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Abstract

In this study, we introduce a paradefinite logic (PL) given by a Gentzen-
type sequent calculus as a modified extension of Arieli, Avron, and Za-
mansky’s ideal four-valued paradefinite logic known as 4CC. Some com-
bined implication-conflation logical inference rules in PL are formalized based
on a characteristic axiom scheme for connexive logic. Our sequent calcu-
lus PL has the characteristic properties of quasi-paraconsistency and quasi-
paracompleteness that represent the interaction between conflation and para-
consistent negation. We prove several theorems for syntactically and seman-
tically embedding PL into LK, a Gentzen-type sequent calculus for classical
logic, and vice versa. We obtain cut-elimination and completeness theorems
for PL via these embedding theorems. Moreover, we introduce an extended
paradefinite logic (EPL) that is theorem-equivalent to a Gentzen-type sequent
calculus for 4CC. Our sequent calculus EPL has the novel characteristic prop-
erty of negative symmetry that represents a type of symmetry between con-
flation and paraconsistent negation.

1 The results of this paper include the results presented in the 47th IEEE International Sympo-
sium on Multiple-Valued Logic [16].
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1 Introduction

In this study, we introduce a paradefinite logic (PL) that is given by a Gentzen-
type sequent calculus as a modified extension of Arieli, Avron, and Zamansky’s
ideal four-valued paradefinite logic known as 4CC [5, 6, 7]. 4CC is also regarded
as a variant of the logic of logical bilattices [3, 4]. Here, the calculus PL has a
paraconsistent negation connective ∼ and a dual conflation connective − [11]. Some
combined implication-conflation logical inference rules in PL are formalized on the
basis of a characteristic axiom scheme for connexive logic [2, 20, 27, 28]. For more
comprehensive information on connexive logic, see, for example, [29].

Paradefinite logic [5, 6], is a special kind of paraconsistent logic [22] that has
multiple names; it is also called non-alethic logic by da Costa and paranormal logic
by Béziau [9]. Regardless of its name, paradefinite logic incorporates the properties
of both paraconsistency, which rejects the principle (α∧∼α) → β of explosion, and
paracompleteness, which rejects the law α∨∼α of excluded middle. Thus, it is both
paraconsistent and paracomplete. Paradefinite logic is known to be appropriate for
handling inconsistent and incomplete information [5].

Our approach for handling and combining conflation and paraconsistent nega-
tion is also similar to the approach presented, for example, in [24, 17, 18] for some
paraconsistent logics, including multilattice logics [24]. Similar to the multilattice
logics and 4CC, the classical negation connective ¬ in classical logic can be defined
in PL by the combination of − and ∼ as ¬α := −∼α. Another approach for defining
classical negation in paraconsistent logics was proposed by Carnielli et al. [10] de-
veloping the logics of formal inconsistency, wherein ¬ is defined using a consistency
operator.

In this study, we prove several theorems for syntactically and semantically em-
bedding PL into LK, a Gentzen-type sequent calculus for classical logic, and vice
versa. We then obtain cut-elimination and completeness theorems for PL using
these embedding theorems. Such an embedding-based method of proof has also
been studied, for example, in [14, 15, 17, 18] to prove cut-elimination and complete-
ness theorems for some paraconsistent logics. Using the cut-elimination theorem for
PL, we obtain the properties of both quasi-paraconsistency, which rejects the prin-
ciple (−α ∧∼α) → β of quasi-explosion, and quasi-paracompleteness, which rejects
the law −α ∨ ∼α of quasi-excluded middle.

Moreover, in this study, we introduce an extended paradefinite logic (EPL),
which is obtained from PL by adding the initial sequents of the forms (−p,∼p ⇒)
and (⇒ −p,∼p), and present cut-elimination and completeness theorems for EPL.
Our calculus EPL is also shown to be theorem-equivalent to the Gentzen-type se-
quent calculus G4CC [5] for 4CC. Our calculus EPL (and also as a consequence of

2



G4CC) has the following novel characteristic property of negative symmetry. For any
formulas α and β, EPL ⊢ ∼α ⇒ ∼β holds if and only if EPL ⊢ −β ⇒ −α holds.
This property implies that ∼ and − are, in a sense, symmetric.

We also use this property to demonstrate that EPL is theorem-equivalent to
EPL−, that is a more simplified alternative cut-free Gentzen-type sequent calculus.
Given this, some combined implication-conflation logical inference rules in EPL,
which correspond to some connexive logic axiom schemes, play an important role
in demonstrating the negative symmetry property. Note here that the embedding
theorems for EPL and EPL− have not yet been obtained; however, we achieve cut-
elimination and completeness using another method.

Our motivation for developing PL and EPL is to clarify the role of the conflation
connective − in paradefinite logics. To clarify the role of −, we must obtain some
characteristic properties concerning the pair of ∼ and −. The negative symmetry
property is regarded as such a property. To clarify the role of −, it is useful to see
the differences between PL and EPL: (1) EPL has the negative symmetry property,
which represents a type of symmetry between − and ∼, but PL has no such a prop-
erty; (2) PL has the quasi-paraconsistency and quasi-paracompleteness properties,
which represent the interaction between − and ∼, but EPL has no such properties.

Another motivation for developing PL is to obtain a good paradefinite logic
that can simulate classical logic. Such a logic is required in application areas that
use both paraconsistent (or inconsistency-tolerant) and classical negations. Some
paraconsistent logics that can simulate classical negation via paraconsistent double
negation have recently been studied in [17, 18], where it was shown that some bidi-
rectional embeddings (i.e., embeddings from the underlying paraconsistent logic into
classical logic and vice versa) characterize such logics. We believe that the existence
of such bidirectional embeddings is important in formalizing the paradefinite logics
that can simulate classical logic.

In addition to this introductory section, we structure our paper as follows. In
Section 2, we introduce the Gentzen-type sequent calculi PL, EPL, EPL−, and LK.
Moreover, we show the negative symmetry property of EPL. Next, in Section 3,
we prove several theorems for syntactically embedding PL into LK and vice versa.
We also obtain the cut-elimination theorem for PL using the syntactical embedding
theorem of PL into LK, and show the cut-elimination theorems for EPL and EPL−

using the standard method of Gentzen. Using the cut-elimination theorem for PL,
we also obtain the quasi-paraconsistency and quasi-paracompleteness properties for
PL. In Section 4, we prove several theorems for semantically embedding PL into LK
and vice versa. Moreover, we also obtain the completeness theorem with respect to
a valuation semantics for PL using both the syntactical and semantical embedding
theorems into LK. Then, we show the completeness theorem with respect to a val-
uation semantics for EPL via the method presented by Lahav and Avron in [19].
Finally, in Section 5, we conclude our paper and address some remarks.
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2 Sequent calculi

Formulas of paradefinite logic are constructed from countably many propositional
variables by the logical connectives ∧ (conjunction), ∨ (disjunction), → (implica-
tion), ∼ (paraconsistent negation) and − (conflation). In the following we use small
letters p, q, ... to denote propositional variables, Greek small letters α, β, ... to denote
formulas, and Greek capital letters Γ,∆, ... to represent finite (possibly empty) sets
of formulas. We use expressions ∼Γ and −Γ to denote the sets {∼γ | γ ∈ Γ} and
{−γ | γ ∈ Γ}, respectively. We use the symbol ≡ to denote the equality of symbols.
A sequent is an expression of the form Γ ⇒ ∆. We use an expression α ⇔ β to
represent the abbreviation of the sequents α ⇒ β and β ⇒ α. An expression L ⊢ S
means that a sequent S is provable in a sequent calculus L. The height of a proof is
defined as usual. Our proofs about the various sequent calculi use induction on this
measure. If L of L ⊢ S is clear from the context, we omit L in it. We say that two
sequent calculi L1 and L2 are theorem-equivalent if {S | L1 ⊢ S} = {S | L2 ⊢ S}. A
rule R of inference is said to be admissible in a sequent calculus L if the following
condition is satisfied: For any instance

S1 · · ·Sn

S

of R, if L ⊢ Si for all i, then L ⊢ S. Moreover, R is said to be derivable in L if
there is a derivation from S1, · · · , Sn to S in L. Note that a rule R of inference is
admissible in a sequent calculus L if and only if two sequent calculi L and L + R
are theorem-equivalent.

