criterion for cut-admissibility, which allows us to uniformly
handle a wide variety of calculi. Our results shed light on the relation between these two fundamental properties
of sequent calculi, and can be useful to simplify cut-admissibility proofs in various calculi for non-classical logics,
where the subformula property (equivalently, the property known as “analytic cut-admissibility”) is easier to show
than cut-admissibility.1
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1 Introduction
In his seminal paper [19], Gentzen introduced the first sequent calculi, systems LK and LJ, as techni-
cal devices for studying classical and intuitionistic logics (respectively). His “Main Theorem” (Haupt-
satz) was the cut-elimination theorem, from which he, and later others, derived several important conse-
quences. In particular, since the cut rule is the only rule of these systems whose premises may include a
formula that is not a subformula of (some formula in) the conclusion, the admissibility of cut immediately
implies “the subformula property” for these systems. That is: when deriving a sequent s it suffices to
only consider the syntactic material contained in s, i.e., to compose the derivation only from subformulas
of s. Other formulas may sometimes shorten the derivation, but are never necessary.

Since then the framework of sequent calculi (and its various extensions) is widely applied in proof-
theory and automated deduction, especially when one is interested in the computational aspects of a
logic (e.g., [18]). Various important non-classical logics—e.g., modal logics [40, 33], many-valued and
fuzzy logics [9, 27], and paraconsistent logics [10]—admit a proof-theoretic presentation using some
sequent calculus for which cut-admissibility holds. In all these cases, the subformula property (or some
generalization of it) trivially follows.

In this paper, we are interested in the converse direction:
∗Corresponding Author. yoni.zohar@cs.tau.ac.il
1The main results of this paper were first announced in [26]. However, that extended abstract did not include all the proofs,

and contained a number of mistakes, which are corrected here.
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Is cut-admissibility a corollary of the subformula property?

If a calculus enjoys the subformula property, then one can easily deduce that some cuts are never
needed (a.k.a. non-analytic cuts): these are the cuts that (read bottom-up) introduce some formula that
is not included in the final sequent to be proved. Indeed, the subformula property ensures that such
detours are always redundant. Nevertheless, the subformula property gives us no guarantees about the
admissibility of, so-called, analytic cuts, where the cut formula is a subformula of the final sequent.

Clearly, one cannot expect a general affirmative answer to the question above:

1. There are several logics for which a cut-free sequent calculus appears beyond reach, but nevertheless
logicians settled with a sequent calculus that enjoys the subformula property. In particular, this is
the case for the modal logics S5 (of universal Kripke frames) and B (of symmetric Kripke frames),
bi-intuitionistic logic [31, 32], as well as several paraconsistent logics [8] (see Example 5.6 below).
Notably, these calculi are substantially more complicated than Gentzen’s original systems. They all
involve logical rules that restrict, in one way or another, the formulas that may appear as context while
applying the rule, and combine such restrictions in non-trivial ways. For example, the calculus for
bi-intuitionistic logic has logical rules that can be applied only without context formulas on the right-
hand side, as well as rules that can be applied only when the left-hand side has no context formulas.

2. Even a simple syntactic manipulation on LK yields an alternative calculus for classical logic that still
enjoys the subformula property, but requires cuts in various derivations. One may turn the logical
rules of LK to axiomatic rules. For example, the right-introduction rule of negation will then have the
form:

Γ, ϕ⇒ ∆

Γ⇒ ¬ϕ,∆
;

Γ⇒ ϕ,¬ϕ,∆

The resulting calculus is equivalent to LK (e.g., Γ ⇒ ¬ϕ,∆ can be derived from Γ⇒ ϕ,¬ϕ,∆ and
Γ, ϕ⇒ ∆ using a cut); it enjoys the subformula property; but it does not admit cut-admissibility (see
Example 4.1 below).

The main contribution of this paper is an affirmative answer to the question above for two wide families
of propositional multiple-conclusion sequent calculi. The first is a family of pure calculi (in terms of [4])
whose derivation rules do not impose any restrictions on context formulas, of which LK is the prototype
example. The second is a family of sequent calculi, which we call intuitionistic calculi, in which premises
of the form Γ⇒ ∆ with Γ 6= ∅ in right introduction rules forbid context formulas on the right-hand side.
The well-known multiple-conclusion calculus for intuitionistic logic (see [38]) is the prototype example
for an intuitionistic calculus. In both families, we further require the rules to have a certain “directed”
structure (precisely defined below), thus avoiding the mentioned counterexamples above.

Besides its theoretical interest, we believe that our result can be useful in future investigation and
development of sequent calculi. While the subformula property is traditionally proved as a consequence
of cut-admissibility, there are other approaches to show that a certain calculus enjoys the subformula
property. One prominent way is the semantic approach (see, e.g., [29]), often employed when cut-
admissibility is beyond reach (see, e.g., [37]), or when general families of calculi are studied (see,
e.g., [12, 23]). These are essentially completeness proofs: for a calculus and a sound semantics for
it, one constructs a countermodel for a sequent s provided that s has no derivation that consists only of
subformulas of s. In fact, such semantic proofs tend to be simpler than syntactic cut-elimination proofs.
They are also much easier to generalize and uniformly apply to families of calculi. In particular, the
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paper [23] provides a sufficient criterion for the subformula property in a general family of calculi, which
reduces it to showing that certain partial models can be always extended to full ones. Using this charac-
terization, our recent paper [24] provides a method for proving the subformula property for a wide family
of calculi for sub-classical logics. Using the result of the current paper, we obtain the admissibility of cut
in all these calculi.

Our proof in this paper follows a similar semantic approach. It is based on two different semantics for
a given calculus: (i) a semantics for the case that derivations are confined to consist only of subformulas
of the end sequent; and (ii) a semantics for the cut-free fragment of the calculus. The second paves the
way to a sufficient semantic criterion for cut-admissibility. Then, the crux of our proof is to show that
this criterion is met when the calculus enjoys the subformula property. As a result, we obtain that the cut
rule is admissible given that the calculus enjoys the subformula property. Note that we focus only on the
admissibility of the cut rule, rather than offering some effective procedure to eliminate cuts.

In order for our result to cover a wide variety of logics, we consider here a generalization of the
subformula property. This is necessary to accommodate, e.g., sequent calculi for many-valued logics and
paraconsistent logics that do not admit the strict subformula property, but do admit a simple generalization
of it. For example, in sequent calculi for the family of C-systems from [10], if a sequent s is derivable,
then there exists a derivation of s that uses only subformulas of s and their negations. We therefore
assume a general notion of subformula, based on a general ordering of propositional formulas.

The rest of this paper is organized as follows. First, in Section 2, we define the family of pure
sequent calculi and cut-admissibility. Section 3 defines a generalized notion of the subformula property.
In Section 4, we prove our result concerning pure calculi, by considering semantic characterizations of
derivability in them, based on three-valued valuation functions. Finally, Section 5 introduces the family
of intuitionistic sequent calculi, and proves a similar result for this family, again going through semantic
characterizations of derivability, which is based on three-valued intuitionistic-like Kripke models.

Related Work Avron and Lev [12] introduced and studied the family of canonical calculi, a restricted
sub-family of pure calculi, and proved the equivalence of the subformula property and cut-admissibility
in them. The proof of this equivalence was semantic, based on the framework of Nmatrices [11], a simple
generalization of logical matrices, which was shown to precisely account for canonical calculi.

Our work goes far beyond canonical calculi, and so Nmatrices do not suffice. Rather, the frame-
work that we use here is an extension of bivaluation semantics. Bivaluation semantics, introduced by
Béziau [14] (see also [15]), is a simple semantic framework for pure calculi that is based on two-valued
valuation functions. In [14], it was shown how to associate a set of bivaluations to arbitrary pure calculi,
in a way that will ensure soundness and completeness.

Later, Lahav and Avron [23] extended this framework in two respects: first, it was generalized from
plain valuation functions to Kripke models, which uniformly accommodate a much wider family of se-
quent calculi, that includes, among others, pure and intuitionistic calculi; second, and more importantly
for the purpose of the current paper, they provided semantic counterparts for important syntactic prop-
erties, including cut-admissibility. A general soundness and completeness theorem was proved, which
associates a class of two-valued Kripke models for each calculus of a general family of sequent calculi,
and allows the formulation of sufficient semantic criteria for cut-admissibility and the subformula prop-
erty. The former amounts to the ability to refine three-valued valuations into two-valued ones, while the
latter amounts to the ability to extend partial two-valued valuations into full valuations. Then, in a previ-
ous work [25], we showed that for pure calculi, the criterion for the subformula property is also necessary.
For the present paper, however, the mere ability to extend partial two-valued valuations is not enough,
and a constructive extension method is introduced. Moreover, the fact that this criterion is sufficient also
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for the Kripke-style counterpart is new. The semantic framework that we employ here closely follows
the one of [23], adapted and simplified for the particular families of calculi studied in this paper.

Finally, in previous work [24], we studied general conditions for the subformula property in pure
calculi, while cut-admissibility was not considered at all.

2 Pure Sequent Calculi
In this section, we define the family of pure sequent calculi [4], as well as the notion of cut-admissibility.
Several examples of well-known calculi that belong to this family are provided as well.

2.1 Preliminaries
Let At = {p1, p2, . . .} denote a fixed infinite set of propositional variables. A propositional language L
is given by a set 3L of connectives. L-formulas are defined as usual, where atomic L-formulas are the
elements of At. We usually identify a propositional language with its set of formulas (e.g., when writing
expressions like ϕ ∈ L). For a set F ⊆ L, by F-formula we mean a formula ϕ satisfying ϕ ∈ F .

An L-substitution is a function σ : At → L, naturally extended to all L-formulas and to sets of
L-formulas (by putting σ(�(ϕ1, . . . , ϕn)) = �(σ(ϕ1), . . . , σ(ϕn)) for every n-ary connective � ∈ 3L,
and σ(Γ) = {σ(ϕ) | ϕ ∈ Γ}).

An L-sequent is a pair of finite sets Γ and ∆ of L-formulas, denoted Γ ⇒ ∆. We employ the
standard sequent notations, e.g., when writing expressions like Γ, ϕ ⇒ ∆ or ⇒ ϕ. The union of two
sequents (Γ1 ⇒ ∆1) ∪ (Γ2 ⇒ ∆2) is the sequent Γ1,Γ2 ⇒ ∆1,∆2. We denote by frm[Γ⇒ ∆] the
set Γ ∪ ∆, and extend this notation to sets of sequents, by putting frm[S] =

⋃
{frm[s] | s ∈ S}. L-

substitutions are extended to L-sequents and sets of L-sequents (by putting σ(Γ⇒ ∆) = σ(Γ)⇒ σ(∆)
and σ(S) = {σ(s) | s ∈ S}).

