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Abstract. Gen2sat [1] is an efficient and generic tool that can decide
derivability for a wide variety of propositional non-classical logics given
in terms of a sequent calculus. It contributes to the line of research on
computer-supported tools for investigation of logics in the spirit of the
“logic engineering” paradigm. Its generality and efficiency are made pos-
sible by a reduction of derivability in analytic pure sequent calculi to
SAT. This also makes Gen2sat a “plug-and-play” tool so it is compati-
ble with any standard off-the-shelf SAT solver and does not require any
additional logic-specific resources. We describe the implementation de-
tails of Gen2sat and an evaluation of its performance, as well as a pilot
study for using it in a “hands on” assignment for teaching the concept
of sequent calculi in a logic class for engineering practitioners.

1 Introduction

Logic Engineering [2] is a quickly developing field which studies ways to in-
vestigate and construct new logical formalisms with “nice” properties (such as
decidability, appropriate expressive power, effective reasoning methods, etc.), for
a particular need or application. Handling whole families (or “product lines”) of
non-classical logics calls for automatic methods for their construction and inves-
tigation, as well as for new approaches in teaching these topics to future logicians
and practitioners. Such ideas of automatic support for the investigation of logics,
first presented in [21], were realized in a variety of tools, such as MultLog [5],
TINC [8], NESCOND [22], LoTREC [13], MetTeL [24], and many others.

The tool Gen2sat is a contribution to the above paradigm, which particu-
larly aims to support investigators who use sequent calculi for the specification
of logics. Sequent calculi are a prominent proof-theoretic framework, suitable for
performing proof search in a wide variety of different logics. However, a great
deal of ingenuity is required for developing efficient proof-search algorithms for
sequent calculi (see, e.g., [12]). Aiming to support users with minimal back-
ground in programming and automated reasoning techniques, Gen2sat uses a
uniform method for deciding derivability of a sequent in a given calculus using
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the polynomial reduction of [16] to SAT. Shifting the intricacies of implementa-
tion and heuristic considerations to the realm of off-the-shelf SAT solvers, the
tool is lightweight and focuses solely on the transformation of derivability to
a SAT instance. As such, it also has the potential to serve as a tool that can
enhance learning and research of concepts related to proof theory and semantics
of non-classical logics, in particular those of sequent calculi. To demonstrate the
educational potential of the tool, in this paper we report on a pilot on using it
to enhance learning sequent calculi by graduate Information Systems students
at the University of Haifa.

2 Analytic Pure Sequent Calculi

While this paper’s focus is on the implementation and usage of Gen2sat, the
theoretical background can be found in [16]. Below we briefly review the relevant
results.

The variety of sequent calculi which can be handled by Gen2sat includes
the family of pure analytic calculi. A derivation rule is called pure if it does
not enforce any limitations on the context formulas. For example, the right
introduction rule of implication in classical logic is pure, but not in intuitionistic
logic, where only left context formulas are allowed. A sequent calculus is called
pure if it includes all the standard structural rules:3 weakening, identity and cut;
and all its derivation rules are pure.

For a finite set } of unary connectives, we say that a formula ϕ is a }-
subformula of a formula ψ if either ϕ is a subformula of ψ, or ϕ = ◦ψ′ for some
◦ ∈ } and proper subformula ψ′ of ψ. A pure calculus is }-analytic if whenever a
sequent s is provable in it, s can be proven using only formulas from sub}(s), the
set of }-subformulas of s. We call a calculus analytic if it is }-analytic for some
set }. Note that ∅-analyticity amounts to the usual subformula property. Many
well-known logics can be represented by analytic pure sequent calculi, including
three and four-valued logics, various paraconsistent logics, and extensions of
primal infon logic ([16] presents some examples).

In order to decide derivability in sequent calculi, Gen2sat adopts the following
semantic view:

Definition 1. Let G be an analytic pure sequent calculus. A G-legal bivaluation
is a function v from some set of formulas to {0, 1} that respects each rule of G,
that is, for every instance of a rule, if v assigns 1 to all premises, it also assigns 1
to the conclusion. This definition relies on the following extension of bivaluations
to sequents: v(Γ ⇒ ∆) = 1 iff v(ψ) = 0 for some ψ ∈ Γ or v(ψ) = 1 for some
ψ ∈ ∆.

Theorem 1 ([16]). Let } be a set of unary connectives, G a }-analytic pure
sequent calculus, and s a sequent. s is provable in G if and only if there is no
G-legal bivaluation v with domain sub}(s) such that v(s) = 0.

