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Number theory combination:
natural density and SMT

Guilherme Toledo and Yoni Zohar

Bar-Ilan University, Israel

Abstract. The study of theory combination in Satisfiability Modulo
Theories (SMT) involves various model theoretic properties (e.g., sta-
ble infiniteness, smoothness, etc.). We show that such properties can be
partly captured by the natural density of the spectrum of the studied
theories, which is the set of sizes of their finite models. This enriches the
toolbox of the theory combination researcher, by providing new tools to
determine the possibility of combining theories. It also reveals interest-
ing and surprising connections between theory combination and number
theory.

1 Introduction

Imagine this: you are a researcher in Satisfiability Modulo Theories (SMT) [2],
studying a theory T , which is the combination of theories T1 and T2 (in the same
way that, say, the theory of lists of integers is the combination of the theories of
lists and integers). Given algorithms for T1 and T2, you can plug them together
using theory combination methods, such as Nelson and Oppen’s method [13],
polite combination [15], shiny combination [21], or gentle combination [8].

But, before you can produce a decision procedure for T , you must test certain
properties of T1 and T2, or their absence, to determine their applicability to the
combination method. For example, using the Nelson-Oppen method requires
that both theories are stably infinite, while using the polite combination method
requires that one of them is strongly polite. The obvious way of doing so is by
directly applying the definitions of these properties, what can be highly non-
trivial (for example, to prove a theory is strongly polite, one needs to construct
a computable function satisfying an involved set of conditions).

In this paper, we give you alternative tests, based on number theoretic natural
densities [20], computed over the spectrum of the theory [11]. When testing
whether a theory admits or lacks a theory combination property, you can now use
these tests. We provide examples for cases where this is simpler to do, compared
to the direct application of the definitions. Beyond the introduction of such
tools, the results of this paper relate number theory and theory combination in
surprising and insightful ways. We focus on one-sorted theories, leaving many-
sorted ones for future work.

Section 2 surveys relevant notions. Section 3 contains our main results: suffi-
cient and necessary conditions for theory combination properties, in terms of the
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≠ (x1, . . . , xn) =
n−1
⋀
i=1

n

⋀
j=i+1

¬(xi = xj)

ψ≥n =∃x1 . . . xn. ≠ (x1, . . . , xn)

ψ≤n =∃x1, . . . , xn. ∀ y.
n

⋁
i=1
y = xi

ψ=n =ψ≥n ∧ ψ≤n

Fig. 1: Cardinality formulas.

natural density. In Section 4 we provide generalizations to non-empty signatures.
Section 5 summarizes, and gives directions for future research.

2 Preliminaries

If X is a set, ∣X ∣ denotes its cardinality. We denote by ℵ0 the cardinality of N,
which for us contains 0; the set N ∖ {0} is denoted by N∗.

2.1 First-order logic

A first-order signature Σ is a pair (FΣ ,PΣ), where: FΣ is a countable set of
function symbols, each with an arity n ∈ N; and PΣ is a countable set of predicate
symbols, each with an arity n ∈ N, containing at least the equality = of arity 2.
We denote by Σ1 the signature with no function or predicate symbols other
than =, which is therefore called empty. Assuming countably many variables, we
define by structural induction terms, literals, formulas, and sentences (formulas
without free variables) in the usual way. The set of all quantifier-free Σ-formulas
is denoted by QF (Σ); the set of all variables in φ shall be written as vars(φ).

A Σ-interpretation A consists of: a non-empty set dom(A), called the domain
of A; for each function symbol f of arity n, a function fA ∶ dom(A)n → dom(A);
for each predicate symbol P of arity n, a subset PA of dom(A)n, where =A is the
identity; and, for every variable x, an element xA of dom(A). The value of a term
α in A is denoted by αA, while for a set of terms Γ we make ΓA = {αA ∶ α ∈ Γ};
if A satisfies the formula φ, we write A ⊧ φ. Recurrent formulas include those in
Figure 1, that are satisfied by an interpretation A iff: A has at least n elements,
in the case of ψ≥n; A has at most n elements, in the case of ψ≤n; and A has
precisely n elements, in the case of ψ=n.

A theory is the class of all interpretations (thus called T -interpretations, or
the models of T ) satisfying some set of sentences Ax(T ) (which does not need to
be computably enumerable), called the axiomatization of T . A formula φ is then:
(T -)satisfiable if there is a (T -)interpretation that satisfies φ; (T -)equivalent to
a formula ψ if every (T -)interpretation that satisfies one also satisfies the other;
and (T -)valid if every (T -)interpretation satisfies φ, denoted ⊧ φ (⊧T φ).