A Gentzen-type sequent calculus PL for a paradefinite logic is defined as follows.

Definition 2.1 (PL) The initial sequents of PL are of the following form, for any
propositional variable p,

p ⇒ p ∼p ⇒ ∼p −p ⇒ −p.

The structural inference rules of PL are of the form:

Γ ⇒ ∆, α α,Σ ⇒ Π
Γ,Σ ⇒ ∆,Π

(cut)

Γ ⇒ ∆
α,Γ ⇒ ∆

(we-left) Γ ⇒ ∆
Γ ⇒ ∆, α

(we-right).

The non-negated logical inference rules of PL are of the form:

α, β,Γ ⇒ ∆

α ∧ β,Γ ⇒ ∆
(∧left) Γ ⇒ ∆, α Γ ⇒ ∆, β

Γ ⇒ ∆, α ∧ β
(∧right)

α,Γ ⇒ ∆ β,Γ ⇒ ∆

α ∨ β,Γ ⇒ ∆
(∨left) Γ ⇒ ∆, α, β

Γ ⇒ ∆, α ∨ β
(∨right)
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Γ ⇒ ∆, α β,Σ ⇒ Π

α→β,Γ,Σ ⇒ ∆,Π
(→left)

α,Γ ⇒ ∆, β

Γ ⇒ ∆, α→β
(→right).

The ∼-combined logical inference rules of PL are of the form:

∼α,Γ ⇒ ∆ ∼β,Γ ⇒ ∆

∼(α ∧ β),Γ ⇒ ∆
(∼∧left) Γ ⇒ ∆,∼α,∼β

Γ ⇒ ∆,∼(α ∧ β)
(∼∧right)

∼α,∼β,Γ ⇒ ∆

∼(α ∨ β),Γ ⇒ ∆
(∼∨left) Γ ⇒ ∆,∼α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α ∨ β)
(∼∨right)

α,∼β,Γ ⇒ ∆

∼(α→β),Γ ⇒ ∆
(∼→left)

Γ ⇒ ∆, α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α→β)
(∼→right)

α,Γ ⇒ ∆
∼∼α,Γ ⇒ ∆

(∼∼left)
Γ ⇒ ∆, α

Γ ⇒ ∆,∼∼α
(∼∼right)

Γ ⇒ ∆, α
∼−α,Γ ⇒ ∆

(∼−left)
α,Γ ⇒ ∆

Γ ⇒ ∆,∼−α
(∼−right).

The −-combined logical inference rules of PL are of the form:

−α,−β,Γ ⇒ ∆

−(α ∧ β),Γ ⇒ ∆
(−∧left) Γ ⇒ ∆,−α Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α ∧ β)
(−∧right)

−α,Γ ⇒ ∆ −β,Γ ⇒ ∆

−(α ∨ β),Γ ⇒ ∆
(−∨left) Γ ⇒ ∆,−α,−β

Γ ⇒ ∆,−(α ∨ β)
(−∨right)

Γ ⇒ ∆, α −β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left)

α,Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α→β)
(−→right)

α,Γ ⇒ ∆
−−α,Γ ⇒ ∆

(−−left)
Γ ⇒ ∆, α

Γ ⇒ ∆,−−α
(−−right)

Γ ⇒ ∆, α
−∼α,Γ ⇒ ∆

(−∼left)
α,Γ ⇒ ∆

Γ ⇒ ∆,−∼α
(−∼right).

In order to compare PL and Arieli-Avron’s G4CC [5, 6], we introduce a Gentzen-
type sequent calculus EPL for an extended paradefinite logic, which is an extension
of PL with variants of excluded middle and explosion.

Definition 2.2 (EPL) EPL is obtained from PL by adding the initial sequents of
the following form, for any propositional variable p,

∼p,−p ⇒ ⇒ ∼p,−p.

Remark 2.3

1. (−→left) and (−→right) correspond to the Hilbert-style axiom scheme
−(α→β) ↔ α→−β, which is a characteristic axiom scheme for connexive
logics [2, 20, 27, 28] when − is replaced with ∼. See [29] for a comprehensive
information on connexive logics.
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2. (−→left) and (−→right) play an important role for showing the negative sym-
metry property for EPL. See Theorem 2.11.

3. We can consider the following logical inference rules instead of (−→left) and
(−→right):

Γ ⇒ ∆,−α −β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left′)

−α,Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α→β)
(−→right′)

which correspond to the Hilbert-style axiom scheme −(α→β) ↔ −α→−β.

4. We cannot show Theorem 2.11 for the logic which is obtained from EPL by
replacing (−→left) and (−→right) with (−→left′) and (−→right′).

5. We can similarly show the cut-elimination and completeness theorems for the
logic (called here PL∗) which is obtained from PL by replacing (−→left) and
(−→right) with (−→left′) and (−→right′). The logic PL∗ is thus also regarded
as a natural paradefinite logic.

6. We can define the classical negation connective ¬ in PL, PL∗ and EPL as
¬α := ∼−α or ¬α := −∼α, since the logical inference rules (∼−left), (∼−right),
(−∼left) and (−∼right) are the same forms of the logical inference rules for
¬ in a sequent calculus LK for classical logic.

7. As shown in Proposition 2.9, the following rules are admissible in cut-free
EPL:

Γ ⇒ ∆,−α
∼α,Γ ⇒ ∆

(∼left)
−α,Γ ⇒ ∆
Γ ⇒ ∆,∼α

(∼right)

Γ ⇒ ∆,∼α
−α,Γ ⇒ ∆

(−left)
∼α,Γ ⇒ ∆
Γ ⇒ ∆,−α

(−right).

8. As shown in Definition 2.16, G4CC [5, 6] is obtained from EPL by replacing
the following initial sequents and rules:

(p ⇒ p), (∼p ⇒ ∼p), (−p ⇒ −p), (∼p,−p ⇒), (⇒ ∼p,−p), (−∧left),
(−∧right), (−∨left), (−∨right), (−→left), (−→right), (−−left),
(−−right), (−∼left), (−∼right)

with the following initial sequents and rules:

(α ⇒ α), (−left), (−right).

9. As shown in Theorem 2.15, EPL is theorem-equivalent to the system which is
obtained from G4CC by adding (∼α,−α ⇒), (⇒ ∼α,−α), (∼left) and (∼right).

10. As shown in Theorem 2.17, EPL is also theorem-equivalent to G4CC.

Next, we show some basic propositions for PL and EPL.
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Proposition 2.4 Let L be PL or EPL. Sequents of the form α ⇒ α for any formula
α are provable in cut-free L.

Proof. By induction on α.

Proposition 2.5 Sequents of the form ∼α,−α ⇒ and ⇒ ∼α,−α for any formula
α are provable in cut-free EPL.

Proof. By induction on α. We show only the following cases.

