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Abstract
Algebraic datatypes, and among them lists and trees, have attracted a lot of interest in auto-
mated reasoning and SatisfiabilityModulo Theories (SMT). Since its latest stable version, the
SMT-LIB standard defines a theory of algebraic datatypes, which is currently supported by
several mainstream SMT solvers. In this paper, we study this particular theory of datatypes
and prove that it is strongly polite, showing how it can be combined with other arbitrary
disjoint theories using polite combination. The combination method uses a new, simple, and
natural notion of additivity that enables deducing strong politeness from (weak) politeness.

Keywords Satisfiability Modulo Theories · Automated reasoning · Theory combination ·
Algebraic datatypes · Polite combination

1 Introduction

Algebraic datatypes such as records, lists, and trees are extremely common in many pro-
gramming languages. Reasoning about them is therefore crucial for modeling and verifying
programs. For this reason, various decision procedures for algebraic datatypes have been, and
continue to be developed and employed by formal reasoning tools such as theorem provers
and Satisfiability Modulo Theories (SMT) solvers. For example, the general algorithm of
[4] describes a decision procedure for datatypes suitable for SMT solvers. Consistently with
the SMT paradigm, [4] leaves the combination of datatypes with other theories to general
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combination methods, and focuses on parametric datatypes (or generic datatypes as they are
called in the programming languages community), where the interpretation of the “values"
is left uninterpreted.

The traditional combination method of Nelson and Oppen [22] is applicable for the com-
bination of this theory with many other theories, as long as the other theory is stably infinite (a
technical condition that intuitively amounts to the ability to extend every model to an infinite
one). Some theories of interest, however, are not stably infinite, the most notable one being
the theory of fixed-width bit-vectors, which is commonly used for modeling and verifying
both hardware and software. Further, many theories that are compounded from bit-vectors
and other theories are also not stably infinite, e.g., arrays/sets of bit-vectors. Combining these
theories with algebraic datatypes cannot be done using the Nelson–Oppen approach. To be
able to perform combinations with such theories, a more general combination method was
designed [23], which relies on polite theories. Roughly speaking, a theory is polite if: (i)
every model can be arbitrarily enlarged; and (ii) there is a witness, a function that trans-
forms any quantifier-free formula to an equivalent quantifier-free formula such that if the
original formula is satisfiable, the new formula is satisfiable in a “minimal” interpretation.
This notion was later strengthened to strongly polite theories [16], which also account for
possible arrangements of the variables in the formula, as well as arbitrary auxiliary variables.
Strongly polite theories can be combined with any other disjoint decidable theory, even if
that other theory is not stably infinite. While strong politeness was already proven for several
useful theories (such as equality, arrays, sets, multisets [23]), strong politeness of algebraic
datatypes remained an unanswered question.

Themain contribution of this paper is an affirmative answer to this question.While enlarg-
ing models of algebraic datatypes is trivial, the challenge lies with finding a witness function,
as well as minimal models for formulas that are produced by this function. We introduce a
witness function that essentially “guesses" the right constructors of variables that do not have
an explicit constructor in the formula. We show how to “shrink" any model of a formula that
is the output of this function into a minimal model. The witness function, as well as the model
construction, can be used by any SMT solver for the theory of datatypes that implements
polite theory combination. We introduce and use the notion of additive witnesses, that offer a
sufficient condition for a polite theory to be also strongly polite. This allows us to only prove
politeness using our witness function, and conclude strong politeness, since our function is
indeed additive. We further study the theory of datatypes beyond politeness and extend a
decision procedure for a subset of this theory presented in [11] to support the full theory.

RelatedWork

The theory investigated in this paper is that of algebraic datatypes, as defined by the SMT-
LIB 2 standard [6]. Detailed information on this theory, including a decision procedure
and related work, can be found in [4]. Later work extends this procedure to handle shared
selectors [25] and co-datatypes [24]. More recent approaches for solving formulas about
datatypes use, e.g., theorem provers [17], variant satisfiability [14, 21], and reduction-based
decision procedures [1, 8, 15].

In this paper, we focus on polite theory combination. Other combination methods for
non stably infinite theories include shiny theories [32], gentle theories [13], and parametric
theories [19]. The politeness property was introduced in [23], and extends the stable infinite-
ness assumption initially used by Nelson and Oppen. Polite theories can be combined à la
Nelson–Oppen with any arbitrary decidable theory. Later, a flaw in the original definition of
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politeness was found [16], and a corrected definition (here called strong politeness) was intro-
duced. Polite combination is implemented in the SMT-solver cvc5 (the successor of CVC4
[5]) that also includes a solver for the theory of algebraic datatypes. Strongly polite theories
were further studied in [10], where the authors proved their equivalence with shiny theories.
The relation between politeness and strong politeness was investigated in [27], where it was
shown that the latter is a strictly stronger notion than the former.

More recently, it was proved [11] that a general family of datatype theories extended with
bridging functions is strongly polite. This includes the theories of lists/trees with length/size
functions. The authors also proved that a class of axiomatizations of datatypes is strongly
polite. In contrast, in this paper, we focus on standard interpretations, as defined by the SMT-
LIB 2 standard, without any size function, but including selectors and testers. One can notice
that the theory of standard lists without the length function and more generally the theory
of finite trees without the size function were not mentioned as polite in a recent survey [9].
Actually, it was unclear to the authors of [9] whether these theories are strongly polite. This
is now clarified in the current paper.

Outline

The paper is organized as follows. Section 2 provides the necessary notions from first-order
logic, algebraic datatypes, and polite theories. Section 3 discusses the difference between
politeness and strong politeness and introduces a useful condition for their equivalence.
Section 4 contains the main result of this paper, namely that the theory of algebraic datatypes
is strongly polite. Section 5 studies various axiomatizations of the theory of datatypes, and
relates them to politeness. Section 6 concludes with directions for further research.1

2 Preliminaries

2.1 Signatures and Structures

We briefly review usual definitions of many-sorted first-order logic with equality (see [12,
31] for more details). Let S denote a set of sorts. An S-sorted set A associates non-empty
pairwise disjoint sets to the sorts of S. That is, A is a function from S to P(X) \ {∅} for
some set X , such that A(σ )∩ A(σ ′) = ∅ whenever σ $= σ ′, σ, σ ′ ∈ S. We use Aσ to denote
A(σ ) for every σ ∈ S. When there is no ambiguity, we sometimes treat sorted sets as sets
(e.g., when writing expressions like x ∈ A for x ∈ ⋃

σ∈S Aσ ). Given a set S (of sorts), the
canonical S-sorted set, denoted [[S]], satisfies [[S]]σ = {σ } for every σ ∈ S. Amany-sorted
signature " consists of a set S" (of sorts), a set F" of function symbols, and a set P"

of predicate symbols. Function symbols have arities of the form σ1 × · · · × σn → σ , and
predicate symbols have arities of the form σ1 × · · ·× σn , with σ1, . . . , σn, σ ∈ S" . For each
sort σ ∈ S" , the logic includes an equality symbol =σ of arity σ × σ , whose interpretation
is fixed to be the identity. We denote it by = when σ is clear from context. " is called finite
if S" , F" , and P" are finite.

We assume an underlying S"-sorted set of variables. Terms, formulas, and literals are
defined in the usual way. For a"-formula φ and a sort σ , we denote the set of free variables in

1 A preliminary version of this work was published in the proceedings of IJCAR 2020 [26]. The current article
extends the original versions with complete proofs, as well as a discussion and results regarding existential
theories (see Proposition 2). Additionally, Sect. 5 is extended to provide a more comprehensive treatment of
axiomatizations for trees.
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φ of sort σ by varsσ (φ). This notation naturally extends to varsS(φ) when S is a set of sorts.
A sentence is a formula without free variables. We denote byQF(") the set of quantifier-free
formulas of ". A "-literal is called flat if it has one of the following forms: x = y, x $= y,
x = f (x1, . . . , xn), P(x1, . . . , xn), or ¬P(x1, . . . , xn) for some variables x, y, x1, . . . , xn ,
function symbol f , and predicate symbol P from ".

A "-structure is a many-sorted structure for ", without interpretation of variables. It
consists of a S"-sorted set A that interprets the sort symbols of " as sets, and interpretations
of the function and predicate symbols of ". For any "-term α, αA denotes the interpretation
of α in A. In particular, every function symbol f of arity σ1 × · · · × σn → σ is interpreted
as a function in σA

1 × · · ·× σA
n → σA, and every predicate symbol P of arity σ1 × · · ·× σn

is interpreted as a subset of σA
1 × · · · × σA

n .
A "-interpretation A is an extension of a "-structure with interpretations to some set

of variables. When α is a set of "-terms, αA =
{
tA | t ∈ α

}
. Similarly, σA, f A and PA

denote the interpretation of σ , f and P inA. Satisfaction is defined as usual.A |( ϕ denotes
that A satisfies ϕ.

A "-theory T is a class of "-structures. A "-interpretation whose variable-free part is
in T is called a T -interpretation. A "-formula φ is T -satisfiable if A |( φ for some T -
interpretation A. Two formulas φ and ψ are T -equivalent if they are satisfied by the same
class of T -interpretations. Let "1 and "2 be signatures, T1 a "1-theory, and T2 a "2-theory.
The combination of T1 and T2, denoted T1 ⊕ T2, is the class of "1 ∪ "2-structures A such
that A"1 is in T1 and A"2 is in T2, where A"i is the restriction of A to "i for i ∈ {1, 2}.

2.2 The SMT-LIB 2 Theory of Datatypes

In this section, we formally define the SMT-LIB 2 theory of algebraic datatypes. The for-
malization is based on [6], but is adjusted to suit our investigation of politeness.

