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Abstract. A four-valued semantics for the modal logic K is introduced.
Possible worlds are replaced by a hierarchy of four-valued valuations,
where the valuations of the first level correspond to valuations that are
legal w.r.t. a basic non-deterministic matrix, and each level further re-
stricts its set of valuations. The semantics is proven to be effective, and
to precisely capture derivations in a sequent calculus for K of a certain
form. Similar results are then obtained for the modal logic KT, by simply
deleting one of the truth values.

1 Introduction

Propositional modal logics extend classical logic with modalities, intuitively in-
terpreted as necessity, knowledge, or temporal operators. Such extensions have
several applications in computer science and artificial intelligence (see, e.g.,
[7, 9, 13]).

The most common and successful semantic framework for modal logics is the
so called possible worlds semantics, in which each world is equipped with a two-
valued valuation, and the semantic constraints regarding the modal operators
consider the valuations in accessible worlds. While this has been the gold stan-
dard for modal logic semantics for many years, alternative semantic frameworks
have been proposed. One of these approaches, initiated by Kearns [10], is based
on an infinite sequence of sets of valuations in a non-deterministic many-valued
semantics. Since then, several non-deterministic many-valued semantics, without
possible worlds, were developed for modal logics (see, e.g., [14, 4, 8, 12]). The
current paper is a part of that body of work. Having an alternative semantic
framework for modal logics, different than the common possible worlds seman-
tics, has the potential of exposing new intuitions and understandings of modal
logics, and also to form the basis to new decision procedures.

Our main contribution is a four-valued semantics for the modal logic K. The
key characteristic of the semantics that we present is effectiveness: when checking
for the entailment of a formula ϕ from a set Γ of formulas in K, it suffices to
only consider partial models, defined over the subformulas of Γ and ϕ. To the
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best of our knowledge, this is the first effective Nmatrices-based semantics for
K. Such a semantics has the potential of being subject to reductions to classical
satisfiability [3], as it is based on finite-valued truth tables, and thus improving
the performance of solvers for modal logic by utilizing off-the-shelf SAT solvers.
Another advantage of this semantics is that it precisely captures derivations in a
sequent calculus for K that admit a certain property. Following Kearns, models
of this semantics are based on the concept of levels—valuations of level 0 are
the ordinary valuations of Nmatrices, while each level m > 0 introduces more
constraints. We show that valuations of level m correspond to derivations in
the calculus whose largest number of applications of the rule that correspond
to the axiom (K) in any branch of the derivation is at most m. Our restrictions
between the levels are more complex than the original restrictions in Kearns’
work, in order to obtain effectiveness. Another precise correspondence between
the semantics and the proof system that we prove, is between the domains of
valuations and the formulas allowed to be used in derivations.

Finally, we observe that by deleting one of the truth values, a three-valued
semantics for the modal logic KT is obtained, which is similar to the one pre-
sented in [8]. Like the case of K, the resulting semantics is effective, and tightly
correspond to derivations in a sequent calculus for KT.

Outline. The paper is organized as follows: Section 2 reviews standard notions in
non-deterministic matrices. In §3, we present our semantics for the modal logic
K, as well as the sequent calculus our investigation will be based on, which is
coupled with the notion of (K)-depth of derivations. In §4, we prove soundness
and completeness theorems between the sequent calculus and the semantics. In
§5, we prove that the semantics that we provide is effective, not only for deciding
entailment, but also for producing countermodels when an entailment does not
hold. In §6 we establish similar results for the modal logic KT. We conclude with
§7, where directions for future research are outlined.

Related Work. In [10], Kearns initiated the study of modal semantics without
possible worlds. This work was recently revisited by Skurt and Omori [14], who
generalized Kearns’ work and reframed his framework within the framework of
logical Non-deterministic matrices. As indicated in [14], it was not clear how to
make this semantics effective, as it requires checking truth values of infinitely
many formulas when considering the validity of a given formula (see, e.g., Remark
42 of [14]). In [4], Coniglio et al. develop a similar framework for modal logics,
and some bound over the formulas that need to be considered was achieved.
However, in [5], the authors clarified that it is unclear how to effectively use the
resulting semantics. A semantics based on Nmatrices for the modal logics KT

and S4 was presented in [8] by Grätz, that includes a method to extend a partial
model in that semantics into a total one, which results in an effective semantics.
We chose here to focus on K, which is a weaker logic, forming a common basis
to all other normal modal logics. By deleting one out of four truth values, we
obtain corresponding results for KT as well. The semantics that we present here
is similar in nature to the one presented in [8], however: (i) the truth tables
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are different, as we intentionally enforced the many-valued tables of the classical
connectives to be obtained by a straightforward duplication of truth values from
the original two-valued truth tables; and (ii) the semantic condition for levels of
valuations that we define here is inductive, where each level relies on lower levels
(thus refraining from a definition of a more cyclic nature as the one in [8], that is
better understood operationally). A variant of the semantics from [14] was also
introduced and studied in [12], but without considering the ability to perform
effective automated reasoning but instead focusing on infinite valuations rather
than on partial ones. A complete proof theoretic characterization in terms of
sequent calculi to the various levels of valuations was not given in any of the
above works. Also, an effective semantics for K, which is the most basic modal
logic, was not given in any of the above works.

Non-deterministic matrices were introduced in [2], and have since became
a useful tool for investigating non-classical logics and proof systems (see [1]
for a survey). They generalize (deterministic) matrices [15] by allowing a non-
deterministic choice of truth values in the truth tables. Like matrices, Nmatrices
enjoy the semantic analyticity property, which allows one to extend a partial
valuation into a full one. Our semantic framework can be viewed as a further
refinement of non-deterministic matrices, namely restricted non-deterministic
matrices, introduced in [6].

2 Preliminaries

In this section we provide the necessary definitions about Nmatrices following [1].
We assume a propositional language L with countably infinitely many atomic
variables p1, p2, .... When there is no room for confusion, we identify L with its
set of well-formed formulas (e.g., when writing ϕ ∈ L). We write sub(ϕ) for the
set of subformulas of a formula ϕ. This notation is extended to sets of formulas
in the natural way.

