
Finite Model Property for Modal Ideal
Paraconsistent Four-valued Logic

Norihiro Kamide
Teikyo University,

Department of Information and Electronic Engineering,
Toyosatodai 1-1, Utsunomiya, Tochigi 320-8551, Japan.

drnkamide08@kpd.biglobe.ne.jp

Yoni Zohar
Stanford University,

Computer Science Department,
353 Serra Mall, Stanford, CA 94305, USA.

yoniz@cs.stanford.edu

Abstract—A modal extension M4CC of Arieli, Avron, and
Zamansky’s ideal paraconsistent four-valued logic 4CC is in-
troduced as a Gentzen-type sequent calculus. The completeness
theorem with respect to a Kripke semantics for M4CC is proved.
The finite model property for M4CC is shown by modifying the
completeness proof. The decidability of M4CC is obtained as a
corollary.

I. INTRODUCTION

In this study, we introduce a modal extension M4CC

of Arieli, Avron, and Zamansky’s ideal paraconsistent four-
valued logic known as 4CC [4]–[6]. We prove the complete-

ness theorem with respect to a Kripke semantics for M4CC,

and by modifying the completeness proof, we obtain the finite

model property for M4CC. As a corollary, we also obtain the

decidability of M4CC.

The proposed logic M4CC is introduced as a Gentzen-type

sequent calculus, and is a modal extension of the Gentzen-

type sequent calculus EPL which was introduced by Kamide

and Zohar in [14], [16]. The calculus EPL was shown in [16]

to be theorem-equivalent to the Gentzen-type sequent calculus

G4CC which was originally introduced by Arieli and Avron in

[4], [5].

The original non-modal logic 4CC is an extension of Belnap
and Dunn’s useful four-valued logic (also called first-degree
entailment logic) [7], [8], [11], and is a variant of the logic of
logical bilattices [2], [3]. The logic 4CC is also a specific type

of paraconsistent logics [20], which have multiple names: they

are called paradefinite logics by Arieli and Avron [4], [5], non-
alethic logics by da Costa, and paranormal logics by Béziau

[9]. Regardless of their names, paradefinite logics incorporate

the properties of both paraconsistency, which rejects the
principle (α ∧ ∼α)→β of explosion, and paracompleteness,

which rejects the law α ∨ ∼α of excluded middle.

Moreover, 4CC is known to be one of the most important

ideal paraconsistent (or paradefinite) logics that have natural

many-valued semantics. The logic 4CC is maximal relative

to classical logic. This means that any attempt to add to it

a tautology of classical logic, which is not provable in 4CC,

should necessarily end-up with classical logic. For the exact

definition and motivation of this property, see [6]. The logic

4CC is also related to connexive logics [1], [17], [22], as it has

a common characteristic Hilbert-style axiom scheme. For more

information on the relationship between 4CC and connexive

logics, see [16].

As mentioned above, 4CC is an important ideal paracon-

sistent (or paradefinite) logic. However, a modal extension

of 4CC, which would be much more suitable for actual

applications, has not been studied yet. We thus propose in

this study the modal extension M4CC of 4CC, and show

the completeness theorem with respect to a Kripke semantics

for M4CC as well as the finite model property for M4CC.

We developed M4CC as a combination of 4CC and the

normal modal logic S4, since the combination with S4 gives

natural formulations of both Gentzen-type sequent calculus

and Kripke semantics. However, we can also combine 4CC

and one of the other normal modal logics such as K. Similar

proof method can also be used for showing the completeness

and finite model property for some such extensions, imposing

some appropriate modifications.

The structure of this paper is summarized as follows. In

Section II, we introduce M4CC, and address some remarks

on M4CC. In Section III, we introduce a Kripke semantics for

M4CC, and show the soundness theorem with respect to this

semantics. In Section IV, we prove the completeness theorem

for M4CC by constructing a canonical model. In Section V, by

slightly modifying the completeness proof, we show the finite

model property for M4CC, and as a corollary, M4CC is shown

to be decidable. In Section VI, we conclude this paper, and

address related works on modal extensions of many-valued

logics.

II. SEQUENT CALCULUS

Formulas of modal ideal paraconsistent four-valued logic
are constructed from countably many propositional variables

by the logical connectives ∧ (conjunction), ∨ (disjunction), →
(implication), ∼ (paraconsistent negation) and − (conflation),

� (box) and ♦ (diamond). In what follows, we use small

letters p, q, ... to denote propositional variables, Greek small

letters α, β, ... to denote formulas, and Greek capital letters

Γ,Δ, ... to represent finite (possibly empty) sets of formulas.