In what follows, L denotes an arbitrary propositional language. When L can be inferred from the
context, we omit the prefix “L-” from the notions above (as well as from the ones introduced below).

2.2 Pure Sequent Calculi
Following [12], we find it technically convenient to use the object propositional language for specifying
derivation rules. (One could use meta-variables and rule schemes instead.)

Definition 2.1. A pure L-rule is a pair 〈S, s〉, denoted S / s, where S is a finite set of L-sequents and s is
an L-sequent. The elements of S are called the premises of the rule and s is called the conclusion of the
rule. We sometimes omit set braces around the premises, and separate them by semi-colons (e.g., when
writing expressions like ⇒ p1 ; ⇒ p2 / ⇒ p1 ∧ p2).

An L-application of a pure L-rule s1, . . . , sn / s is a pair of the form
〈{σ(s1) ∪ c1, . . . , σ(sn) ∪ cn} , σ(s) ∪ c1 ∪ . . . ∪ cn〉 where σ is an L-substitution, and c1, . . . , cn
are L-sequents (called the context sequents of the application). The sequents σ(si) ∪ ci are called
the premises of the application, and the sequent σ(s) ∪ c1 ∪ . . . ∪ cn is called the conclusion of the
application.

Example 2.2. The pure rules for introducing implication in classical logic are:

p1 ⇒ p2 / ⇒ p1 ⊃ p2 ⇒ p1 ; p2 ⇒ / p1 ⊃ p2 ⇒
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Their applications take the form (respectively):

Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ ⊃ ψ,∆

Γ1 ⇒ ϕ,∆1 Γ2, ψ ⇒ ∆2

Γ1,Γ2, ϕ ⊃ ψ ⇒ ∆1,∆2

Examples for derivation rules that cannot be formulated as pure rules include the following rule
schemes, which are employed in intuitionistic and modal logic:

Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ

Γ⇒ ϕ

2Γ⇒ 2ϕ

Pure calculi, in turn, are simply finite sets of pure rules.

Definition 2.3. A pure L-calculus is a finite set of pure L-rules. A derivation of a sequent s from a set
S of sequents (a.k.a. “assumptions” or “non-logical axioms”) in a pure L-calculus G is a finite sequence
of sequents, where each sequent in the sequence is either one of the following:
(i) an element of S;
(ii) the conclusion of an application of a rule of G, all premises of which are preceding elements of the
sequence;
(iii) the conclusion of one of the following standard structural rules,2 again where all premises are pre-
ceding elements of the sequence:

(ID)

ϕ⇒ ϕ

(CUT)
Γ1 ⇒ ϕ,∆1 Γ2, ϕ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

(WEAK)
Γ⇒ ∆

Γ′,Γ⇒ ∆,∆′

In (CUT), ϕ is called the cut formula.
We write S `G s if there exists a derivation of a sequent s from a set S of sequents in G.

In what follows, unless stated otherwise, we may refer to pure rules and pure calculi simply as rules
and calculi.

The most well-studied property of sequent calculi is the admissibility of the cut rule. When cut is
admissible the calculus is generally considered well-behaved, and reasoning about the calculus becomes
much easier. Moreover, proof-search algorithms have no need to “guess” the cut formulas. Next, we
precisely define cut-admissibility.

Definition 2.4. A derivation of s from S in a calculus G is called cut-limited if the cut formula is in
frm[S] in every application of (CUT). We write S `cf

G s if such a derivation exists. A calculus G enjoys
cut-admissibility if `G=`cf

G.

What we call here cut-admissibility is actually known as strong cut-admissibility, in which cuts are
allowed, but they are confined to cases where the cut formula appears in the set of assumptions [5]. Usual
cut-admissibility, which we call here weak cut-admissibility, only requires that `G s iff `cf

G s for every
sequent s. For pure calculi, however, the two notions turn out to be equivalent (see [5]). (This is not the
case for intuitionistic calculi, studied in Section 5.)

Next, we present several examples of pure calculi (they all enjoy cut-admissibility).

2By defining sequents to be pairs of sets we implicitly include other standard structural rules, such as exchange and
contraction.
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Example 2.5 (Classical Logic). The propositional language CL consists of three binary connectives ∧, ∨,
⊃, and one unary connective ¬. The propositional fragment of Gentzen’s fundamental sequent calculus
for classical logic [19] can be directly presented as a pure CL-calculus, denoted LK, that consists of the
following CL-rules:

⇒ p1 /¬p1 ⇒ p1 ⇒ / ⇒ ¬p1

p1, p2 ⇒ / p1 ∧ p2 ⇒ ⇒ p1 ; ⇒ p2 / ⇒ p1 ∧ p2

p1 ⇒ ; p2 ⇒ / p1 ∨ p2 ⇒ ⇒ p1, p2 / ⇒ p1 ∨ p2

⇒ p1 ; p2 ⇒ / p1 ⊃ p2 ⇒ p1 ⇒ p2 / ⇒ p1 ⊃ p2

Example 2.6 (Paraconsistent Logics). In [10], sequent calculi for various paraconsistent logics are pre-
sented. For example, a pure calculus for da Costa’s historical paraconsistent logic C1, which we call
GC1 , consists of the rules of LK except for the left introduction rule of negation that is replaced by the
following pure CL-rules:

p1 ⇒ /¬¬p1 ⇒
⇒ p1 ; ⇒ ¬p1 /¬(p1 ∧ ¬p1)⇒ ¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ∧ p2)⇒

¬p1 ⇒ ; p2,¬p2 ⇒ /¬(p1 ∨ p2)⇒ p1,¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ∨ p2)⇒
p1 ⇒ ; p2,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ p1,¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ⊃ p2)⇒

Similarly, a pure calculus GP1 for the atomic paraconsistent logic P1 was given in [3]. It is obtained
by replacing the left introduction rule of negation in LK with the following alternative rules:

⇒ p1 ; ⇒ p2 /¬(p1 ∧ p2)⇒ ⇒ p1, p2 /¬(p1 ∨ p2)⇒
p1 ⇒ p2 /¬(p1 ⊃ p2)⇒ ⇒ ¬p1 /¬¬p1 ⇒

Example 2.7 (Many-valued Logics). In [6], pure sequent calculi for well-known many-valued logics
are presented. For example, a calculus for Łukasiewicz three-valued logic, which we call G3, has the
following rules for implication:

¬p1 ⇒ ; p2 ⇒ ; ⇒ p1,¬p2 / p1 ⊃ p2 ⇒ p1 ⇒ p2 ; ¬p2 ⇒ ¬p1 / ⇒ p1 ⊃ p2

p1,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ ⇒ p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

A pure calculus for the CL-fragment of the logic of bilattices [2] (whose implication-free fragment
coincides with the logic of first-degree entailments [1]), which we call G4, is obtained in a similar manner,
by augmenting the negation-free fragment of LK with the following rules:

p1,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ ⇒ p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

¬p1 ⇒ ; ¬p2 ⇒ /¬(p1 ∧ p2)⇒ ⇒ ¬p1,¬p2 / ⇒ ¬(p1 ∧ p2)

¬p1,¬p2 ⇒ /¬(p1 ∨ p2)⇒ ⇒ ¬p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ∨ p2)

p1 ⇒ /¬¬p1 ⇒ ⇒ p1 / ⇒ ¬¬p1

Example 2.8 (Logic for efficient access control). Primal infon logic [16] was designed to efficiently
reason about access control policies. The quotations-free fragment of its sequent calculus [13] can be
presented as a pure calculus, which we denote by P. It is obtained from the negation-free fragment
of LK by adding the axiomatic rules ∅ / ⇒ > and ∅ /⊥ ⇒ , dismissing the left introduction rule of
disjunction, and replacing the right introduction rule of implication with the following weaker rule:

⇒ p2 / ⇒ p1 ⊃ p2

While all the calculi in the examples above admit cut-admissibility, some of them do not enjoy the
subformula property, but do enjoy a simple generalization of it, which we introduce in the next section.
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3 Analyticity: A Generalized Subformula Property
Roughly speaking, analyticity of a propositional calculus provides a computable bound on the formulas
that may appear in derivations of a sequent s from a set S of sequents. The special case of the subformula
property is obtained when the set of subformulas of formulas in S ∪ {s} constitutes such a bound. Many
useful calculi, however, do not admit this strict property, while still allowing some other effective bound.
Here, we generalize the subformula property, by assuming a given ordering of L-formulas, denoted ≺,
which has to satisfy certain properties, as defined next.

Notation 3.1. Given a binary relation R on L, we denote by R [ϕ] the set {ψ ∈ L | 〈ψ, ϕ〉 ∈ R}. This
notation is naturally extended to sets (R [Γ] =

⋃
ϕ∈ΓR [ϕ]), sequents (R [Γ⇒ ∆] = R [Γ] ∪ R [∆]), and

sets of sequents (R [S] =
⋃
s∈S R [s]).

Definition 3.2. An order relation (i.e., an irreflexive and transitive binary relation) ≺ on L is called:

• prefinite if ≺ [ϕ] is finite for every ϕ ∈ L.

• structural if ϕ ≺ ψ implies σ(ϕ) ≺ σ(ψ) for every substitution σ.

In what follows,≺ denotes an arbitrary prefinite and structural order relation overL. The prefiniteness
of≺ will be used in order to enumerate the formulas of the language according to this order. Structurality
is essential in order to lift arguments about pure rules to their applications.

Example 3.3. The usual subformula relation over CL, which we denote by ≺0, is a prefinite structural
order relation. Another useful prefinite structural order relation on CL, denoted ≺1, is given by ϕ ≺1 ψ
iff ϕ ≺0 ψ or (ϕ 6= ψ and ϕ = ¬ψ′ for some ψ′ ≺0 ψ).

The above definition allows us to present a generalization of the subformula property, which we call
≺-analyticity.

Definition 3.4. We call a derivation of a sequent s from a set S of sequents in a calculus G ≺-analytic
if it consists solely of � [S ∪ {s}]-formulas (� denotes the reflexive closure of ≺), and write S `≺G s if
there exists a ≺-analytic derivation of s from S in G. A calculus G is called ≺-analytic if `G=`≺G.

This generalization of the subformula property does not necessarily inherit its most important conse-
quence, which is decidability. To ensure decidability, it is also required that the function λϕ ∈ L.≺ [ϕ] is
computable. Clearly, if S is finite and ≺ admits this property, it is decidable whether S `≺G s. When G
is ≺-analytic, the same holds for `G.