Definition 1 ("-Trees) Given a signature ", a set S ⊆ S" and an S-sorted set A, the set of
"-trees over A of sort σ ∈ S" is denoted by Tσ (", A) and is inductively defined as follows:

– Tσ,0(", A) = Aσ if σ ∈ S and ∅ otherwise.
– Tσ,i+1(", A) = Tσ,i (", A) ∪ {c(t1, . . . , tn) | c : σ1 × · · · × σn → σ ∈ F", t j ∈

Tσ j ,i (", A) for j = 1, . . . , n} for each i ≥ 0.

Then Tσ (", A) = ⋃
i≥0 Tσ,i (", A). The depth of a "-tree over A is inductively defined by

depth(a) = 0 for every a ∈ A, depth(c) = 1 for every 0-argument function symbol c ∈ F" ,
and depth(c(t1, . . . , tn)) = 1+max(depth(t1), . . . , depth(tn)) for every n-argument function
symbol c of ".

The idea behind Definition 1 is that Tσ (", A) contains all ground σ -sorted terms con-
structed from the elements of A (considered as constant symbols) and the function symbols
of ".

Example 1 Let" be a signature with two sorts, elem and struct, and whose function symbols
are b of arity struct, and c of arity (elem× struct× struct) → struct. Consider the {elem}-
sorted set A = {a}. Telem(", A) is the singleton A = {a} and the "-tree a is of depth 0.
Tstruct(", A) includes infinitely many "-trees, such as b of depth 1, c(a, b, b) of depth 2,
and c(a, c(a, b, b), b) of depth 3.

Definition 2 (Datatypes Signature) A finite signature " is called a datatypes signature if
S" is the disjoint union of two sets of sorts S" = Elem" - Struct" , F" is the disjoint
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union of two sets of function symbols F" = CO" -SE" , such that every c ∈ CO" has arity
σ1 × · · ·× σn → σ with σ ∈ Struct" , SE" = {sc,i | c ∈ CO", c : σ1 × · · ·× σn → σ, 1 ≤
i ≤ n} where for each c ∈ CO" with c : σ1 × · · · × σn → σ and for each i = 1, . . . , n, sc,i
is a function symbol of arity σ → σi , and P" = {isc | c ∈ CO", c : σ1 × · · · × σn → σ }
where for each c ∈ CO" with c : σ1 × · · · × σn → σ , isc is a predicate symbol of arity σ .
We denote by "|CO the signature with the same sorts as ", CO" as set of function symbols,
and an empty set of predicate symbols. We further require the following well-foundedness
requirement for " to be called a datatypes signature: Tσ ("|CO, [[Elem"]]) $= ∅ for any
σ ∈ Struct" .

From now on, we omit the subscript " from the above notations (e.g., when writing
[[Elem]] rather than [[Elem"]] and CO rather than CO") whenever " is clear from the
context. Notice that in Definition 2, the well-foundedness requirement ensures that the set
of "|CO-trees of sort σ over [[Elem]] is not empty for every σ ∈ Struct" . The choice of
[[Elem]] is not essential here, and the definition remains equivalent if [[Elem]] is replaced
by any Elem-sorted set that is non-empty for each sort. The set [[Elem]] has been chosen
since it is a minimal such Elem-sorted set.

In accordance with SMT-LIB 2, we call the elements of CO constructors, the elements of
SE selectors, and the elements of P testers. Constructors that take no arguments are called
nullary. In what follows, " denotes an arbitrary datatypes signature.

In the next example, we review some common datatypes signatures.

Example 2 The signature "list has two sorts, elem and list. Its function symbols are cons of
arity (elem×list) → list, nil of arity list, car of arity list → elem and cdr of arity list → list.
Its predicate symbols are isnil and iscons, both of arity list. It is a datatypes signature, with
Elem = {elem}, Struct = {list}, CO = {nil, cons} and SE = {car, cdr}. It is often used to
model lisp-style linked lists. car represents the head of the list and cdr represents its tail. nil
represents the empty list. "list is well founded as Tlist("list |CO, [[Elem]]) includes nil.

The signature "pair also has two sorts, elem and pair. Its function symbols are pair of
arity (elem×elem) → pair and first and second of arity pair → elem. Its predicate symbol
is ispair of arity pair. It is a datatypes signature, with Elem = {elem}, Struct = {pair},
CO = {pair}, and SE = {first, second}. It can be used to model ordered pairs, together
with projection functions. It is well founded as Tpair("pair |CO, [[Elem]]) is not empty (as
[[Elem]] is not empty).

The signature "lp has three sorts, elem, pair and list, with Elem = {elem} and Struct =
{pair, list}. Its function symbols are cons of arity (pair × list) → list, car of arity list →
pair, as well as nil, cdr, first, second with arities as above. Its predicate symbols are ispair ,
iscons and isnil , with arities as above. It can be used to model lists of ordered pairs. Similarly
to the above signatures, it is a datatypes signature.

Next, we distinguish between finite datatypes (e.g., records) and inductive datatypes (e.g.,
lists).

Definition 3 (Inductive and Finite Sorts) A sort σ ∈ Struct is called finite if
Tσ ("|CO, [[Elem]]) is finite and is called inductive otherwise.

We denote the set of inductive sorts in " by Ind(") and the set of its finite sorts by
Fin("). Note that if σ is inductive, then according to Definitions 1 and 3 we have that for
any natural number i , there exists a natural number i ′ > i such that Tσ,i ′("|CO, [[Elem]]) $=
Tσ,i ("|CO, [[Elem]]). Further, for any natural number d and every Elem-sorted set D there
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exists a natural number i ′ such that Tσ,i ′("|CO, D) contains an elementwhose depth is greater
than d .

Example 3 list is inductive in "list and "lp. pair is finite in "pair and "lp.

Finally, we define datatypes structures and the theory of algebraic datatypes.

Definition 4 (Datatypes Structure) Let" be a datatypes signature and D anElem-sorted set.
A "-structure A is said to be a datatypes "-structure generated by D if:

– σA = Tσ ("|CO, D) for every sort σ ∈ S" ,
– cA(t1, . . . , tn) = c(t1, . . . , tn) for every c ∈ CO of arity (σ1 × · · · × σn) → σ and

t1 ∈ σA
1 , . . . , tn ∈ σA

n ,
– sAc,i (c(t1, . . . , tn)) = ti for every c ∈ CO of arity (σ1× · · ·×σn) → σ , t1 ∈ σA

1 , . . . , tn ∈
σA
n and 1 ≤ i ≤ n,

– isAc =
{
c(t1, . . . , tn) | t1 ∈ σA

1 , . . . , tn ∈ σA
n

}
for every c ∈ CO of arity (σ1 × · · · ×

σn) → σ .

A is said to be a datatypes "-structure if it is a datatypes "-structure generated by D for
some Elem-sorted set D. The "-theory of datatypes, denoted T" is the class of datatypes
"-structures.

Notice that the interpretation of selector functions sc,i when applied to terms that are
constructed using a constructor different than c is not fixed and can be set arbitrarily in
datatypes structures, consistently with SMT-LIB 2.

Example 4 If A is a datatypes "list-structure then listA is the set of terms constructed from
elemA and cons, plus nil. If elemA is the set of natural numbers, then listA contains, e.g., nil,
cons(1, nil), and cons(1, cons(1, cons(2, nil))). These correspond to the lists [] (the empty
list), [1] and [1, 1, 2], respectively.

IfA is a datatypes"pair-structure then pairA is the set of terms of the form pair(a, b)with
a, b ∈ elemA. If elemA is again interpreted as the set of natural numbers, pairA includes, for
example, the terms pair(1, 1) and pair(1, 2), that correspond to (1, 1) and (1, 2), respectively.
Notice that in this case, pairA is an infinite set even though pair is a finite sort (in terms of
Definition 3).

Datatypes "lp-structures with the same interpretation for elem include the terms nil,
cons(pair(1, 1), nil), and cons(pair(1, 1), cons(pair(1, 2), nil)) in the interpretation for list
that correspond to [], [(1, 1)] and [(1, 1), (1, 2)], respectively. If we rename elem in the
definition of "list to pair, we get that T"lp = T"list ⊕ T"pair .

2.3 Polite Theories

Given two theories T1 and T2, a combination method à la Nelson–Oppen provides a modular
way to decide T1 ⊕ T2-satisfiability problems using the satisfiability procedures known for
T1 and T2. Assuming that T1 and T2 have disjoint signatures (except that they share sorts) is
not sufficient to get a complete combination method for deciding any T1 ⊕ T2-satisfiability
problem φ1 ∧ φ2 where φi is a Ti -satisfiability problem for i = 1, 2. The reason is that
T1 and T2 may share sorts, and this implies the existence of shared formulas built over the
corresponding equality symbols and the finite set of variables SV shared by φ1 and φ2. To
be complete, T1 and T2 must agree on the cardinality of their respective models, and there
must be an agreement between T1 and T2 on the interpretation of shared formulas. These two
requirements can be fulfilled, based on the following definitions:

123



Polite Combination of Algebraic Datatypes

Definition 5 (Stable Infiniteness) Given a signature " and a set S ⊆ S" , we say that a
"-theory T is stably infinite with respect to S if every quantifier-free "-formula that is T -
satisfiable is also T -satisfiable by a T -interpretation A in which σA is infinite for every
σ ∈ S.

Definition 6 (Arrangement) Let " be a signature, S ⊆ S" , V be a finite set of variables
whose sorts are in S and {Vσ | σ ∈ S} the partition of V such that Vσ is the set of variables
of sort σ in V . We say that a formula δ is an arrangement of V if δ = ∧

σ∈S(
∧

(x,y)∈Eσ
(x =

y) ∧ ∧
(x,y)/∈Eσ

(x $= y)), where Eσ is some equivalence relation over Vσ for each σ ∈ S.