We denote, for n ≤m, the set {n, . . . ,m} by [n,m]; if n = 0, we simplify it to
[m]. Of course, ∣[n,m]∣ = m − n + 1, and ∣[m]∣ = m + 1. Furthermore, A ∩ [1, n]
will be denoted by An; we denote {∣dom(A)∣ ∶ A is a T -interpretation} ∩ N by
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Spec(T ), and we define Specn(T ) as Spec(T ) ∩ [1, n]. Analogously, Spec(T , ϕ)
is the set of finite cardinalities of T -interpretations that satisfy ϕ. We can then
also define Specn(T , ϕ) as Spec(T , ϕ) ∩ [1, n].

2.2 Number theory

The natural density [20] of a set A ⊆ N is the following real number, if it exists
(and then we say the density of A is well-defined): µ(A) = limn→∞ ∣A∩[n]∣/∣[n]∣.

Example 1. Consider the set A of even non-negative integers: we then have that
µ(A) is the limit of the sequence an which equals (n + 2)/2(n + 1) if n is even,
and 1/2 if it is odd, meaning that µ(A) is well-defined and equals 1/2.

It is easy to prove that µ satisfies, for all disjoint sets A and B for which
it is defined: 0 ≤ µ(A); µ(N) = 1; and µ(A ∪ B) = µ(A) + µ(B). The subsets
of the non-negative integers we shall calculate the natural density of are sets
of finite cardinalities of interpretations in a theory: since they are never zero
(as we assume dom(A) is never empty), we can change µ(A) to be the limit
of the ratio of ∣A ∩ {1, . . . , n}∣ to ∣{1, . . . , n}∣ = n.1 With this, we can finally
define the natural density of a theory (relative to a quantifier-free formula or
not) as the natural density of its spectrum: µ(T ) = limn→∞ ∣Specn(T )∣/∣[1, n]∣,
and µ(T , ϕ) = limn→∞ ∣Specn(T , ϕ)∣/∣[1, n]∣.

Definition 1. Let r ∈ R. r is computable [27] if there are computable sequences
{an}n∈N in Z and {bn}n∈N in N∗ with limn→∞ an/bn = r.

Example 2. Every rational number p/q is computable: just take an = p and
bn = q. The number ∑∞n=1 2−ς(n) = 0.57824... is not computable, for ς the busy
beaver function [14], which maps n ∈ N to the maximum number of 1’s a Turing
machine with at most n states can write when it halts, assuming the tape begins
with only 0’s. Now, 0.57824.... is the limit of 5/10,57/100,578/1000, . . .. Consider
then the theory T with models of size 1 through 5, 11 through 52 = 57 − 5, 101
through 521 = 578 − 57, and so on. Its density is the limit of the fractions 5/10,
57/100, 578/1000 and so on, i.e. 0.57824..., although this number is irrational.
More generally, any 0 ≤ r ≤ 1 is the density of some theory.

2.3 Theory combination

In what follows, let Σ be an arbitrary signature and T be a Σ-theory.
T is stably infinite [13] if for every satisfiable quantifier-free formula ϕ,

there is a T -interpretation A that satisfies ϕ with ∣dom(A)∣ ≥ ℵ0. T is smooth
when, for all quantifier-free formulas ϕ, T -interpretations A that satisfy ϕ, and
cardinals κ > ∣dom(A)∣, there exists a T -interpretation B that satisfies ϕ with
∣dom(B)∣ = κ. Notice that being smooth implies being stably infinite.

1 Of course, this does not change the value of µ(A).
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Example 3. The theory axiomatized by {ψ≥3} is smooth, as we can always add
more elements to an interpretation.