Remark 3.5. The relation `≺G is non standard, as it may lack a natural transitivity property. For example,
consider a calculus G consisting of the rules ⇒ p1 / ⇒ p1 ◦ p2 and ⇒ p1 ◦ p2 / ⇒ p2, and define ≺
so that ϕ1 ≺ ϕ1 ◦ ϕ2 and ϕ2 ≺ ϕ1 ◦ ϕ2 for every ϕ1, ϕ2. While we have both⇒ p1 `≺G⇒ p1 ◦ p2 and
⇒ p1 ◦ p2 `≺G⇒ p2, we do not have⇒ p1 `≺G⇒ p2.

Considering the examples above, LK, GP1 and P are≺0-analytic; while GC1 , G3 and G4 are not≺0-
analytic, but are ≺1-analytic. These facts can be derived from cut-admissibility, and also by the method
presented in [24]. The infinite family of calculi for weak double negations from [20], presented in the
next example, goes beyond ≺0 and ≺1.

Example 3.6. In [20], Kamide provides a way of constructing sequent calculi for paraconsistent log-
ics that admit the double negation principle, as well as its weaker forms (e.g., ¬¬¬ψ ↔ ¬ψ). For
this purpose, the paper investigates a hierarchy of weak double negations, by presenting an infinite set
{L2n+2 | n ∈ N} of pure calculi, all of which admit cut-admissibility. For example, L4 is identical to
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the calculus G4 from Example 2.7, and is ≺1-analytic. Furthermore, for every n, let ≺n be the transi-
tive closure of the relation /n, defined by: ϕ /n ψ iff either ψ = ¬ϕ, or ψ = ϕ1]ϕ2 and ϕ = ¬mϕi
for some ϕ1, ϕ2, ] ∈ {∧,∨,⊃}, 0 ≤ m ≤ n, and i ∈ {1, 2} (where ¬n is defined by: ¬0ϕ = ϕ and
¬n+1ϕ = ¬(¬nϕ)). Each L2n+2 is≺n+1-analytic. Clearly, the previous definitions of≺0 and≺1 coincide
with the new ones.

For many calculi, including those presented above, all rules except (CUT) are ≺-ordered: in every
application of the rule, every formula ϕ that appears in the premises satisfies ϕ � ψ for some formula ψ
that appears in the conclusion. For such calculi, cut-admissibility immediately entails ≺-analyticity, as
every cut-limited derivation is ≺-analytic. Whether or not the converse holds is the subject of the next
section.

4 From Analyticity to Cut-admissibility
In this section we address the question of the equivalence of ≺-analyticity and cut-admissibility in pure
calculi. First, note that ≺-analyticity may not imply cut-admissibility:

Example 4.1. Consider the calculus LKAX that consists of the following axiomatic rules:

∅ / p1, p2 ⇒ p1 ∧ p2 ∅ / p1 ∧ p2 ⇒ p1 ∅ / p1 ∧ p2 ⇒ p2

∅ / p1 ∨ p2 ⇒ p1, p2 ∅ / p1 ⇒ p1 ∨ p2 ∅ / p2 ⇒ p1 ∨ p2

∅ / p2 ⇒ p1 ⊃ p2 ∅ / ⇒ p1, p1 ⊃ p2 ∅ / p1, p1 ⊃ p2 ⇒ p2

∅ / ⇒ p1,¬p1 ∅ / p1,¬p1 ⇒

Its rules, besides the two rules of implication, were already identified by Gentzen as equivalent to their
original counterparts (see Remark 2.2 in [19]). It can be easily shown that LKAX is ≺0-analytic (using
the fact that LK is ≺0-analytic). However, it does not admit cut-admissibility (for instance, the sequent
p1 ∧ p2 ⇒ p1 ∨ p2 has no cut-free derivation).

Next, we identify a family of calculi in which analyticity does imply cut-admissibility.

Definition 4.2. A rule S/s is called≺-ordered if frm[S] ⊆ ≺ [s]. It is called≺-directed if it is≺-ordered,
and s has the form ⇒ ϕ or ϕ⇒ for some formula ϕ. A calculus G is called ≺-ordered (≺-directed) if
all its rules are ≺-ordered (≺-directed).

The calculi LK, GP1 and P are ≺0-directed, GC1 , G3 and G4 are ≺1-directed, and for every n,
L2n+2 is ≺n+1-directed. In contrast, LKAX is not ≺-directed for any ≺, as its conclusions include
several formulas.

Our first main result is that ≺-analyticity guarantees cut-admissibility in the family of ≺-directed
pure calculi.

Theorem 4.3. Every ≺-analytic ≺-directed pure calculus enjoys cut-admissibility.

We prove Theorem 4.3 in Section 4.1. Note that for all the calculi mentioned above (except LKAX),
this theorem allows one to obtain cut-admissibility as a consequence of them being ≺-directed and ≺-
analytic for some (prefinite and structural) order ≺.

It is worth mentioning that the equivalence of≺0-analyticity and cut-admissibility was proved in [12]
for a subfamily of pure calculi, called canonical calculi. These are ≺0-directed pure calculi in which the
premises only contain atomic variables and the formula in the conclusion includes a single connective. A
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simple syntactic criterion called coherence was defined in [12] and was proved to be equivalent both to
≺0-analyticity and cut-admissibility.

Before turning to the proof of Theorem 4.3, we outline two possible applications of it in cut-
admissibility proofs:

Simpler Semantic Proofs of Cut-admissibility

Theorem 4.3 reduces the burden in proving cut-admissibility to establishing only analytic cut-
admissibility. An application of (CUT) in a derivation of s from S is called a ≺-analytic cut if the cut
formula is in ≺ [S ∪ {s}]. In turn, ≺-analytic cut-admissibility concerns only the admissibility of non-
≺-analytic cuts. Proving this property is often easier than showing full cut-admissibility. For example, it
is straightforward to prove that LK is complete for the classical truth tables, when applications of (CUT)
are restricted to be ≺0-analytic. Indeed, assuming s is not derivable from S in LK using ≺0-analytic
cuts, one extends s to a maximal underivable sequent s∗ that consists solely of ≺0 [S ∪ {s}]-formulas.
Then, a countermodel v can be defined simply by setting v(ϕ) = T for every ϕ on the left-hand side of
s∗, and v(ψ) = F for every ψ on its right-hand side. Using ≺0-analytic cuts, it immediately follows that
frm[s∗] = ≺0 [S ∪ {s}], which makes it easy to prove that v respects the classical truth tables, and can
therefore be extended to a full classical countermodel. By Theorem 4.3, we may conclude that LK enjoys
cut-admissibility. Providing a semantic proof of cut-admissibility without going through≺0-analytic cuts
is possible, but more complicated.

Sufficient Criterion for Cut-admissibility

The results of this paper are useful in combination with our recent paper [24], where we provided a
general method for proving ≺n-analyticity (see Example 3.6 for the definition of ≺n) in a wide family of
pure calculi. Concretely, we showed that the ≺n-analyticity of a ≺n-directed calculus G is guaranteed if
the following property holds:3

(∗) For every two rules of G of the forms S1 / ⇒ ϕ1 and S2 /ϕ2 ⇒ , and substitutions
σ1, σ2 such that σ1(ϕ1) = σ2(ϕ2), the empty sequent is derivable from σ(S1) ∪ σ(S2) using
only (CUT).

A direct consequence of Theorem 4.3 and the results of [24] is a simple, syntactic and decidable
criterion for cut-admissibility:

Corollary 4.4. Every pure ≺n-directed calculus for which (∗) holds enjoys cut-admissibility.

Cut-admissibility for all calculi considered above (except for LKAX) can be obtained by applying
Corollary 4.4.

4.1 Proof of Theorem 4.3
Cut-admissibility is traditionally proved syntactically, by some form of induction on derivations. In this
case, what is actually shown is cut-elimination: a method to eliminate cuts from derivations. However,
going back at least to [35], semantic methods have also shown to be useful to prove cut-admissibility.
We follow the semantic approach, and base our proof on several “semantic maneuvers”. We start by
presenting the bivaluation semantic framework from [14] that accounts for derivability in pure sequent

3This generalization of the coherence condition from [12] is also similar to the absorption of cut from [30].
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calculi. Then, we generalize this framework to obtain a characterization of ≺-analytic derivations, as
well as of cut-limited derivations. The latter characterization allows us to define a semantic sufficient
condition for cut-admissibility, which we show to hold in ≺-analytic ≺-directed calculi.

The soundness and completeness theorems of this section can be obtained using the general frame-
work of [23]. To assist the reader, we outline in the appendix direct proofs of these theorems, while
employing our current notations and definitions.

4.1.1 Semantics of Pure Sequent Calculi

We start by presenting the bivaluations semantics from [14] that captures derivability in pure calculi, and
is based on a two-valued interpretation of pure rules.
Definition 4.5. An L-bivaluation is a function v from L to {−1, 1}. We say that v satisfies a sequent
Γ ⇒ ∆, denoted v |= Γ ⇒ ∆, if either v(ϕ) = −1 for some ϕ ∈ Γ or v(ψ) = 1 for some ψ ∈ ∆. We
say that v satisfies a set S of sequents, denoted v |= S, if v |= s for every s ∈ S.
Definition 4.6. A bivaluation v respects a rule S / s if v |= σ(s) whenever v |= σ(S) for every substitution
σ. v is called G-legal for a calculus G if it respects all rules of G.

Depending on G, this semantics may not be truth-functional, that is, the value of a compound formula
is not uniquely determined by the values of its immediate subformulas. For this reason valuation functions
are defined over the entire language rather than only over atomic formulas.
Example 4.7 (Semantics of Classical Logic). It is easy to see that a CL-bivaluation v is LK-legal iff it
respects the classical truth tables. For example, the first line of the truth table for conjunction is obtained
as follows: Suppose that v(ϕ) = v(ψ) = 1. Then v |= { ⇒ ϕ, ⇒ ψ}, and since v respects the right
introduction rule of conjunction, we have v |= ⇒ ϕ ∧ ψ, and so v(ϕ ∧ ψ) = 1.

The semantic reading of rules as constraints on bivaluations provides an equivalent semantic view of
derivations:

Theorem 4.8. S `G s iff v |= S implies v |= s for every G-legal bivaluation v.

Example 4.9. G3-legal bivaluations provide an alternative semantics to Łukasiewicz three-valued logic
(Example 2.7). For example, the rule

⇒ p1 ; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

translates into the following semantic condition:

If v(ϕ) = 1 and v(¬ψ) = 1 then v(¬(ϕ ⊃ ψ)) = 1.

This semantics is two-valued, but not truth-functional. Another two-valued semantics for this logic was
presented in [36], and was then used to construct a different calculus for it in [14].