Let A be a set of symbols (i.e., alphabet). Then, the notation

A� is used to represent the set of all words of finite length

of the alphabet A. For any � ∈ {∼,−,�,♦}�, we use an

expression �Γ to denote the set {�γ | γ ∈ Γ}. We use the
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symbol Φ to denote the set of all propositional variables, the

symbol Φ∗ to denote the set of all formulas, and the symbols

Φ∼ and Φ− to denote the sets {∼p | p ∈ Φ} and {−p | p ∈ Φ},
respectively. Let U be a set of formulas. Then, we use an

expression U� to denote {γ | �γ ∈ U} ∪ {∼γ | ∼�γ ∈ U} ∪
{−γ | −�γ ∈ U}. We use the symbol ≡ to denote the equality

of symbols. A sequent is an expression of the form Γ⇒ Δ.

we use an expression α⇔ β to represent the abbreviation of

the sequents α⇒ β and β ⇒ α. An expression L � S means

that a sequent S is provable in a sequent calculus L. If L of

L � S is clear from the context, we omit L in it.

A Gentzen-type sequent calculus M4CC for modal ideal

paraconsistent four-valued logic is defined as follows.
Definition 2.1 (M4CC): The initial sequents of M4CC are

of the following form, for any propositional variable p,

p⇒ p ∼p⇒ ∼p −p⇒ −p ∼p,−p⇒ ⇒ ∼p,−p.
The structural inference rules of M4CC are of the form:

Γ⇒ Δ, α α,Σ⇒ Π

Γ,Σ⇒ Δ,Π
(cut)

Γ⇒ Δ
α,Γ⇒ Δ

(we-left)
Γ⇒ Δ
Γ⇒ Δ, α

(we-right).

The non-negated logical inference rules of M4CC are of the
form:

α, β,Γ⇒ Δ

α ∧ β,Γ⇒ Δ
(∧left) Γ⇒ Δ, α Γ⇒ Δ, β

Γ⇒ Δ, α ∧ β
(∧right)

α,Γ⇒ Δ β,Γ⇒ Δ

α ∨ β,Γ⇒ Δ
(∨left) Γ⇒ Δ, α, β

Γ⇒ Δ, α ∨ β
(∨right)

Γ⇒ Δ, α β,Σ⇒ Π

α→β,Γ,Σ⇒ Δ,Π
(→left)

α,Γ⇒ Δ, β

Γ⇒ Δ, α→β
(→right)

α,Γ⇒ Δ

�α,Γ⇒ Δ
(�left) �Γ,∼♦Σ,−�Π⇒ α

�Γ,∼♦Σ,−�Π⇒ �α
(�right)

α⇒ ♦Γ,∼�Σ,−♦Π
♦α⇒ ♦Γ,∼�Σ,−♦Π (♦left) Γ⇒ Δ, α

Γ⇒ Δ,♦α (♦right).

The negated logical inference rules of M4CC are of the form:

α,Γ⇒ Δ

∼∼α,Γ⇒ Δ
(∼∼left) Γ⇒ Δ, α

Γ⇒ Δ,∼∼α (∼∼right)

Γ⇒ Δ, α

∼−α,Γ⇒ Δ
(∼−left) α,Γ⇒ Δ

Γ⇒ Δ,∼−α (∼−right)

∼α,Γ⇒ Δ ∼β,Γ⇒ Δ

∼(α ∧ β),Γ⇒ Δ
(∼∧left) Γ⇒ Δ,∼α,∼β

Γ⇒ Δ,∼(α ∧ β)
(∼∧right)

∼α,∼β,Γ⇒ Δ

∼(α ∨ β),Γ⇒ Δ
(∼∨left) Γ⇒ Δ,∼α Γ⇒ Δ,∼β

Γ⇒ Δ,∼(α ∨ β)
(∼∨right)

α,∼β,Γ⇒ Δ

∼(α→β),Γ⇒ Δ
(∼→left)

Γ⇒ Δ, α Γ⇒ Δ,∼β
Γ⇒ Δ,∼(α→β)

(∼→right)

∼α⇒ ♦Γ,∼�Σ,−♦Π
∼�α⇒ ♦Γ,∼�Σ,−♦Π (∼�left) Γ⇒ Δ,∼α

Γ⇒ Δ,∼�α
(∼�right)

∼α,Γ⇒ Δ

∼♦α,Γ⇒ Δ
(∼♦left) �Γ,∼♦Σ,−�Π⇒ ∼α

�Γ,∼♦Σ,−�Π⇒ ∼♦α (∼♦right).