Valuations. In the context of a set V of “truth values”, a valuation is a function
v from some domain Dom(v) ⊆ L to V. For a set F ⊆ L, an F-valuation
is a valuation with domain F . (In particular, an L-valuation is defined on all
formulas.) For X ⊆ V, we write v−1[X] for the set {ϕ | v(ϕ) ∈ X}. For x ∈ V,
we also write v−1[x] for the set {ϕ | v(ϕ) = x}.

Definition 1. Let D ⊆ V be a set of “designated truth values”. A valuation
v D-satisfies a formula ϕ, denoted by v |=D ϕ, if v(ϕ) ∈ D. For a set Σ of
formulas, we write v |=D Σ if v |=D ϕ for every ϕ ∈ Σ.

Notation 2 Let D ⊆ V be a set of designated truth values and V be a set of
valuations. For sets L,R of formulas, we write L `VD R if for every v ∈ V, v |=D L
implies that v |=D ϕ for some ϕ ∈ R. We omit L or R in this notation when they
are empty (e.g., when writing `VD R), and set parentheses for singletons (e.g.,
when writing L `VD ϕ).
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Nmatrices. An Nmatrix M for L is a triple of the form 〈V,D,O〉, where V is a
set of truth values, D ⊆ V is a set of designated truth values, and O is a function
assigning a truth table Vn → P (V) \ {∅} to every n-ary connective � of L (which
assigns a set of possible values to each tuple of values). In the context of an
Nmatrix M = 〈V,D,O〉, we often denote O(�) by �̃.

An F-valuation v is M -legal if v(ϕ) ∈ pos-val(ϕ,M, v) for every formula
ϕ ∈ F whose immediate subformulas are contained in F , where pos-val(ϕ,M, v)
is defined by:

1. pos-val(p,M, v) = V for every atomic formula p.
2. pos-val(�(ψ1, ... , ψn),M, v) = �̃(v(ψ1), ... , v(ψn)) for every non-atomic for-

mula �(ψ1, ... , ψn).

In other words, there is no restriction regarding the values assigned to atomic
formulas, whereas the values of compound formulas should respect the truth
tables.

Lemma 1 ([1]). Let F ⊆ L be a set closed under subformulas and M an
Nmatrix for L. Then every M -legal F-valuation v can be extended to an M -legal
L-valuation.

3 The Modal Logic K

In this section we introduce a novel effective semantics for the model logic K. We
first present a known proof system for this logic (§3.1), and then our semantics
(§3.2). From here on, we assume that the language L consists of the connectives
⊃, ∧, ∨, ¬ and � with their usual arities. The standard ♦ operator can be defined

as a macro ♦ϕ
def
= ¬�¬ϕ. Obviously, using De-Morgan rules, fewer connectives

can be used. However, we chose this set of connectives in order to have a primitive
language rich enough for the examples that we include along the paper.

3.1 Proof System

Figure 1 presents a Gentzen-style calculus, denoted by GK, for the modal logic
K that was proven to be equivalent to the original formulation of the logic as a
Hilbert system (see, e.g., [16]). We take sequents to be pairs 〈Γ,∆〉 of finite sets
of formulas. For readability, we write Γ ⇒ ∆ instead of 〈Γ,∆〉 and use standard
notations such as Γ, ϕ⇒ ψ instead of (Γ ∪ {ϕ})⇒ {ψ}.

The (cut) rule is included in GK for convenience, but applications of (cut)

can be eliminated from derivations (see, e.g., [11]). Since the focus of this paper
is semantics rather than cut-elimination, we allow ourselves to use cut freely and
do not distinguish derivations that use it from derivations that do not. We write
`GK

Γ ⇒ ∆ if there is a derivation of a sequent Γ ⇒ ∆ in the calculus GK.
In the sequel, we provide a semantic characterization of `GK

. It is based on
a more refined notion of derivability that takes into account: (i) the set F of
formulas used in the derivation; and (ii) the (K)-depth of the derivation, as
defined next.
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(weak)
Γ ⇒ ∆

Γ,Γ ′ ⇒ ∆,∆′ (id)
Γ, ϕ⇒ ϕ,∆

(cut)

Γ, ϕ⇒ ∆
Γ ⇒ ϕ,∆

Γ ⇒ ∆
(K)

Γ ⇒ ϕ

�Γ ⇒ �ϕ

(¬ ⇒)
Γ ⇒ ϕ,∆

Γ,¬ϕ⇒ ∆
(⇒ ¬)

Γ, ϕ⇒ ∆

Γ ⇒ ¬ϕ,∆
(⊃⇒)

Γ ⇒ ϕ,∆
Γ, ψ ⇒ ∆

Γ,ϕ ⊃ ψ,∆
(⇒⊃)

Γ, ϕ⇒ ψ,∆

Γ ⇒ ϕ ⊃ ψ,∆

(∧ ⇒)
Γ, ϕ, ψ ⇒ ∆

Γ,ϕ ∧ ψ ⇒ ∆
(⇒ ∧)

Γ ⇒ ϕ,∆
Γ ⇒ ψ,∆

Γ ⇒ ϕ ∧ ψ,∆
(∨ ⇒)

Γ, ϕ⇒ ∆
Γ,ψ ⇒ ∆

Γ,ϕ ∨ ψ ⇒ ∆
(⇒ ∨)

Γ ⇒ ϕ,ψ,∆

Γ ⇒ ϕ ∨ ψ,∆

Fig. 1. The sequent calculus GK

Definition 3. A derivation of a sequent Γ ⇒ ∆ in GK is a tree in which the
nodes are labeled with sequents, the root is labeled with Γ ⇒ ∆, and every node
is the result of an application of some rule of GK where the premises are the labels
of its children in the tree. A derivation is called an F-derivation if it employs
only sequents composed of formulas from F . The (K)-depth of a derivation is
the maximal number of applications of rule (K) in any of the branches of the
derivation.