4.1.2 Semantics of Analytic Derivations

Theorem 4.8 establishes a strong connection between derivations in pure calculi and bivaluations (two-
valued assignments). Analytic derivations in such calculi induce a similar semantics, which is based on
three-valued truth assignments. Roughly speaking, in the case that ≺-analytic derivations are taken
into account, only � [S ∪ {s}]-formulas are allowed to occur in derivations, and thus we only need
these formulas to be assigned with a truth-value. To implement this idea, we include a third truth-value
marking formulas that are not assigned with any “real” truth-value. Thus, the semantics for analytic
derivations is based on three truth-values: “false”, “true”, and “indeterminate”, represented as −1, 1, and
0, respectively.
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Definition 4.10. An L-trivaluation is a function v from L to {−1, 0, 1}. We say that v satisfies a sequent
Γ ⇒ ∆, denoted v |= Γ ⇒ ∆, if either v(ϕ) < 1 for some ϕ ∈ Γ or v(ψ) > −1 for some ψ ∈ ∆. v
satisfies a set S of sequents, denoted v |= S, if v |= s for every s ∈ S. G-legal trivaluations are defined
like in the case of bivaluations using the new definition of |=.

Example 4.11. Using trivaluations, the semantic condition that is induced by the rule of Example 4.9 is:

If v(ϕ) > −1 and v(¬ψ) > −1 then v(¬(ϕ ⊃ ψ)) > −1.

When semantically describing the existence of a ≺-analytic derivation of a sequent s from a set S of
sequents in a calculus G, some formulas must be assigned with either 1 or −1. These are the formulas
that are allowed to appear in such a derivation, that is, the formulas in � [S ∪ {s}]. For this requirement,
we introduce the following definition:

Definition 4.12. The support of a trivaluation v, denoted supp(v), is the set {ϕ ∈ L | v(ϕ) 6= 0}. v is
called:

• F-determined (for F ⊆ L) if F ⊆ supp(v); and

• fully determined if it is L-determined.

Note that every trivaluation is ∅-determined, and that bivaluations are fully determined trivaluations
(and they will be called this way from now on).

Trivaluations correspond to analytic derivations in the following way:

Theorem 4.13. If S `≺G s then v |= S implies v |= s for every � [S ∪ {s}]-determined G-legal trivalua-
tion v. Moreover, if G is ≺-ordered, then the converse also holds.

Note that only soundness of analytic derivations with respect to � [S ∪ {s}]-determined trivaluations
is needed in the proof of Theorem 4.3.

4.1.3 Semantics in the Absence of Cut

The semantics of cut-limited derivations is similar to that of analytic derivations. The only difference
is that cut-limited derivations of s from S are tied to frm[S]-determined trivaluations, rather than to
� [S ∪ {s}]-determined ones. Intuitively, if ϕ cannot serve as a cut formula, we may need a trivaluation
v that satisfies ⇒ ϕ and ϕ⇒ , which is possible iff v(ϕ) = 0.

For cut-limited derivations, we have the following:

Theorem 4.14. S `cf
G s iff v |= S implies v |= s for every frm[S]-determined G-legal trivaluation v.

Note that only completeness of cut-limited derivations with respect to frm[S]-determined trivaluations
is used in the proof of Theorem 4.3.

Remark 4.15. The three-valued semantics for the cut-free fragment of LK that is obtained from Theo-
rem 4.14 induces the same set of trivaluations as the Nmatrix semantics from [22].

Theorem 4.14 gives rise to a sufficient semantic criterion for cut-admissibility, which is based on the
following notion of determination:

Definition 4.16. We say that a trivaluation v′ is a determination of a trivaluation v (alternatively, we say
that v′ determines v) if v(ϕ) = v′(ϕ) for every ϕ ∈ supp(v). v′ is called an F-determination of v if, in
addition, it is F-determined. If v′ is fully determined, we call it a full determination of v.
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It immediately follows from our definitions that:

Proposition 4.17. Suppose that v′ determines v. Then for every sequent s, if v′ |= s then v |= s. The
converse holds as well when v is frm[s]-determined.

The sufficient semantic criterion for cut-admissibility is given in the following corollary:

Corollary 4.18. If every G-legal trivaluation has a G-legal full determination, then G enjoys cut-
admissibility.

Proof. Suppose that S 0cf
G s. By Theorem 4.14, there exists some frm[S]-determined G-legal trivalu-

ation v such that v |= S and v 6|= s. Let v′ be a G-legal full determination of v. By Proposition 4.17,
v′ |= S and v′ 6|= s, and by Theorem 4.8, it follows that S 0G s.

4.1.4 From Analyticity to Cut-admissibility

We now prove Theorem 4.3, by utilizing Corollary 4.18. Thus, given a ≺-analytic ≺-directed pure
calculus, we show that every G-legal trivaluation has a G-legal full determination. This is done in
two steps: Lemma 4.19 below shows that it is possible to add a single formula to the support of a G-
legal trivaluation. The extended trivaluation is proved to still be G-legal. Then, in Lemma 4.20, we
iteratively apply Lemma 4.19 using an enumeration of all formulas that respects ≺, thus obtaining a full
determination.

Lemma 4.19. Let G be a≺-analytic≺-directed calculus, v a G-legal trivaluation and ψ a formula such
that ≺ [ψ] ⊆ supp(v). Then v has a G-legal supp(v) ∪ {ψ}-determination.

Proof. If ψ ∈ supp(v), then this is trivial, as v determines itself. We therefore assume that ψ /∈ supp(v).
Let Γv = {ϕ ∈ ≺ [ψ] | v(ϕ) = 1} and ∆v = {ϕ ∈ ≺ [ψ] | v(ϕ) = −1}. We first show that 0G Γv ⇒ ∆v:
v is � [Γv ⇒ ∆v]-determined, as � [Γv ⇒ ∆v] ⊆ ≺ [ψ] ⊆ supp(v). Also, v 6|= Γv ⇒ ∆v. By Theo-
rem 4.13, 0≺G Γv ⇒ ∆v, and since G is ≺-analytic, 0G Γv ⇒ ∆v. Let v′ be the trivaluation obtained
from v by setting

v′(ψ) =

{
1 0G Γv, ψ ⇒ ∆v

−1 otherwise

Clearly, v′ is a supp(v)∪{ψ}-determination of v. We prove that it is G-legal. Let s1, . . . , sn / s be a rule
of G and σ a substitution. Suppose that v′ 6|= σ(s). We prove that v′ 6|= σ(si) for some 1 ≤ i ≤ n. By our
assumption, frm[σ(s)] ⊆ supp(v′) = supp(v) ∪ {ψ}. If frm[σ(s)] ⊆ supp(v), then this follows from
the fact that v is G-legal and v′ determines v. Otherwise, frm[σ(s)] 6⊆ supp(v). Since G is ≺-directed,
we have frm[σ(s)] = {ψ}. Also, for every 1 ≤ i ≤ n, we have frm[si] ⊆ ≺ [s], and since≺ is structural,
frm[σ(si)] ⊆ σ(≺ [s]) ⊆ ≺ [σ(s)] = ≺ [ψ].

To show that there exists 1 ≤ i ≤ n such that v′ 6|= σ(si), we first prove that 6`G σ(s) ∪ (Γv ⇒ ∆v):
by the above, either σ(s) = (ψ ⇒) or σ(s) = (⇒ ψ). In the first case, v′(ψ) = 1, which means that
0G Γv, ψ ⇒ ∆v. In the second, v′(ψ) = −1, which means that `G Γv, ψ ⇒ ∆v. Using (CUT), since
0G Γv ⇒ ∆v, we have 0G Γv ⇒ ψ,∆v. Either way, we have 0G σ(s) ∪ (Γv ⇒ ∆v).

Since 6`G σ(s)∪(Γv ⇒ ∆v), we must have some 1 ≤ i ≤ n such that 6`G σ(si)∪(Γv ⇒ ∆v). Suppose
that si = Γi ⇒ ∆i. Then using the fact that frm[σ(si)] ⊆ ≺ [ψ] = Γv ∪ ∆v, we have σ(Γi) ⊆ Γv and
σ(∆i) ⊆ ∆v. Thus v 6|= σ(si), and therefore v′ 6|= σ(si).

Lemma 4.20. Let G be a≺-analytic≺-directed calculus and v a G-legal trivaluation. Then there exists
a G-legal full determination of v.
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Proof. For every trivaluation u and formula ψ, let uψ denote an arbitrary G-legal supp(u) ∪ {ψ}-
determination of u, if such exists (otherwise, uψ is undefined). Note that whenever u is G-legal and
≺ [ψ] ⊆ supp(u), Lemma 4.19 ensures that uψ is defined.

Let ψ1, ψ2, . . . be an enumeration of the formulas of L, such that i < j whenever ψi ≺ ψj . Such enu-
meration exists by the prefiniteness of ≺. For every i, denote the set {ψ1, . . . , ψi} by Φ≤i (in particular,
Φ≤0 = ∅).

Define a sequence v0, v1, . . . of trivaluations as follows: v0 = v, and vi = vi−1
ψi

for every i > 0. We
prove by induction on i that vi is defined, and is a G-legal Φ≤i-determination of v and of vi−1 (for i ≥ 1).

For i = 0, this trivially holds. Let i > 0. By the induction hypothesis, vi−1 is G-legal and
is a Φ≤i−1-determination of v. By the enumeration, ≺ [ψi] ⊆ Φ≤i−1 ⊆ supp(vi−1). Thus, vi

is defined, and is a G-legal supp(vi−1) ∪ {ψi}-determination of vi−1, and thus also of v. Now,
Φ≤i = Φ≤i−1 ∪ {ψi} ⊆ supp(vi−1) ∪ {ψi} ⊆ supp(vi), and therefore vi is actually a Φ≤i-determination
of vi−1 and of v.

We now define v′, a G-legal full determination of v. For every ϕ ∈ L, let iϕ be the index of ϕ in the
enumeration (that is, ϕ = ψiϕ). Define v′ = λϕ ∈ L.viϕ(ϕ).

For every ϕ ∈ L, v′(ϕ) = viϕ(ϕ) 6= 0, as viϕ is Φ≤iϕ-determined. Also, for every ϕ ∈ supp(v),
v′(ϕ) = viϕ(ϕ) = v(ϕ), as viϕ determines v. Finally, let S / s be a rule of G and σ be a substitution. Let
k = min {i | frm[σ(S ∪ {s})] ⊆ Φ≤i}. Then v′(ϕ) = vk(ϕ) for every ϕ ∈ frm[σ(S ∪ {s})]. Therefore,
if v′ |= σ(S), then vk |= σ(S) as well. Since vk is G-legal, vk |= σ(s), and therefore v′ |= σ(s).

Putting all pieces together we have proved Theorem 4.3: Assuming that G is ≺-analytic and ≺-
directed, by Lemma 4.20, every G-legal L-trivaluation has a G-legal full determination, and cut-
admissibility follows by Corollary 4.18.