The conflated logical inference rules of M4CC are of the
form:

α,Γ⇒ Δ

−−α,Γ⇒ Δ
(−−left) Γ⇒ Δ, α

Γ⇒ Δ,−−α (−−right)

Γ⇒ Δ, α

−∼α,Γ⇒ Δ
(−∼left) α,Γ⇒ Δ

Γ⇒ Δ,−∼α (−∼right)

−α,−β,Γ⇒ Δ

−(α ∧ β),Γ⇒ Δ
(−∧left) Γ⇒ Δ,−α Γ⇒ Δ,−β

Γ⇒ Δ,−(α ∧ β)
(−∧right)

−α,Γ⇒ Δ −β,Γ⇒ Δ

−(α ∨ β),Γ⇒ Δ
(−∨left) Γ⇒ Δ,−α,−β

Γ⇒ Δ,−(α ∨ β)
(−∨right)

Γ⇒ Δ, α −β,Σ⇒ Π

−(α→β),Γ,Σ⇒ Δ,Π
(−→left)

α,Γ⇒ Δ,−β
Γ⇒ Δ,−(α→β)

(−→right)

−α,Γ⇒ Δ

−�α,Γ⇒ Δ
(−�left) �Γ,∼♦Σ,−�Π⇒ −α

�Γ,∼♦Σ,−�Π⇒ −�α
(−�right)

−α⇒ ♦Γ,∼�Σ,−♦Π
−♦α⇒ ♦Γ,∼�Σ,−♦Π (−♦left) Γ⇒ Δ,−α

Γ⇒ Δ,−♦α (−♦right).

Proposition 2.2: The following sequents are provable in cut-
free M4CC: For any formulas α and β,

1) α⇒ α,

2) ∼α,−α⇒,

3) ⇒ ∼α,−α,

4) ∼∼α⇔ α,

5) ∼−α⇔ −∼α,

6) ∼(α ∧ β)⇔ ∼α ∨ ∼β,

7) ∼(α ∨ β)⇔ ∼α ∧ ∼β,

8) ∼(α→β)⇔ α ∧ ∼β,

9) ∼�α⇔ ♦∼α,

10) ∼♦α⇔ �∼α,

11) −−α⇔ α,

12) −(α ∧ β)⇔ −α ∧ −β,

13) −(α ∨ β)⇔ −α ∨ −β,

14) −(α→β)⇔ α→−β,

15) −�α⇔ �−α,

16) −♦α⇔ ♦−α,

17) ∼α ∧ −α⇒ β (the principle of quasi-explosion),

18) ⇒ ∼α ∨ −α (the law of quasi-excluded middle).

Proposition 2.3: The following rules are derivable in M4CC:

Γ⇒ Δ,−α
∼α,Γ⇒ Δ

(∼left) −α,Γ⇒ Δ

Γ⇒ Δ,∼α (∼right)

Γ⇒ Δ,∼α
−α,Γ⇒ Δ

(−left) ∼α,Γ⇒ Δ

Γ⇒ Δ,−α (−right).

Remark 2.4:
1) (−→left) and (−→right) correspond to the Hilbert-

style axiom scheme −(α→β) ↔ α→−β, which is a

characteristic axiom scheme for connexive logics [1],

[17], [22].

2) Based on the use of (∼−left), (∼−right), (−∼left),

(−∼right), we can define the classical negation ¬α (i.e.,

the negation of classical logic) by ∼−α and −∼α.

3) The {�,♦}-free fragment of M4CC is theorem-

equivalent to the Gentzen-type sequent calculus G4CC

which was originally introduced by Arieli and Avron in

[4], [5] for the ideal paraconsistent logic 4CC [4]–[6].

See [16] for the detail of the equivalence among related

systems.

4) G4CC [4], [5] is obtained from the {�,♦}-free

fragment of M4CC by replacing (p⇒ p), (∼p⇒ ∼p),
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(−p⇒ −p), (∼p,−p⇒), (⇒ ∼p,−p), (−∧left),

(−∧right), (−∨left), (−∨right), (−→left), (−→right),

(−−left), (−−right), (−∼left), and (−∼right) with

α⇒ α, (−left), and (−right).

5) The {�,♦}-free fragment of M4CC is theorem-

equivalent to the system which is obtained from

G4CC by adding (∼α,−α⇒), (⇒ ∼α,−α), (∼left) and

(∼right). See [16] for the detail of the equivalence

among related systems.

III. KRIPKE SEMANTICS

In what follows, we use the symbol ¬ to denote the

abbreviation of ∼−. We assume the commutativity of

∧ or ∨. We have the following fact: For any formu-

las α1, ..., αm, β1, ..., βn, � α1, ..., αm ⇒ β1, ..., βn iff �
α1 ∧ · · · ∧ αm ⇒ β1 ∨ · · · ∨ βn. Let Γ be a set {α1, ..., αm}
(m ≥ 0). Then, we use an expression Γ∗ to denote α1 ∨
· · · ∨ αm if m ≥ 1, or otherwise ¬(p→p) where p is a fixed

propositional variable. We also use an expression Γ∗ to denote

α1 ∧ · · · ∧αm if m ≥ 1, or otherwise p→p where p is a fixed

propositional variable.

We now introduce a Kripke semantics for M4CC.