Notation 4 We write `F,mGK
Γ ⇒ ∆ if there is a derivation of Γ ⇒ ∆ in GK

in which only F-sequents occur and that has (K)-depth at most m. We drop F
from this notation when F = L; and drop m to dismiss the restriction regarding
the (K)-depth.

Example 1. Let ϕ
def
= �(p1 ∧ p2) ⊃ (�p1 ∧ �p2) and F = sub(ϕ). The following

is a derivation of ⇒ ϕ in GK that only uses F-formulas and has (K)-depth of 1
(though the number of applications of (K) in the derivation is 2):

p1, p2 ⇒ p1
(id)

p1 ∧ p2 ⇒ p1
(∧ ⇒)

�(p1 ∧ p2)⇒ �p1
(K)

p1, p2 ⇒ p2
(id)

p1 ∧ p2 ⇒ p2
(∧ ⇒)

�(p1 ∧ p2)⇒ �p2
(K)

�(p1 ∧ p2)⇒ �p1 ∧�p2
(⇒ ∧)

⇒ �(p1 ∧ p2) ⊃ �p1 ∧�p2
(⇒⊃)

3.2 Semantics

The semantics is based on a four-valued Nmatrix stratified with “levels”, where
for every m, legal valuations of level m + 1 are a subset of legal valuations of
level m. The underlying Nmatrix, denoted by MK, is obtained by duplicating
the classical truth values. Thus, the sets of truth values and of designated truth
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values are given by:

V4
def
= {T, t, f,F} D def

= {T, t}

The truth tables are as follows (we have D = {f,F}):

x⊃̃y T t F f

T D D D D
t D D D D
F D D D D
f D D D D

x∧̃y T t F f

T D D D D
t D D D D
F D D D D
f D D D D

x∨̃y T t F f

T D D D D
t D D D D
F D D D D
f D D D D

x ¬̃x
T D
t D
F D
f D

x �̃x

T D
t D
F D
f D

We employ the following notations for subsets of truth values:

TF
def
= {T,F} tf

def
= {t, f}

For the classical connectives, the truth tables of MK treat t just like T, and
f just like F, and are essentially two-valued—the result is either D or D, and it
depends solely on whether the inputs are elements of D or D. Thus, for the lan-
guage without �, this Nmatrix provides a (non-economic) four-valued semantics
for classical logic.

While the output for � is also always D or D, it differentiates between T
(that results in D) and t (that results in D), and similarly between F and f. In
fact, this table is captured by the condition: �̃(x) ∈ D iff x ∈ TF.

Example 2. Let F = sub(ϕ) where ϕ is the formula from Example 1. The fol-
lowing valuation v is an F-valuation that is MK-legal:

v(p1) = v(p2) = f v(p1 ∧ p2) = F v(�p1) = v(�p2) = v(�p1 ∧�p2) = F

v(�(p1 ∧ p2)) = T v(�(p1 ∧ p2) ⊃ (�p1 ∧�p2)) = F

To show that it is MK-legal, one needs to verify that v(ψ) ∈ pos-val(ψ,MK, v)
for each ψ ∈ F . For example, v(p1) = f ∈ V4 = pos-val(p1,MK, v). As another
example, since v(p1) = f, we have that pos-val(�p1,MK, v) = �̃(f) = {F, f}, and
hence v(�p1) = F ∈ pos-val(�p1,MK, v). Notice that v does not satisfy ϕ.

The truth table for � can be understood via “possible worlds” intuition. Our
four truth values are intuitively captured as follows, assuming a given formula
ψ and a world w:

– T: ψ holds in w and in every world accessible from w;
– t: ψ holds in w but it does not hold in some world accessible from w;
– F: ψ does not hold in w but does hold in every world accessible from w; and
– f: ψ does not hold in w and it does not hold in some world accessible from w.

In the possible worlds semantics, �ψ holds in some world w iff ψ holds in every
world that is accessible from w, which intuitively explains the table for �. Note
that non-determinism is inherent here. For example, if ψ holds in w and in every
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world accessible from w (i.e., ψ has value T), we know that �ψ holds in w, but
we do not know whether �ψ holds in every world accessible from w (thus �ψ
has value T or t).

Now, the Nmatrix MK by itself is not adequate for the modal logic K (as
Examples 1 and 2 demonstrate). What is missing is the relation between the
choices we make to resolve non-determinism for different formulas. Continuing
with the possible worlds intuition, we observe that if a formula ϕ follows from a
set of formulas Σ that hold in all accessible worlds (i.e., ϕ follows from formulas
whose truth value is T or F), then ϕ itself should hold in all accessible worlds
(i.e., ϕ’s truth value should be T or F). Directly encoding this condition requires
us to consider a set V of MK-legal F-valuations for which the following holds
(recall Notation 2 from §2):

∀v ∈ V.∀ϕ ∈ F . (v−1[TF] `VD ϕ =⇒ v(ϕ) ∈ TF) (necessitation)

In turn, to obtain completeness we take a maximal set V that satisfies the
necessitation condition. While it is possible to define this set of valuations as
the greatest fixpoint of necessitation, following previous work, we find it conve-
nient to reach this set using “levels”:

Definition 5. The set VF,mK is inductively defined as follows:

– VF,0K is the set of MK-legal F-valuations.

– VF,m+1
K

def
=

{
v ∈ VF,mK | ∀ϕ ∈ F . v−1[TF] `V

F,m
K

D ϕ =⇒ v(ϕ) ∈ TF
}

We also define:

VFK
def
=

⋂
m≥0

VF,mK VmK
def
= VL,mK VK

def
=

⋂
m≥0

VL,mK

Similarly to the idea originated by Kearns in [10], valuations are partitioned

into levels, which are inductively defined. The first level, VF,0K , consists solely of
the MK-legal valuations with domain F . For each m > 0, the m’th level is defined
as a subset of the (m− 1)’th level, with an additional constraint: a valuation v
from level m − 1 remains in level m, only if every formula ϕ ∈ F entailed (at
the m − 1 level) from the set of formulas that were assigned a value from TF
by v, is itself assigned a value from TF by v. As we show below, in the “end”
of this process, by taking

⋂
m≥0 V

F,m
K , one obtains the greatest set V satisfying

the necessitation condition

Remark 1. The necessitation condition is similar to the one provided in [8] to the
modal logics KT and S4. In contrast, the condition from [10, 14, 4] is simpler and
does not involve v−1[TF] at all, but also does not give rise to decision procedures.