3 We take sequents to be pairs of sets of formulas, and therefore exchange and con-
traction are built in.



Thus, given a }-analytic calculus G and a sequent s as its input, Gen2sat
does not search for a proof. Instead, it searches for a countermodel of the sequent,
by encoding in a SAT instance the following properties of the countermodel:
1) Assigning 0 to s; and 2) Being G-legal with domain sub}(s).

Gen2sat is capable of handling also impure rules of the form (∗i)
Γ ⇒ ∆

∗Γ ⇒ ∗∆
for

Next-operators. This requires some adaptations of the above reduction, that are
described in [16]. (∗i) is the usual rule for Next in LTL (see, e.g., [15]). It is also
used as � (and ♦) in the modal logic KD! of functional Kripke frames (also
known as KF and KDalt1). In primal infon logic [10] Next operators play the
role of quotations.

3 Features and Usage

There is a variety of tools developed in the spirit of logic engineering, such as
MultLog [5], TINC [8], NESCOND [22], LoTREC [13], and finally MetTeL [24],
which generates a theorem prover for a given logic, as well as a source code for
the prover, that can be further optimized. The aim of Gen2sat is similar, allowing
the user to specify the logic and automatically obtain a decision procedure. In
contrast to MetTeL which uses tableaux, in Gen2sat the logic is given by a
sequent calculus. Moreover, the core of Gen2sat is a reduction to SAT, thus it
leaves the ”hard work” and heuristic considerations of optimizations to state of
the art SAT solvers, allowing the user to focus solely on the logical considerations.

Gen2sat can be run both via a web interface and from the command line. In
the web-based version the user fills in a form; in the command line a property
file is passed as an argument. From the command line, Gen2sat is called by:
java -jar gen2sat.jar <path>. The form has the following fields:

Connectives A comma separated list of connectives, each specified by its sym-
bol and arity, separated by a colon.

Next operators A comma separated list of the symbols for the next operators.
Rules Each rule is specified in a separate line that starts with ”rule:”. The rule

itself has two parts separated by ”/”: the premises, which is a semicolon
separated list of sequents, and the conclusion, which is a sequent.

Analyticity For the usual subformula property this field is left empty. For other
forms of analyticity, it contains a comma separated list of unary connectives.

Input sequent The sequent whose derivability should be decided.

The web-based version includes predefined forms for some propositional logics
(e.g. classical logic, primal infon logic and more). In addition, it allows the user
to import sequent calculi from Paralyzer.4

If the sequent is unprovable, Gen2sat outputs a countermodel. If it is prov-
able, Gen2sat recovers a sub-calculus in which the sequent is already prov-
able (naturally, the full proof is unobtainable due to the semantic approach

4 Paralyzer is a tool that transforms Hilbert calculi of a certain general form into
equivalent analytic sequent calculi. It was described in [7] and can be found at
http://www.logic.at/people/lara/paralyzer.html.

http://www.logic.at/people/lara/paralyzer.html


Input file
connectives: P:2, E:2
rule: =>a; =>b / =>aPb
rule: a=> / aPb=>
rule: b=> / aPb=>
rule: =>a; =>b / =>aEb
rule: =>b; a=> / aEb=>
analyticity:
inputSequent: (((m1 P m2 ) E k) E k),k=>m1

Output
provable
There’s a proof that uses only these rules:
[=>b; a=> / a E b=>, a=> / a P b=>]

Fig. 1. A provable instance

Input file
connectives: AND:2,OR:2,IMPLIES:2,TOP:0
nextOperators: q1 said, q2 said, q3 said
rule: =>p1; =>p2 / =>p1 AND p2
rule: p1,p2=> / p1 AND p2=>
rule: =>p1,p2 / =>p1 OR p2
rule: =>p2 / =>p1 IMPLIES p2
rule: =>p1; p2=> / p1 IMPLIES p2=>
rule: / => TOP
analyticity:
inputSequent: =>q1said (p IMPLIES p)

Output
unprovable
Countermodel:
q1said p=false, q1said(p IMPLIES p)=false

Fig. 2. An unprovable instance

of Gen2sat). Thus, for a provable sequent Gen2sat outputs a subset of rules that
suffice to prove the sequent.