Definition 3.1: A structure 〈M,R〉 is called a Kripke frame

if

1) M is a non-empty set,

2) R is a transitive and reflexive binary relation on M .

Definition 3.2: A paraconsistent valuation |=∗ on a Kripke

frame 〈M,R〉 is a mapping from the set Φ ∪Φ∼ ∪Φ− to the

power set 2M of M such that

(*) x ∈|=∗ (−p) iff x /∈|=∗ (∼p),
x ∈|=∗ (∼p) iff x /∈|=∗ (−p).

We will write x |=∗ p, x |=∗ ∼p, and x |=∗ −p for x ∈
|=∗ (p), x ∈ |=∗ (∼p), and x ∈ |=∗ (−p), respectively. We

will also use the same notation as x |=∗ α for an extended

paraconsistent valuation for any formula α. The paraconsistent

valuation |=∗ is extended to the mapping from the set of all

formulas to 2M by:

1) x |=∗ α ∧ β iff x |=∗ α and x |=∗ β,

2) x |=∗ α ∨ β iff x |=∗ α or x |=∗ β,

3) x |=∗ α→β iff x |=∗ α implies x |=∗ β,

4) x |=∗ �α iff ∀y ∈M [xRy implies y |=∗ α],
5) x |=∗ ♦α iff ∃y ∈M [xRy and y |=∗ α],
6) x |=∗ ∼∼α iff x |=∗ α,

7) x |=∗ ∼−α iff x �|=∗ α,

8) x |=∗ ∼(α ∧ β) iff x |=∗ ∼α or x |=∗ ∼β,

9) x |=∗ ∼(α ∨ β) iff x |=∗ ∼α and x |=∗ ∼β,

10) x |=∗ ∼(α→β) iff x |=∗ α and x |=∗ ∼β,

11) x |=∗ ∼�α iff ∃y ∈M [xRy and y |=∗ ∼α],
12) x |=∗ ∼♦α iff ∀y ∈M [xRy implies y |=∗ ∼α],
13) x |=∗ −−α iff x |=∗ α,

14) x |=∗ −∼α iff x �|=∗ α,

15) x |=∗ −(α ∧ β) iff x |=∗ −α and x |=∗ −β,

16) x |=∗ −(α ∨ β) iff x |=∗ −α or x |=∗ −β,

17) x |=∗ −(α→β) iff x |=∗ α implies x |=∗ −β,

18) x |=∗ −�α iff ∀y ∈M [xRy implies y |=∗ −α],

19) x |=∗ −♦α iff ∃y ∈M [xRy and y |=∗ −α].
Definition 3.3: A paraconsistent Kripke model is a structure

〈M,R, |=∗〉 such that

1) 〈M,R〉 is a Kripke frame,

2) |=∗ is a paraconsistent valuation on 〈M,R〉.
A formula α is true in a paraconsistent Kripke model

〈M,R, |=∗〉 iff x |=∗ α for any x ∈M , and is M4CC-valid (in

a Kripke frame) iff it is true for every paraconsistent valuation

|=∗ (on the Kripke frame). A sequent Γ⇒ Δ is called M4CC-
valid (denoted as M4CC |= Γ⇒ Δ) iff the formula Γ∗→Δ∗

is M4CC-valid.

Theorem 3.4: In Definition 3.2, the requirement (∗), together

with clauses 13–19, can be replaced with the following re-

quirement: For any formula α,

(**) x |=∗ −α iff x �|=∗ ∼α,

x |=∗ ∼α iff x �|=∗ −α.

Proof.
(=⇒) : We prove that (∗∗) holds in every paraconsistent

valuation |=∗ on every Kripke frame 〈M,R〉, every x ∈ M
and every formula α. We do so by induction on α. We show

only some cases for the first condition of (**).

1) Case α ≡ p ∈ Φ: If α is a propositional variable, then

(∗∗) directly follows from (∗).
2) Caseα ≡ α1∧α2: If α ≡ α1∧α2, then by clause 15 we

have x |=∗ −α iff both x |=∗ −α1 and x |=∗ −α2. By

the induction hypothesis, the latter holds iff x �|=∗ ∼α1

and x �|=∗ ∼α2, which by clause 8 holds iff x �|=∗ ∼α.

3) Case α ≡ ∼β: If α ≡ ∼β, then by clause 14 we have

x |=∗ −α iff x �|=∗ β, which, by clause 6 holds iff

x �|=∗ ∼∼β = ∼α.

4) Case α ≡ −β: If α ≡ −β, then by clause 13 we have

that x |=∗ −α iff x |=∗ β, which by clause 7 holds iff

x �|= ∼−β ≡ ∼α.

5) Case α ≡ �β: If α ≡ �β, then by clause 18 we have

x |=∗ −α iff for every y ∈ M , xRy implies y |=∗ −β.