Example 3. Following Example 2, while the formula ϕ is not satisfied by all
valuations in VF,0K , it is satisfied by all valuations in VF,mK for every m > 0. In

particular, the valuation v from Example 2 is not in VF,1K : we have p1∧p2 `
VF,0K

D p1
and v(p1 ∧ p2) = F (so p1 ∧ p2 ∈ v−1[TF]), but v(p1) = f /∈ TF.
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For each set F ⊆ L and m ≥ 0, we obtain a consequence relation `V
F,m
K

D

between sets of F-formulas. Disregarding m, we also obtain the relation `V
F
K

D
(for every F), which we will show to be sound and complete for K. We note that
all these relations are compact. The proof of the following theorem relies on the
completeness theorems that we prove in §4.

Theorem 1 (Compactness).

1. For every m ≥ 0, if L `V
F,m
K

D R, then Γ `V
F,m
K

D ∆ for some finite Γ ⊆ L and
∆ ⊆ R.

2. If L `V
F
K

D R, then Γ `V
F
K

D ∆ for some finite Γ ⊆ L and ∆ ⊆ R.

Now, to show that VFK is indeed the largest set V of MK-legal F-valuations
that satisfies necessitation, we use the following two lemmas. The first is a general
construction that relies only on the use of finite-valued valuation functions.

Lemma 2. Let v0, v1, v2, ... be an infinite sequence of valuations over a common
domain F . Then, there exists some v such that for every finite set F ′ ⊆ F of
formulas and m ≥ 0, we have v|F ′ = vk|F ′ for some k ≥ m.

Proof (Outline). First, if F is finite, then there is only a finite number of F-
valuations, and there must exists some F-valuation vm that occurs infinitely
often in the sequence v0, v1, .... We take v = vm, and the required property triv-
ially holds. Now, assume that F is infinite, and let ϕ0, ϕ1, ... be an enumeration
of the formulas in F . For every i ≥ 0, let Fi = {ϕ0, ... , ϕi}. We construct a
sequence of infinite sets A0, A1, ... ⊆ N such that:

– For every i ≥ 0, Ai+1 ⊆ Ai.
– For every 0 ≤ j ≤ i, a ∈ Aj , and b ∈ Ai, va(ϕj) = vb(ϕj).

To do so, take some infinite set A0 ⊆ N such that va(ϕ0) = vb(ϕ0) for every
a, b ∈ A0 (such set must exist since we have a finite number of truth values).
Then, given Ai, we let Ai+1 be some infinite subset of Ai such that va(ϕi+1) =
vb(ϕi+1) for every a, b ∈ Ai+1. The valuation v is defined by v(ϕi) = va(ϕi) for
some a ∈ Ai. The properties of the Ai’s ensure that v is well defined, and it can
be shown that it also satisfies the required property. ut

Using Lemma 2 and the compactness property, we can show the following:

Lemma 3. Let v0, v1, ... be a sequence of valuations over a common domain F
such that vm ∈ VF,mK for every m ≥ 0. Then, there exists some v ∈ VFK such
that for every ϕ ∈ F , v(ϕ) = vm(ϕ) for some m ≥ 0.

Proof (Outline). By Lemma 2, there exists some v such that for every finite set
F ′ of formulas, v|F ′ = vm|F ′ for some m ≥ 0. It is easy to verify that v satisfies

the required properties. In particular, one shows that v ∈ VF,mK for every m ≥ 0
by induction on m. In that proof we use Theorem 1 to obtain a finite Γ ⊆ v−1[TF]

such that Γ `V
F,m−1
K

D ϕ from the assumption that v−1[TF] `V
F,m−1
K

D ϕ. Then, the
above property of v is applied with F ′ = Γ ∪ {ϕ}. ut
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Now, our characterization theorem easily follows:

Theorem 2. The set VFK is the largest set V of MK-legal F-valuations that sat-
isfies necessitation.

Proof (Outline). To prove that VFK satisfies necessitation, one needs to prove

that if v−1[TF] `V
F
K

D ϕ, then also v−1[TF] `V
F,m
K

D ϕ for some m ≥ 0. This is done
using Lemma 3. For maximality, given a set V, we assume by contradiction that
there is some m such that V 6⊆ VF,mK , take a minimal such m, and show that it

cannot be 0. Then, from V ⊆ VF,m−1K , it follows that actually V ⊆ VF,mK , and
thus we obtain a contradiction. ut

Finite Domain. By definition we have VF,0K ⊇ VF,1K ⊇ VF,2K ⊇ ... (and so,

`V
F,0
K

D ⊆ `V
F,1
K

D ⊆ `V
F,2
K

D ⊆ ...). Next, we show that when F is finite, then this
sequence must converge.

Lemma 4. Suppose that VF,mK = VF,m+1
K for some m ≥ 0. Then, VFK = VF,mK .

Lemma 5. For a finite set F of formulas, VFK = VF,4
|F|

K .

Proof. The left-to-right inclusion follows from our definitions. For the right-to-
left inclusion, note that by Lemma 4, VF,mK = VF,m+1

K implies that VF,mK = VF,kK

for every k ≥ m. Thus, it suffices to show that VF,mK = VF,m+1
K for some 0 ≤

m ≤ 4|F| + 1. Indeed, otherwise we have VF,0K ⊃ VF,1K ⊃ VF,2K ⊃ ... ⊃ VF,4
|F|+1

K ,
but this is impossible since there are only 4|F| functions from F to V4. ut

Optimized Tables. Starting from level 1, the condition on valuations allows us
to refine the truth tables of MK, and reduce the search space for countermodels.