1. Case α ≡ ∼β:

.... Prop. 2.4
β ⇒ β

β,−∼β ⇒ (−∼left)

∼∼β,−∼β ⇒ (∼∼left)

.... Prop. 2.4
β ⇒ β

⇒ β,−∼β
(−∼right)

⇒ ∼∼β,−∼β
(∼∼right).

2. Case α ≡ β→γ:
.... Prop. 2.4

β ⇒ β

.... Ind.hyp.
∼γ,−γ ⇒

β,∼γ,−(β→γ) ⇒ (−→left)

∼(β→γ),−(β→γ) ⇒ (∼→left).

.... Prop. 2.4
β ⇒ β

β ⇒ −γ, β
(we-right)

.... Ind.hyp
⇒ ∼γ,−γ

β ⇒ ∼γ,−γ
(we-left)

β ⇒ ∼(β→γ),−γ
(∼→right)

⇒ ∼(β→γ),−(β→γ)
(−→right).

Proposition 2.6 The following sequents are provable in cut-free PL:

1. ∼∼α ⇔ α,

2. ∼−α ⇔ −∼α,

3. ∼(α ∧ β) ⇔ ∼α ∨ ∼β,

4. ∼(α ∨ β) ⇔ ∼α ∧ ∼β,

5. ∼(α→β) ⇔ α ∧ ∼β,

6. −−α ⇔ α,

7. −(α ∧ β) ⇔ −α ∧ −β,
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8. −(α ∨ β) ⇔ −α ∨ −β,

9. −(α→β) ⇔ α→−β.

Proof. We show only the cases (2) and (9) below.

1. Case (2):
.... Prop. 2.4

α ⇒ α
⇒ −∼α, α (−∼right)

∼−α ⇒ −∼α (∼−left)

.... Prop. 2.4
α ⇒ α

⇒ ∼−α, α
(∼−right)

−∼α ⇒ ∼−α
(−∼left).

2. Case (9):
.... Prop. 2.4

α ⇒ α

.... Prop. 2.4
−β ⇒ −β

α,−(α→β) ⇒ −β
(−→left)

−(α→β) ⇒ α→−β
(→right)

.... Prop. 2.4
α ⇒ α

.... Prop. 2.4
−β ⇒ −β

α, α→−β ⇒ −β
(→left)

α→−β ⇒ −(α→β)
(−→right).

Proposition 2.7 The following sequents are provable in cut-free EPL:

1. (−α ∧ ∼α) ⇒ β (the principle of quasi-explosion),

2. ⇒ −α ∨ ∼α (the law of quasi-excluded middle).

Proof.

1. Follows from Proposition 2.5 using (we-right) and (∧left).

2. Follows from Proposition 2.5 using (∨right).

Remark 2.8 Proposition 2.7 does not hold for PL. This fact can be obtained by
using the cut-elimination theorem for PL (see Theorem 3.9).

Proposition 2.9 The following rules are admissible in cut-free EPL:

Γ ⇒ ∆,−α
∼α,Γ ⇒ ∆

(∼left)
−α,Γ ⇒ ∆
Γ ⇒ ∆,∼α

(∼right)

Γ ⇒ ∆,∼α
−α,Γ ⇒ ∆

(−left)
∼α,Γ ⇒ ∆
Γ ⇒ ∆,−α

(−right).
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Proof. This proposition is proved by (simultaneous) induction on the cut-free proofs
P of the upper sequents of the rules (∼left), (∼right), (−left), and (−right). Here,
we show only the case of (∼left) by induction on the proofs P of the upper sequent
Γ ⇒ ∆,−α of (∼left) in cut-free EPL. We show some cases.

1. Case (−p ⇒ −p): The last inference of P is of the form: −p ⇒ −p for a
propositional variable p. In this case, we have ⊢ ∼p,−p ⇒, since it is an
initial sequent.

2. Case (⇒ ∼p,−p): The last inference of P is of the form: ⇒ ∼p,−p for a
propositional variable p. In this case, we have ⊢ ∼p ⇒ ∼p, since it is an initial
sequent.

3. Case (−−right): The last inference of P is of the form:

Γ ⇒ ∆, β

Γ ⇒ ∆,−−β
(−−right).

We then obtain the required fact:

....
Γ ⇒ ∆, β

∼−β,Γ ⇒ ∆
(∼−left).

4. Case (−∼right): The last inference of P is of the form:

β,Γ ⇒ ∆

Γ ⇒ ∆,−∼β
(−∼right).

We then obtain the required fact:

....
β,Γ ⇒ ∆

∼∼β,Γ ⇒ ∆
(∼∼left).

5. Case (−→right): The last inference of P is of the form:

α1,Γ ⇒ ∆,−α2

Γ ⇒ ∆,−(α1→α2)
(−→right).

By induction hypothesis, we have ⊢ α1,∼α2,Γ ⇒ ∆. We then obtain the
required fact:

....
α1,∼α2,Γ ⇒ ∆

∼(α1→α2),Γ ⇒ ∆
(∼→left).
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Remark 2.10 Proposition 2.9 can also be obtained by using the cut-elimination the-
orem for EPL, since the rules (∼left), (∼right), (−left), and (−right) are derivable
in EPL by using (cut).

We then obtain the following characteristic property of EPL.

Theorem 2.11 (Negative symmetry for EPL) For any formulas α and β,

EPL − (cut) ⊢ ∼α ⇒ ∼β iff EPL − (cut) ⊢ −β ⇒ −α.

Proof. By Proposition 2.9.

Remark 2.12

1. Theorem 2.11 does not hold for PL. A counterexample is presented as fol-
lows. For any propositional variable p, we have: PL ⊢ ∼∼∼p ⇒ ∼p and PL
̸⊢ −p ⇒ −∼∼p. The unprovability of −p ⇒ −∼∼p in PL can be obtained by
the cut-elimination theorem for PL, which will be presented as Theorem 3.4.

2. The following general fact also holds: For any sets Γ and ∆ of formulas, EPL
− (cut) ⊢ ∼Γ ⇒ ∼∆ iff EPL − (cut) ⊢ −∆ ⇒ −Γ. Based on this fact,
we can define an alternative simple system EPL−, which corresponds to an
extension of G4CC by adding (∼α,−α ⇒), (⇒ ∼α,−α), (∼left) and (∼right).

Definition 2.13 (EPL−) EPL− is obtained from EPL by replacing the following
initial sequents and rules:

(−p ⇒ −p), (∼p,−p ⇒), (⇒ ∼p,−p), (−∧left), (−∧right), (−∨left),
(−∨right), (−→left), (−→right), (−−left), (−−right), (−∼left),
(−∼right)

with the following rules:

(∼left), (∼right), (−left), (−right).

Remark 2.14 Using (cut), it can be shown that there is no need to add all four
rules {(∼left), (∼right), (−left), (−right)}. Instead, it suffices to choose one of the
right rules and one of the left rules.

Theorem 2.15 (Cut-free equivalence between EPL and EPL−) EPL − (cut)
and EPL− − (cut) are theorem-equivalent.

Proof. (=⇒): We show that for any sequent S, EPL − (cut) ⊢ S implies EPL−

− (cut) ⊢ S. This is shown by induction on the proofs Q of S in cut-free EPL. We
show some cases.
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1. Case (∼p,−p ⇒) or (⇒ ∼p,−p): By using (∼left), (∼right), (−left) and
(−right).

2. Case (−−left): The last inference of Q is of the form:

α,Γ ⇒ ∆
−−α,Γ ⇒ ∆

(−−left).

We obtain the required fact:
....

α,Γ ⇒ ∆
Γ ⇒ ∆,∼−α

(∼−right)

−−α,Γ ⇒ ∆
(−left).