By the induction hypothesis, the latter holds iff for every

y ∈M , xRy implies y �|=∗ ∼β. By clause 11, this holds

iff x �|=∗ ∼�β ≡ ∼α.

(⇐=) : We prove that in every paraconsistent valuation |=∗ on

every Kripke frame 〈M,R〉, every x ∈M and every formula

α, clauses (∗) and 13–19 hold, provided that (∗∗) holds. We

explicitly show (∗), 13, 14, 15 and 18, leaving the rest to the

reader.

(∗): (∗) is a particular instance of (∗∗) for the case of

propositional variables.

(13): Using (∗∗) and 7, x |=∗ −−α iff x �|=∗ ∼−α iff x |=∗ α.

(14): Using (∗∗) and 6, x |=∗ −∼α iff x �|=∗ ∼∼α iff x �|= α.

(15): Using (∗∗) and 8, x |=∗ −(α1∧α2) iff x �|=∗ ∼(α1∧α2)
iff x �|=∗ ∼α1 and x �|=∗ ∼α2 iff x |=∗ −α1 and x |=∗

−α2.

(18): Using (∗∗) and 11, x |=∗ −�α iff x �|=∗ ∼�α iff y �|=∗

∼α for every y ∈ M such that xRy, iff y |=∗ −α for

every y ∈M such that xRy.

In particular, we have the following corollary.
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Corollary 3.5: For any paraconsistent valuation |=∗ on a

Kripke frame 〈M,R〉, any x ∈M , and any formula α,

1) x |=∗ ∼α iff x �|=∗ −α,

2) |=∗ (∼α) ∩ |=∗ (−α) = ∅.
Remark 3.6: Using Corollary 3.5, we can show that the

following formulas are M4CC-valid:

1) (∼α ∧ −α)→β,

2) ∼α ∨ −α.

Theorem 3.7 (Soundness for M4CC): For any sequent S, if

M4CC � S, then M4CC |= S.

Proof. We prove this theorem by induction on the proofs

P of S in M4CC. We distinguish the cases according to the

last inference of P , and show only the following characteristic

cases. Let M be a Kripke frame 〈M,R〉.
1) Case ∼p,−p⇒: The last inference of P is of the form:

∼p,−p⇒. We show M4CC |= ∼p,−p⇒ (i.e., (∼p ∧
−p)→¬(q→q) is M4CC-valid). We show x |=∗ (∼p ∧
−p)→¬(q→q)) (i.e., x �|=∗ ∼p∧−p or x |=∗ ¬(q→q))
for any paraconsistent valuation |=∗ on M and any x ∈
M . To show this, it is sufficient to show the fact that

x �|=∗ ∼p ∧ −p (i.e., x �|=∗ ∼p or x �|=∗ −p), since we

have x |=∗ ¬(q→q). This fact can be shown as follows.

If x |=∗ ∼p, then we obtain x �|=∗ −p by Corollary 3.5.

If x |=∗ −p, then we obtain x �|=∗ ∼p by Corollary 3.5.

Thus, in both cases, we obtain the required fact.

2) Case ⇒ ∼p,−p: The last inference of P is of the

form: ⇒ ∼p,−p. We show M4CC |= ⇒ ∼p,−p (i.e.,

(q→q)→(∼p ∨ −p) is M4CC-valid). We show x |=∗

(q→q)→(∼p ∨ −p) (i.e., x �|=∗ (q→q) = f or x |=∗

∼p∨−p) for any paraconsistent valuation |=∗ on M and

any x ∈M . To show this, it is sufficient to show the fact

that x |=∗ ∼p ∨ −p (i.e., x |=∗ ∼p or x |=∗ −p), since

we have x |=∗ q→q. This fact can be shown as follows.

If x �|=∗ ∼p, then we obtain x |=∗ −p by Corollary 3.5.

If x �|=∗ −p, then we obtain x |=∗ ∼p by Corollary 3.5.

Thus, in both cases, we obtain the required fact.

IV. COMPLETENESS

Definition 4.1: Let U, V ⊆ Φ∗. A pair (U, V ) is called

consistent if for any α1, ..., αm ∈ U and any β1, ..., βn ∈ V
(m and n are arbitrary fixed integers and m,n ≥ 0), the

sequent α1, ..., αm ⇒ β1, ..., βn is not provable in M4CC.

A pair (U, V ) is called maximal consistent if the following

conditions hold:

1) (U, V ) is consistent,

2) U ∪ V = Φ∗.

We then obtain the following lemma by a standard way.

Lemma 4.2: Suppose that a pair (U0, V0) is consistent. Then,

there exist U, V ∈ Φ∗ such that U0 ⊆ U , V0 ⊆ V , and (U, V )
is maximal consistent.