For instance, since ψ `V
F,0
K

D ϕ ⊃ ψ (for every F with {ψ,ϕ, ϕ ⊃ ψ} ⊆ F), at level
1 we have that if ψ ∈ v−1[TF], then v(ϕ ⊃ ψ) ∈ TF. This allows us to remove
t and f from the first and third columns (when y ∈ TF) in the table presenting
⊃̃. The following entailments (at level 0), all with a single occurrence of some
connective, lead to similar refinements, resulting in the optimized tables below
for ⊃, ∧ and ∨:

ϕ,ϕ ⊃ ψ `V
F,0
K

D ψ ϕ,ψ `V
F,0
K

D ϕ ∧ ψ ϕ ∧ ψ `V
F,0
K

D ϕ ϕ ∧ ψ `V
F,0
K

D ψ

ϕ `V
F,0
K

D ϕ ∨ ψ ψ `V
F,0
K

D ϕ ∨ ψ

x⊃̃y T t F f

T {T} {t} {F} {f}
t {T} D {F} D
F {T} {t} {T} {t}
f {T} D {T} D

x∧̃y T t F f

T {T} {t} {F} {f}
t {t} {t} {f} {f}
F {F} {f} {F} {f}
f {f} {f} {f} {f}

x∨̃y T t F f

T {T} {T} {T} {T}
t {T} D {T} D
F {T} {T} {F} {F}
f {T} D {F} D
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We note that level 1 valuations are not fully captured by these tables. For
example, they must assign T to every formula of the form ϕ ⊃ ϕ, while the table
above allows also t when v(ϕ) ∈ tf. A decision procedure for K can benefit from
relying on these optimized tables instead of the original ones, starting from level
1.

4 Soundness and Completeness

In this section we establish the soundness and completeness of the proposed
semantics. For that matter, we first extend the notion of satisfaction to sequents:

Definition 6. An F-valuation v D-satisfies an F-sequent Γ ⇒ ∆, denoted by
v |=D Γ ⇒ ∆, if v 6|=D ϕ for some ϕ ∈ Γ or v |=D ϕ for some ϕ ∈ ∆.

To prove soundness, we first note that except for (K), the soundness of each
derivation rule easily follows from the Nmatrix semantics:

Lemma 6 (Local Soundness). Consider an application of a rule of GK other
than (K) deriving a sequent Γ ⇒ ∆ from sequents Γ1 ⇒ ∆1, ... , Γn ⇒ ∆n, such
that Γ ∪ Γ1 ∪ ...∪ Γn ∪∆∪∆1 ∪ ...∪∆n ⊆ F . Let v ∈ VF,mK for some m ≥ 0. If
v |=D Γi ⇒ ∆i for every 1 ≤ i ≤ n, then v |=D Γ ⇒ ∆.

For (K), we make use of the level requirement, and prove the following lemma.

Lemma 7 (Soundness of (K)). Suppose that Γ ∪ �Γ ∪ {ϕ,�ϕ} ⊆ F , and

Γ `V
F,m−1
K

D ϕ. Then, �Γ `V
F,m
K

D �ϕ.

Proof. Let v ∈ VF,mK such that v |=D �Γ . We prove that v |=D �ϕ. By the
truth table of �, we have that v(ψ) ∈ TF for every ψ ∈ Γ , and we need to
show that v(ϕ) ∈ TF. Since v(ψ) ∈ TF for every ψ ∈ Γ , we have Γ ⊆ v−1[TF].

Since Γ `V
F,m−1
K

D ϕ, we have v−1[TF] `V
F,m−1
K

D ϕ. Since v ∈ VF,mK , it follows that
v(ϕ) ∈ TF. ut

The above two lemmas together establish soundness, and from soundness for
each level, we easily derive soundness for arbitrary (K)-depth.

Theorem 3 (Soundness for m). If `F,mGK
Γ ⇒ ∆, then Γ `V

F,m
K

D ∆.

Theorem 4 (Soundness without m). If `FGK
Γ ⇒ ∆, then Γ `V

F
K

D ∆.

By taking F = L in Theorem 4 we get that if `GK
Γ ⇒ ∆, then Γ `VK

D ∆.

Next, we prove the following two completeness theorems:

Theorem 5 (Completeness for m). Let F ⊆ L closed under subformulas

and Γ ⇒ ∆ an F-sequent. If Γ `V
F,m
K

D ∆, then `F,mGK
Γ ⇒ ∆.
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Theorem 6 (Completeness without m). Let F ⊆ L closed under subfor-

mulas and Γ ⇒ ∆ an F-sequent. If Γ `V
F
K

D ∆, then `FGK
Γ ⇒ ∆.

In fact, since F may be infinite, we need to prove stronger theorems than
Theorems 5 and 6, that incorporate infinite sequents.

Definition 7. An ω-sequent is a pair 〈L,R〉, denoted by L⇒ R, such that L and

R are (possibly infinite) sets of formulas. We write F,mGK
L⇒ R if `F,mGK

Γ ⇒ ∆
for some finite Γ ⊆ L and ∆ ⊆ R.

Other notions for sequents (e.g., being an F-sequent) are extended to ω-
sequents in the obvious way. In particular, v |=D L ⇒ R if v(ψ) /∈ D for some
ψ ∈ L or v(ψ) ∈ D for some ψ ∈ R.

Theorem 7 (ω-Completeness for m). Let F ⊆ L closed under subformulas

and L⇒ R an ω-F-sequent. If L `V
F,m
K

D R, then F,mGK
L⇒ R.

Theorem 8 (ω-Completeness without m). Let F ⊆ L closed under subfor-

mulas and L⇒ R an ω-F-sequent. If L `V
F
K

D R, then FGK
L⇒ R.