T is finitely witnessable [16] when there is a computable function wit
(called a witness) from the quantifier-free formulas into themselves such that,
for every quantifier-free formula ϕ: (I) ϕ and ∃Ð→x .wit(ϕ) are T -equivalent, where
Ð→x = vars(wit(ϕ))∖vars(ϕ); and (II) if wit(ϕ) is T -satisfiable, then there is a T -
interpretation A that satisfies wit(ϕ) and, in addition, dom(A) = vars(wit(ϕ))A
(that is, every element of dom(A) is the interpretation of a variable in wit(ϕ)).
Now, given a finite set of variables V on the signature Σ, and an equivalence E
on V , the arrangement on V induced by E, written δEV or δV if E is clear from
context, is the formula ⋀xEy(x = y)∧⋀xEy ¬(x = y), where E is the complement
of E. Intuitively, an arrangement codifies the relationships between a finite set
of variables, that is, if they should be equal or different to one another. T is
then strongly finitely witnessable [12] if it has a witness wit (that in this
case will be called a strong witness) satisfying, in addition to (I) and (II), the
stronger (II∗): for every finite set of variables V and arrangement δV on V , if
wit(ϕ) ∧ δV is T -satisfiable, then there exists a T -interpretation A that satisfies
that formula and, in addition, dom(A) = vars(wit(ϕ) ∧ δV )A.

Example 4. The theory axiomatized by {ψ≤3} has as strong witness wit(ϕ) =
ϕ ∧⋀3

i=1 xi = xi, where x1, x2 and x3 are fresh variables (i.e., not in ϕ).

T has the finite model property (FMP) if for every T -satisfiable quantifier-
free formula ϕ, there is a T -interpretation A that satisfies ϕ with ∣dom(A)∣ < ℵ0.2

Consider Nω = N ∪ {ℵ0}. A minimal model function [22] for T is a function
minmodT ∶ QF (Σ) → Nω such that, if ϕ is quantifier-free and T -satisfiable,
then minmodT (ϕ) = n if, and only if: there exists a T -interpretation A that
satisfies ϕ with ∣dom(A)∣ = n; and if B is another T -interpretation that satisfies
ϕ, with ∣dom(B)∣ ≠ n, then ∣dom(B)∣ > n.

Example 5. The theory axiomatized by {ψ≥3} has a computable minimal model
function. To calculate it on a quantifier-free formula ϕ, take the cardinality n of
the smallest interpretation in equational logic that satisfies ϕ, which can easily
be found algorithmically. If n < 3, minmod(ϕ) = 3; otherwise minmod(ϕ) = n.

T is (strongly) polite if it is smooth and (strongly) finitely witnessable. It is
shiny if it is smooth, has the FMP and a computable minimal model function. T
is gentle [8] if for every quantifier-free formula ϕ, Spec(T , ϕ) is fully computable,
that is: (i) it is computable; (ii) it is either co-finite,3 or a finite set of finite
cardinalities, and there is an algorithm with ϕ as input that tells which one is
the case; (iii) if Spec(T , ϕ) is finite, max(Spec(T , ϕ)) is computable, and if it is
infinite max(N ∖ Spec(T , ϕ)) is computable, both with ϕ as input.4

2 A common definition for the finite model property demands this condition holds for
all formulas, but in theory combination quantifier-free formulas are typically used.

3 I.e., N ∖ Spec(T , ϕ) is finite.
4 If Spec(T , ϕ) or N ∖ Spec(T , ϕ) are empty, their respective maxima are 0, as usual,

so T must be decidable as max(Spec(T , ϕ)) = 0 iff ϕ is not T -satisfiable.
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Example 6. Consider the Σ1-theory T ∞even (see [25]), with axiomatization
{¬ψ=2n+1 ∶ n ∈ N}: it is not gentle, as x = x has as spectrum the set of even
positive numbers, which is neither finite nor cofinite.

3 Theory combination and natural density

In this section we establish various connections between model-theoretic proper-
ties of a theory, and its natural density. We focus our investigation on the empty
signature Σ1, that has a single sort and no function and predicate symbols other
than equality. Generalizations to non-empty signatures are given in Section 4.

We start with the empty signature, because a theory on such a signature has
essentially one natural density, while for the non-empty case we must consider
the density with respect to both a formula and the theory (this can also be done
on the empty case, but all T -satisfiable formulas will give the same density).
Furthermore, some results will not hold on the non-empty case, such as the
third item in Theorem 1 below.

Section 3.1 deals with sufficient conditions: if the density satisfies them, then
we can deduce some combination properties. Section 3.2 obtains necessary con-
ditions: one would use the contrapositive and conclude that the theory does
not have the properties at hand, and then at least one knows that a different
combination method has to be used.

3.1 Sufficient conditions

In Theorem 1 we identify sufficient conditions for stable infiniteness, the finite
model property and finite witnessability, properties that are needed for Nelson-
Oppen combination, shiny combination, and polite combination, respectively.