Assume that T1 and T2 are two signature-disjoint theories with the property of being stably
infinite w.r.t. their shared sorts. Under this assumption, T1 and T2 can agree on an infinite
cardinality, and guessing an arrangement of the finite set of shared variables SV suffices to
get an agreement on the interpretation of shared formulas.

In this paper, we are interested in an asymmetric disjoint combination where T1 and T2
are not both stably infinite. In this scenario, one theory can be arbitrary. As a counterpart, the
other theory must be more than stably infinite: it must be strongly polite, meaning that it is
always possible to increase the cardinality of a model and to have a model whose cardinality
is finite.

In the following, we decompose the politeness definition from [16, 23] in order to dis-
tinguish between politeness and strong politeness (in terms of [10]) in various levels of the
definition. In what follows, " is an arbitrary (many-sorted) signature, S ⊆ S" , and T is a
"-theory.

Definition 7 (Smooth) The theory T is smooth w.r.t. S if for every quantifier-free formula
φ, T -interpretation A that satisfies φ, and function κ from S to the class of cardinals such
that κ(σ ) ≥

∣∣σA∣∣ for every σ ∈ S, there exists a T -interpretation A′ that satisfies φ with∣∣∣σA′
∣∣∣ = κ(σ ) for every σ ∈ S.

In definitions introduced above, as well as below, we often identify singletons with their
single elements when there is no ambiguity (e.g., when saying that a theory is smooth w.r.t.
a sort σ ).

We now introduce some concepts in order to define finite witnessability.

Definition 8 (Finitely Witnessable) Let φ be a quantifier-free "-formula and A a "-
interpretation. We say that A finitely witnesses φ for T w.r.t. S (or, is a finite witness of
φ for T w.r.t. S), if A is a T -interpretation, A |( φ, and σA = varsσ (φ)A for every σ ∈ S.

We say that φ is finitely witnessed for T w.r.t. S if it is either T -unsatisfiable or it has a
finite witness for T w.r.t. S. We say that φ is strongly finitely witnessed for T w.r.t. S if for
any set of variables V whose sorts are in S, and any arrangement δV of V , φ ∧ δV is finitely
witnessed for T w.r.t. S.

We say that a function wtn : QF(") → QF(") is a (strong) witness for T w.r.t. S
if for every φ ∈ QF(") we have that: 1. φ and ∃ −→w . wtn(φ) are T -equivalent for −→w =
vars(wtn(φ)) \ vars(φ); and 2. wtn(φ) is (strongly) finitely witnessed for T w.r.t. S.2

The theory T is (strongly) finitely witnessable w.r.t. S if there exists a (strong) witness for
T w.r.t. S which is computable.

Definition 9 (Polite) T is called (strongly) polite w.r.t. S if it is smooth and (strongly) finitely
witnessable w.r.t. S.

2 We note that in practice, the new variables in wtn(φ) are assumed to be fresh not only with respect to φ,
but also with respect to the formula from the second theory being combined.
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Finally, we recall the following theorem from [16].

Theorem 1 ([16]) Let "1 and "2 be signatures and let S = S"1 ∩ S"2 . If T1 is a "1-theory
strongly polite w.r.t. S1 ⊆ S"1 , T2 is a"2-theory strongly polite w.r.t. S2 ⊆ S"2 , and S ⊆ S2,
then T1 ⊕ T2 is strongly polite w.r.t. S1 ∪ (S2 \ S).

3 AdditiveWitnesses

It was shown in [16] that politeness is not sufficient for the proof of the polite combination
method from [23]. Strong politeness was introduced to fix the problem. In this section, we
offer a simple (yet useful) criterion for the equivalence of the two notions. Throughout this
section, unless stated otherwise, " and S denote an arbitrary signature and a subset of its set
of sorts, and T , T1, T2 denote arbitrary "-theories.

The following example, which is based on [16] using notions of the current paper, shows
that strong and non-strong witnesses are different. Let "0 be a signature with a single sort
σ and no function or predicate symbols (except =σ ), and T0 the "0-theory consisting of
all "0-structures A with

∣∣σA∣∣ ≥ 2. It was shown in [16] that the function wtn defined by
wtn(φ) = (φ ∧ w1 = w1 ∧ w2 = w2) for fresh w1, w2 is a witness for T0 w.r.t. σ , but not
a strong one. In fact, T0 is also strongly polite since the function wtn′(φ) = φ ∧ w1 $= w2
for fresh w1, w2 is a strong witness for T0 w.r.t. σ . This was shown in [16].

We introduce the notion of additivity, which ensures that the witness is able to “absorb"
arrangements and thus lift politeness to strong politeness.

Definition 10 (Additivity) Let f : QF(") → QF("). We say that f is S-additive for T if
f ( f (φ)∧ ϕ) and f (φ)∧ ϕ are T -equivalent and have the same set of S-sorted variables for
every φ,ϕ ∈ QF("), provided that ϕ is a conjunction of flat literals such that every term in ϕ

is a variable whose sort is in S. When T is clear from the context, we say that f is S-additive.
We say that T is additively finitely witnessable w.r.t. S if there exists a witness for T w.r.t.
S which is both computable and S-additive. T is said to be additively polite w.r.t. S if it is
smooth and additively finitely witnessable w.r.t. S.

We show that additive witnesses are strong:

Proposition 1 Let wtn be a witness for T w.r.t. S. If wtn is S-additive then it is a strong
witness for T w.r.t. S.

Proof Let φ ∈ QF("). We prove that wtn(φ) is strongly finitely witnessed for T w.r.t.
S. Let V be a set of variables of sorts in S and δV an arrangement of V . We prove that
wtn(φ) ∧ δV is finitely witnessed for T w.r.t. S. Suppose it is T -satisfiable. Then since
wtn is S-additive and δV is a conjunction of flat literals that contains only variables of
sorts in S as terms, wtn(wtn(φ) ∧ δV ) is also T -satisfiable. wtn is a witness for T w.r.t. S,
and hence wtn(wtn(φ) ∧ δV ) has a finite witness A for T w.r.t. S. By T -equivalence, A |(
wtn(φ)∧δV . Since both formulas have the same set of S-variables,A is also a finite witness of
wtn(φ) ∧ δV . 23

Corollary 1 An additively polite theory w.r.t. S is strongly polite w.r.t. S.

The theory T0 from above is additively finitely witnessable w.r.t. σ , even though wtn′

is not σ -additive. However, it is possible to define a new witness for T0 w.r.t. σ , say wtn′′,
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which is σ -additive.wtn′′ is defined by:wtn′′(φ) = φ if φ is a conjunction that includes some
disequality x $= y for some x, y. Otherwise, wtn′′(φ) = wtn′(φ).

The following definition generalizes the theory T0.

Definition 11 (Existential Theory)We say a"-theory T is existential if there exists a sentence
of the form φ = ∃x .ϕ where ϕ is quantifier-free, such that T consists of all the "-structures
that satisfy φ.

T0 is an existential theory, with the sentence ∃x, y . x $= y. Similarly, minimal finite
cardinality constraints can be axiomatized with an existential sentence. The construction of
wtn′′ above can be generalized to any existential theory. Such theories are also smooth w.r.t.
any set of sorts and so existential theories are additively (and thus strongly) polite:

Proposition 2 If T is existential then it is strongly polite w.r.t. S.

Proof Let ϕ be the formula whose existential closure defines T . Define a function wtnT by

wtnT (φ) =
{

φ if φ = φ′ ∧ ϕ′

φ ∧ ϕ′′ otherwise

where φ′ is a quantifier-free formula, ϕ′ is obtained from ϕ by replacing its variables with
variables not in vars(φ′), and ϕ′′ is obtained from ϕ by replacing its variables with variables
not in vars(φ). By construction, wtnT is S-additive: once an instance of ϕ′ was added to
the formula, further applications of wtnT will not change the input formula. wtnT is also a
witness for T w.r.t. S: if wtnT (φ) = φ then the equivalence requirement is trivial. Otherwise,
φ is T -equivalent to ∃w.wtnT (φ), wherew are the fresh variables that were introduced, since
the latter only adds an existential formula that is T -valid. Further, if we restrict the domain of
a T -interpretation that satisfies wtnT (φ), we still obtain a T -interpretation, as the existential
closure of ϕ logically follows from any instance of ϕ.

For smoothness, let φ be a quantifier-free formula, A a T -interpretation that satisfies φ,
and κ a function as in Definition 7. Since T is defined by the existential closure of a quantifier-
free formula ϕ, augmenting σA for each σ ∈ S so that its cardinality matches κ(σ ) results
in another T -interpretation satisfying φ. 23

The notion of additive witnesses is useful for proving that a polite theory is strongly polite.
In particular, the witnesses for the theories of equality, arrays, sets, and multisets from [23]
are all additive, and so strong politeness of these theories follows from their politeness. The
same will hold later, when we conclude strong politeness of theories of algebraic datatypes
from their politeness.