3. Case (−∼left): The last inference of Q is of the form:

Γ ⇒ ∆, α
−∼α,Γ ⇒ ∆

(−∼left).

We obtain the required fact:
....

Γ ⇒ ∆, α
Γ ⇒ ∆,∼∼α

(∼∼right)

−∼α,Γ ⇒ ∆
(−left).

4. Case (−→left): The last inference of Q is of the form:

Γ ⇒ ∆, α −β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left).

We obtain the required fact:

....
Γ ⇒ ∆, α.... (we-left), (we-right)

Γ,Σ ⇒ ∆,Π, α

....
−β,Σ ⇒ Π

Σ ⇒ Π,∼β
(∼right)

.... (we-left), (we-right)
Γ,Σ ⇒ ∆,Π,∼β

Γ,Σ ⇒ ∆,Π,∼(α→β)
(∼→right)

−(α→β),Γ,Σ ⇒ ∆,Π
(−left)

(⇐=): We show that for any sequent S, EPL− − (cut) ⊢ S implies EPL − (cut)
⊢ S. This is shown by induction on the proofs P of S in cut-free EPL−. The cases
when the last inference of P is (∼left), (∼right), (−left) or (−right) are obtained

from Proposition 2.9.

In order to show the equivalence between EPL and G4CC, we give a precise
definition of G4CC as follows.
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Definition 2.16 (G4CC [5, 6]) G4CC is obtained from EPL by replacing the follow-
ing initial sequents and rules:

(p ⇒ p), (∼p ⇒ ∼p), (−p ⇒ −p), (∼p,−p ⇒), (⇒ ∼p,−p), (−∧left),
(−∧right), (−∨left), (−∨right), (−→left), (−→right), (−−left), (−−right),
(−∼left), (−∼right)

with the following initial sequents and rules:

(α ⇒ α), (−left), (−right).

Theorem 2.17 (Equivalence between EPL and G4CC) EPL is theorem-equivalent
to G4CC.

Proof. As presented in Remark 2.3 (item 8) and Definition 2.13, G4CC [5] is also
obtained from EPL− by adding α ⇒ α, (∼left) and (∼right). By Theorem 2.15, EPL
is theorem-equivalent to EPL−. Thus it suffices to show that EPL− is theorem-
equivalent to G4CC. To show that every sequent that is provable in G4CC is also
provable in EPL−, it suffices to prove that α ⇒ α is derivable in EPL− for every
formula α, which was proven in Proposition 2.4 for PL, and thus also holds for
EPL−. For the converse, we show that the rules (∼left) and (∼right) are derivable
in G4CC. For the first, consider the following proof in G4CC:

Γ ⇒ ∆,−α

∼α ⇒ ∼α.... (we-left), (we-right)
∼α,Γ ⇒ ∆,∼α
∼α,−α,Γ ⇒ ∆

(−left)

∼α,Γ ⇒ ∆
(cut)

For the second, consider the following proof in G4CC:

−α,Γ ⇒ ∆

∼α ⇒ ∼α.... (we-left), (we-right)
∼α,Γ ⇒ ∆,∼α
Γ ⇒ ∆,∼α,−α

(−right)

Γ ⇒ ∆,∼α
(cut)

In order to show some syntactical embedding theorems, we introduce a Gentzen-
type sequent calculus LK for classical logic, which is a variant of the propositional
fragment of Gentzen’s original calculus for this logic [12]. Formulas of LK are con-
structed from countably many propositional variables by logical connectives ∧, ∨,
→ and ¬ (classical negation).

Definition 2.18 (LK) LK is obtained from the {∼,−}-free fragment of PL by
adding the classical negation inference rules of the form:

Γ ⇒ ∆, α
¬α,Γ ⇒ ∆

(¬left) α,Γ ⇒ ∆
Γ ⇒ ∆,¬α (¬right).

As well-known, the cut-elimination theorem holds for LK (see e.g., [12, 25]).
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3 Syntactical embedding and cut-elimination

We introduce an LK-translation function for formulas of PL, and by using this
translation, we show several theorems for embedding PL into LK.

Definition 3.1 We fix a set Φ of propositional variables, and define the sets Φn :=
{pn | p ∈ Φ} and Φc := {pc | p ∈ Φ} of propositional variables. The language LPL of
PL is defined using Φ, ∧,∨,→,∼ and −. The language LLK of LK is defined using
Φ, Φn, Φc, ∧, ∨, → and ¬. A mapping f from LPL to LLK is defined inductively by:

1. For any p ∈ Φ, f(p) := p, f(∼p) := pn ∈ Φn and f(−p) := pc ∈ Φc,

2. f(α ∧ β) := f(α) ∧ f(β),

3. f(α ∨ β) := f(α) ∨ f(β),

4. f(α→β) := f(α)→f(β),

5. f(∼(α ∧ β)) := f(∼α) ∨ f(∼β),

6. f(∼(α ∨ β)) := f(∼α) ∧ f(∼β),

7. f(∼(α→β)) := f(α) ∧ f(∼β),

8. f(∼∼α) := f(α),

9. f(∼−α) := ¬f(α),

10. f(−(α ∧ β)) := f(−α) ∧ f(−β),

11. f(−(α ∨ β)) := f(−α) ∨ f(−β),

12. f(−(α→β)) := f(α)→f(−β),

13. f(−−α) := f(α),

14. f(−∼α) := ¬f(α).

An expression f(Γ) denotes the result of replacing every occurrence of a formula
α in Γ by an occurrence of f(α). Analogous notation is used for the other mapping
g discussed later.

Remark 3.2 A similar translation as defined in Definition 3.1 has been used by
Gurevich [13], Rautenberg [23] and Vorob’ev [26] to embed Nelson’s constructive
logic [1, 21] into intuitionistic logic. Some similar translations have also recently
been used, for example, in [14, 15, 17, 18] to embed some paraconsistent logics into
classical logic.

We now show a weak theorem for syntactically embedding PL into LK.
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Theorem 3.3 (Weak syntactical embedding from PL into LK) Let Γ, ∆ be
sets of formulas in LPL, and f be the mapping defined in Definition 3.1.

1. If PL ⊢ Γ ⇒ ∆, then LK ⊢ f(Γ) ⇒ f(∆).

2. If LK − (cut) ⊢ f(Γ) ⇒ f(∆), then PL − (cut) ⊢ Γ ⇒ ∆.

Proof. • (1): By induction on the proofs P of Γ ⇒ ∆ in PL. We distinguish the
cases according to the last inference of P , and show some cases.

1. Case ∼p ⇒ ∼p: The last inference of P is of the form: ∼p ⇒ ∼p for any p ∈ Φ.
In this case, we obtain LK ⊢ f(∼p) ⇒ f(∼p), i.e., LK ⊢ pn ⇒ pn (pn ∈ Φn),
by the definition of f .

2. Case (∼∧left): The last inference of P is of the form:

∼α,Γ ⇒ ∆ ∼β,Γ ⇒ ∆

∼(α ∧ β),Γ ⇒ ∆
(∼∧left).

By induction hypothesis, we have LK ⊢ f(∼α), f(Γ) ⇒ f(∆) and LK ⊢
f(∼β), f(Γ) ⇒ f(∆). Then, we obtain the required fact:

....
f(∼α), f(Γ) ⇒ f(∆)

....
f(∼β), f(Γ) ⇒ f(∆)

f(∼α) ∨ f(∼β), f(Γ) ⇒ f(∆)
(∨left)

where f(∼α) ∨ f(∼β) coincides with f(∼(α ∧ β)) by the definition of f .