Definition 4.3: A structure 〈ML, RL, |=L〉 is called a

canonical paraconsistent Kripke model if

1) ML := {U(⊆ Φ∗) | (U,Φ∗−U) is maximal consistent},
2) U1RLU2 for any U1, U2 ∈ ML is defined as (U1)� ⊆

(U2)�,

3) U |=L p, U |=L ∼p, and U |=L −p for any U ∈ ML

and any propositional variable p are defined as p ∈ U ,

∼p ∈ U , and −p ∈ U , respectively, with the condition:

∼p /∈ U or −p /∈ U.

Lemma 4.4: Suppose U ∈ML. We have:

1) If α1, ..., αm ∈ U and M4CC � α1, ..., αm ⇒ β, then

β ∈ U .

2) For any formula α, either α ∈ U or ¬α ∈ U .

Proof. Let V be Φ∗−U . Then, (U, V ) is maximal consistent.

1) Suppose β /∈ U and α1, ..., αm ∈ U . We have β ∈
V . On the other hand, we have � α1, ..., αm ⇒ β as

an assumption, and hence (U, V ) is not consistent. This

contradicts for the assumption U ∈ML. Thus, β ∈ U .

2) Since � α,¬α⇒, we have no case that α ∈ U and

¬α ∈ U . Suppose α /∈ U and ¬α /∈ U . Then we have

that α ∈ V and ¬α ∈ V . This contradicts for the fact �
⇒ α,¬α. Thus, either α ∈ U or ¬α ∈ U .

Lemma 4.5: Let U ∈ML. For any formulas α and β,

1) α ∧ β ∈ U iff α ∈ U and β ∈ U ,

2) α ∨ β ∈ U iff α ∈ U or β ∈ U ,

3) α→β ∈ U iff α /∈ U or β ∈ U ,

4) �α ∈ U iff ∀W ∈ML [URLW implies α ∈W ],
5) ♦α ∈ U iff ∃W ∈ML [URLW and α ∈W ],
6) ∼∼α ∈ U iff α ∈ U ,

7) ∼−α ∈ U iff α /∈ U (i.e., ¬α ∈ U iff α /∈ U ),

8) ∼(α ∧ β) ∈ U iff ∼α ∈ U or ∼β ∈ U ,

9) ∼(α ∨ β) ∈ U iff ∼α ∈ U and ∼β ∈ U ,

10) ∼(α→β) ∈ U iff α ∈ U and ∼β ∈ U ,

11) ∼�α ∈ U iff ∃W ∈ML [URLW and ∼α ∈W ],
12) ∼♦α ∈ U iff ∀W ∈ML [URLW implies ∼α ∈W ],
13) −−α ∈ U iff α ∈ U ,

14) −∼α ∈ U iff α /∈ U ,

15) −(α ∧ β) ∈ U iff −α ∈ U and −β ∈ U ,

16) −(α ∨ β) ∈ U iff −α ∈ U or −β ∈ U ,

17) −(α→β) ∈ U iff α ∈ U implies −β ∈ U ,

18) −�α ∈ U iff ∀W ∈ML [URLW implies −α ∈W ],
19) −♦α ∈ U iff ∃W ∈ML [URLW and −α ∈W ].

Proof. We show only the following cases.

(13): (=⇒): Suppose −−α ∈ U . Since we have � −−α⇒ α,

we obtain α ∈ U by Lemma 4.4 (1). (⇐=): Suppose α ∈
U . Since we have � α⇒ −−α, we obtain −−α ∈ U
by Lemma 4.4 (1).

(17): (=⇒): Suppose −(α→β) ∈ U and α ∈ U . Since we

have � α,−(α→β)⇒ −β, we obtain −β ∈ U by

Lemma 4.4 (1). (⇐=): Suppose −(α→β) /∈ U . We

obtain ¬−(α→β) ∈ U by Lemma 4.4 (2). Since we

have � ¬−(α→β)⇒ α and � ¬−(α→β)⇒ ¬−β, we

obtain α ∈ U and ¬−β ∈ U by Lemma 4.4 (1).

Therefore, α ∈ U and −β /∈ U .

(18): (=⇒): Suppose −�α ∈ U , URLW and W ∈ ML.

Then, we have −α ∈ U� ⊆W�, and hence �−α ∈W
or −�α ∈W . In the former case, by using Lemma 4.4

(1) and the fact � �−α⇒ −α, we obtain −α ∈W . In

the latter case, by using Lemma 4.4 (1) and the fact �
−�α⇒ −α, we obtain −α ∈W .
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(⇐=): We show the contraposition. Suppose −�α /∈
U . Then (*): (U�, {−α}) is consistent (this fact will

be proved later). By using Lemma 4.2, we have that

there exists a maximal consistent pair (W,V ) such that

U� ⊆ W and {−α} ⊆ V . Then, we have W ∈ ML

and −α /∈ W . Moreover we have (**): U� ⊆ W
implies U� ⊆ W� (this fact will be proved later).