4 Politeness for the SMT-LIB 2 Theory of Datatypes

Let " be a datatypes signature with S" = Elem - Struct and F" = CO - SE . In this
section, we prove that T" is strongly polite with respect to Elem. In Sect. 4.1, we consider
theories with only inductive sorts, and consider theories with only finite sorts in Sect. 4.2.
We combine them in Sect. 4.3, where arbitrary theories of datatypes are considered. This
separation is only needed for finite witnessability, but not for smoothness:

Lemma 1 T" is smooth w.r.t. Elem.
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Proof Let φ be a quantifier-free " formula, and let A be a T"-interpretation that satisfies
φ. Let κ be a function from Elem to the class of cardinals such that κ(σ ) ≥

∣∣σA∣∣ for every
σ ∈ Elem. Then let A′ be augmented from A by adding elements to σA to match κ(σ ).
This is possible because the sorts of Elem are never the range of any constructor. Such anA′

exists so that the interpretations of variables and selectors in φ remain intact, and for such
A′, we have A′ |( φ. 23

4.1 Inductive Datatypes

In this section, we assume that all sorts in Struct are inductive.
To prove finite witnessability, we now introduce an additive witness function. Following

arguments from [23], it suffices to define the witness only for conjunctions of flat literals. A
complete witness can then use the restricted one by first transforming the input formula to
flat DNF form and then creating a disjunction where each disjunct is the result of applying
the witness on the corresponding disjunct. Similarly, it suffices to show thatwtn(φ) is finitely
witnessed forφ which is a conjunction of flat literals. Essentially, ourwitness guesses possible
constructors for variables whose constructors are not explicit in the input formula.

Definition 12 (A Witness for T") Let φ be a quantifier-free conjunction of flat "-literals.
wtni (φ) is obtained from φ by performing the following steps:

1. For any literal of the form y = sc,i (x) such that x = d(−→ud ) does not occur in φ for any d
and −→ud , we conjunctively add x = c(−→u1 , y,−→u2) ∨ (

∨
d $=c,d∈CO x = d(−→ud )) where u1 is

a list of i-1 fresh variables, u2 is a list of n− i fresh variables with n being the number of
arguments of c, ud is a list of m fresh variables with m being the number of arguments
of d for each d , and y is a fresh variable. All fresh variables are sorted according to the
arities of c and the d’s.

2. For any literal of the form isc(x) such that x = c(−→u ) does not occur in φ for any −→u , we
conjunctively add x = c(−→u ) with fresh −→u .

3. For any literal of the form¬isc(x) such that x = d(−→ud ) does not occur in φ for any d $= c
and −→ud , we conjunctively add

∨
d $=c x = d(−→ud ), with fresh −→ud .

4. For any sort σ ∈ Elem such that φ does not include a variable of sort σ we conjunctively
add a literal x = x for a fresh variable x of sort σ .

Example 5 Let φ be the "list-formula y = cdr(x) ∧ y′ = cdr(x) ∧ iscons(y). wtni (φ) is
φ ∧ (x = nil∨ x = cons(e, y))∧ (x = nil∨ x = cons(e′, y′))∧ y = cons(e′′, z)∧ e′′′ = e′′′

where e, e′, e′′, e′′′, z are fresh.

in Definition 12, Item 1 guesses the constructor of the argument for the selector. Items 2
and 3 correspond to the semantics of testers. Item 4 is meant to ensure that we can construct a
finite witness with non-empty domains. The requirement for absence of literals before adding
literals or disjunctions to φ is used to ensure additivity of wtni . And indeed:

Lemma 2 wtni is Elem-additive for T" .

Proof For input formulas that are conjunctions of flat literals, this follows from the construc-
tion of wtni . For arbitrary quantifier-free formulas, as mentioned before Definition 12, wtni
is extended from conjunctions of flat literals to arbitrary quantifier-free formulas by trans-
forming the input formula to flat DNF form and then applying the witness on each disjunct of
the DNF, taking the disjunction of these applications. We prove that this extension preserves
additivity.
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Let φ be a quantifier-free"-formula, D1∨. . .∨Dm its flat DNF form, and ϕ a conjunction
of flat literals such that every term in ϕ is a variable whose sort is in Elem. By the above,
wtni (wtni (φ)∧ϕ) = wtni (wtni (D1∨. . .∨Dm)∧ϕ) = wtni ((wtni (D1)∨. . .∨wtni (Dm))∧ϕ).
For each 1 ≤ i ≤ m, let E1

i ∨ . . . ∨ Eki
i be the flat DNF form of wtni (Di ). Since wtni does

not introduce non-flat literals, no new variables are introduced in the transformation from
wtni (Di ) to E1

i ∨. . .∨Eki
i , but only propositional transformations are employed. The equation

list above can continue with wtni ((E1
1 ∧ ϕ) ∨ . . . ∨ (Ekm

m ∧ ϕ)) = wtni (E1
1 ∧ ϕ) ∨ . . . ∨

wtni (E
km
m ∧ ϕ). Now, for each 1 ≤ i ≤ m and 1 ≤ j ≤ ki , E

j
i is a conjunction of flat literals

in the DNF form of wtni (Di ). By the construction of wtni , each such E j
i ∧ϕ does not satisfy

any of the preconditions inwtni for the addition of any formula: the literals already exist in E j
i

after the first application ofwtni over Di . In addition, ϕ does not contain any constructors and
testers. Also, each conjunction in the DNF includes at least one variable of each Elem-sort.
Thuswtni (E

j
i ∧ϕ) = E j

i ∧ϕ. Thismeans thatwtni (wtni (φ)∧ϕ) = (E1
1∧ϕ)∨. . .∨(Ekm

m ∧ϕ).
Similarly, wtni (φ) ∧ ϕ = (wtni (D1) ∨ . . .wtni (Dm)) ∧ ϕ, which is logically equivalent

to (E1
1 ∨ . . . ∨ Ekm

m ) ∧ ϕ, and hence to (E1
1 ∧ ϕ) ∨ . . . ∨ (Ekm

m ∧ ϕ), which by the above
is equivalent to wtni (wtni (φ) ∧ ϕ). Further, since the second application of wtni does not
introduce anything new, the set of Elem-variables is the same in both formulas.

23
Further, the equivalence constraint is satisfied:

Lemma 3 Let φ be a conjunction of flat literals. φ and ∃−→w . ) are T"-equivalent, where
) = wtni (φ) and

−→w = vars()) \ vars(φ).
Proof Each variable in−→w occurs exactly once in). Let)′ be obtained from∃−→w .) by pushing
each existential quantifier to the literal that contains its corresponding quantified variable.
Clearly, ∃−→w ) and )′ are logically equivalent, and in particular they are T"-equivalent. )′

contains all the conjuncts of φ as top-level conjuncts. Hence clearly every T"-interpretation
that satisfies )′ also satisfies φ. For the converse, let A be a T"-interpretation that satisfies
φ and * a top-level conjunct of )′.
– If * is also a literal of φ then A |( *.
– If * corresponds to a formula that was added by Item 1 of Definition 12, then it has

the form (∃−→u1 y−→u2 .x = c(−→u1 , y,−→u2)) ∨ (
∨

d $=c ∃−→ud .x = d(−→ud )) and y = sc,i (x) is a
literal of φ. A |( y = sc,i (x). If A |( isc(x) then it must satisfy the first disjunct of *.
Otherwise, A must satisfy one of the other disjuncts. In both cases, A |( *.

– If * corresponds to a formula that was added by Item 1 of Definition 12 then it has the
form ∃−→u .x = c(−→u ) and isc(x) is a literal of φ. SinceA |( isc(x), wemust haveA |( *.

– If * corresponds to a formula that was added by Item 2 of Definition 12 then it has
the form

∨
d $=c ∃−→u .x = d(−→u ) and ¬isc(x) is in φ. Since A $|( isc(x), we must have

A |( *.
– If * corresponds to a formula that was added by Item 3 then it is trivially satisfied.

23
The remainder of this section is dedicated to the proof of the following lemma:

Lemma 4 (Finite Witnessability) Let φ be a conjunction of flat literals. Then, ) = wtni (φ)
is finitely witnessed for T" with respect to Elem.

Suppose that ) is T"-satisfiable, and let A be a satisfying T"-interpretation. We define
a T"-interpretation B as follows and then show that B is a finite witness of ) for T" w.r.t.
Elem.
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4.1.1 Construction ofB

We start by defining an interpretation B. For every σ ∈ Elem we set:

σB = varsσ ())A (1)

For every variable e ∈ varsσ ()) with σ ∈ Elem, we set:

eB = eA (2)

The interpretations of Struct-sorts, testers, and constructors are uniquely determined by the
theory, as they are generated by the signature and the interpretation of Elem in A.

It is therefore left to define new values for the interpretations of Struct-variables in B, as
well as the interpretation of the selectors. For the former, they might have been interpreted
inA using (discarded) constructors. For the latter, their interpretations need to correspond to
the new interpretations in B. We do this in several steps:
Step 1—Simplifying ) since φ is a conjunction of flat literals, ) is a conjunction whose
conjuncts are either flat literals or disjunctions of flat literals (introduced in Items 1 and 3 of
Definition 12). Since A |( ), A satisfies at least one disjunct of each such disjunction. By
the definition of wtni , exactly one such disjunct is satisfied. We can thus obtain a formula
)1 from ) by replacing every disjunction with the unique disjunct that is satisfied by A.
Notice that A |( )1 and that it is a conjunction of flat literals. Let )2 be obtained from
)1 by removing any literal of the form isc(x) and any literal of the form ¬isc(x). Let )3
be obtained from )2 by removing any literal of the form x = sc,i (y). For convenience, we
denote )3 by )′. Note that the predicate and selector terms are redundant for ) since they
have been expanded to constructor terms by the witness function. Obviously, A |( )′, and
)′ is a conjunction of flat literals without selectors and testers.
Step 2—Working with Equivalence ClassesWe would like to preserve equalities between
Struct-variables fromA. To this end, we group all variables in vars()) to equivalence classes
according to their interpretation in A. Let ≡A denote the equivalence relation over vars())
such that x ≡A y iff xA = yA. We denote by [x] the equivalence class of x . Let α be an
equivalence class, thus αA =

{
xA | x ∈ α

}
is a singleton. Identifying this singleton with

its only element, we have that αA denotes aA for an arbitrary element a of the equivalence
class α.
Step 3—Ordering Equivalence Classes We would also like to preserve disequalities
between Struct-variables from A. Thus we introduce a relation ≺ over the equivalence
classes:α ≺ β if y = c(w1, . . . , wn)occurs as one of the conjuncts in)′ for somew1, . . . , wn
and c ∈ CO such that wk ∈ α for some k ∈ [1, n] and y ∈ β.