5 Intuitionistic Calculi
For various important non-classical logics, such as intuitionistic logic, there is no known cut-free pure
calculus. Gentzen’s original calculus for this logic, LJ, is not pure, as it does not meet the requirement of
allowing arbitrary context formulas in applications of rules: it manipulates single-conclusion sequents,
in which the right-hand side includes at most one formula. There exists, however, an equivalent multiple-
conclusion cut-free sequent calculus, which we call LJ′ (see [38]). This calculus restricts only the right
introduction rules of implication and negation to single-conclusion sequents. In other words, LJ′ is
obtained from LK by restricting applications of p1 ⇒ p2 / ⇒ p1 ⊃ p2 and p1 ⇒ / ⇒ ¬p1 to have the
forms:

Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ

Γ, ϕ⇒
Γ⇒ ¬ϕ

Put differently, LJ′ is obtained from LK by forbidding right context formulas in all premises with a
non-empty left side of right introduction rules.

Another well-known calculus that follows this pattern, which we call G′4, is obtained by extending
the negation-free fragment of LJ′ with the rules for negation of G4 (see Example 2.7). G′4, investigated
in [7, 39], is sound and complete for Nelson’s paraconsistent constructive logic N4 [28].

Next, we define a general family of calculi, which we call intuitionistic calculi, of which LJ′ and
G′4 are particular examples. Like LJ′ and G′4, intuitionistic calculi are sets of pure rules, but some of
the applications of these rules are restricted. As in the previous section, we show that cut-admissibility
is a consequence of ≺-analyticity in calculi of this family. Our proof, presented in Section 5.3, has a
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similar general structure as the proof for pure calculi, but is more challenging, because simple valuation
functions do not suffice to characterize the calculi of this family. Instead, we introduce in Section 5.2 a
more complex semantic interpretation, which is based on Kripke models.

5.1 Intuitionistic Derivations
In this section we precisely define the family of intuitionistic calculi, of which LJ′ and G′4 are particular
examples. Note that both LJ′ and G′4 employ pure rules: LJ′ is based on the rules of LK, and G′4 is
based on the rules of G4. The difference lies in the allowed applications of the rules: both calculi forbid
right context formulas in premises of the form Γ⇒ ∆ with Γ 6= ∅ of applications of rules that introduce
some formula on the right-hand side. This is formalized as follows:

Definition 5.1. A pure rule is called positive if its conclusion has the form Γ ⇒ ∆ for some
∆ 6= ∅. A derivation in a pure calculus G is called intuitionistic if in every application
〈{σ(s1) ∪ c1, . . . , σ(sn) ∪ cn} , σ(s) ∪ c1 ∪ . . . ∪ cn〉 of a positive rule s1, . . . , sn / s, for every 1 ≤ i ≤ n
we have that if si has the form Γi ⇒ ∆i with Γi 6= ∅, then ci has the form Γ′i ⇒ .

Derivability, cut-admissibility and ≺-analyticity are adapted to intuitionistic derivations in the obvi-
ous way:

Definition 5.2. For a pure calculus G, we write S `GInt
s if there is an intuitionistic derivation of a

sequent s from a set S of sequents in G. We write S `cf
GInt

s if there is such a derivation that is also
cut-limited, and S `≺GInt

s if there is such a derivation that is ≺-analytic (see Definitions 2.4 and 3.4).
We say that G enjoys Int-cut-admissibility if `GInt

=`cf
GInt

and is Int-≺-analytic if `GInt
=`≺GInt

.

The difference between pure and intuitionistic calculi is not in the rules, but rather in applications that
are allowed to appear in derivations. Thus, any pure calculus has an intuitionistic counterpart, obtained
by considering only intuitionistic derivations.

Example 5.3. Derivations in LJ′ are exactly the intuitionistic derivations of LK. Indeed, a formula ϕ
follows from a finite set Γ of formulas in intuitionistic logic iff `LKInt

Γ⇒ ϕ. In contrast, ϕ follows from
Γ in classical logic iff `LK Γ ⇒ ϕ. Similarly, derivations in G′4 coincide with intuitionistic derivations
of G4.

Our main theorem concerning intuitionistic calculi is presented next.

Theorem 5.4. Every Int-≺-analytic ≺-directed pure calculus enjoys Int-cut-admissibility.

Theorem 5.4, which we prove below, allows one to derive the fact that cut is admissible in LJ′ from
the fact that LJ′ enjoys the subformula property. More precisely, Int-cut-admissibility of LK follows
from its Int-≺0-analyticity. Such entailment also holds for the pure calculi presented in the examples
above, as well as for the calculi of the next example.

Example 5.5 (Constructive Negations). In [7], Avron provides sequent calculi for logics that replace
classical negation with several non-classical negations. One of the families investigated there consists
of calculi that are obtained from the negation-free fragment of LJ′ by augmenting it with pure rules for
negation. All calculi of this family, except those described in Example 5.6 below, allow only intuitionistic
derivations, and are≺1-directed and Int-≺1-analytic. From these facts, Theorem 5.4 allows us to conclude
that cut is admissible in them. These calculi include a calculus for Nelson’s constructive logic N3 [28],
as well as the calculus G′4 presented above for its paraconsistent variant N4.

Intuitionistic derivations disallow right context formulas in premises of positive rules, in which the
left-hand side is not empty. A natural question that arises regarding Theorem 5.4 is: Does it still hold
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if we allow right context formulas for certain premises of a right introduction rule with a non-empty
left-hand side, and forbid them in others? The answer is negative as the next example demonstrates.
Example 5.6 (Beyond Intuitionistic Derivations). Following Example 5.5, we note that [7, 8] investigate
also several calculi that include both the single-conclusion right introduction rule of implication and
the multiple-conclusion right introduction rule of negation. The former conforms with the restriction to
intuitionistic derivations, as right context formulas are forbidden. The latter allows for non-intuitionistic
derivations, as it allows right context formulas in a premise that has a non-empty left side. Such calculi
are therefore left out from the scope of Theorems 4.3 and 5.4. Indeed, as shown in [8], all of them are
≺1-analytic, but none of them enjoys cut-admissibility. A particular example for such a calculus is the
calculus from [34] for da-Costa’s paraconsistent logic Cw [17], obtained from the positive fragment of
LJ′ by adding the pure rules p1 ⇒ /¬¬p1 ⇒ and p1 ⇒ / ⇒ ¬p1.

The rest of this section is devoted to the proof of Theorem 5.4. Similarly to the case of pure calculi,
we go through a semantic interpretation of intuitionistic derivations, which is defined next.

5.2 Semantics of Intuitionistic Calculi
The syntactic restriction on context sequents that are enforced in intuitionistic derivations requires ele-
vating bivaluation semantics (Section 4.1) to Kripke-style semantics.
Definition 5.7. An L-trimodel is a tripleM = 〈W,R,V〉, where W is a non-empty set (whose elements
are called “worlds”), R is a transitive and reflexive relation over W , and V is a function that assigns a
trivaluation Vw to every w ∈ W , such that V is persistent, that is, for every ϕ ∈ L and w ∈ W , if
Vw(ϕ) = 1 then Vu(ϕ) = 1 for every u such that wRu.

Next we introduce several useful notations and definitions concerning trimodels.
Notation 5.8. Let M = 〈W,R,V〉 be a trimodel and w ∈ W . We denote the set {u ∈ W | wRu} by
R (w), and the set {Vu | u ∈ R (w)} by VR(w).
Definition 5.9. Let Σ be a set of trivaluations. Σ satisfies a sequent s, denoted Σ |= s, if v |= s for every
v ∈ Σ (see Definition 4.10). Σ satisfies a set S of sequents, denoted Σ |= S, if Σ |= s for every s ∈ S. For
a trimodelM = 〈W,R,V〉, we writeM |= s (M |= S) if {Vw | w ∈ W} |= s ({Vw | w ∈ W} |= S).

We turn to the semantic reading of pure rules in trimodels. Given a trimodelM = 〈W,R,V〉 and a
world w in it, the interpretation of a pure rule in w may involve not only w itself, but also the elements of
R (w):
Definition 5.10. A trimodelM = 〈W,R,V〉 respects a rule r = S / s if one of the following holds for
every w ∈ W and substitution σ:

• r is positive, and Vw |= σ(s) whenever both of the followings hold:

1. Vw |= σ(⇒ ∆) for every⇒ ∆ ∈ S.

2. VR(w) |= σ(s′) for every s′ ∈ S with a non-empty left side.

• r is not positive, and Vw |= σ(s) whenever Vw |= σ(S).

Example 5.11. LetM = 〈W,R,V〉 be a trimodel. M respects the right introduction rule of conjunction
in LK iff for every w ∈ W we have that Vw(ϕ ∧ ψ) > −1 whenever Vw(ϕ) > −1 and Vw(ψ) > −1.M
respects the left introduction rule of implication in LK iff for every w ∈ W we have that Vw(ϕ ⊃ ψ) < 1
whenever Vw(ϕ) > −1 and Vw(ψ) < 1. M respects the right introduction rule of implication in LK iff
for every w ∈ W we have that Vw(ϕ ⊃ ψ) > −1 whenever either Vu(ϕ) < 1 or Vu(ψ) > −1 for every
u ∈ R (w).
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Definition 5.12. For a pure calculus G, a trimodelM is called G-legal if it respects the rules of G.

The semantic reading of derivation rules in Definitions 5.10 and 5.12 conforms with the essence of
Kripke’s semantics for intuitionistic logic, according to which “constructive truth” is more demanding
than “classical truth”. Thus, when introducing a formula on the right-hand side, some premises should
be satisfied not only in the particular world in question, but also in all its accessible worlds.

Finally, the notion of determined trivaluations is generalized to trimodels in the most natural way:

Definition 5.13. For a set F ⊆ L, a trimodel M = 〈W,R,V〉 is called F-determined if Vw is F-
determined for every w ∈ W .M is called fully determined if Vw is fully determined for every w ∈ W .

Example 5.14 (Semantics of Intuitionistic Logic). Recall that LJ′ is obtained by considering only intu-
itionistic derivations in LK. Accordingly, Definition 5.12 associates LJ′ with LK-legal trimodels. Fol-
lowing Example 5.11, it is easy to see that a fully determined CL-trimodelM = 〈W,R,V〉 is LK-legal
iff it respects the usual truth conditions of the intuitionistic connectives. For example, the truth condition
for implication is obtained as follows: Let w ∈ W , and suppose that for every u ∈ W such that wRu, we
have that if Vu(ϕ) = 1 then also Vu(ψ) = 1. Then VR(w) |= ϕ ⇒ ψ. SinceM is LK-legal, it respects
the positive rule p1 ⇒ p2 / ⇒ p1 ⊃ p2, and so Vw |= ⇒ ϕ ⊃ ψ, which gives us Vw(ϕ ⊃ ψ) = 1. For
the other direction of the semantics of ⊃, suppose Vu(ϕ) = 1 and Vu(ψ) = −1 for some u ∈ W such
that wRu. SinceM is LK-legal, it respects the non-positive rule ⇒ p1 ; p2 ⇒ / p1 ⊃ p2 ⇒ , which
means that Vu |= ϕ ⊃ ψ ⇒ . This gives us Vu(ϕ ⊃ ψ) = −1, and by the persistence condition, sinceM
is fully determined, it follows that Vw(ϕ ⊃ ψ) = −1.