Theorem 5 is a consequence of Theorem 7. Indeed, by Theorem 7, Γ `V
F,m
K

D ∆

implies that `F,mGK
Γ ′ ⇒ ∆′ for some (finite) Γ ′ ⊆ Γ and ∆′ ⊆ ∆. Using

(weak), we obtain that `F,mGK
Γ ⇒ ∆. Similarly, Theorem 6 is a consequence of

Theorem 8. Also, using Lemma 3, we obtain Theorem 8 from Theorem 7. Hence
in the remainder of this section we focus on the proof of Theorem 7.

Proof of Theorem 7 We start by defining maximal and consistent ω-sequents,
and proving their existence.

Definition 8 (Maximal and consistent ω-sequent). Let F ⊆ L and m ≥ 0.
An F-ω-sequent L⇒ R is called:

1. F-maximal if F ⊆ L ∪R.
2. 〈GK,F ,m〉-consistent if 6F,mGK

L⇒ R.
3. 〈GK,F ,m〉-maximal-consistent (in short, 〈GK,F ,m〉-max-con) if it is F-maximal

and 〈GK,F ,m〉-consistent.

Lemma 8. Let F ⊆ L and L⇒ R an F-ω-sequent. Suppose that 6F,mGK
L⇒ R.

Then, there exist sets LMC(GK,F,m,L⇒R) and RMC(GK,F,m,L⇒R) such that the
following hold:

– L ⊆ LMC(GK,F,m,L⇒R) and R ⊆ RMC(GK,F,m,L⇒R).
– LMC(GK,F,m,L⇒R) ∪RMC(GK,F,m,L⇒R) ⊆ F .
– LMC(GK,F,m,L⇒R) ⇒ RMC(GK,F,m,L⇒R) is 〈GK,F ,m〉-max-con.

Thus, given an underivable ω-sequent, we can extend it to a 〈GK,F ,m〉-max-
con ω-sequent. This ω-sequent induces the canonical countermodel, as defined
next.

11



Algorithm 1 Deciding Γ `VK

D ϕ.

1: F ← sub(Γ ∪ {ϕ})
2: m← 4|F|

3: for v ∈ VF,m
K do

4: if v |=D Γ and v 6|=D ϕ then
5: return (“NO”, v)

6: return “YES”

Notation 9 We denote the set {ψ ∈ F | �ψ ∈ X} by BXF .

Definition 10. Suppose that L ] R = F . The canonical model w.r.t. L ⇒ R,
F , and m, denoted by v(F , L⇒ R,m), is the F-valuation defined as follows (in
λ notation):

For m = 0:

λϕ ∈ F .


T ϕ ∈ L and �ϕ ∈ L
t ϕ ∈ L and �ϕ /∈ L
F ϕ ∈ R and �ϕ ∈ L
f ϕ ∈ R and �ϕ /∈ L

For m > 0:

λϕ ∈ F .


T ϕ ∈ L and F,m−1GK

BLF ⇒ ϕ

t ϕ ∈ L and 6F,m−1GK
BLF ⇒ ϕ

F ϕ ∈ R and F,m−1GK
BLF ⇒ ϕ

f ϕ ∈ R and 6F,m−1GK
BLF ⇒ ϕ

Clearly, v(F , L⇒ R,m) 6|=D L ⇒ R. The proof of Theorem 7 is done by
induction on m, and then carries on by showing that if L ⇒ R is 〈GK,F ,m〉-
max-con, then v(F , L⇒ R,m) belongs to VF,mK for every m.

Concretely, let v
def
= v(F , L⇒ R,m). We show that v ∈ VF,kK for every k ≤ m

by induction on k. The base case k = 0 is straightforward. For k > 0, we
have v ∈ VF,k−1K by the induction hypothesis. Let ϕ ∈ F , and suppose that

v−1[TF] `V
F,k−1
K

D ϕ. To show that v(ϕ) ∈ TF, we prove that F,m−1GK
BLF ⇒ ϕ.

By the outer induction hypothesis (regarding the completeness theorem itself),

v−1[TF] `V
F,k−1
K

D ϕ implies that F,k−1GK
v−1[TF]⇒ ϕ, which implies that F,m−1GK

v−1[TF]⇒ ϕ. Hence, there is a finite set {ϕ1, ... , ϕn} ⊆ v−1[TF] such that `F,m−1GK

{ϕ1, ... , ϕn} ⇒ ϕ. For every 1 ≤ i ≤ n, since ϕi ∈ v−1[TF], we have that

F,m−1GK
BLF ⇒ ϕi and hence `F,m−1GK

Γi ⇒ ϕi for some Γi ⊆ BLF . Using n

applications of (cut) on these sequents and `F,m−1GK
{ϕ1, ... , ϕn} ⇒ ϕ, we obtain

that `F,m−1GK
Γ1, ... , Γn ⇒ ϕ, and so F,m−1GK

BLF ⇒ ϕ.

5 Effectiveness of the Semantics

In this section we study the effectiveness of the semantics introduced in Definition 5
for deciding `MK

. Roughly speaking, a semantic framework is said to be effective
if it induces a decision procedure that decides its underlying logic.

Consider Algorithm 1. Given a finite set Γ of formulas and a formula ϕ, it
checks whether any valuations in VF,mK is a countermodel. The correctness of
this algorithm relies on the analyticity of GK, namely:

12



Lemma 9 ([11]). If `GK
Γ ⇒ ∆, then `sub(Γ∪{ϕ})GK

Γ ⇒ ∆.

Using Lemma 9, we show that the algorithm is correct.

Lemma 10. Algorithm 1 always terminates, and returns “YES” iff Γ `VK

D ϕ.