An equivalence class α is nullary ifA |( isc(x) for some x ∈ α and nullary constructor c.
An equivalence class α isminimal if β ⊀ α for every β. Notice that each nullary equivalence
class is minimal. The relation ≺ induces a directed acyclic graph (DAG), denoted as G. The
vertices are the equivalence classes. Whenever α ≺ β, we draw an edge from vertex α to β.
Step 4—Interpretation of Equivalence Classes We next define αB for every equivalence
class α. Then, for every Struct-variable x , we set:

xB = [x]B (3)

The idea for definingαB goes as follows.Nullary classes are assigned according toA, because
nullary constructors are interpreted as themselves, and hence there is only oneway to interpret
them. Other minimal classes are assigned arbitrarily, but it is important to assign different
classes to terms whose depths are far enough from each other to ensure that the disequalities
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in A are preserved. Non-minimal classes are uniquely determined after minimal ones are
assigned.

Formally, letm be the number of equivalence classes, l the number ofminimal equivalence
classes, r the number of nullary equivalence classes, and α1, . . . ,αm a topological sort of G,
such that all minimal classes occur before all others, and the first r classes are nullary. Let d
be the length of the longest path in G. We define αB

i by induction on i . In the definition, we
use BElem to denote the Elem-sorted set assigning σB to every σ ∈ Elem.

1. If 0 < r and i ≤ r then αi is a nullary class and so we set:

αB
i = αA

i (4)

2. If r < i ≤ l then αi is minimal and not nullary. Let σ be the sort of variables in
αi . If σ ∈ Elem, then all variables in the class have already been defined. Otherwise,
σ ∈ Struct. In this case, we set:

αB
i = a (5)

such that a is some arbitrary element of Tσ ("|CO,BElem) that has depth strictly greater

than max
{
depth(αB

j ) | 0 < j < i
}
+ d (here max ∅ = 0).

3. If i > l then we set:

αB
i = c(βB

1 , . . . ,β
B
n ) (6)

for the unique equivalence classes β1, . . . ,βn ⊆ {α1, . . . ,αi−1} and c such that y =
c(x1, . . . , xn) occurs in )′ for some y ∈ αi and x1 ∈ β1, . . . , xn ∈ βn .

Example 6 Let ) be the following "list-formula: x1 = cons(e1, x2) ∧ x3 = cons(e2, x4) ∧
x2 $= x4. Then )′ = ). We have the following satisfying interpretation A: elemA =
{1, 2, 3, 4}, eA1 = 1, eA2 = 2, xA1 = [1, 2, 3], xA2 = [2, 3], xA3 = [2, 2, 4], xA4 = [2, 4].

The construction above yields the following interpretation B: elemB = {1, 2}, eB1 =
1, eB2 = 2. For list-variables, we proceed as follows. The equivalence classes of list-variables
are [x1], [x2], [x3], [x4], with [x2] ≺ [x1] and [x4] ≺ [x3]. The length of the longest path in
G is 1.

Assuming [x2] comes before [x4] in the topological sort, xB2 will get an arbitrary list over
{1, 2} with length greater than 1 (the depth of eB2 plus the length of the longest path), say,
[1, 1, 1]. xB4 will then get an arbitrary list of length greater than 4 (the depth of xB2 plus the
length of the longest path). Thus we could have xB4 = [1, 1, 1, 1, 1]. Then, xB1 = [1, 1, 1, 1]
and xB3 = [2, 1, 1, 1, 1, 1].

Lemma 5 αB
i is well defined.

Proof The case of nullary and minimal constructors is clearly well defined. Suppose αi is
not minimal. Then the sort of its variables is in Struct. We prove that there is a unique list
β1, . . . ,βn , of equivalence classes, all elements of {α1, . . . ,αi−1} and a unique constructor
c such that y = c(x1, . . . , xn) occurs in )′ for some y ∈ αi and x1 ∈ β1, . . . , xn ∈ βn .
Existence: αi is not minimal. Hence, there exists some β1 such that β1 ≺ αi . Hence w.l.g.
there exists some y ∈ αi and some x1 ∈ β1 such that y = c(x1, x2, . . . , xn) is in )′ for some
x2, . . . , xn and c. By definition, thismeans that [x2], . . . , [xn] ≺ αi aswell, and thus [x j ]must
occur before αi in the topological ordering for every 1 ≤ j ≤ n, hence [x j ] ∈ {α1, . . . ,αi−1}
for each j .Uniqueness: Suppose there are also equivalence classes β ′

1, . . . ,β
′
m , all elements

of {α1, . . . ,αi−1}, and a constructor c′ such that y′ = c′(x ′
1, . . . , x

′
m) occurs in )′ for some

123



Y. Sheng et al.

y′ ∈ αi and x ′
1 ∈ β ′

1, . . . , x
′
m ∈ β ′

m . Since y′ = c′(x ′
1, . . . , x

′
m) and y = c(x1, . . . , xn) both

occur in )′ and are thus satisfied by A, and [y] = [y′], we must have c = c′, n = m, and
A |( x j = x ′

j for every j ; otherwise, it would contradict [y] = [y′]. Hence [x j ] = [x ′
j ], so

that β ′
j = β j for every j . 23

Step 5—Interpretation of Selectors Let sc,i ∈ SE for c : σ1 × · · · × σn → σ , 1 ≤ i ≤ n
and a ∈ σB. If a ∈ isBc , we must have a = c(a1, . . . , an) for some a1 ∈ σB

1 , . . . , an ∈ σB
n .

We then set:

sBc,i (a) = ai (7)

Otherwise, we consider two cases. If xB = a for some x ∈ vars()) such that y = sc,i (x)
occurs in )2 for some y, we set:

sBc,i (a) = yB (8)

Otherwise, sBc,i (a) is set arbitrarily.

4.1.2 B is a Finite Witness of 0

Now that B is defined using Eqs. 1–8, we show that it is a finite witness of ) for T" w.r.t.
Elem. By construction, σB = varsσ ())B for every σ ∈ Elem. Hence it is left to show that
B |( ). We start by showing that B preserves the equalities and disequalities in A:

Lemma 6 xA = yA iff xB = yB for every x, y ∈ vars()).

Proof The left-to-right direction follows directly from the definition ofB that does not distin-
guish distinct elements inside a single equivalence class of ≡A. For the converse, we prove
that αB

1 , . . . ,α
B
p are pairwise distinct for every 1 ≤ p ≤ m by induction on p. From this,

the claim follows: if xA $= yA, then [x] = αp and [y] = αq for some p $= q , and therefore
xB = [x]B $= [y]B = yB.

The induction base corresponds to the first l classes (minimal classes).

1. For all the equivalence classes of Elem-sorted variables, as they are also minimal, and the
definition is the same as in A, their interpretations are distinct by definition.

2. For the nullary classes, the definition is also the same as in A, thus they have distinct
interpretations.

3. For the equivalence classes of minimal non-nullary Struct-sorted variables, they have
different interpretations with the nullary classes, as their interpretations all have the depth
more than d . And among themselves, the depths of the interpretations of these classes
correspond to a strongly increasing monotonic sequence by definition.

For the induction step, assume the claim for p (l ≤ p < m) vertices. It is sufficient to prove
that αp+1 has a different interpretation from all the previous vertices. Assume otherwise, and
let i ≤ p with αB

i = αB
p+1.

αp+1 is not minimal. Since αp+1 cannot be nullary, αB
i = αB

p+1 cannot be nullary, thus
we have i > r . Recall that the first r classes are nullary as defined in Step 4. Then let us
consider two cases.

1. αi is not minimal: There must be a constructor c such that αB
i = c(βB

1 , . . . ,β
B
n )

and αB
p+1 = c(β̂B

1 , . . . , β̂
B
n ) for some equivalence classes β1, . . . ,βn and β̂1, . . . , β̂n .

Then from αB
i = αB

p+1, we have βB
k = β̂B

k for k = 1, . . . , n. Also, note that
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β1, . . . ,βn, β̂1, . . . , β̂n ∈ {α1, . . . ,αp}. Let 1 ≤ k ≤ n. By the induction hypothesis,
either βk = β̂k or βB

k $= β̂B
k . By the above, the former must hold. So that βA

k = β̂A
k for

k = 1, . . . , n, thus we get αA
i = αA

p+1. Since the equivalence classes are defined by ≡A,
we have [αi ] = [αp+1], thus i = p + 1. This contradicts the fact that i < p + 1.

2. αi is minimal: An equivalence class β is said to be a source of αp+1, if there is a path
from β to αp+1 in G and β is minimal.
If αp+1 has a source vertex β such that depth(βB) ≥ depth(αB

i ), then we have
depth(αB

p+1) > depth(βB) ≥ depth(αB
i ).