3. Case (∼−left): The last inference of P is of the form:

Γ ⇒ ∆, α
∼−α,Γ ⇒ ∆

(∼−left).

By induction hypothesis, we have LK ⊢ f(Γ) ⇒ f(∆), f(α). Then, we obtain
the required fact:

....
f(Γ) ⇒ f(∆), f(α)

¬f(α), f(Γ) ⇒ f(∆)
(¬left)

where ¬f(α) coincides with f(∼−α) by the definition of f .

4. Case (−→left): The last inference of P is of the form:

Γ ⇒ ∆, α −β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left).

By induction hypothesis, we have LK ⊢ f(Γ) ⇒ f(∆), f(α) and LK ⊢
f(−β), f(Σ) ⇒ f(Π). Then, we obtain the required fact:
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....
f(Γ) ⇒ f(∆), f(α)

....
f(−β), f(Σ) ⇒ f(Π)

f(α)→f(−β), f(Γ), f(Σ) ⇒ f(∆), f(Π)
(→left)

where f(α)→f(−β) coincides with f(−(α→β)) by the definition of f .

• (2): By induction on the proofs Q of f(Γ) ⇒ f(∆) in LK − (cut). We distin-
guish the cases according to the last inference of Q.

We explicitly consider some of the cases. The rest are handled similarly.

1. Case (¬left): The last inference of Q is (¬left).

(a) Subcase (1): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α)

f(∼−α), f(Γ) ⇒ f(∆)
(¬left)

where f(∼−α) coincides with ¬f(α) by the definition of f . By induction
hypothesis, we have PL − (cut) ⊢ Γ ⇒ ∆, α. We thus obtain the required
fact: ....

Γ ⇒ ∆, α
∼−α,Γ ⇒ ∆

(∼−left).

(b) Subcase (2): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α)

f(−∼α), f(Γ) ⇒ f(∆)
(¬left)

where f(−∼α) coincides with ¬f(α) by the definition of f . By induction
hypothesis, we have PL − (cut) ⊢ Γ ⇒ ∆, α. We thus obtain the required
fact: ....

Γ ⇒ ∆, α
−∼α,Γ ⇒ ∆

(−∼left).

2. Case (∧right): The last inference of Q is (∧right).

(a) Subcase (1): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α) f(Γ) ⇒ f(∆), f(β)

f(Γ) ⇒ f(∆), f(α ∧ β)
(∧right)

where f(α ∧ β) coincides with f(α) ∧ f(β) by the definition of f . By
induction hypothesis, we have PL − (cut) ⊢ Γ ⇒ ∆, α and PL − (cut) ⊢
Γ ⇒ ∆, β. We thus obtain the required fact:

....
Γ ⇒ ∆, α

....
Γ ⇒ ∆, β

Γ ⇒ ∆, α ∧ β
(∧right).
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(b) Subcase (2): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(∼α) f(Γ) ⇒ f(∆), f(∼β)

f(Γ) ⇒ f(∆), f(∼(α ∨ β))
(∧right)

where f(∼(α ∨ β)) coincides with f(∼α) ∧ f(∼β) by the definition of f .
By induction hypothesis, we have PL − (cut) ⊢ Γ ⇒ ∆,∼α and PL −
(cut) ⊢ Γ ⇒ ∆,∼β. We thus obtain the required fact:

....
Γ ⇒ ∆,∼α

....
Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α ∨ β)
(∼∨right).

(c) Subcase (3): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(−α) f(Γ) ⇒ f(∆), f(−β)

f(Γ) ⇒ f(∆), f(−(α ∧ β))
(∧right)

where f(−(α ∧ β)) coincides with f(−α) ∧ f(−β) by the definition of f .
By induction hypothesis, we have PL − (cut) ⊢ Γ ⇒ ∆,−α and PL −
(cut) ⊢ Γ ⇒ ∆,−β. We thus obtain the required fact:

....
Γ ⇒ ∆,−α

....
Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α ∧ β)
(−∧right).

(d) Subcase (4): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α) f(Γ) ⇒ f(∆), f(∼β)

f(Γ) ⇒ f(∆), f(∼(α→β))
(∧right)

where f(∼(α→β)) coincides with f(α)∧f(∼β) by the definition of f . By
induction hypothesis, we have PL − (cut) ⊢ Γ ⇒ ∆, α and PL − (cut) ⊢
Γ ⇒ ∆,∼β. We thus obtain the required fact:

....
Γ ⇒ ∆, α

....
Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α→β)
(∼→right).

3. Case (→left): The last inference of Q is (→left).

(a) Subcase (1): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α) f(β), f(Σ) ⇒ f(Π)

f(α→β), f(Γ), f(Σ) ⇒ f(∆), f(Π)
(→left)
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where f(α→β) coincides with f(α)→f(β) by the definition of f . By
induction hypothesis, we have PL − (cut) ⊢ Γ ⇒ ∆, α and PL − (cut) ⊢
β,Σ ⇒ Π. We thus obtain the required fact:

....
Γ ⇒ ∆, α

....
β,Σ ⇒ Π

α→β,Γ,Σ ⇒ ∆,Π
(→left).

(b) Subcase (2): The last inference of Q is of the form:

f(Γ) ⇒ f(∆), f(α) f(−β), f(Σ) ⇒ f(Π)

f(−(α→β)), f(Γ), f(Σ) ⇒ f(∆), f(Π)
(→left)

where f(−(α→β)) coincides with f(α)→f(−β) by the definition of f . By
induction hypothesis, we have PL − (cut) ⊢ Γ ⇒ ∆, α and PL − (cut) ⊢
−β,Σ ⇒ Π. We thus obtain the required fact:

....
Γ ⇒ ∆, α

....
−β,Σ ⇒ Π

−(α→β),Γ,Σ ⇒ ∆,Π
(−→left).

Using Theorem 3.3 and the cut-elimination theorem for LK, we obtain the fol-
lowing cut-elimination theorem for PL.

Theorem 3.4 (Cut-elimination for PL) The rule (cut) is admissible in cut-free
PL.

Proof. Suppose PL ⊢ Γ ⇒ ∆. Then, we have LK ⊢ f(Γ) ⇒ f(∆) by Theorem 3.3
(1), and hence LK − (cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination theorem for LK.

By Theorem 3.3 (2), we obtain PL − (cut) ⊢ Γ ⇒ ∆.

Remark 3.5

1. The counterexample which was presented in Remark 2.12 for the negative sym-
metry properties for PL can be obtained using Theorem 3.4. Indeed, as men-
tioned in Remark 2.12, the unprovability of −p ⇒ −∼∼p in PL is guaranteed
by Theorem 3.4.

2. The cut-elimination theorem for PL can also be proved directly (as shown by
Gentzen for LK [12]) without using Theorem 3.3.

3. As shown above, the cut-elimination theorem for PL is easily obtained from
the embedding theorem. That is why we give here the embedding-based proof of
the cut-elimination theorem.
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4. A variant of the subformula property that allows negated and conflated subfor-
mulas of the form ∼α or −α can be obtained by using Theorem 3.4.

Using Theorem 3.3 and the cut-elimination theorem for LK, we obtain a strong
theorem for syntactically embedding PL into LK.

Theorem 3.6 (Syntactical embedding from PL into LK) Let Γ, ∆ be sets of
formulas in LPL, and f be the mapping defined in Definition 3.1.