Theorem 1. If T is a Σ1-theory with a well-defined natural density, then the
positivity of µ(T ) is sufficient for T to: 1. be stably infinite; 2. have the finite
model property; and 3. be finitely witnessable.

Proof (sketch). 5 The proof of the third item is more involved than that of
the first two, which is routine. Szemerédi’s theorem [19], which settled a well-
know conjecture by Erdös and Turán, showed that each set with positive natural
density contains arbitrarily long finite subsequences in arithmetic progression
(i.e., the difference between two consecutive elements is constant). Item 3 is
a similarly flavored result, although with a much simpler proof than that of
Erdös and Turán, that will guarantee that any theory T which is not finitely
witnessable and has a well-defined natural density must satisfy µ(T ) = 0.

Example 7. Fix some positive natural number n, and consider the theory T≥n,
with axiomatization {ψ≥n}. It obviously has positive density. By Theorem 1 it
is stably infinite, has the finite model property, and is finitely witnessable.
5 Full proofs appear in the appendix.
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The following example shows that all the reciprocals of Theorem 1 are false,
a single counterexample being enough for all three.

Example 8. Take the Σ1-theory T=2i with axiomatization {ψ≥2n ∨⋁n
i=0 ψ=2i ∶ n ∈

N}, which has interpretations A with domains whose cardinality is either infinite
or a power of two. It is stably infinite, has the finite model property and is finitely
witnessable,6 but µ(T=2i) = limn→∞

∣Specn(T=2i)∣
n

= limn→∞
⌊log2(n)⌋+1

n
= 0.

The following example shows the sharpness of Theorem 1, in the sense that
its assumption is really needed to reach its conclusions.

Example 9. The conclusion of Theorem 1 cannot hold under the assumption that
µ(T ) = 0. The theory T∞, with axiomatization {ψ≥n ∶ n ∈ N∗}, has only infinite
models. It has density 0 but does not have the finite model property. The theory
TI, with axiomatization {ψ=1}, has a single model up to isomorphism, with a
single element. It has density 0 but is not stably infinite. For item 3, a theory
that is not finitely witnessable and has natural density 0 is Tς , from [26], with
axiomatization {ψ≥ς(n)∨⋁n

i=2 ψ=ς(i) ∶ n ∈ N∖{0,1}} for ς ∶ N→ N the busy beaver
function (see Example 2). The cardinalities of its finite models are precisely the
Busy Beaver numbers, that is, the elements of the image of ς. We can show
that µ(T ) = 0. In a way, item 3 of Theorem 1 shows that every theory not
finitely witnessable must, like ς, "escape" all computable functions, and thus
have natural density 0.

3.2 Necessary conditions

We now move on to the results establishing necessary conditions for gentleness
(Section 3.2.1), smoothness and finite model property (Section 3.2.2), strong fi-
nite witnessability (Section 3.2.3), the computability of a minimal model function
(Section 3.2.4), and finite witnessability (Section 3.2.5).

3.2.1 Gentleness

Theorem 2. If T is a Σ1-theory, then µ(T ) being well-defined and equal to 0
or 1 is a necessary condition for T to be gentle.

Proof (sketch). By taking a tautology ϕ for a gentle Σ1-theory T , we see that
Spec(T ) = Spec(T , ϕ) is either finite (and then its density is 0) or co-finite (and
then its density is 1.

Example 10. Consider the theory T ∞even from Example 6: it’s density is 1/2, what
implies by the theorem it is not gentle.

The reciprocal of Theorem 2 is false, as shown by the next example.

6 A witness being, if ϕ has n variables, wit(ϕ) = ϕ ∧⋀2n

i=1 xi = xi, for fresh xis.
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Example 11. Example 8 presents a theory T=2i that has density 0 but is not gen-
tle (since both Spec(T=2i) and N ∖ Spec(T=2i) are infinite). On the other hand,
take the Σ1-theory T≠2i with axiomatization {¬ψ=2n ∶ n ∈ N}, which has inter-
pretations A with either ∣dom(A)∣ infinite, or ∣dom(A)∣ finite but not a power of
two. It is not gentle, yet µ(T≠2i) = limn→∞

∣Specn(T≠2i)∣
n

= limn→∞
n−⌊log2(n)⌋−1

n
= 1.

Notice also that both cases of Theorem 2 are possible, namely: there are
gentle theories with density 0 and gentle theories with density 1. Before showing
them, let us present two useful lemmas, that relate gentleness to other properties:

Lemma 1. If T is gentle, then T has a computable minimal model function and
the finite model property, and therefore is finitely witnessable as well.