After setting all required adjustments in definitions, Theorems 4.8, 4.13 and 4.14 are now given an
intuitionistic variant. Like in the case of pure calculi, the following theorem can be obtained using the
general framework of [23]. We outline in the appendix a direct proof of this theorem.

Theorem 5.15.

1. S `GInt
s iffM |= S impliesM |= s for every fully determined G-legal trimodelM.

2. If S `≺GInt
s thenM |= S impliesM |= s for every � [S ∪ {s}]-determined G-legal trimodelM.

Moreover, if G is ≺-ordered, then the converse holds as well.

3. S `cf
GInt

s iffM |= S impliesM |= s for every frm[S]-determined G-legal trimodelM.

Theorem 5.15 gives rise to a sufficient semantic criterion for Int-cut-admissibility that is a variant of
Corollary 4.18:

Definition 5.16. We say that a trimodel M′ = 〈W ′, R′,V ′〉 is a determination of a trimodel
M = 〈W,R,V〉 (or that M′ determines M) if W = W ′, R = R′, and V ′w is a determination of Vw
for every w ∈ W . M′ is called an F-determination ofM if, in addition, it is F-determined. IfM′ is
fully determined, we call it a full determination ofM.

Corollary 5.17. If every G-legal trimodel has a G-legal full determination, then G enjoys Int-cut-
admissibility.

Proof. Suppose that S 0cf
GInt

s. By Item 3 in Theorem 5.15, there exists some frm[S]-determined G-
legal trimodel M such that M 6|= s while M |= S. M has a G-legal full determination M′. By
Proposition 4.17,M′ 6|= s andM′ |= S. By Item 1 in Theorem 5.15, we have that S 0GInt

s.
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5.3 Proof of Theorem 5.4
The semantic view of intuitionistic calculi via Kripke-style semantics enables us to provide appropriate
variants of Lemmas 4.19 and 4.20 above, and then, together with Corollary 5.17, to derive Theorem 5.4.
We start by showing that a single formula can be added to the support of a given trimodel.

Definition 5.18. The support of a trimodel M = 〈W,R,V〉, denoted supp(M), is the set⋂
{supp(Vw) | w ∈ W}.

Lemma 5.19. Let G be an Int-≺-analytic ≺-directed calculus,M a G-legal trimodel and ψ a formula
such that ≺ [ψ] ⊆ supp(M). ThenM has a G-legal supp(M) ∪ {ψ}-determination.

Proof. LetM = 〈W,R,V〉. For every w ∈ W , define the following sets:

• Γw = {ϕ ∈ ≺ [ψ] | Vw(ϕ) = 1};

• ∆w = {ϕ ∈ ≺ [ψ] | Vw(ϕ) = −1}; and

• Sw =
{
s | frm[s] ⊆ ≺ [ψ],VR(w) |= s

}
.

We start by proving that for every w ∈ W , Sw 0GInt
Γw ⇒ ∆w. Let w ∈ W . Define the

following trimodel M∗ = 〈W ∗, R∗,V∗〉: W ∗ = R (w), R∗ = R ∩ (W ∗ × W ∗), and V∗u = Vu
for every u ∈ W ∗. M∗ is a G-legal trimodel, as every requirement that is induced by the rules of
G or by the definition of a trimodel only concerns accessible worlds. In addition, M∗ |= Sw and
V∗w 6|= Γw ⇒ ∆w (and thus M∗ 6|= Γw ⇒ ∆w). M∗ is also � [Sw ∪ {Γw ⇒ ∆w}]-determined, as
� [Sw ∪ {Γw ⇒ ∆w}] ⊆ ≺ [ψ] ⊆ supp(M∗). By Item 2 in Theorem 5.15, Sw 0≺GInt

Γw ⇒ ∆w, and
since G is Int-≺-analytic, Sw 0GInt

Γw ⇒ ∆w.
Define a G-legal supp(M)∪{ψ}-determinationM′ = 〈W,R,V ′〉 ofM as follows: for everyw ∈ W

and ϕ ∈ L, V ′w(ϕ) is defined by:

• if ϕ 6= ψ or ϕ ∈ supp(Vw), then V ′w(ϕ) = Vw(ϕ);

• if ϕ = ψ, ϕ /∈ supp(Vw), and either Vu(ϕ) = −1 or Su `GInt
Γu, ϕ ⇒ ∆u for some u ∈ R (w), then

V ′w(ϕ) = −1;

• otherwise, V ′w(ϕ) = 1.

Let us show that M′ is a trimodel. Suppose for contradiction that V ′w(ϕ) = 1 and V ′u(ϕ) 6= 1 for
some formula ϕ and u ∈ R (w). If ϕ 6= ψ or ϕ ∈ supp(Vw), then this contradicts the fact that M is
a trimodel. If ϕ ∈ supp(Vu), then Vu(ϕ) = −1, and then by definition V ′w(ϕ) = −1, which cannot be
the case. Otherwise, ϕ = ψ, ϕ /∈ supp(Vw), and ϕ /∈ supp(Vu). Since ψ ∈ supp(M′) and V ′u(ϕ) 6= 1,
we have V ′u(ϕ) = −1, and thus by the definition of V ′ we must have either Vz(ϕ) = −1 for some
z ∈ R (u) ⊆ R (w), or Sz `GInt

Γz, ϕ ⇒ ∆z for some z ∈ R (u) ⊆ R (w). Either way, we obtain a
contradiction to the fact that V ′w(ϕ) = 1.

Clearly, M′ is a supp(M) ∪ {ψ}-determination of M. It is therefore left to prove that M′ is G-
legal. Let s1, . . . , sn / s be a rule of G, σ a substitution and w ∈ W . Suppose that V ′w 6|= σ(s). Then
frm[σ(s)] ⊆ supp(Vw) ∪ {ψ}. First, assume that frm[σ(s)] ⊆ supp(Vw). In this case, Vw 6|= σ(s) as
well. If s1, . . . , sn / s is positive, then since M is G-legal we have that either Vw 6|= σ(si) for some
1 ≤ i ≤ n such that si has an empty left side, or Vu 6|= σ(sj) for some 1 ≤ j ≤ n and u ∈ R (w) such
that sj has a non-empty left side. SinceM′ determinesM, the same holds for V ′. If s1, . . . , sn / s is not
positive, then similarly, we obtain that V ′w 6|= σ(si) for some 1 ≤ i ≤ n.
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We therefore assume that frm[σ(s)] 6⊆ supp(Vw), and thus ψ /∈ supp(Vw), and so by the fact that
G is ≺-directed, also frm[σ(s)] = {ψ}, and by the structurality of ≺, frm[σ(si)] ⊆ ≺ [ψ] for every
1 ≤ i ≤ n.

First, suppose that s1, . . . , sn / s is not positive. Then σ(s) = ψ ⇒. We prove that V ′w 6|= σ(si) for
some 1 ≤ i ≤ n. By our assumption, V ′w(ψ) = 1. This in particular means that Sw 0GInt

Γw, ψ ⇒ ∆w,
and so there exists 1 ≤ i ≤ n such that Sw 0GInt

Γw, σ(Γi) ⇒ σ(∆i),∆w, where si = Γi ⇒ ∆i. Since
frm[σ(si)] ⊆ ≺ [ψ] = frm[Γw ⇒ ∆w], we must have σ(Γi) ⊆ Γw and σ(∆i) ⊆ ∆w, which means that
Vw 6|= σ(si). V ′w determines Vw, and so V ′w 6|= σ(si).

Next, suppose that s1, . . . , sn / s is positive. Then σ(s) =⇒ ψ. ForM′ to respect s1, . . . , sn / s, we
need to prove that:

(∗) There exists 1 ≤ i ≤ n such that either si has an empty left side and V ′w 6|= σ(si), or si
has a non-empty left side and V ′z 6|= σ(si) for some z ∈ R (w).

We prove the following claim, (∗∗), and then show that (∗) follows from (∗∗):

(∗∗) There exists 1 ≤ i ≤ n such that Vz 6|= σ(si) for some z ∈ R (w).

Proof of (∗∗): By our assumption, V ′w(ψ) = −1. According to the definition of V ′, there exists some
u ∈ R (w) such that either Vu(ψ) = −1 or Su `GInt

Γu, ψ ⇒ ∆u. We consider each case separately:

1. Vu(ψ) = −1: Then Vu 6|=⇒ ψ. Since M is G-legal, we must have some 1 ≤ i ≤ n such that
either si has a non-empty left side and Vz 6|= σ(si) for some z ∈ R (u) ⊆ R (w), or si has an empty
left side and Vu 6|= σ(si).

2. Su `GInt
Γu, ψ ⇒ ∆u: Using (CUT) and the fact that Su 0GInt

Γu ⇒ ∆u, we must have that
Su 0GInt

⇒ ψ, and thus there exists some 1 ≤ i ≤ n such that Su 0GInt
σ(si). Hence, σ(si) /∈ Su.

Since frm[σ(si)] ⊆ ≺ [ψ], we have that Vz 6|= σ(si) for some z ∈ R (u) ⊆ R (w).

Proof that (∗∗) implies (∗): Let i and z as in (∗∗). SinceM′ determinesM, we also have V ′z 6|= σ(si).
If si happens to have a non-empty left side, then we are done, as the second disjunct of (∗) holds.
Otherwise, si has the form ⇒ ∆i. We prove that V ′w 6|= σ(⇒ ∆i). Let ϕ ∈ ∆i. We prove that
V ′w(σ(ϕ)) = −1. Since V ′z 6|= σ(⇒ ∆i), we have that V ′z(σ(ϕ)) = −1. M′ is a trimodel and wRz, and
so V ′w(σ(ϕ)) 6= 1. Now, σ(ϕ) ∈ frm[σ(si)] ⊆ ≺ [ψ] ⊆ supp(M) ⊆ supp(M′), and so V ′w(σ(ϕ)) 6= 0.
We therefore have V ′w(σ(ϕ)) = −1.

Next, a repeated application of Lemma 5.19 allows us to fully determine trimodels, in a similar
manner to the determination of trivaluations:

Lemma 5.20. Let G be an Int-≺-analytic ≺-directed calculus andM a G-legal trimodel. Then there
exists a G-legal full determination ofM.