Otherwise depth(αB
i ) > 0 since by construction,αi is not anElem-sorted variable, and for

any other minimal class α′, either depth(α′B) > depth(αB
i ) or depth(α

′B) < depth(αB
i )−

d . So for any source vertex β of αp+1, we have depth(βB) < depth(αB
i ) − d . Since d is

the length of the longest path, we obtain depth(αB
p+1) ≤ depth(βB) + d < depth(αB

i ).
Therefore, αB

i $= αB
p+1, which makes the contradiction. 23

By considering every shape of a literal in )′, we can prove that B |( )′. Then, our
interpretation of the selectors ensures the following:

Lemma 7 B |( ).

Proof We start by proving that B |( )′. )′ is a conjunction of flat literals without selectors
and testers. We consider each type of conjunct separately.

– Literals of the form x = y or x $= y: By Lemma 6, and the fact that A |( )′, these
literals hold in interpretation B.

– Literals of the form x = c, where c is a nullary constructor: In this case, xB is defined as
xA, see Eq. 4. Since A |( )′, we have B |( x = c.

– Literals of the form x = c(w1, . . . , wn) for some constructor c: Since A |( )′, c is the
only constructor that construct x in )′. From the definition of B, xB = c(dB1 , . . . , d

B
n )

for some d1, . . . , dn , see Eq. 6. And by Lemma 5, we have [wk] = [dk] for k = 1, . . . , n.
So we have xB = c(wB

1 , . . . , w
B
n ).

Next, we prove that B |( )2. )2 is a conjunction of the literals of )′, together with literals
of the form y = sc,i (x) from ). Let y = sc,i (x) be such a conjunct of )2. Then by the
definition of wtni and )′, there are two cases:

– x = c(. . . , y, . . .) is in )′. Thus [y] ≺ [x] and xB = c(. . . , yB, . . .) by the definition of
B. In particular, xB ∈ isBc . In this case, sc,i (x)B is set to yB by the definition of B.

– x = d(. . .) is in )′ for some d $= c. We consider the following subcases.

– If d is nullary then [x] is nullary. In this case, xB = xA.A |( )′ and hence xA ∈ isAd ,
which means that xB ∈ isBd as well. In particular, xB /∈ isBc . Since y = sc,i (x) occurs
in )2, sc,i (x)B is set to be yB.

– If d is not nullary then [x] cannot be minimal, and hence xB ∈ isBd by the definition
of B. In particular, xB /∈ isBc . Since y = sc,i (x) occurs in )2, sc,i (x)B is set to be yB

in this case.

Hence B |( )2.
Next, we show that B |( )1, which is obtained from )2 by the addition of conjunctions

of the form isc(x) and ¬isc(x). Let isc(x) be such a literal in )1. Then it is also a literal of
). Then by the definition of wtni and of )′, this means that )′ contains a literal of the form
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x = c(y1, . . . , yn). Since B |( )′, we have B |( isc(x). Now let ¬isc(x) be a literal of )1.
Then it is also a literal of ). By the definition of wtni and )′, the latter contains a literal of
the form x = d(t1, . . . , tn) for some d $= c. Since B |( )′, we have B |( ¬isc(x).

Finally, we have seen that B satisfies a disjunct in every disjunction of ), as well as all of
the top-level literals of ), which means that B |( ). 23

Lemmas 3 and 7, together with the definition of the domains of B, give us that B is a finite
witness of ) for T" w.r.t. Elem, and so Lemma 4 is proven. As a consequence of Lemmas
1, 2 and 4, strong politeness is obtained.

Theorem 2 If " is a datatypes signature and all sorts in Struct" are inductive, then T" is
strongly polite w.r.t. Elem" .

4.2 Finite Datatypes

In this section, we assume that all sorts in Struct are finite.
For finite witnessability, we define the following witness that guesses the construction of

each Struct-variables until a fixpoint is reached.

Definition 13 (A Witness for T") For every quantifier-free conjunction of flat "-literals φ,
define the sequence φ0,φ1, . . ., such that φ0 = φ, and for every i ≥ 0, φi+1 is obtained from
φi by conjuncting it with a disjunction

∨
c∈CO x = c(wc

1, . . . , w
c
nc ) for fresh wc

1, . . . , w
c
nc ,

where x is some arbitrary Struct-variable in φi such that there is no literal of the form
x = c(y1, . . . , yn) in φi for any constructor c ∈ CO and variables y1, . . . , yn . Since Struct
only has finite sorts, there is necessarily a minimal k such that φk = φk+1 and wtn f (φ) is
defined to be φk .

Example 7 Let φ be the "pair-formula x = first(y) ∧ x ′ = first(y′) ∧ x $= x ′. wtn f (φ) is
φ ∧ y = pair(e1, e2) ∧ y′ = pair(e3, e4).

Similarly to the case of inductive datatypes presented in Sect. 4.1, we have:

Lemma 8 wtn f is Elem-additive for T" .

Proof We proceed just like in the proof of Lemma 2. Let ϕ be a conjunction of flat literals
such that every term in ϕ is a variable whose sort is in Elem. By construction of wtn f ,
wtn f (φ) ∧ ϕ does not satisfy the precondition in wtn f for the addition of any formula since
ϕ does not contain any constructors. Thus, wtn f (wtn f (φ) ∧ ϕ) = wtn f (φ) ∧ ϕ. 23

Lemma 9 φ and ∃−→w . wtn f (φ) are T"-equivalent, where
−→w = vars(wtn f (φ)) \ vars(φ).

Proof Similarly to the proof of Lemma 3, we know that ∃−→wi . φi and ∃−−→wi+1 . ∃φi+1 are T"-
equivalent, where−→wi = vars(wtn f (φi ))\vars(φ),−−→wi+1 = vars(wtn f (φi+1))\vars(φ). Also
since φ0 = φ, we have that φ and ∃−→w .φk are T"-equivalent, where

−→w = vars(φk)\vars(φ),
for the minimal k such that φk = φk+1. 23

We now prove the following lemma:

Lemma 10 (Finite Witnessability) Let φ be a conjunction of flat literals. Then, wtn f (φ) is
finitely witnessed for T" with respect to Elem.
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Proof Suppose ) = wtn f (φ) is T"-satisfiable, and let A be a satisfying T"-interpretation.
We define a T"-interpretation B which is a finite witness of ) for T" w.r.t. Elem. We set
σB = varsσ ())A for every σ ∈ Elem, eB = eA, for every variable e ∈ varsElem()) and
xB = xA for every variable x ∈ varsStruct()). Selectors are also interpreted as they are
interpreted in A. This is well defined: for any Struct-variable x , every element in σA for
σ ∈ Elem that occurs in xA has a corresponding variable e in ) such that eA is that element.
This holds by the finiteness of the sorts in Struct and the definition of wtn f . Further, for any
Struct-variable x such that sc,i (x) occurs in ), we must have that it occurs in some literal of
the form y = sc,i (x) of ). Similarly to the above, all elements that occur in yA and xA have
corresponding variables in ). Therefore, B |( ) is a trivial consequence of A |( ). By the
definition of its domains, B is a finite witness of ) for T" w.r.t. Elem. 23

By Lemmas 1, 8, 9 and 10, strong politeness is obtained.

Theorem 3 If" is a datatypes signature and all sorts inStruct" are finite, thenT" is strongly
polite w.r.t. Elem" .

4.3 Combining Finite and Inductive Datatypes

Now we consider the general case. Let " be an arbitrary datatypes signature. We prove that
T" is strongly polite w.r.t. Elem. We show that there are datatypes signatures "1,"2 ⊆ "

such that T" = T"1 ⊕ T"2 , and then use Theorem 1. In "1, inductive sorts are excluded,
while in "2, finite sorts are considered to be element sorts:

Theorem 4 If " is a datatypes signature then T" is strongly polite w.r.t. Elem" .

Proof Set "1 as follows: Elem"1 = Elem" and Struct"1 = Fin("). F"1 = CO"1 -SE"1 ,
where CO"1 = {c : σ1 × · · · × σn → σ | c ∈ CO", σ ∈ Struct"1} and SE"1 and P"1 are
the corresponding selectors and testers. Notice that if σ is finite and c : σ1 × · · ·×σn → σ is
in CO" , then σi must be finite or in Elem" for every 1 ≤ i ≤ n. Next, we set "2 as follows:
S"2 = Elem"2 - Struct"2 , where Elem"2 = Elem" ∪ Fin(") and Struct"2 = Ind(").
F"2 = CO"2 - SE"2 , where CO"2 = {c : σ2 × · · · × σn → σ | c ∈ CO", σ ∈ Struct"2}
and SE"2 and P"2 are the corresponding selectors and testers. Thus, T" = T"1 ⊕ T"2 .

Now set S = Elem" ∪ Fin("), S1 = Elem" , S2 = Elem" ∪ Fin("), T1 = T"1 , and
T2 = T"2 . By Theorem 3, T1 is strongly polite w.r.t. S1 and by Theorem 2, T2 is strongly
polite w.r.t. S2. By Theorem 1, T" is strongly polite w.r.t. Elem" . 23

Remark 1 A concrete witness for T" in the general case that we call wtn" is obtained by
first applying the witness from Definition 12 and then applying the witness from Definition
13 on the literals that involve finite sorts. A direct finite witnessability proof can be obtained
by using the same arguments from the proofs of Lemmas 4 and 10. This witness is simpler
than the one produced in the proof from [16] of Theorem 1 that involves purification and
arrangements. In our case, we do not consider arrangements, but instead notice that the
resulting function is additive, and hence ensures strong finite witnessability.

5 Axiomatizations

In this section, we discuss the possible connections between T" and some axiomatizations
of trees. We show how to get a reduction of any T"-satisfiability problem into a satisfiability
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Fig. 1 Axioms for TREE" and TREE∗
"

problem modulo an axiomatized theory of trees. The latter can be decided using syntactic
unification.