Lemma 2. Let T be a Σ1-theory: if T is not stably infinite, or if it is strongly
finitely witnessable, then T is gentle.

Example 12.

1. The trivial Σ1-theory T≥1, with axiomatization {ψ≥1}, consists of all Σ1-
interpretations. It is strongly finitely witnessable (given its axiomatization
is given by an universal formula, this is proven in [17]), and of course
Specn(T≥1) = [1, n] so µ(T≥1) = 1.

2. The Σ1-theory TI from Example 9 is also strongly finitely witnessable and
thus gentle (Lemma 2), but Specn(TI) = {1} so µ(TI) = 0.

3. An example of a Σ1-theory that is gentle and has density 0, but is not
strongly finitely witnessable, is denoted by T⟨m,n⟩, for any fixed m,n ∈ N∗. It
has axiomatization {ψ=m ∨ ψ=n}, and its models have cardinalities m or n.

3.2.2 Smoothness and finite model property The next result involves
both smoothness and the finite model property.

Theorem 3. If T is a Σ1-theory, µ(T ) being well-defined and equal to 1 is nec-
essary for T to simultaneously admit smoothness and the finite model property.

Proof (sketch). The proof is dual to that of Theorem 1: if a theory is smooth and
has the finite model property, it has all sufficiently large numbers as cardinalities
of its models, and its density is therefore 1.

The following example not only allows one to visualize the use of Theorem 3,
but will also help later in providing examples for each and all possible combina-
tion of the properties under consideration.

Example 13. Consider again T ∞even from Example 10, with density 1/2. It was
already shown in [18] that T ∞even has the finite model property without being
smooth, but notice that Theorem 3 perfectly encapsulates an intuition for why
that is: as the theory has the finite model property, it has a finite model; were
it smooth, it would have models of all larger cardinalities, and thus density 1.
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Example 14. The reciprocal of Theorem 3 is false, as we can see from the theory
T≠2i defined in Example 11, which is not smooth.

Now, Example 13 shows an example of a theory that has the finite model
property but is not smooth. But all three other Boolean combinations of these
two properties are possible, as seen below.

Example 15.

1. The theory T≥1 from Example 12 is smooth and has the finite model property.
2. One example of a smooth theory without the finite model property is the
Σ1-theory T∞ from Example 9. It has density 0, as it has no finite models.

3. To see one of a theory that is neither smooth nor has the finite model prop-
erty, which by Theorem 1 must have density 0, fix an n ∈ N∗ and consider the
Σ1-theory Tn,∞, defined in [25] by the axiomatization {ψ=n ∨ψ≥m ∶m ∈ N∗}.
Its finite models must have cardinality n.

3.2.3 Strong finite witnessability The following result, which is a corol-
lary of earlier ones, is specially useful: proving a theory is not strongly finitely
witnessable is quite challenging; it involves finding a quantifier-free formula, a
set of variables, and an arrangement on that set which fail the conditions to be
a strong witness, for every candidate for a strong witness. Checking whether the
theory’s density is 0 or 1 can be fairly easier.

Theorem 4. If T is a Σ1-theory, then µ(T ) being well-defined and equal to 0
or 1 is a necessary condition for T to be strongly finitely witnessable.

Proof. By Lemma 2 and Theorem 2.

Example 16. The theory T ∞even from Example 10 is not strongly finitely witness-
able, as proven in [18], but the proof found there is quite involved, demanding
careful use of arrangements. Here, we only need to point to the fact that T ∞even
has natural density 1/2.

Example 17. The reciprocal of Theorem 4 is false: the theories T=2i and T≠2i
from Examples 8 and 11 have, respectively, densities 0 and 1, but neither is
strongly finitely witnessable, which follows from the fact that both are stably
infinite without being smooth, together with [25, Theorem 7], which shows stably
infinite, one-sorted theories that are strongly finitely witnessable are smooth.

3.2.4 Computability of minimal model functions We move now to the
question of computability of a minimal model function. For this, we first establish
in Proposition 1 a connection between this and the computability of the spectra.

Proposition 1. T is a Σ1-theory with a computable minimal model function if,
and only if, Spec(T ) is computable.

This proposition plays an important role in the proof of the theorem below:
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Theorem 5. If T is a Σ1-theory with a well-defined density, the fact that µ(T )
is a computable number is a necessary condition for T to have a computable
minimal model function. Furthermore, for every computable number 0 ≤ r ≤ 1,
there exists a Σ1-theory T with µ(T ) = r that has a computable minimal model
function and the finite model property, but is not smooth.