Therefore, we have the required fact that there exists

W ∈ ML such that URLW and −α /∈ W . We show

the remained fact (*). Suppose that (U�, {−α}) is not

consistent. Then, there exist β1, ..., βn,−δ1, ...,−δo ∈
U� (and �β1, ...,�βn, −�δ1, ...,−�δo ∈ U ) such

that � β1, ..., βn,−δ1, ...,−δo ⇒ −α. Applying (�left),

(−�left), and (−�right) to this sequent, we obtain

� �β1, ...,�βn,−�δ1, ...,−�δo ⇒ −�α. By Lemma

4.4 (1), and �β1, ...,�βn,−δ1, ...,−�δo ∈ U , we

obtain −�α ∈ U . This contradicts for the assump-

tion −�α /∈ U . Therefore, (U�, {−α}) is consistent.

We show the remained fact (**): U� ⊆ W implies

U� ⊆ W�. Suppose γ ∈ U�. Then, �γ ∈ U or

−�β ∈ U with γ ≡ −β. By Lemma 4.4 (1) and the

facts � �γ ⇒ ��γ and � −�β ⇒ �−�β, we obtain

��γ ∈ U or �−�β ∈ U . In the latter case, by using

Lemma 4.4 (1) and the fact � �−�β ⇒ ��−β, we

also obtain ��−β ∈ U (i.e., ��γ ∈ U ). Thus, we

have �γ ∈ U� ⊆ W by the assumption. Therefore,

γ ∈W�.

Proposition 4.6: Let U ∈ML. For any formula α,

1) ∼α ∈ U iff −α �∈ U ,

2) −α ∈ U iff ∼α �∈ U .

Proof. By induction on α.

Lemma 4.7: Let 〈ML, RL, |=L〉 be the canonical paraconsis-

tent Kripke model defined in Definition 4.3. For any formula

γ and any U ∈ML,

U |=L γ iff γ ∈ U .

Proof. We prove this lemma by induction on γ. Since the

base step is obvious from the definition of the canonical

paraconsistent Kripke model, we show only the following

cases in the induction step.

1) Case γ ≡ −(α→β): (=⇒): Suppose U |=L −(α→β)
(i.e., [U |=L α implies U |=L −β]). Then, we obtain

[α ∈ U implies −β ∈ U ] by induction hypothesis.

By Lemma 4.5, we obtain −(α→β) ∈ U . (⇐=):

Suppose −(α→β) ∈ U . Then, we have [α ∈ U implies

−β ∈ U ] by Lemma 4.5. By induction hypothesis,

we obtain [U |=L α implies U |=L −β] Therefore,

U |=L −(α→β).
2) Case γ ≡ −�β: (=⇒): Suppose U |=L −�β (i.e.,

∀W ∈ ML [U� ⊆ W� implies W |=L −β]. Then, by

induction hypothesis, we have ∀W ∈ ML [U� ⊆ W�
implies −β ∈ W ]. Thus, we obtain −�β ∈ U by

Lemma 4.5. (⇐=): Obvious by using Lemma 4.5.

Theorem 4.8 (Completeness for M4CC): For any sequent S,

if M4CC |= S, then M4CC � S.

Proof. Let S be Γ⇒ Δ. We prove the contraposition using

the canonical paraconsistent Kripke model. Namely, we prove

the following statement: If Γ⇒ Δ is not provable in M4CC,

then ∃U ∈ ML [U �|=L Γ∗→Δ∗]. Let Γ ≡ {α1, ..., αm},
Δ ≡ {β1, ..., βn} and m,n ≥ 0. Suppose that Γ⇒ Δ
is not provable in M4CC. By using Lemma 4.2, we have

that there exists a maximal consistent pair (U, V ) such that

{α1, ..., αm} ⊆ U and {β1, ..., βn} ⊆ V . Then, we have

U ∈ ML. By Lemma 4.7, we obtain that U |=L αi

(i = 1, ...,m) and U �|=L βj (j = 1, ..., n). Thus, we have

U �|=L (α1 ∧ · · · ∧ αm)→(β1 ∨ · · · ∨ βn) (i.e., ∃U ∈ ML

[U �|=L Γ∗→Δ∗]).

V. FINITE MODEL PROPERTY

In what follows, slightly modifying the proof of Theorem

4.8, we show the following finite model property for M4CC.

Theorem 5.1 (Finite model property for M4CC): For

any sequent S, S is M4CC-valid in any finite Kripke

frame iff M4CC � S.

Proof. We give a sketch of the only if part of the proof of

this theorem by constructing a canonical finite paraconsistent

Kripke model.