1. PL ⊢ Γ ⇒ ∆ iff LK ⊢ f(Γ) ⇒ f(∆).

2. PL − (cut) ⊢ Γ ⇒ ∆ iff LK − (cut) ⊢ f(Γ) ⇒ f(∆).

Proof. • (1): (=⇒): By Theorem 3.3 (1). (⇐=): Suppose LK ⊢ f(Γ) ⇒ f(∆).
Then we have LK − (cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination theorem for LK.
We thus obtain PL − (cut) ⊢ Γ ⇒ ∆ by Theorem 3.3 (2). Therefore we have PL ⊢
Γ ⇒ ∆.

• (2): (=⇒): Suppose PL − (cut) ⊢ Γ ⇒ ∆. Then we have PL ⊢ Γ ⇒ ∆. We
then obtain LK ⊢ f(Γ) ⇒ f(∆) by Theorem 3.3 (1). Therefore we obtain LK −
(cut) ⊢ f(Γ) ⇒ f(∆) by the cut-elimination theorem for LK. (⇐=): By Theorem

3.3 (2).

Theorem 3.7 (Decidability for PL) PL is decidable.

Proof. By decidability of LK, for each α, it is possible to decide if f(α) is provable

in LK. Then, by Theorem 3.6, PL is also decidable.

By using Theorem 3.4, we show the paraconsistency, quasi-paraconsistency,
paracompleteness, and quasi-paracompleteness properties for PL. The quasi-
paraconsistency and quasi-paracompleteness properties for PL do not hold for EPL
(see Proposition 2.7).

Definition 3.8 We define the following notions.

1. A sequent system L is called explosive with respect to a negation-like connective
♯ if L ⊢ α, ♯α ⇒ β for any formulas α and β. A sequent system L is called
paraconsistent with respect to ♯ if L is not explosive with respect to ♯.

2. A sequent system L is called quasi-explosive with respect to the combination
of two different negation-like connectives ♯ and ♮ if L ⊢ ♯α, ♮α ⇒ β for any
formulas α and β. A sequent system L is called quasi-paraconsistent with
respect to the combination of ♯ and ♮ if L is not quasi-explosive with respect to
the combination of ♯ and ♮.

3. A sequent system L is called exclusive with respect to a negation-like connective
♯ if L ⊢ ⇒ α, ♯α for any formula α. A sequent system L is called paracomplete
with respect to ♯ if L is not exclusive with respect to ♯.
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4. A sequent system L is called quasi-exclusive with respect to the combination of
two different negation-like connectives ♯ and ♮ if L ⊢ ⇒ ♯α, ♮α for any formula
α. A sequent system L is called quasi-paracomplete with respect to the combi-
nation of ♯ and ♮ if L is not quasi-exclusive with respect to the combination of
♯ and ♮.

Theorem 3.9 (Quasi-paraconsistency and quasi-paracompleteness for PL)
We have:

1. (Paraconsistency): PL is paraconsistent with respect to ∼ and −.

2. (Quasi-paraconsistency): PL is quasi-paraconsistent with respect to the com-
bination of ∼ and −.

3. (Paracompleteness): PL is paracomplete with respect to ∼ and −.

4. (Quasi-paracompleteness): PL is quasi-paracomplete with respect to the com-
bination of ∼ and −.

Proof. We show only (1) below. Consider sequent (∼p,−p ⇒ q) where p and
q are distinct propositional variables. Then, the unprovability of this sequent is
guaranteed by Theorem 3.4.

Next, we introduce a PL-translation function for formulas of LK, and by using
this translation, we show some theorems for embedding LK into PL.

Definition 3.10 Let LPL and LLK be the languages defined in Definition 3.1. A
mapping g from LLK to LPL is defined inductively by:

1. For any p ∈ Φ, any pn ∈ Φn and any pc ∈ Φc, g(p) := p, g(pn) := ∼p and
g(pc) := −p,

2. g(α ∧ β) := g(α) ∧ g(β),

3. g(α ∨ β) := g(α) ∨ g(β),

4. g(α→β) := g(α)→g(β),

5. g(¬α) := ∼−g(α).

Theorem 3.11 (Weak syntactical embedding from LK into PL) Let Γ, ∆ be
sets of formulas in LLK, and g be the mapping defined in Definition 3.10.

1. If LK ⊢ Γ ⇒ ∆, then PL ⊢ g(Γ) ⇒ g(∆).

2. If PL − (cut) ⊢ g(Γ) ⇒ g(∆), then LK − (cut) ⊢ Γ ⇒ ∆.
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Proof. • (1): By induction on the proofs P of Γ ⇒ ∆ in LK. We distinguish the
cases according to the last inference of P , and show only the following cases.

1. Case p⋆ ⇒ p⋆ with ⋆ ∈ {n, c}: The last inference of P is of the form: p⋆ ⇒ p⋆

for any p⋆ ∈ Φ⋆ with ⋆ ∈ {n, c}. In this case, we obtain PL ⊢ g(pn) ⇒ g(pn)
and PL ⊢ g(pc) ⇒ g(pc) i.e., PL ⊢ ∼p ⇒ ∼p and PL ⊢ −p ⇒ −p, by the
definition of g.

2. Case (¬left): The last inference of P is of the form:

Γ ⇒ ∆, α
¬α,Γ ⇒ ∆

(¬left)

By induction hypothesis, we have PL ⊢ g(Γ) ⇒ g(∆), g(α). We then obtain
the required fact:

....
g(Γ) ⇒ g(∆), g(α)

∼−g(α), g(Γ) ⇒ g(∆)
(∼−left)

where ∼−g(α) coincides with g(¬α) by the definition of g.

• (2): By induction on the proofs Q of g(Γ) ⇒ g(∆) in PL − (cut). We distin-
guish the cases according to the last inference of Q, and show only the following
cases.

1. Case (∼−left): The last inference of Q is of the form:

g(Γ) ⇒ g(∆), g(α)

∼−g(α), g(Γ) ⇒ g(∆)
(∼−left)

where ∼−g(α) coincides with g(¬α) by the definition of g. By induction
hypothesis, we have LK − (cut) ⊢ Γ ⇒ ∆, α. We thus obtain the required
fact: ....

Γ ⇒ ∆, α
¬α,Γ ⇒ ∆

(¬left).

2. Case (∧right): The last inference of Q is of the form:

g(Γ) ⇒ g(∆), g(α) g(Γ) ⇒ g(∆), g(β)

g(Γ) ⇒ g(∆), g(α) ∧ g(β)
(∧right)

where g(α)∧ g(β) coincides with g(α∧β) by the definition of g. By induction
hypothesis, we have LK − (cut) ⊢ Γ ⇒ ∆, α and LK − (cut) ⊢ Γ ⇒ ∆, β. We
thus obtain the required fact:

....
Γ ⇒ ∆, α

....
Γ ⇒ ∆, β

Γ ⇒ ∆, α ∧ β
(∧right).
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Theorem 3.12 (Syntactical embedding from LK into PL) Let Γ, ∆ be sets
of formulas in LLK, and g be the mapping defined in Definition 3.10.

1. LK ⊢ Γ ⇒ ∆ iff PL ⊢ g(Γ) ⇒ g(∆).

2. LK − (cut) ⊢ Γ ⇒ ∆ iff PL − (cut) ⊢ g(Γ) ⇒ g(∆).

Proof. By using Theorems 3.11 and 3.4. Similar to Theorem 3.6.

We have the following cut-elimination theorems for EPL and EPL−, but these
are not proved using an embedding-based method.

Theorem 3.13 (Cut-elimination for EPL and EPL−) Let L be EPL or EPL−.
The rule (cut) is admissible in cut-free L.