The proof of the first part takes a theory T with a computable minimal
model function, and from Proposition 1 one sees that Spec(T ) is computable;
we then prove that this implies µ(T ) is itself a computable real number, ruling
out non-computable numbers. Indeed, if A is a computable set, the sequence
{∣An∣}n∈N = {∣{k ∈ A ∶ k ≤ n}∣}n∈N is computable (and so is {n}n∈N, but that is
obvious); if µ(A) = r, we have r = limn→∞ ∣An∣/n, proving r is computable.

We prove the second part by constructing in Definition 2 below, from two
sequences {an}n∈N and {bn}n∈N, a function f whose image (which will also equal
the spectrum of the theory to be constructed) will be a computable set and have
a density associated to the mediants of the ratios an/bn, where the mediant of the
fractions a/b and c/d is the fraction (a+ c)/(b+d). Although tedious to prove, it
is true that the limit of the mediants of the ratios between two sequences equals
the limit of the ration, and this guarantees that the natural density of the image
of f will be the limit of an/bn.

Definition 2. Given sequences {an}n∈N and {bn}n∈N with 0 < an < bn and
an, bn ∈ N, for all n ∈ N, we define an associated function f ∶ N∗ → N∗ inductively
as follows: f(n) = n for 1 ≤ n ≤ a0, and f(n) = a0 for a0+1 ≤ n ≤ b0; and, assum-
ing f(n) defined for all 1 ≤ n ≤ M = ∑m

i=0 bi, for any m ≥ 0, we make f(n) = n
for M +1 ≤ n ≤M +am+1, and f(n) =M +am+1 for M +am+1+1 ≤ n ≤M +bm+1.

The construction defined in Definition 2 is outlined in Figure 2 (A). Notice
the step-shape of the function, that can be computed by induction on n.

We next show an application of Theorem 5, by identifying a theory that
according to this theorem has a computable minimal model function, but this
fact seems difficult to prove without using this theorem.

Example 18. Take Ω = 0.57824 . . . from Example 2. Take the sequence of frac-
tions 5/10,57/100, . . . converging to Ω, and define a function f as in Definition 2:
so f(n) = n for 1 ≤ n ≤ 4, and f(n) = 5 for 5 ≤ n ≤ 10; f(n) = n for 11 ≤ n ≤ 66,
and f(n) = 67 for 67 ≤ n ≤ 110, and so on. Define then a theory TΩ with axiom-
atization {ψ≥f(n+1) ∨⋁n

i=1 ψ=f(n) ∶ n ∈ N∗}: it has models of size 1 through 5, 11
through 67, and so on.7 We can prove that it has natural density Ω, and thus
does not have a computable minimal model function. It is, however unclear how
one would prove this without resorting to Theorem 5 and Proposition 1.

The reciprocal of Theorem 5 is false, in the sense that a theory without a
computable minimal model function can still have a computable natural density.

7 Notice TΩ is not the same as the theory from Example 2: indeed, the construction
from Definition 2 is more general.
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Fig. 2: (A) Initial values of the function f from Definition 2, for a0 = 4, a1 = 3,
a2 = 7, b0 = 6, b1 = 4 and b2 = 10. (B) Initial values of the functions G (in
red) and f (in black) from the case with computable r of Theorem 6, for a0 = 1,
a1 = 2, a2 = 3, b0 = 2, b1 = 3, b2 = 5, g(1) = 1, g(2) = 1 and g(3) = 0.

Example 19. Consider again the theory Tς from Example 9, whose natural den-
sity we have shown to be the computable number 0, despite the fact it does
not have a computable minimal model function (see [6, Lemma 128]), what by
Proposition 1 means Spec(Tς) is not computable.

Notice that, from [25, Lemma 7] and [24, Theorem 4], the theories in The-
orem 5 are also finitely witnessable without being strongly finitely witnessable.
They are also not gentle in the case that 0 < µ(T ) < 1. It is still possible to come
up with gentle examples for µ(T ) = 1 or µ(T ) = 0, as the next example shows.

Example 20. To obtain Σ1-theories T , with µ(T ) = 1 or µ(T ) = 0, that have
a computable minimal model function and are gentle but not strongly finitely
witnessable it is enough to consider, for the first case, T with axiomatization
{ψ=1 ∨ ψ≥3}; for the second, T with axiomatization {ψ=1 ∨ ψ=3}.