Prior to give the sketch of the proof, we need to introduce

the notion of quasi-subformula. A quasi-subformula of a

formula α is defined by the following conditions:

1) a subformula of α is a quasi-subformula of α,

2) if α is of the form �(β ∧ γ), �(β ∨ γ) or �(β→γ) with

� ∈ {∼,−}, then quasi-subformulas of �β and �γ are

quasi-subformulas of α,

3) if α is of the form ��β, ��β, or �♦β with � ∈ {∼,−},
then quasi-subformulas of �β are quasi-subformulas of

α,

4) if α is of the form ∼−β, then quasi-subformulas of ∼β
are quasi-subformulas of α,

5) if α is of the form −∼β, then quasi-subformulas of −β
are quasi-subformulas of α.

We use an expression Φ(δ) to denote the set of all quasi-

subformulas of δ.

Let S ≡ Γ⇒ Δ be an unprovable sequent in M4CC, and

δ be Γ∗→Δ∗. For any U, V ⊆ Φ(δ), a pair (U, V ) is called

Φ(δ)-maximal consistent if

1) (U, V ) is consistent,

2) U ∪ V = Φ(δ).

Then, we can obtain the following statement which is a

modified version of Lemma 4.2:

For any U0, V0 ⊆ Φ(δ), if a pair (U0, V0) is consis-

tent, then there exist U and V such that U0 ⊆ U ,

V0 ⊆ V , and (U, V ) is Φ(δ)-maximal consistent.

We define a finite canonical paraconsistent Kripke model

〈MF , RF , |=F 〉 by:

1) MF := {U(⊆ Φ(δ)) | (U,Φ(δ) − U) is Φ(δ)-maximal

consistent},
2) U1RFU2 for any U1, U2 ∈ MF is defined as (U1)� ⊆

(U2)�,
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3) U |=F p, U |=F ∼p, and U |=F −p for any U ∈ MF

and any propositional variable p ∈ Φ(δ) are defined as

p ∈ U , ∼p ∈ U , and −p ∈ U , respectively, with the

condition: ∼p /∈ U or −p /∈ U.

We remark that MF is finite, because Φ(δ) is finite.

We can show some similar results to Lemmas 4.4 and 4.5

with some appropriate modifications. The items (1) - (19) in

Lemma 4.5 are modified by adding the condition: The left-

hand side formula in the item is in Φ(δ). For example, (8) in

Lemma 4.5 must modify as (8′): for any ∼(α→β) ∈ Φ(δ),
∼(α→β) ∈ U iff α ∈ U and ∼β ∈ U . Then, we can show a

modified version of Lemma 4.7 by using the finite canonical

paraconsistent Kripke model just defined above, and using this

modified lemma, we can prove this theorem.

We can obtain the following as a corollary of Theorem 5.1.

Corollary 5.2 (Decidability for M4CC): M4CC is decidable.

VI. CONCLUSIONS AND RELATED WORKS

In this study, we introduced a modal extension M4CC

of Arieli, Avron, and Zamansky’s ideal paraconsistent four-

valued logic 4CC [4]–[6]. For M4CC, we proved the Kripke-

completeness theorem as well as the finite model property. As

a corollary, we obtained the decidability result for M4CC. In

the remainder of this paper, we address some related works

on some modal extensions of many-valued logics.

The idea of extending many-valued logics to modal many-

valued logics is not new. Some traditional results in this

respect are found, for example, in [12], [13]. Nevertheless,

the modal extensions of many-valued logics have not yet been

studied intensively. Some many-valued modal logics over finite

residuated lattices were studied by Bou et al. in [10], with a

special attention to some basic classes of Kripke frames and

their axiomatizations. One may refer also to [18], [19], [21],

where some modal extensions of Belnap and Dunn’s useful

four-valued logic have been studied, and certain properties

of such logics from proof-theoretic, semantic, and algebraic

viewpoints have also been analyzed. Some three- and four-

valued modal logics, which are extensions of Belnap and

Dunn’s four-valued logic and its three-valued variant, were

introduced by Odintsov and Wansing in [19], by providing

them with the sound and complete tableau calculi, Kripke

semantics, and modal algebras with twist structures. A family

of four-valued modal logics, which are modal extensions of

Belnap and Dunn’s four-valued logic, was studied by Rivieccio

et al. in [21], by considering the many-valued Kripke structures

and their counterpart modal algebras in the sense of the

topological duality theory. A Belnapian version BK of the least

normal modal logic K with the addition of strong negation was

introduced by Odintsov and Speranski in [18], and a systematic

study of the lattices of logics containing BK was carried out

by them. A modal multilattice logic was studied by Kamide

and Shramko in [15], and a Kripke semantics for it, which are

simple and compatible with the standard Kripke semantics for

S4, was developed by them. Our Kripke semantics for M4CC

is rather similar to such a Kripke semantics, but the proof is

different. The proof of the completeness theorem presented in

[15] was an embedding-based indirect proof, but our proof for

the completeness theorem for M4CC was the direct proof that

can also show the finite model property.
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