Proof. Termination follows from the fact that VF,mK is finite. Suppose that the
result is “YES” and assume for contradiction that Γ 6`VK

D ϕ. Hence, there exists

some u ∈ VK such that u |=D Γ and u 6|=D ϕ. Consider v
def
= u|F . Then, v ∈

VFK ⊆ VF,mK , which contradicts the fact that the algorithm returns “YES”. Now,

suppose that the result is “NO”. Then, there exists some v ∈ VF,mK such that

v |=D Γ and v 6|=D ϕ. By Lemma 5, v ∈ VFK . Hence, Γ 6`V
F
K

D ϕ. By Theorem 3,
we have 6`FGK

Γ ⇒ ϕ. By Lemma 9, we have 6`GK
Γ ⇒ ϕ. By Theorem 6, we have

Γ 6`VK

D ϕ. ut

Lemma 10 shows that Algorithm 1 is a decision procedure for `MK
, when

ignoring the additional output provided in Line 5. However, it is typical in ap-
plications that a “YES” or “NO” answer is not enough, and often it is expected
that a “NO” result is accompanied with a countermodel. Algorithm 1 returns a
valuation v in case the answer is “NO”, but Lemma 10 does not ensure that v
is indeed a countermodel for Γ `VK

D ϕ. The issue is that the valuation v from the

proof of Lemma 10 witnesses the fact that 6`VK

D only in a non-constructive way.
Indeed, using the soundness and completeness theorems, we are able to deduce
that v′ |=D Γ and v′ 6|=D ϕ for some v′ ∈ VK, but the relation between v and v′ is
unclear. Most importantly, it is not clear whether v and v′ agree on F-formulas.
In the remainder of this section we prove that v′ extends v, and so the returned
countermodel of Line 5 can be trusted.

We say that a valuation v′ extends a valuation v if Dom(v) ⊆ Dom(v′) and
v′(ϕ) = v(ϕ) for every ϕ ∈ Dom(v) (identifying functions with sets of pairs,
this means v ⊆ v′). Clearly, for a Dom(v)-formula ψ we have that v′ |=D ψ iff

v |=D ψ. We first show how to extend a given valuation v ∈ VF,mK by a single

formula ψ such that sub(ψ) \ {ψ} ⊆ F , obtaining a valuation v′ ∈ VF∪{ψ},mK

that agrees with v on all formulas in F .

Lemma 11. Let m ≥ 0, F ⊆ L, and v ∈ VF,mK . Let ψ ∈ L \ F such that

sub(ψ) \ {ψ} ⊆ F . Then, v can be extended to some v′ ∈ VF∪{ψ},mK .

We sketch the proof of Lemma 11.
When m = 0, v′ exists from Lemma 1. For m > 0, we define v′ as follows:3

v′
def
= λϕ ∈ F∪{ψ} .


v(ϕ) ϕ ∈ F

min(pos-val(ψ,MK, v) ∩ TF) ϕ = ψ ∧ v−1[TF] `V
F∪{ψ},m−1
K

D ψ

min(pos-val(ψ,MK, v) ∩ tf) otherwise

3 The use of min here assumes an arbitrary order on truth values. It is used here only
to choose some element from a non-empty set of truth values.
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The proof of Lemma 11 then carries on by showing that v′ ∈ VF∪{ψ},mK .
Next, Lemma 11 is used in order to extend partial valuations into total ones.

Lemma 12. Let v ∈ VF,mK for some F closed under subformulas. Then, v can
be extended to some v′ ∈ VmK .

Finally, Lemmas 3 and 12 can be used in order to extend any partial valuation
in VFK into a total one.

Lemma 13. Let v ∈ VFK for some set F closed under subformulas. Then, v can
be extended to some v′ ∈ VK.

We conclude by showing that when Algorithm 1 returns (“NO”, v), then v
is a finite representation of a true countermodel for Γ `MK

ϕ.

Corollary 1. If Γ 6`VK

D ϕ. Then Algorithm 1 returns (“NO”, v) for some v for
which there exists v′ ∈ VK such that v = v′|sub(Γ∪{ϕ}), v′ |=D Γ , and v′ 6|=D ϕ.

Proof. Suppose that Γ 6`VK

D ϕ. Then by Lemma 10, Algorithm 1 does not return

“YES”. Therefore, it returns (“NO”, v) for some v ∈ VF,mK such that v |=D Γ
and v 6|=D ϕ, where F = sub(Γ ∪ {ϕ}) and m = 4|F|. By Lemma 5, v ∈ VFK .
By Lemma 13, v can be extended to some v′ ∈ VK. Therefore, v = v′|sub(Γ∪{ϕ}),
v′ |=D Γ , and v′ 6|=D ϕ. ut

Remark 2. Notice that in scenarios where model generation is not important,
m can be set to a much smaller number in Line 2 of Algorithm 1, namely, the
“modal depth” of the input.4 The reason for that is that for such m, it can be
shown that `F,mGK

Γ ⇒ ϕ iff `FGK
Γ ⇒ ϕ, by reasoning about the applications of

rule (K). Using the soundness and completeness theorems, we can get Γ `V
F,m
K

D ϕ

iff Γ `V
F
K

D ϕ, and so limiting to such m is enough. Notice however, that we do not

necessarily get VF,mK = VFK for such m, and so the valuation returned in Line 5
might not be an element of VFK .

6 The Modal Logic KT

In this section we obtain similar results for the modal logic KT. First, the calculus
GKT is obtained from GK by adding the following rule (see, e.g., [16]):

(T )
Γ, ϕ⇒ ∆

Γ,�ϕ⇒ ∆

Derivations are defined as before. (In particular, the (K)-depth of a derivation

still depends on applications of rule (K), not of rule (T ).) We write `F,mGKT
Γ ⇒ ∆

4 The modal depth of an atomic formula p is 0. The modal depth of �ϕ is the modal
depth of ϕ plus 1. The modal depth of �(ϕ1, ... , ϕn) for � 6= � is the maximum
among the modal depths of ϕ1, ... , ϕn.
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if there is a derivation of Γ ⇒ ∆ in GKT in which only F-sequents occur and that
has (K)-depth at most m.

Next, we consider the semantics. For a valuation v ∈ VK to respect rule (T ),
we must have that if v |=D Γ, ϕ ⇒ ∆, then v |=D Γ,�ϕ ⇒ ∆. In particular,
when v 6|=D Γ ⇒ ∆, we get that if v(ϕ) /∈ D, then v(�ϕ) /∈ D. Now, if v(ϕ) = F,
then v(�ϕ) ∈ D according to the truth table of � in MK. But, we must have
v(�ϕ) /∈ D. This leads us to remove F from MK.