3.2.5 Finite witnessability The theorems so far have provided necessary
conditions for a theory to be gentle, smooth strongly finitely witnessable, or
have a computable minimal model function. We now show that this is as far as
this goes: namely, we cannot achieve necessary conditions using natural densities
for finite witnessability alone.

In fact, any real number r is the natural density of a finitely witnessable
theory. If r is computable then Theorem 5 already constructs a finitely witness-
able theory T with µ(T ) = r, as [24, Theorem 4] proved that a theory with
a computable minimal model function is finitely witnessable. However, in the
next theorem we construct such a theory also for non-computable numbers. In
addition, the theorem shows that the generated theory does not need to have a
computable minimal model function even if r is computable.
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Theorem 6. If T is a Σ1-theory, nothing can be said about µ(T ) if T is only
known to be finitely witnessable; that is, for every number 0 ≤ r ≤ 1, there ex-
ists a Σ1-theory T with µ(T ) = r that is finitely witnessable yet doesn’t have a
computable minimal model function.

The proof of Theorem 6 is divided in two cases: when r is computable, and
when it is not. When it is not, we write it in decimal notation, take the obvious
series of decimal fractions converging to it, define the function f as in Definition 2
and take the theory whose spectrum is the image of f .

If r is computable, which is the difficult case, we take computable sequences
{an}n∈N and {bn}n∈N such that an/bn converges to r, and a non-computable
function g ∶ N∗ → {0,1}. We then define an auxiliary function G ∶ N∗ → {0,1}
by making, for M = 2∑m

i=0 bi: G(M + 1) = g(m + 2); G(n) = 0 for M + 2 ≤ n ≤
2(bm+1−am+1)+M ; G(2(bm+1−am+1)+M +1) = 0 if g(m+2) = 1, and otherwise
G(2(bm+1 − am+1) +M + 1) = 1; and G(n) = 1 for 2(bm+1 − am+1) +M + 2 ≤
n ≤ M + 2bm+1. We make f(n) = max{m ≤ n ∶ G(m) = 1}, and take the theory
whose spectrum is the image of f , axiomatized by {ψ≥f(n+1) ∨ ⋁n

i=1 ψ=f(i) ∶ n ∈
N∗}, which will have a density equal to whatever is the limit of an/bn, i.e. r.
An example of this construction appears in Figure 2 (B), where the red dots
represent G, and the black ones represent f : for the corresponding theory we
will have Spec20(T ) = {1,4,5,8,9,10,15,16,17,18,19,20}.

3.2.6 Summary We can now, as this section about necessary conditions for
the empty signature comes to an end, summarize its overall arch: we have seen
what are all possible values for the density of a theory given some of its theory
combination properties, for all such combinations of properties.

We have considered, in total, 7 properties related to theory combination.
Were we to consider all Boolean combinations of them, we would need to analyze
128 cases; [24, Theorems 5,6,7] has shown, however, that for Σ1 there are only
8 of these possibilities, excluding gentleness. It may look like we need to analyze
16 possibilities then, but we can cut them down to 9 by using Lemmas 1 and 2.

In Table 1, SI stands for stably infinite; SM for smooth; FW for finitely
witnessable; SW for strongly finitely witnessable; FM for the finite model prop-
erty; CF for a computable minimal model function; and G for gentle. REC
denotes the set of real computable numbers.

Each line in the table corresponds to a possible combination of properties
(that remains possible after Lemmas 1 and 2). For example, the first line cor-
responds to theories that admit all properties, while the second line correspond
to theories that are stably infinite, smooth, have a computable minimal model
function, but do not admit any of the other property.

For each possible combination of properties, we list in the table the possi-
ble natural densities of theories that admit the corresponding properties. For
example, theories that admit all properties must have density one.8

8 The theory found in this specific row, T≥1 from Example 12, is strongly finitely
witnessable, and Lemma 2 then shows it is also gentle, as implied by the table.
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SI SM FW SW FM CF G Natural densities Reference Construction

T

T
T T T T T 1 Theorem 3 Example 12
F F F T F 0 Theorem 1 Example 15

F
T F

T T
T {0,1} Theorem 2 Example 20
F REC ∩ [0,1] Theorem 5 Theorem 5

T F F [0,1] Theorem 6 Theorem 6

F F
T F F 0 Theorem 1 Example 9
F T F 0 Theorem 1 Example 15

F F T
T F T T 0 Theorem 1 Example 12
F T T T 0 Theorem 1 Example 12

Table 1: Classification of combinations vis-à-vis their natural densities.