Figures 1 and 2 present examples for the usage of Gen2sat. In Figure 1, the
input contains a sequent calculus for the Dolev-Yao intruder model [9]. The con-
nectives E and P correspond to encryption and pairing. The sequent is provable,
meaning that given two messages m1 and m2 that are paired and encrypted twice
with k, the intruder can discover m1 if it knows k. The output also contains the
only two rules that are needed in order to prove the sequent. In Figure 2, the in-
put file contains a sequent calculus for primal infon logic, where the implication
connective is not reflexive, and hence the input sequent is unprovable. Note that
the rules for the next operators are fixed, and therefore they are not included
in the input file. Both calculi are ∅-analytic, and hence the analyticity field is
left empty. Gen2sat supports analyticity w.r.t. any number of unary connectives,
and hence this field may include a list of unary connectives.

4 Implementation Details

xplain

specs

sa4j

SatInstance

Gen2sat

PartialBiValuation

Sequent

SequentCalculus DecisionProcedure

-sequentCalculus: SequentCalculus

+decide(s: Sequent)

Fig. 3. A partial class diagram of Gen2sat

Gen2sat is implemented in Java and uses sat4j [17] as its underlying SAT
solver. Since the algorithm from [16] is a “one-shot” reduction to SAT, no changes
are needed in the SAT solver itself. In particular, sat4j can be easily replaced
by other available solvers. Figure 3 includes a partial class diagram of Gen2sat.
The two main modules of sat4j that we use are specs, which provides the solver
itself, and xplain, which searches for an unsat core. The main class of Gen2sat
is DecisionProcedure, that is instantiated with a specific SequentCalculus.
Its main method decide checks whether the input sequent is provable. Given a
Sequent s, decide generates a SatInstance stating that s has a countermodel,



by applying the rules of the calculus on the relevant formulas, as described above.
SatInstance is the only class that uses sat4j directly, and thus it is the only
class that will change if another SAT solver is used.

For satisfiable instances, the specs module returns a satisfying assign-
ment, which is directly translated to a countermodel in the form of a
PartialBivaluation. For unsatisfiable instances, the xplain module generates
a subset of clauses that is itself unsatisfiable. Tracking back to the rules that
induced these clauses, we are able recover a smaller sequent calculus in which
s is already provable. Note however, that the smaller calculus need not be ana-
lytic, and then the correctness, that relies on Theorem 1 might fail. Nevertheless,
correctness is preserved in this case, as the ”if” part of Theorem 1 holds even
for non-analytic calculi. Thus, although Gen2sat does not provide a proof of the
sequent, we do obtain useful information about the rules that were used in it.

5 Performance

Gen2sat can be used in applications based on reasoning in non-classical logics,
and especially paraconsistent logics [6], as there exist analytic pure sequent cal-
culi for many of them [4]. For evaluating its performance, we have considered
the well-known paraconsistent logic C1 [11], using the {¬}-analytic calculus from
[4], and compared its running time with KEMS [18,19,20], a theorem prover
that implements several KE tableau calculi for classical logic and paraconsistent
logics.5 For this comparison, a lighter version of Gen2sat was compiled, called
Gen2satm, that only decides whether the input sequent is provable, without pro-
viding a countermodel or a smaller calculus. The experiments were made on a
dedicated Linux machine with four dual-core 2.53 Ghz AMD Opteron 285 proces-
sors and 8GB RAM. We have used the problem families of provable sequents for
benchmarking paraconsistent logics provers from [18,20], and extended them by
creating similar problem families of unprovable sequents. For example, problems
of the first family from [18] have the form:

Φ
1
n =

n∧
i=1

(¬Ai),

n∧
i=1

(◦Ai → Ai), (

n∨
i=1

◦Ai) ∨ (¬An → C)⇒ C

where ◦ is defined by ◦A = ¬(A∧¬A). Dismissing the first conjunct of the first
formula leads to an unprovable sequent. Similarly, problems of the fourth family
have the form:

Φ
4
n =

n∧
i=1

Ai,

n∧
j=1

((Aj ∨ Bj)→ ◦Aj+1), (

n∧
k=2

◦Ak)→ An+1 ⇒ ¬¬An+1

Replacing ¬¬An+1 with ¬An+1 leads to an unprovable sequent.
Table 1 includes the running times in miliseconds for the first and fourth

problem families.6 Similar results were obtained on the other families.

5 The tableau calculus for C1 in KEMS can be translated to a sequent calculus (the
connection between the two frameworks was discussed e.g. in [3]). However, the
translated sequent calculus is non-analytic, and thus cannot be used with Gen2sat.

6 Out of 11 possible formula comparator choices of KEMS, Table 1 presents the results
for the best performing one in each problem.