Let " be a datatypes signature. The set TREE∗
" of axioms is defined as the union of all

the sets of axioms in Fig. 1 (where upper case letters denote implicitly universally quantified
variables). Let TREE" be the set obtained from TREE∗

" by dismissing Ext1 and Ext2. Note
that because of Acyc, we have that TREE" is infinite (that is, consists of infinitely many
axioms) unless all sorts in Struct are finite. TREE" is a generalization of the theory of
Absolutely Free Data Structures (AFDS) from [11] to many-sorted signatures with selectors
and testers. In what follows we identify TREE" (and TREE∗

") with the class of structures
that satisfy them when there is no ambiguity. It is routine to verify that the axioms are sound,
and hence we have:

Proposition 3 Every TREE∗
"-unsatisfiable formula is T"-unsatisfiable.

5.1 A Satisfiability Procedure for TREE6

Using an approach à la Shostak [3, 11, 18, 20, 28, 33], it is possible to get a satisfiability proce-
dure for the"|CO-reduct of TREE" . Consider the"|CO-theory FT defined from TREE" by
dismissing Proj, Is1 and Is2. As shown below, FT is a Shostak theory for which there exists
a solver computing solved forms. A conjunction of equalities ) of the form

∧
k∈K xk = tk is

said to be a solved form if for each k ∈ K , xk is a variable occurring only once in ). A theory
T whose signature does not contain any predicate symbol is said to be a Shostak theory if

– T is convex,meaning that for any conjunction of literals ϕ over the signature of T , T ∪{ϕ}
does not entail any disjunction of equalities without entailing one of the equalities itself.

– T admits a solver solveT and a canonizer canonT :

– solveT computes, for any conjunction of equalities ,, a formula ) such that ) is a
solved form T -equivalent to , if , is T -satisfiable; otherwise ) is the unsatisfiable
formula ⊥.

– canonT is a computable idempotentmapping from terms to terms such thatT |( s = t
iff canonT (s) = canonT (t).

A substitution can be associated with any solved form. Formally, a substitution is defined
in the usual way as an endomorphism of the structure of terms with only finitely many
variables not mapped to themselves. In the case of a solved form ) = (

∧
k∈K xk = tk), the

associated substitution is µ = {xk 9→ tk}k∈K . Application of the substitution µ to a term t is
the term written µ(t) which is obtained from t by replacing xk with tk for each k ∈ K . The
substitution associated with a solved form is useful to express a T -satisfiability procedure
for a Shostak theory T .
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Lemma 11 ([33]) Let T be a Shostak theory. Assume , is any conjunction of equalities and
* is any conjunction of disequalities such that ,∧* is built over the signature of T . ,∧*

is T -satisfiable iff

– solveT computes, for the input ,, a solved form ) = (
∧

k∈K xk = tk),
– and for the substitution µ = {xk 9→ tk}k∈K and any v $= w in *, we have

canonT (µ(v)) $= canonT (µ(w)).

A solver for FT is given by a syntactic unification algorithm [2], which can be viewed
as a satisfiability procedure for the "|CO-structure of "|CO-trees over a countable S"-sorted
set of variables V (cf. Definition 1), also denoted by T ("|CO, V ). Given any conjunction
of "|CO-equalities ,, a syntactic unification algorithm computes a formula ) such that
T ("|CO, V ) |( , ⇔ ) and ) is either the unsatisfiable formula ⊥ or a solved form.

Lemma 12 FT is a Shostak theory where the solver is provided by a syntactic unification
algorithm and the canonizer is the identity mapping.

Proof Theories defined by Horn clauses are known to be convex [30]. Consequently, FT is
convex.

Consider any conjunction of "|CO-equalities ,. A syntactic unification algorithm with
, as input computes a formula ) such that T ("|CO, V ) |( , ⇔ ). The formula ) can
be obtained by a sequence of inferences, where each of these inferences corresponds to an
equivalence that holds both in T ("|CO, V ) and in FT . Hence, FT |( , ⇔ ). If ) is a
solved form, then both ) and , are FT -satisfiable; otherwise, ) is the unsatisfiable formula
⊥ and both ) and , are FT -unsatisfiable.

Let us now show that FT |( s = t iff s = t . The “if” direction is obvious. For the “only-if”
direction, we use that T ("|CO, V ) |( FT . Thus, FT |( s = t implies T ("|CO, V ) |( s = t .
Then, it suffices to remark that T ("|CO, V ) |( s = t iff s = t . 23

TREE" is not a Shostak theory because " includes some predicate symbols. However,
TREE" and FT coincide on "|CO-sentences.

Lemma 13 For any "|CO-sentence ϕ, TREE" |( ϕ iff FT |( ϕ.

Proof The “if” direction is a consequence of the fact that TREE" |( FT . For the “only-if”
direction, it is easy to show that any model of FT falsifying ϕ can be extended to a model
of TREE" falsifying ϕ. 23

As a direct application of Lemmas 11, 12 and 13, it is possible to decide the TREE"-
satisfiability of any conjunction of "|CO-literals:

Lemma 14 Assume , is any conjunction of "|CO-equalities and * is any conjunction of
"|CO-disequalities. If a syntactic unification algorithm computes, for the input ,, the unsat-
isfiable formula ⊥, then , ∧ * is TREE"-unsatisfiable. Otherwise, it computes a solved
form ) = (

∧
k∈K xk = tk) and we have that:

1. ) ∧ * is TREE"-equivalent to , ∧ *,
2. ) ∧ * is TREE"-satisfiable iff for the substitution µ = {xk 9→ tk}k∈K and any v $= w

in *, we have µ(v) $= µ(w).

Remark 2 Along the lines of [1], a superposition calculus can be also applied to get a TREE"-
satisfiability procedure. Such a calculus has been used in [8, 11] for a theory of trees with
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selectors but no testers. To handle testers, one can use a classical encoding of predicates into
first-order logic with equality, by representing an atom isc(x) as a flat equality Isc(x) = T
where Isc is now a unary function symbol and T is a constant. Then, a superposition calculus
dedicated to TREE" can be obtained by extending the standard superposition calculus [1]
with some expansion rules, one for each axiom of TREE" [11]. For the axioms Is1 and Is2, the
corresponding expansion rules are, respectively, x = c(x1, . . . , xn) ; Isc(x) = T ifc ∈ CO
, and x = d(x1, . . . , xn) ; Isc(x) $= T ifc, d ∈ CO, c $= d .

We do not detail further the above superposition-based satisfiability procedure. Actually,
Lemma 14 is sufficient to get a T"-satisfiability procedure based on a reduction to TREE"-
satisfiability of conjunctions of "|CO-literals.

5.2 A Satisfiability Procedure forT 6

In the following, we show that any T"-satisfiability problem can be reduced to a TREE"-
satisfiability problem.Using aTREE"-satisfiability procedure, this leads to aT"-satisfiability
procedure.

Lemma 15 Let" be a datatypes signature and ϕ any conjunction of flat"-literals including
an arrangement over the variables in ϕ. Then, there exists a "-formula ϕ′ such that:

1. ϕ and ∃−→w . ϕ′ are T"-equivalent, where
−→w = vars(ϕ′)\vars(ϕ).

2. ϕ′ is T"-satisfiable iff ϕ′ is TREE"-satisfiable.

Proof The proof is divided in two parts. First, we show how to construct the formula ϕ′.
Second, we prove the equivalence between T"-satisfiability and TREE"-satisfiability for
ϕ′. To prove this equivalence, we construct a T"-interpretation satisfying ϕ′ when ϕ′ is
TREE"-satisfiable.
1. Construction of a T"-equivalent formula.

To define ϕ′, let us first introduce the notion of is-constraint. Given a finite set of Struct-
sorted variables V , an is-constraint over V is a conjunction ρ of literals isc(x) such that
x ∈ V , c : σ1 × · · · × σn → σ ∈ CO if x is of sort σ ; and for every x ∈ V , there exists a
unique c for which isc(x) occurs in ρ. The set of is-constraints over V is denoted by I S(V ).
Given an is-constraint ρ, ρeq denotes a conjunction of equalities x = c(y1, . . . , yn) such that
isc(x) occurs in ρ; all the variables y1, . . . , yn are distinct and fresh; and for every isc(x) in
ρ, there exists a unique equality of the form x = c(. . . ) in ρeq .

Assume ϕ is any conjunction of flat"-literals including an arrangement over the variables
in ϕ. Consider the set of variables GV (ϕ) defined as

{x | isc(x) ∈ ϕ} ∪ {x | ¬isc(x) ∈ ϕ} ∪ {y | x = sc,i (y) ∈ ϕ, sc,i ∈ SE}
excluding all the variables in

{y | x = sc,i (y), y = d(. . . ) ∈ ϕ, sc,i ∈ SE, d ∈ CO, d $= c}.
We want to build a formula equivalent to ϕ but including at least one σ -sorted variable for
each σ ∈ Elem. For this reason, let us denote ϕte a conjunction of trivial equalities xσ = xσ ,
one for every σ ∈ Elem such that varsσ (ϕ) = ∅, xσ being a fresh σ -sorted variable. If
GV (ϕ) = ∅, define ϕ1 = ϕ ∧ ϕte. Otherwise, define ϕ1 as follows:

ϕ1 =
∨

ρ∈I S(GV (ϕ))

w(ϕ, ρeq) ∧ ρeq ∧ ϕte

where w(ϕ, ρeq) is built in a inductive way by first considering the case of any "-literal l:
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1. if l = isc(x) and x = c(y1, . . . , yn) occurs in ρeq , then w(l, ρeq) = <;
2. if l = ¬isc(x) and x = c(y1, . . . , yn) occurs in ρeq , then w(l, ρeq) = ⊥;
3. if l = isd(x), x = c(y1, . . . , yn) occurs in ρeq and c $= d , then w(l, ρeq) = ⊥;
4. if l = ¬isd(x), x = c(y1, . . . , yn) occurs in ρeq and c $= d , then w(l, ρeq) = <;
5. if l = (y = sc,i (x)) and x = c(y1, . . . , yn) occurs in ρeq , then w(l, ρeq) = (y = yi );
6. otherwise, w(l, ρeq) = l.