Proof. For every trimodel M and formula ψ, Mψ denotes an arbitrary G-legal supp(M) ∪ {ψ}-
determination of M, if such exists. Otherwise, Mψ is undefined. Whenever M is G-legal and
≺ [ψ] ⊆ supp(M), Lemma 5.19 provides us with such a trimodel, in which case Mψ is defined. Let
ψ1, ψ2, . . . be an enumeration of L satisfying i < j whenever ψi ≺ ψj . For every i, denote the set
{ψ1, . . . , ψi} by Φ≤i (Φ≤0 = ∅).

LetM = 〈W,R,V〉 be a G-legal trimodel. Define a sequenceM0,M1, . . . of trimodels as follows:
M0 = M and for every i > 0,Mi = Mi−1

ψi
. We prove by induction on i thatMi is defined, and is a

G-legal Φ≤i-determination ofM, and also ofMi−1 (for i ≥ 1).

18



For i = 0, this trivially holds. Now let i > 0. By the induction hypothesis, Mi−1 is G-legal and
is a Φ≤i−1-determination of M. By the enumeration, ≺ [ψi] ⊆ Φ≤i−1 ⊆ supp(Mi−1). Thus, Mi is
defined, and is a G-legal supp(Mi−1) ∪ {ψi}-determination ofMi−1, and therefore also ofM. Also,
Φ≤i ⊆ supp(Mi), and thusMi−1 is actually a Φ≤i-determination ofMi−1 and ofM.

We now defineM′ = 〈W,R,V ′〉, a G-legal full determination ofM. For every ϕ ∈ L, let iϕ be the
index of ϕ in the enumeration. For every w ∈ W , define V ′w = λϕ ∈ L.V iϕw (ϕ), where V iϕ denotes the
trivaluation assignment ofMiϕ .

First, we show thatM′ is a trimodel. Suppose that V ′w(ϕ) = 1 and let u ∈ R (w). Then V iϕw (ϕ) = 1,
and sinceMiϕ is a trimodel, V iϕu (ϕ) = 1. Therefore, V ′u(ϕ) = 1. Next, we show thatM′ fully determines
M. For every ϕ ∈ L and w ∈ W , V ′w(ϕ) = V iϕw (ϕ) 6= 0, asMiϕ is Φ≤iϕ-determined. Also, for every
ϕ ∈ supp(M) and w ∈ W , V ′w(ϕ) = V iϕw (ϕ) = Vw(ϕ), as Miϕ determines M. Finally, let S / s be
a rule of G and σ a substitution. Let k = min {i | frm[σ(S ∪ {s})] ⊆ Φ≤i}. Then V ′w(ϕ) = Vkw(ϕ) for
every ϕ ∈ frm[σ(S ∪ {s})] and w ∈ W . Suppose that V ′w 6|= σ(s) for some w ∈ W . Then we must also
have Vkw 6|= σ(s). If S / s is positive, then either Vkw 6|= σ(s′) for some s′ ∈ S with an empty left side (and
hence V ′w 6|= σ(s′)), or Vku 6|= σ(s′) for some s′ ∈ S with a non-empty left side and u ∈ R (w) (and hence
V ′u 6|= σ(s′)). Otherwise, Vkw 6|= σ(s′) for some s′ ∈ S, and hence V ′w 6|= σ(s′).

As in the case of pure calculi, Theorem 5.4 is now obtained as a simple corollary of Lemma 5.20
and corollary 5.17.

6 Conclusion
We identified two general families of propositional sequent calculi, in which a generalized subformula
property is equivalent to cut-admissibility. The first is the family of pure calculi that are ≺-directed
for some prefinite and structural order ≺. The second is a family of intuitionistic calculi, obtained by
considering intuitionistic derivations in pure calculi that are ≺-directed. This result sheds light on the
relation between these two fundamental properties.

We conclude by outlining several directions for further research. A first interesting question concerns
the weak versions of cut-admissibility and analyticity. Similarly to the notions of strong and weak cut-
admissibility (see Section 2), one can distinguish between strong and weak Int-cut-admissibility, ≺-
analyticity, and Int-≺-analyticity. (Note that what we call here ≺-analyticity corresponds to strong ≺-
analyticity; where a calculus G is weakly ≺-analytic if `G s implies `≺G s.) Now, it is known that
for pure calculi, weak and strong cut-admissibility coincide, and that the same holds for ≺-analyticity
(see [21]). This is not the case, however, for intuitionistic calculi. For example, the calculus consisting
of the rules p1 ⇒ / ⇒ ◦p1 and p1 ⇒ / ◦ p1 ⇒ is weakly Int-≺0-analytic, but not Int-≺0-analytic. Also,
it admits weak but not strong Int-cut-admissibility. A question that is left for further research is whether
weak Int-≺-analyticity guarantees weak Int-cut-admissibility.

Second, the following questions regarding the relations between derivations and intuitionistic deriva-
tions are currently left open: Does ≺-analyticity imply Int-≺-analyticity? Does cut-admissibility imply
Int-cut-admissibility? Do either of the converses hold?

Finally, our approach should be further developed for more expressive languages, which include
quantifiers and modalities. For the former, the three-valued semantics should be elevated to three-valued
first-order structures. The main obstacle, however, is the fact that the usual subformula relation in a
first-order language is not prefinite, while our main construction requires enumerating formulas in a way
that respects the subformula relation. For modalities, we expect that the Kripke semantics used here
for intuitionistic calculi could be adapted for calculi with modalities. We note, however, that such an
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approach will have certain limitations, as some analytic calculi for modal logics (e.g., S5 and B [40, 33])
do not admit cut-admissibility.
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A Proof outline of Theorems 4.8, 4.13 and 4.14

A.1 Soundness
Call an inference step valid in a set of trivaluations if every trivaluation of this set that satisfies the
premises of the step, also satisfies its conclusion. Clearly, (ID) and (WEAK) are valid in the set of all
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trivaluations, and (CUT) is valid whenever the cut formula ϕ satisfies v(ϕ) ∈ {−1, 1}. Finally, every
application of a rule s1, . . . , sn / s of G must be valid in the set of G-legal trivaluations. Indeed, let
σ(s1)∪ c1, . . . , σ(sn)∪ cn / σ(s)∪ c1 ∪ . . .∪ cn be an application of this rule and v a G-legal trivaluation
such that v |= σ(si) ∪ ci for every 1 ≤ i ≤ n. Then either v |= ci for some 1 ≤ i ≤ n, or v |= σ(si)
for every 1 ≤ i ≤ n. In both cases, v |= σ(s) ∪ c1 ∪ . . . ∪ cn (in the first case this trivially holds, and
in the second it holds since v is G-legal). Using the above, the proof proceeds by usual induction on the
lengths of derivations.

A.2 Completeness
An ω-sequent is a pair 〈L,R〉 of (possibly infinite) sets of formulas, denoted L ⇒ R. For a set S of
(ordinary) sequents and an ω-sequent L ⇒ R, we write S `G L ⇒ R if there are finite Γ ⊆ L and
∆ ⊆ R such that S `G Γ ⇒ ∆. The notations `cf

G and `≺G, as well as other definitions regarding
sequents, are adapted to ω-sequents in the obvious way.

Let `∈
{
`G,`cf

G,`≺G
}

, S a set of sequents and s a sequent such that S 0 s. Call an ω-sequent L⇒ R
〈`, S〉-underivable if S 0 L ⇒ R. Call it 〈`, S〉-maximal if S ` L, ϕ ⇒ R for every ϕ ∈ L \ L and
S ` L⇒ ϕ,R for every ϕ ∈ L \ R. It is routine to extend s to a 〈`, S〉-maximal underivable ω-sequent
L ⇒ R. Define a trivaluation v as follows: v(ϕ) = 1 if ϕ ∈ L, v(ϕ) = −1 if ϕ ∈ R, and v(ϕ) = 0
otherwise.

First note that v is well defined, as L∩R = ∅ (otherwise, S ` L⇒ R). Clearly, v 6|= s, and for every
Γ⇒ ∆ ∈ S we have that S ` Γ⇒ ∆, which means that either Γ 6⊆ L or ∆ 6⊆ R, and so v |= Γ⇒ ∆.

We show that v is G-legal. Let S0 /Γ0 ⇒ ∆0 be a rule of G and σ a substitution. Suppose
that v |= σ(S0). Let us show that for all Γ ⇒ ∆ ∈ S0, we have S ` L, σ(Γ) ⇒ σ(∆), R. Let
Γ ⇒ ∆ ∈ S0. By our assumption, there exists either ϕ ∈ Γ such that v(σ(ϕ)) < 1 (and then σ(ϕ) /∈ L)
or ψ ∈ ∆ such that v(σ(ψ)) > −1 (and then σ(ψ) /∈ R). Since L ⇒ R is 〈`, S〉-maximal underivable,
S ` L, σ(Γ) ⇒ σ(∆), R. By applying S0 / s0, we obtain S ` L, σ(Γ0) ⇒ σ(∆0), R.4 L ⇒ R is
〈`, S〉-underivable, and hence there must be either ϕ ∈ Γ0 such that σ(ϕ) /∈ L (and then v(σ(ϕ)) < 1)
or ψ ∈ ∆0 such that σ(ψ) /∈ R (and then v(σ(ψ)) > −1). In other words, v |= σ(Γ0 ⇒ ∆0).

Next, we distinguish the following cases:

1. `= `G: we prove that v is fully determined. Otherwise, we would have some ϕ ∈ L\ (L∪R). Since
L⇒ R is 〈S,`G〉-maximal, we would have S `G L⇒ ϕ,R and S `G L, ϕ⇒ R. Applying (CUT),
we would then obtain S `G L⇒ R, which is a contradiction.

2. `= `cf
G: we show that v is frm[S]-determined in a similar manner, by taking ϕ from frm[S].