We thus obtain the following Nmatrix MKT: The sets of truth values and of
designated truth values are given by5

V3
def
= {T, t, f} D def

= {T, t}

and the truth tables are as follows:

x⊃̃y T t f

T D D {f}
t D D {f}
f D D D

x∧̃y T t f

T D D {f}
t D D {f}
f {f} {f} {f}

x∨̃y T t f

T D D D
t D D D
f D D {f}

x ¬̃x
T {f}
t {f}
f D

x �̃x

T D
t {f}
f {f}

Again, one may gain intuition from the possible worlds semantics. There,
the logic KT is characterized by frames with reflexive accessibility relation. Thus,
for instance, if ψ holds in w but not in some world accessible from w (i.e., ψ
has value t), we know that �ψ does not hold in w, and the reflexivity of the
accessibility relation implies that �ψ does not hold in some world accessible
from w (thus �ψ has value f).

Example 4. Let ϕ
def
= ��(p1 ∧ p2) ⊃ �p1 and F def

= sub(ϕ). The sequent ⇒ ϕ has
a derivation in GKT using only F formulas of (K)-depth of 1. However, it is not
satisfied by all MKT-legal F-valuations. For example, the following valuation is
an MKT-legal valuation that does not satisfy ϕ:

v(p1) = v(p2) = t v(�p1) = f

v(p1 ∧ p2) = v(�(p1 ∧ p2)) = v(��(p1 ∧ p2)) = T v(ϕ) = f

Next, we define the levels of valuations for MKT. These are obtained from
Definition 5 by removing the value F:

Definition 11. The set VF,mKT is recursively defined as follows:

– VF,0KT is the set of MKT-legal F-valuations.

– VF,m+1
KT

def
=

{
v ∈ VF,mKT | ∀ϕ ∈ F . v−1[T] `V

F,m
KT

D ϕ =⇒ v(ϕ) = T
}

We also define:

VFKT
def
=

⋂
m≥0

VF,mKT VmKT
def
= VL,mKT VKT

def
=

⋂
m≥0

VL,mKT

5 In this section we denote the set {T} by TF.
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Example 5. Following Example 4, we note that for every v ∈ VF,mKT with m > 0,
we have v |=D ϕ. In particular, the valuation v from Example 4 does not belong

to VF,mKT : �(p1 ∧ p2) ∈ v−1[T], �(p1 ∧ p2) `V
F,0
KT

D p1, but v(p1) = t.

Similarly to Theorem 2, the levels of valuations converge to a maximal set
that satisfies the following condition:

∀v ∈ V.∀ϕ ∈ F . v−1[T] `VD ϕ =⇒ v(ϕ) = T (necessitationKT)

Theorem 9. The set VFKT is the largest set V of MKT-legal F-valuations that
satisfies necessitationKT.

The proof of Theorem 9 is analogous to that of Theorem 2.

Remark 3. The necessitationKT condition is equivalent to the one given in [8],
except that the underlying truth table is different. Theorem 9 proves that our
gradual way of defining VFKT via levels coincides with the semantic condition from
[8].

As we demonstrated for K, starting from level 1, the condition on valuations
allows us to refine the truth tables of MKT, and reduce the search space. Simple
entailments (at level 0) lead to the optimized tables below for ⊃, ∧ and ∨:

x⊃̃y T t f

T {T} {t} {f}
t {T} D {f}
f {T} D D

x∧̃y T t f

T {T} {t} {f}
t {t} {t} {f}
f {f} {f} {f}

x∨̃y T t f

T {T} {T} {T}
t {T} D D
f {T} D {f}

Soundness and completeness for GKT are obtained analogously to GK, keeping
in mind that MKT is obtained from MK by deleting the value F. For soundness,
this is captured by the rule (T ). For completeness, the same construction of a
countermodel is performed , while rule (T ) ensures that it is three-valued.

Theorem 10 (Soundness and Completeness). Let F ⊆ L closed under
subformulas and Γ ⇒ ∆ an F-sequent.

1. For every m ≥ 0, Γ `V
F,m
KT

D ∆ iff `F,mGKT
Γ ⇒ ∆.

2. Γ `V
F
KT

D ∆ iff `FGKT
Γ ⇒ ∆.

Effectiveness is also shown similarly to K. For that matter, we use the follow-
ing main lemma, whose proof is similar to Lemma 13. The only component that
is added to that proof is making sure that the constructed model is three-valued.

Lemma 14. Let v ∈ VFKT for some set F closed under subformulas. Then, v can
be extended to some v′ ∈ VKT.

Let Algorithm 2 be obtained from Algorithm 1 by setting m to 3|F| in Line 2,
and taking v ∈ VF,mKT in Line 3. Similarly to Lemma 10 and Corollary 1, we get
that Algorithm 2 is a model-producing decision procedure for `MKT

.

Lemma 15. Algorithm 2 always terminates, and returns “YES” iff Γ `VKT

D ϕ.

Further, if Γ 6`VKT

D ϕ, then it returns (“NO”, v) for some v for which there exists
v′ ∈ VKT such that v = v′|sub(Γ∪{ϕ}), v′ |=D Γ , and v′ 6|=D ϕ.
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7 Future Work

We have introduced a new semantics for the modal logic K, based on levels of
valuations in many-valued non-deterministic matrices. Our semantics is effective,
and was shown to tightly correspond to derivations in a sequent calculus for K.
We also adapted these results for the modal logic KT.

There are two main directions for future work. The first is to establish sim-
ilar semantics for other normal modal logics, such as KD, K4, S4 and S5, and to
investigate ♦ as an independent modality. The second is to analyze the complex-
ity, implement and experiment with decision procedures for K and KT based on
the proposed semantics. In particular, we plan to consider SAT-based decision
procedures that would encode this semantics in SAT, directly or iteratively.
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