If ϕ is any non-empty conjunction of "-literals of the form l ∧ ϕr where l is a "-literal,
then w(ϕ, ρeq) is obtained from w(l, ρeq) ∧ w(ϕr , ρeq) by simplifying the latter thanks to
the properties that⊥ is absorbing for∧ and< is the identity for∧. Otherwise, ϕ is the empty
conjunction <, and w(ϕ, ρeq) = <.

Note that the above construction is similar to the one given in [11] (see Proposition 4
in [11]). One can observe that ϕ ∧ ρeq and w(ϕ, ρeq) ∧ ρeq are TREE∗

"-equivalent. In
particular, for the case (5.) above, it follows from the projection axiom Proj in TREE∗

" .
In addition the guessing of is-constraint preserves the TREE∗

"-equivalence since TREE∗
"

includes the extensionality axioms Ext1 and Ext2. Thus ϕ and ∃−→w .ϕ1 are TREE∗
"-equivalent

for −→w = vars(ϕ1)\vars(ϕ).
For any conjunction of literals φ, let us define

Min(φ) = vars(φ)\{x | x = c(. . . ) occurs in φ}.
Starting from ϕ1, consider the following sequences of formulas, obtained by guessing is-
constraints for “minimal” variables of finite sorts:

ϕ j+1 =
∨

ρ∈I S(⋃σ∈Fin(") Minσ (ϕ j ))

ϕ j ∧ ρeq

By definition of Fin("), there exists necessarily some j ′ such that the set of variables⋃
σ∈Fin(") Minσ (ϕ j ′) is empty. In that case, let us define ϕ′ = ϕ j ′ .
It is routine to show that ϕ and ∃−→w .ϕ′ are T"-equivalent for the set of fresh variables−→w = vars(ϕ′)\vars(ϕ), using the following facts:

– all the sentences in T REE∗
" are true in all the T"-interpretations,

– as shown above, ϕ and ∃−→w .ϕ1 are TREE∗
"-equivalent for the set of fresh variables−→w = vars(ϕ1)\vars(ϕ),

– ϕ j and ∃−→w .ϕ j+1 are TREE∗
"-equivalent, for

−→w = vars(ϕ j+1)\vars(ϕ j ) and any j =
1, . . . , j ′ − 1, since TREE∗

" includes the extensionality axioms Ext1 and Ext2.

2. Construction of a T"-interpretation.
Let us now show that ϕ′ is T"-satisfiable iff ϕ′ is TREE"-satisfiable.
(⇒) directly follows from Proposition 3.
(⇐) If ϕ′ is TREE"-satisfiable, there exists a TREE"-interpretation A and a disjunct ψ

of ϕ′ such that A |( ψ . By construction of ϕ′, ψ is a conjunction ψCO ∧ ψSE where

– ψCO is a conjunction of "|CO-literals,
– ψSE is a conjunction of equalities of the form x = sc,i (y).

Since ψ holds in a TREE"-interpretation, the conjunction of "|CO-equalities in ψCO has
a most general unifier. By Lemma 14, ψCO is TREE"-equivalent to a conjunction of literals
) ∧ * such that

– ) is a conjunction of equalities
∧

k∈K xk = tk such that for each k ∈ K , xk is a variable
occurring only once in ),
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– * is the conjunction of disequalities in ψ ,
– given the substitution µ = {xk 9→ tk}k∈K , for any v $= w in *, µ(v) $= µ(w).

Consider the set of variables MV = {x ∈ varsStruct(ϕ′) | µ(x) = x}. Since the
sorts of variables in MV are all inductive, there exists a substitution α from MV to
T ("|CO, varsElem(ϕ′)) such that for any x, y ∈ MV , α(x)A = α(y)A iff x = y. Accord-
ing to this substitution α, we have for any terms t, u ∈ T ("|CO,MV ∪ varsElem(ϕ′)),
α(t)A = α(u)A iff t = u. In particular, we have for any k, k′ ∈ K ,

α(µ(xk))A = α(µ(xk′))A iff µ(xk) = µ(xk′).

It is always possible to choose α such that for any x, y ∈ MV , x $= y, we have

|depth(α(x)) − depth(α(y))| > max{depth(tk)}k∈K .
According to the assumption on α, it is impossible to have α(µ(xk))A = α(µ(x))A for some
k ∈ K and some x ∈ MV . Consequently, we have for any x, y ∈ varsStruct(ϕ′),

α(µ(x))A = α(µ(y))A iff µ(x) = µ(y).

Let us now consider B ∈ T" such that

– for any σ ∈ Elem, σB = {eA | e ∈ varsσ (ϕ′)},
– for any x ∈ varsStruct(ϕ′), xB = α(µ(x))A,
– for any e ∈ varsElem(ϕ′), eB = eA.

One can observe that B |( ) ∧ * since

– for any xk = tk in ), µ(xk) = µ(tk) and so xBk = tBk ,
– for any v $= w in *, µ(v) $= µ(w) and so vB $= wB.

Since all the sentences in T REE∗
" are true in all the T"-interpretations and ) ∧ * is

TREE"-equivalent to ψCO , we have B |( ψCO .
Let us now consider the conjunction ψSE that contains only equalities of the form x =

sc,i (y). By construction of ϕ′, the term µ(y) is necessarily rooted by a constructor d ∈ CO,
d $= c. Thus sBc,i can be defined arbitrarily on yB since yB is a standard tree rooted by some
constructor d different from c. In particular, we can define sBc,i such that sBc,i (y

B) = xB.
Using this interpretation B for the selectors, we have B |( ψSE .

Since B |( ψCO and B |( ψSE , we get B |( ψ . Since ψ is some disjunct of ϕ′, we can
conclude that B |( ϕ′. 23

Lemma 15 can be easily lifted to any quantifier-free "-formula thanks to the following
transformations:

– computation of a disjunctive normal form, that is, a disjunction of conjunctions of "-
literals;

– flattening of each conjunction of "-literals;
– for each resulting conjunction of flat "-literals, guessing all the possible arrangements

over its variables.

Therefore, Lemma 15 leads to:

Theorem 5 Let " be a datatypes signature and ϕ any quantifier-free"-formula. Then, there
exists a "-formula ϕ′ such that:

1. ϕ and ∃−→w . ϕ′ are T"-equivalent, where
−→w = vars(ϕ′)\vars(ϕ).
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2. ϕ′ is T"-satisfiable iff ϕ′ is TREE"-satisfiable.

In both Lemma 15 and Theorem 5, ∃−→w . ϕ′ and ϕ are not only T"-equivalent but also
TREE∗

"-equivalent. As a consequence, both Lemma 15 and Theorem 5 also hold when stated
using TREE∗

" instead of T" . This shows that any quantifier-free "-formula is T"-satisfiable
iff it is TREE∗

"-satisfiable.

5.3 Politeness and Axiomatization

We conclude this section with a short discussion on the connection to Sect. 4. Both the
current section and Sect. 4 rely on two constructions: (i) A formula transformation (wtn"

in Remark 1 of Sect. 4, ϕ 9→ ϕ′ in Lemma 15 of the current section); and (ii) A small
model construction (finite witnessability in Sect. 4, equisatisfiability between T" and TREE
in Lemma 15). While these constructions are similar in both sections, they are not the same.
A nice feature of the constructions of Sect. 4 is that they clearly separate between steps (i)
and (ii). The witness is very simple, and amounts to adding to the input formula literals
and disjunctions that trivially follow from the original formula in T" . Then, the resulting
formula is post-processed in step (ii), according to a given satisfying interpretation. Having a
satisfying interpretation allows us to greatly simplify the formula, and the simplified formula
is useful for the model construction. In contrast, the satisfying TREE"-interpretation that
we start with in step (ii) of the current section is not necessarily a T"-interpretation, which
makes the approach of Sect. 4 incompatible, compared to the syntactic unification approach
that we employ here. For that, some of the post-processing steps of Sect. 4 are employed in
step (i) itself, in order to eliminate all testers and as much selectors as possible. In addition, a
pre-processing is applied in order to include an arrangement. The constructed interpretation
finitely witnesses ϕ′ and so this technique can be used to produce an alternative proof of
strong politeness.

6 Conclusion

In this paper we have studied the theory of algebraic datatypes, as it is defined by the SMT-
LIB 2 standard. Our investigation included both finite and inductive datatypes. For this theory,
we have proved that it is strongly polite, making it amenable for combination with other
theories by the polite combination method. Our proofs used the notion of additive witnesses,
also introduced in this paper. We concluded by extending existing axiomatizations and a
decision procedure for trees to support this theory of datatypes.

There are several directions for further research that we plan to explore. First, we plan
to continue to prove that more important theories are strongly polite, with an eye to recent
extensions of the datatypes theory, namely datatypes with shared selectors [25] and co-
datatypes [24]. Second, we envision to further investigate the possibility to prove politeness
using superposition-based satisfiability procedures. Third, we plan to study extensions of
the theory of datatypes corresponding to finite trees including function symbols with some
equational properties such as associativity and commutativity to model data structures such
as multisets [29]. We want to focus on the politeness of such extensions. Initial work in that
direction has been done in [7] that we plan to build on.
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