In our tests, KEMS performed better on smaller inputs, while Gen2sat per-
formed better on larger ones. Also, provable sequents are easier than unprovable
ones for KEMS (which searches for a proof), while the opposite holds for Gen2sat
(which searches for a countermodel). For provable sequents, Gen2satm performs
much faster than the full version, as it does not call the xplain module of sat4j.
In contrast, for unprovable sequents, the difference between the two versions
is negligible. The table also contains the number of variables and clauses in the
SAT instances that were generated by Gen2sat. In the case of C1, the set of vari-
ables corresponds to the set of subformulas of the sequent and their negations.

provable unprovable

KEMS Gen2sat Gen2satm #vars #clauses KEMS Gen2sat Gen2satm #vars #clauses

Φ1
10 133 342 213 137 344 153 224 215 135 339

Φ1
20 675 252 73 277 694 686 70 70 275 689

Φ1
50 13934 747 143 697 1744 14247 146 159 695 1739

Φ1
80 75578 1393 148 1117 2794 78212 175 203 1115 2789

Φ1
100 175716 2178 235 1397 3494 182904 226 284 1395 3489

Φ4
10 124 291 212 173 410 205 220 219 173 410

Φ4
20 502 207 78 353 840 1416 83 78 353 840

Φ4
50 8723 444 158 893 2130 36282 137 159 893 2130

Φ4
80 45130 744 178 1433 3420 226422 194 190 1433 3420

Φ4
100 123619 908 220 1793 4280 661078 227 227 1793 4280

Table 1. Benchmark results for provable and unprovable sequents in C1

6 Gen2sat for Education: a Pilot

There is an ongoing debate on the appropriate way of teaching logic and formal
methods to future software engineering practitioners, in particular on ways to
bridge between the taught material and the software domain (see, e.g., [23]).
As a contribution to the latter question, we have initiated a pilot of integrating
a “hands-on” assignment based on Gen2sat into a logic course for Information
Systems graduate students7, exploring its potential to enhance learning of the
concept of sequent calculi. The assignment aimed to allow them to experiment
with different sequent calculi, discovering “a whole new world” of non-classical
logics. To increase their engagement, the assignment had the “look and feel” of
a software engineering assignment whose domain is non-classical logics.

After a two hour lecture on sequent calculi and the system LK, we introduced
Gen2sat in class and explained its functionality and features. The students were
then requested to play the role of testers of the tool. More concretely, they were
requested to provide a test plan (as small as possible) which would cover all
possible scenarios the tool could encounter. For a quantifiable measure for success

7 The second author has been teaching the course for several years at the University
of Haifa; see [25] for further details on the course design.



we used a standard approach of measuring code coverage, instructing them to
install the Eclemma plug-in for Eclipse [14] for determining the percentage of
code activated for a given input. Thus, basically the students’ assignment was
producing a minimal test plan that would achieve maximal code coverage. When
analyzing different inputs to the tool, the students would potentially gain insights
into the wide variety of non-classical logics defined in terms of sequent calculi.

The results of our pilot were encouraging: of eight students who participated
in the assignment, all ended up submitting8 test plans which achieved between
70% - 85% coverage, and included non-trivial sequent calculi for different lan-
guages. An anonymous feedback questionnaire showed that the students found
the assignment helpful for understanding sequent calculi, as well as engaging and
fun. This seems to us an indication of the potential of integrating “hands on”
assignments in the spirit of logic engineering in illuminating educational logical
content through experimenting with software tools.

7 Conclusions and Future Work

We have introduced Gen2sat, an efficient tool that decides derivability for a
wide family of non-classical logics via the reduction to SAT given in [16]. In
the spirit of the “logic engineering” paradigm, Gen2sat is generic: it receives as
input the language and rules of a sequent calculus of a very general form. In
addition, Gen2sat works on top of standard off-the-shelf SAT solvers, without
requiring any additional logic-specific resources. Our preliminary experimental
results show that the generality of Gen2sat does not come at the expence of its
performance, making it appropriate for practical automated reasoning in non-
classical logics. We plan to extend these experiments to include more provers for
logics with analytic pure sequent calculi.

As a result of its semantic approach, Gen2sat currently does not provide
actual proofs of provable sequents. This can be overcome by integrating Gen2sat
with other existing theorem provers so that for unprovable sequents, the theorem
prover will not have to search for a proof, while for provable sequents, the search
space can be potentially reduced by exploiting gensat’s capability of supplying
a sufficient subset of rules. Our experience with teaching the concept of sequent
calculi in a “hands-on” assignment on test design for Gen2sat shows its potential
in educational settings. Another direction for further research is developing an
educational version of the tool, in which learning concepts from non-classical
logics could be achieved via interacting with the software.
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