Proof. (Sketch). The theorem for EPL− is obtained from that for EPL and Theo-
rem 2.15. Thus, we here consider the theorem for EPL. In this regard, it is sufficient
to consider the cases of the initial sequents of the form (∼p,−p ⇒) and (⇒ ∼p,−p),
since the cut-elimination theorem (Theorem 3.4) holds for the subsystem PL of EPL
by deleting (∼p,−p ⇒) and (⇒ ∼p,−p). We thus demonstrate such cases below.

1. Case when the left upper sequent of the cut is derived from a single premise
left logical inference rule R:

.... P
Γ ⇒ ∆,∼p

Γ∗ ⇒ ∆,∼p
(R) ∼p,−p ⇒

−p,Γ∗ ⇒ ∆
(cut)

where P is a cut-free proof. In this case, we can transform this proof into the
following proof which can eliminate the cut by induction hypothesis:

.... P
Γ ⇒ ∆,∼p ∼p,−p ⇒

−p,Γ ⇒ ∆
(cut)

−p,Γ∗ ⇒ ∆
(R).

2. Case when the left upper sequent of the cut is derived from (we-right) where
the principal formula of (we-right) is ∼p:

.... P
Γ ⇒ ∆

Γ ⇒ ∆,∼p
(we-right) ∼p,−p ⇒
−p,Γ ⇒ ∆

(cut)
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where P is a cut-free proof. In this case, we can transform this proof into the
following cut-free proof:

.... P
Γ ⇒ ∆

−p,Γ ⇒ ∆
(we-left).

Theorem 3.14 (Paraconsistency and paracompleteness for EPL) We have:

1. (Paraconsistency): EPL (also EPL− or G4CC) is paraconsistent with respect
to ∼ and −.

2. (Paracompleteness): EPL (also EPL− or G4CC) is paracomplete with respect
to ∼ and −.

Proof. By using Theorem 3.13.

4 Semantical embedding and completeness

We now introduce a valuation semantics for PL by defining the valuation function
on the two-element set of classical truth-values.

Definition 4.1 (Semantics for PL) Let Φ be the set of all propositional variables,
Φ∼ be the set {∼p | p ∈ Φ} and Φ− be the set {−p | p ∈ Φ}. A paraconsistent
valuation v∗ is a mapping from Φ ∪ Φ∼ ∪ Φ− to the set {t, f} of truth values. The
paraconsistent valuation v∗ is extended to the mapping from the set of all formulas
to {t, f} by the following clauses.

1. v∗(α ∧ β) = t iff v∗(α) = t and v∗(β) = t,

2. v∗(α ∨ β) = t iff v∗(α) = t or v∗(β) = t,

3. v∗(α→β) = t iff v∗(α) = f or v∗(β) = t,

4. v∗(∼(α ∧ β)) = t iff v∗(∼α) = t or v∗(∼β) = t,

5. v∗(∼(α ∨ β)) = t iff v∗(∼α) = t and v∗(∼β) = t,

6. v∗(∼(α→β)) = t iff v∗(α) = t and v∗(∼β) = t,

7. v∗(∼∼α) = t iff v∗(α) = t,

8. v∗(∼−α) = t iff v∗(α) = f ,

9. v∗(−(α ∧ β)) = t iff v∗(−α) = t and v∗(−β) = t,
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10. v∗(−(α ∨ β)) = t iff v∗(−α) = t or v∗(−β) = t,

11. v∗(−(α→β)) = t iff v∗(α) = f or v∗(−β) = t,

12. v∗(−−α) = t iff v∗(α) = t,

13. v∗(−∼α) = t iff v∗(α) = f .

A formula α is called PL-valid iff v∗(α) = t holds for all paraconsistent valuation
v∗.

In order to show some semantical embedding theorems, we present the standard
two-valued semantics for LK.

Definition 4.2 (Semantics for LK) A valuation v is a mapping from the set of
all propositional variables to the set {t, f} of truth values. The valuation v is ex-
tended to the mapping from the set of all formulas to {t, f} by the following clauses.

1. v(α ∧ β) = t iff v(α) = t and v(β) = t,

2. v(α ∨ β) = t iff v(α) = t or v(β) = t,

3. v(α→β) = t iff v(α) = f or v(β) = t,

4. v(¬α) = t iff v(α) = f .

A formula α is called LK-valid iff v(α) = t holds for all valuation v.

Remark 4.3 The following completeness theorem holds for LK: For any formula
α, LK ⊢ ⇒ α iff α is LK-valid.

Next, we show a theorem for semantically embedding PL into LK.

Lemma 4.4 Let f be the mapping defined in Definition 3.1. For any paraconsistent
valuation v∗, we can construct a valuation v such that for any formula α,

v∗(α) = t iff v(f(α)) = t.

Proof. Let Φ be a set of propositional variables, and for each ⋆ ∈ {n, c}, let Φ⋆ be
the set {p⋆ | p ∈ Φ} of propositional variables. Suppose that v∗ is a paraconsistent
valuation. Suppose that v is a mapping from Φ ∪ Φn ∪ Φc to {t, f} such that

1. v∗(p) = t iff v(p) = t,

2. v∗(∼p) = t iff v(pn) = t,

3. v∗(−p) = t iff v(pc) = t.
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Then, the lemma is proved by induction on α.

• Base step:

1. Case α ≡ p where p is a propositional variable: v∗(p) = t iff v(p) = t (by the
assumption) iff v(f(p)) = t (by the definition of f).

2. Case α ≡ ∼p where p is a propositional variable: v∗(∼p) = t iff v(pn) = t (by
the assumption) iff v(f(∼p)) = t (by the definition of f).

3. Case α ≡ −p where p is a propositional variable: Similar to the above case.

• Induction step: We show some cases.

1. Case α ≡ β ∧ γ: v∗(β ∧ γ) = t iff v∗(β) = t and v∗(γ) = t iff v(f(β)) = t and
v(f(γ)) = t (by induction hypothesis) iff v(f(β)∧ f(γ)) = t iff v(f(β ∧γ)) = t
(by the definition of f).

2. Case α ≡ ∼∼β: v∗(∼∼β) = t iff v∗(β) = t iff v(f(β)) = t (by induction
hypothesis) iff v(f(∼∼β)) = t (by the definition of f).

3. Case α ≡ ∼(β ∧ γ): v∗(∼(β ∧ γ)) = t iff v∗(∼β) = t or v∗(∼γ) = t iff
v(f(∼β)) = t or v(f(∼γ)) = t (by induction hypothesis) iff v(f(∼β)∨ f(∼γ))
= t iff v(f(∼(β ∧ γ))) = t (by the definition of f).

4. Case α ≡ ∼−β: v∗(∼−β) = t iff v∗(β) = f iff v(f(β)) = f (by induction
hypothesis) iff v(¬f(β)) = t iff v(f(∼−β)) = t (by the definition of f).

5. Case α ≡ −(β ∧ γ): v∗(−(β ∧ γ)) = t iff v∗(−β) = t and v∗(−γ) = t iff
v(f(−β)) = t and v(f(−γ)) = t (by induction hypothesis) iff v(f(−β) ∧
f(−γ)) = t iff v(f(−(β ∧ γ))) = t (by the definition of f).

6. Case α ≡ −(β→γ): v∗(−(β→γ)) = t iff v∗(β) = f or v∗(−γ) = t iff v(f(β)) =
f or v(f(−γ)) = t (by induction hypothesis) iff v(f(β)→f(−γ)) = t iff

v(f(−(β→γ))) = t (by the definition of f).

Lemma 4.5 Let f be the mapping defined in Definition 3.1. For any valuation v,
we can construct a paraconsistent valuation v∗ such that for any formula α,

v(f(α)) = t iff v∗(α) = t.