3. `= `≺G: we show that v is � [S ∪ {s}]-determined. This is also shown similarly, but requires some
additional arguments: Assume otherwise, and let ϕ ∈ � [S ∪ {s}] \ (L ∪ R). Since L ⇒ R is
〈S,`≺G〉-maximal, we have S `≺G L ⇒ ϕ,R and S `≺G L, ϕ ⇒ R. Thus, there are finite Γ1,Γ2 ⊆ L
and ∆1,∆2 ⊆ R, such that the sequent Γ1 ⇒ ϕ,∆1 is derivable from S in G using only formulas
from � [S ∪ {Γ1 ⇒ ϕ,∆1}], and Γ2, ϕ ⇒ ∆2 is derivable from S in G using only formulas from
� [S ∪ {Γ2, ϕ⇒ ∆2}]. Using (CUT), we get that the sequent Γ1,Γ2 ⇒ ∆1,∆2 is derivable from
S in G using only formulas from � [S ∪ {Γ1,Γ2 ⇒ ∆1,∆2}] ∪ � [ϕ]. Using weakening, together
with the fact that ϕ ∈ ≺ [S ∪ {s}], we get that the sequent (Γ1,Γ2 ⇒ ∆1,∆2) ∪ s is derivable
from S in G, using only formulas from � [S ∪ {(Γ1,Γ2 ⇒ ∆1,∆2) ∪ s}]. In other words, we have
S `≺G (Γ1,Γ2 ⇒ ∆1,∆2)∪ s. L⇒ R extends (Γ1,Γ2 ⇒ ∆1,∆2)∪ s, and thus we get a contradiction
to the fact that S 0≺G L⇒ R.
4When `=`≺G, this requires the assumption that G is ≺-ordered.
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B Proof outline of Theorem 5.15

B.1 Soundness
Like the above, the key point is to show that applications of rules of G are valid in G-legal trimodels.
Let

Γ′1, σ(Γ1)⇒ σ(∆1),∆′1, . . . ,Γ
′
n, σ(Γn)⇒ σ(∆n),∆′n

Γ′1, . . . ,Γ
′
n, σ(Γ0)⇒ σ(∆0),∆′1, . . . ,∆

′
n

be an application of a rule r = Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n /Γ0 ⇒ ∆0 of G, and suppose that
Vw 6|= Γ′1, . . . ,Γ

′
n, σ(Γ0) ⇒ σ(∆0),∆′1, . . . ,∆

′
n for some G-legal trimodel M = 〈W,R,V〉 and

w ∈ W . We show that M 6|= Γ′i, σ(Γi) ⇒ σ(∆i),∆
′
i for some 1 ≤ i ≤ n. If r is not positive,

then this is shown similarly to the soundness proof in Appendix A.1. Suppose that r is positive. Since
Vw 6|= Γ′1, . . . ,Γ

′
n, σ(Γ0)⇒ σ(∆0),∆′1, . . . ,∆

′
n, we have that Vw 6|= Γ′i ⇒ ∆′i for every 1 ≤ i ≤ n. Since

M is G-legal, we have some 1 ≤ i ≤ n such that either Γi = ∅ and Vw 6|= σ(Γi ⇒ ∆i), or Γi 6= ∅ and
Vw′ 6|= σ(Γi ⇒ ∆i) for some w′ ∈ R (w). In the first case we get that Vw 6|= Γ′i, σ(Γi) ⇒ σ(∆i),∆

′
i. In

the second, we have ∆′i = ∅ (since r is positive). Since Vw 6|= Γ′i ⇒, we have Vw(ϕ) = 1 for every ϕ ∈ Γ′i.
M is a trimodel, and thus Vw′(ϕ) = 1 for every ϕ ∈ Γ′i. We therefore have Vw′ 6|= Γ′i, σ(Γi)⇒ σ(∆i),∆

′
i.

B.2 Completeness for `GInt
and `cfGInt

Recall the definitions concerning ω-sequents (see appendix A.2), and adapt them to `GInt
and `cf

GInt
. Let

`∈
{
`GInt

,`cf
GInt

}
, S a set of sequents and s a sequent such that S 0 s. It is routine to extend s to a

〈`, S〉-maximal-underivable ω-sequent Ls ⇒ Rs.
Define a trimodel M = 〈W,R,V〉 as follows: W is the set of all 〈`, S〉-maximal-underivable ω-

sequents; (L ⇒ R)R(L′ ⇒ R′) iff L ⊆ L′; and for every L ⇒ R ∈ W and ϕ ∈ L, VL⇒R(ϕ) = 1 if
ϕ ∈ L, VL⇒R(ϕ) = −1 if ϕ ∈ R, and VL⇒R(ϕ) = 0 otherwise.
M is indeed a trimodel, asR is transitive and reflexive, and if ϕ ∈ L and (L⇒ R)R(L′ ⇒ R′) then

ϕ ∈ L′. Also,M 6|= s, andM |= S.
We prove that M is G-legal. Let S0 /Γ0 ⇒ ∆0 be a positive rule of G, σ a substitution and

L ⇒ R ∈ W . Suppose that VL⇒R 6|= σ(Γ0 ⇒ ∆0). Then VL⇒R(σ(ϕ)) = 1 for every ϕ ∈ Γ0, and
VL⇒R(σ(ψ)) = −1 for every ψ ∈ ∆0. This means that S 0 L, σ(Γ0)⇒ σ(∆0), R. Thus, we must either
have S 0 L, σ(Γ′) ⇒ σ(∆′) for some Γ′ ⇒ ∆′ ∈ S0 with Γ′ 6= ∅, or S 0 L ⇒ σ(∆′), R for some
⇒ ∆′ ∈ S0. In the first case, extend L, σ(Γ′) ⇒ σ(∆′) to a 〈`, S〉-maximal-underivable ω-sequent
L′ ⇒ R′. Clearly, L ⊆ L′, and VL′⇒R′ 6|= σ(Γ′ ⇒ ∆′). In the second, the 〈`, S〉-maximality of L ⇒ R
ensures that σ(∆′) ⊆ R, which means that VL⇒R 6|= σ(⇒ ∆′).

Next, let S0 /Γ0 ⇒ be a non-positive rule of G. Suppose that VL⇒R 6|= σ(Γ0) ⇒. We prove that
VL⇒R 6|= σ(Γ′ ⇒ ∆′) for some Γ′ ⇒ ∆′ ∈ S0. By our assumption, VL⇒R(σ(ϕ)) = 1 for every ϕ ∈ Γ0.
This means that σ(Γ0) ⊆ L. Now, since L ⇒ R ∈ W , we have S 0 L, σ(Γ0) ⇒ R. It follows
that S 0 L, σ(Γ′) ⇒ σ(∆′), R for some Γ′ ⇒ ∆′ ∈ S0. By the fact that L ⇒ R is 〈`, S〉-maximal-
underivable, we have that σ(Γ′) ⊆ L and σ(∆′) ⊆ R, which means that VL⇒R 6|= σ(Γ′ ⇒ ∆′).

Finally, similarly to the proof of Theorems 4.8 and 4.14, If `=`GInt
thenM is fully determined, and

if `=`cf
GInt

thenM is frm[S]-determined.

B.3 Completeness for `≺GInt

Let S be a set of sequents and s a sequent such that S 0≺GInt
s. Let F = � [S ∪ {s}]. For every set Q

of sequents and a sequent q, we write Q `FGInt
q if there is an intuitionistic derivation of q from Q in G
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in which only formulas from F occur. We call an ω-sequent L ⇒ R underivable if L ∪ R ⊆ F and
S 0FGInt

L ⇒ R; and maximal if S `FGInt
L, ϕ ⇒ R for every ϕ ∈ F \ L and S `FGInt

L ⇒ ϕ,R for
every ϕ ∈ F \R. It is routine to extend s to a maximal underivable ω-sequent Ls ⇒ Rs.

Define a trimodelM = 〈W,R,V〉 as follows: W is the set of all maximal underivable ω-sequents;
(L ⇒ R)R(L′ ⇒ R′) iff L ⊆ L′; and for every L ⇒ R ∈ W and ϕ ∈ L, VL⇒R(ϕ) = 1 if ϕ ∈ L,
VL⇒R(ϕ) = −1 if ϕ ∈ R, and VL⇒R(ϕ) = 0 otherwise.

The proof that M is a trimodel that satisfies S but not s is the same as in the completeness proof
for `GInt

and `cf
GInt

. We prove that supp(VL⇒R) = F for every L ⇒ R ∈ W , that is, L ∪ R = F (in
particular, this means M is F-determined). Let L ⇒ R ∈ W . By definition, we have L ∪ R ⊆ F .
Assume for contradiction that there exists ϕ ∈ F \ (L ∪ R). Since L ⇒ R is maximal and underivable,
we have both S `FGInt

L, ϕ ⇒ R and S `FGInt
L ⇒ ϕ,R. Using (CUT) on ϕ, we get S `FGInt

L ⇒ R, a
contradiction to L⇒ R ∈ W .

We prove that M is G-legal. Let S0 /Γ0 ⇒ ∆0 be a positive rule of G, σ a substitution and
L ⇒ R ∈ W . Suppose that VL⇒R 6|= σ(Γ0 ⇒ ∆0). Then σ(Γ0) ⊆ L and σ(∆0) ⊆ R, and
in particular, σ(Γ0), σ(∆0) ⊆ F . Since F is closed under ≺ (that is, � [F ] = F), we also have
≺ [σ(Γ0 ⇒ ∆0)] ⊆ F . Since G is ≺-ordered, frm[Γ′ ⇒ ∆′] ⊆ ≺ [Γ0 ⇒ ∆0] for every Γ′ ⇒ ∆′ ∈ S0,
and so σ(frm[Γ′ ⇒ ∆′]) ⊆ σ(≺ [Γ0 ⇒ ∆0]) ⊆ ≺ [σ(Γ0 ⇒ ∆0)] ⊆ F for every such Γ′ ⇒ ∆′, by the
structurality of ≺. Now, since σ(Γ0) ⊆ L and σ(∆0) ⊆ R, we have S 0FGInt

L, σ(Γ0) ⇒ σ(∆0), R.
Thus, we must either have S 0FGInt

L, σ(Γ′) ⇒ σ(∆′) for some Γ′ ⇒ ∆′ ∈ S0 with Γ′ 6= ∅, or
S 0FGInt

L ⇒ σ(∆′), R for some ⇒ ∆′ ∈ S0. In the first case, extend L, σ(Γ′) ⇒ σ(∆′) to a maximal
underivable ω-sequent L′ ⇒ R′. Clearly, L ⊆ L′, and VL′⇒R′ 6|= σ(Γ′ ⇒ ∆′). In the second, the
maximality of L⇒ R ensures that σ(∆′) ⊆ R, which means that VL⇒R 6|= σ(⇒ ∆′).

Next, let S0 /Γ0 ⇒ be a non-positive rule of G. Suppose that VL⇒R 6|= σ(Γ0) ⇒. We prove that
VL⇒R 6|= σ(Γ′ ⇒ ∆′) for some Γ′ ⇒ ∆′ ∈ S0. By our assumption, σ(Γ0) ⊆ L. Since L ⇒ R ∈ W ,
we have S 0FGInt

L, σ(Γ0)⇒ R. Similarly to the above, it follows that S 0FGInt
L, σ(Γ′)⇒ σ(∆′), R for

some Γ′ ⇒ ∆′ ∈ S0. By the fact that L ⇒ R is maximal and underivable, we have that σ(Γ′) ⊆ L and
σ(∆′) ⊆ R, which means that VL⇒R 6|= σ(Γ′ ⇒ ∆′).
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