Proof. Similar to the proof of Lemma 4.4.

Theorem 4.6 (Semantical embedding from PL into LK) Let f be the map-
ping defined in Definition 3.1. For any formula α,

α is PL-valid iff f(α) is LK-valid.
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Proof. By Lemmas 4.4 and 4.5.

Theorem 4.7 (Completeness for PL) For any formula α,

PL ⊢ ⇒ α iff α is PL-valid.

Proof. We have:

PL ⊢ ⇒ α

iff LK ⊢ ⇒ f(α) (by Theorem 3.6)

iff f(α) is LK-valid (by the completeness theorem for LK)

iff α is PL-valid (by Theorem 4.6).

Next, we show a theorem for semantically embedding LK into PL.

Lemma 4.8 Let g be the mapping defined in Definition 3.10. For any valuation v,
we can construct a paraconsistent valuation v∗ such that for any formula α,

v(α) = t iff v∗(g(α)) = t.

Proof. Let Φ be a set of propositional variables, and for each ⋆ ∈ {n, c}, let Φ⋆ be
the set {p⋆ | p ∈ Φ} of propositional variables. Suppose that v∗ is a paraconsistent
valuation. Suppose that v is a mapping from Φ ∪ Φn ∪ Φc to {t, f} such that

1. v∗(p) = t iff v(p) = t,

2. v∗(∼p) = t iff v(pn) = t,

3. v∗(−p) = t iff v(pc) = t.

Then, the lemma is proved by induction on α.

• Base step:

1. Case α ≡ p where p is a propositional variable: v(p) = t iff v∗(p) = t (by the
assumption) iff v∗(g(p)) = t (by the definition of g).

2. Case α ≡ pn where p is a propositional variable: v(pn) = t iff v∗(∼p) = t (by
the assumption) iff v∗(g(pn)) = t (by the definition of g).

3. Case α ≡ pc where p is a propositional variable: Similar to the above case.

• Induction step: We show some cases.

1. Case α ≡ β ∧ γ: v(β ∧ γ) = t iff v(β) = t and v(γ) = t iff v∗(g(β)) = t and
v∗(g(γ)) = t (by induction hypothesis) iff v∗(g(β) ∧ g(γ)) = t iff v∗(g(β ∧ γ))
= t (by the definition of g).
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2. Case α ≡ ¬β: v(¬β) = t iff v(β) = f iff v∗(g(β)) = f (by induction hypothesis)

iff v∗(∼−g(β)) = t iff v∗(g(¬β)) = t (by the definition of g).

Lemma 4.9 Let g be the mapping defined in Definition 3.10. For any paraconsis-
tent valuation v∗, we can construct a valuation v such that for any formula α,

v∗(g(α)) = t iff v(α) = t.

Proof. Similar to the proof of Lemma 4.8.

Theorem 4.10 (Semantical embedding from LK into PL) Let g be the map-
ping defined in Definition 3.10. For any formula α,

α is LK-valid iff g(α) is PL-valid.

Proof. By Lemmas 4.8 and 4.9.

For EPL, we also provide a valuation semantics. Completeness, however, is
proven without going through the embedding theorems.

Definition 4.11 (Semantics for EPL) Let Φ be the set of all propositional vari-
ables, and Φ∼ be the set {∼p | p ∈ Φ}. A paraconsistent EPL valuation v∗ is a
mapping from Φ ∪ Φ∼ to the set {t, f} of truth values. The paraconsistent EPL
valuation v∗ is extended to the mapping from the set of all formulas to {t, f} by the
clauses 1–8 of Definition 4.1, with the addition of the following clause:

v∗(−α) = t iff v∗(∼α) = f .

A formula α is called EPL-valid iff v∗(α) = t for every paraconsistent EPL
valuation v∗.

We then obtain the completeness theorem for ELP.

Theorem 4.12 (Completeness for EPL) For any formula α,

EPL ⊢ ⇒ α iff α is EPL-valid.

Proof. By Theorem 2.15, it suffices to prove completeness for EPL−. Since EPL−

extends PL, α ⇒ α is provable in it for every formula α (see Proposition 2.4). Since
it also includes (cut), (we-left) and (we-right), and sequents are taken to be pairs of
finite sets of formulas, this system can be regarded as a basic system, in the terms of
[19] (that are a generalization of the structurally standard systems of sequents [8]).
[19] provides a method to obtain a semantics for such systems, that is based on a
“semantic reading” of the derivation rules. For the case of EPL−, it is easy to verify
that this semantics is equivalent to the one defined in Definition 4.11.
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5 Concluding remarks

In this study, we have introduced PL, a Gentzen-type sequent calculus, as a modi-
fied extension of Arieli, Avron, and Zamansky’s ideal four-valued paradefinite logic
4CC. Here, PL is formalized based on the idea of connexive logic. Indeed, some
conflation and implication combined logical inference rules that correspond to char-
acteristic axiom schemes for connexive logics are used in PL. Given this, we have
proved the theorems for syntactically and semantically embedding PL into LK and
vice versa. Next, we have obtained the cut-elimination and completeness theo-
rems for PL via these embedding theorems. Using the cut-elimination theorem for
PL, we have also obtained the characteristic properties of quasi-paraconsistency
and quasi-paracompleteness that represent the interaction between conflation and
paraconsistent negation. We have also introduced an extension of PL called EPL,
which is theorem-equivalent to the Gentzen-type sequent calculus G4CC for 4CC.
Our calculus EPL enjoys the novel characteristic property of negative symmetry
that represents the symmetry between conflation and paraconsistent negation al-
though EPL does not enjoy the quasi-paraconsistency and quasi-paracompleteness
properties. We have then directly proved the cut-elimination and completeness theo-
rems for EPL without using an embedding theorem. In conclusion, by investigating
and comparing the properties of PL and EPL, we have shed light on the role of
conflation in paradefinite logics.

We now describe ongoing and future work. Using the same embedding-based
method proposed and used in [15, 18], we have been able to obtain a modified Craig
interpolation theorem for PL, which is shown below. However, we have not yet
obtained such a result for EPL, because we have not yet obtained several theorems
for embedding EPL into LK.

An expression V (α) denotes the set of all propositional variables occurring in α.

Theorem 5.1 (Modified Craig interpolation for PL) Suppose PL ⊢ α ⇒ β for
any formulas α and β. If V (α)∩ V (β) ̸= ∅, then there exists a formula γ such that:

1. PL ⊢ α ⇒ γ and PL ⊢ γ ⇒ β;

2. V (γ) ⊆ V (α) ∩ V (β).

If V (α) ∩ V (β) = ∅, then:

3. PL ⊢ ⇒ ∼−α or PL ⊢ ⇒ β.

Using this theorem, we can derive the following Maksimova principle of variable
separation.

Theorem 5.2 (Maksimova principle for PL) Suppose V (α1, α2)∩ V (β1, β2) ̸=
∅ for any formulas α1, α2, β1 and β2. If PL ⊢ α1 ∧ β1 ⇒ α2 ∨ β2, then either PL ⊢
α1 ⇒ α2 or PL ⊢ β1 ⇒ β2.
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We are also able to introduce a first-order extension of PL here called FPL as
well as its valuation semantics in a natural way. Thus, we can show several theorems
for syntactically and semantically embedding FPL into FLK, which is a Gentzen-
type sequent calculus for first-order classical logic. Using these embedding theorems,
we can obtain the cut-elimination, completeness, and modified Craig interpolation
theorems for FPL. Part of our future work will therefore be focused on obtaining
results for a first-order extension of EPL.
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