The column titled "Reference" leads to the result in this paper proving the
values are indeed restricted to the mentioned ones; and the column "Construc-
tion" refers to examples of theories having the possible natural densities shown.

4 Non-empty signatures

In this section we provide generalizations of the results of Section 3 to non-empty
signatures. We are able to do so by considering µ(T , ϕ) for all formulas ϕ, rather
than µ(T ): this is due to the fact that in a non-empty signature we can have
two quantifier-free satisfiable formulas with distinct densities.

Example 21. Take the theory T on the signature with a unary function s, ax-
iomatized by {ψ=2 ∨ ∀x. s(x) = x}. In its models that do not have exactly
two elements, s must be interpreted as the identity. For ϕ1 = ¬(s(x) = x) and
ϕ2 = (s(x) = x) we have µ(T , ϕ1) = 0 and µ(T , ϕ2) = 1.

We start by generalizing items 1 and 2 in Theorem 1. As for the third item of
Theorem 1, we show in Example 23 below that it cannot be generalized similarly.

Theorem 7. The positivity of µ(T , ϕ) for every T -satisfiable quantifier-free for-
mula ϕ is sufficient for T to be stably infinite and have the finite model property.

In the next example we show how to use Theorem 7.

Example 22. Consider a signature Σ with only function symbols, and the Σ-
theory T of uninterpreted functions. For every quantifier-free formula ϕ and
T -interpretation A that satisfies it, we can add an element a to its domain, from
that it follows that µ(T , ϕ) = 1. Using Theorem 7, we conclude that the theory of
uninterpreted functions is both stably infinite, and has the finite model property.

Next, we generalize the result concerning gentleness to non empty signatures.
The proof of the following result is, mutatis mutandis, the same as Theorem 2.

Theorem 8. µ(T , ϕ) being well-defined and equal to 0 or 1 for all quantifier-free
T -satisfiable formulas ϕ, is a necessary condition for T to be gentle.
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ψ=≥n = ∃x1.⋯∃xn. [
n

⋀
i=1
≠ (x1, . . . , xn) ∧ [s(xi) = xi]]

ψ==n = ∃x1.⋯∃xn. [
n

⋀
i=1
≠ (x1, . . . , xn)∧ [s(xi) = xi]] ∧∀x. [[s(x) = x] →

n

⋁
i=1
x = xi]]

ς−1(k) =min{l ∶ ς(l + 1) > ς(k)}

Ax(T s
ς ) = {(ψ≥k+1 ∧ ψ

=
≥ς−1(k+1)) ∨

k+1
⋁
i=1
(ψ=i ∧ ψ

=
=ς−1(i)) ∶ k ∈ N}

Fig. 3: The theory T s
ς .

The following theorem generalizes Theorem 3, and provides a necessary con-
dition for smoothness and the finite model property for non-empty signatures.

Theorem 9. Let T be a theory. µ(T , ϕ) being well-defined and equal to 1 for
all T -satisfiable quantifier-free formulas ϕ is then a necessary condition for T to
simultaneously be smooth and have the finite model property.

Theorem 9 can be used to show that the third item of Theorem 1 is not
generalizable to non-empty signatures.

Example 23. Consider the function ς−1 ∶ N→ N from [26], which is a left inverse
of ς, and the theory T s

ς on the signature with only a single unary function s, from
the same paper. Both ς−1 and T s

ς are given in Figure 3. It is smooth, has the
finite model property, but is not finitely witnessable (see [23, Lemmas 71,72,73]),
meaning µ(T s

ς , ϕ) = 1 for all quantifier-free T s
ς -satisfiable formulas ϕ by Theo-

rem 9. Thus, the obvious generalization of item 3 of Theorem 1 is not valid.

Theorem 9 is also useful to show, for example, that a variant of the SMT-LIB
theory of bit-vectors is not smooth.

Example 24. Fix n ∈ N∗, and consider the one-sorted fragment of the SMT-
LIB theory BV[n] of bit-vectors [1] of length n, with the usual operations (but
without concatenation and extraction). The domain of its interpretations has
cardinality 2n, and so it has the finite model property. By Theorem 9 this theory
is not smooth, as for any quantifier-free formula ϕ one has µ(BV[n], ϕ) = 0.

Next, we generalize Theorem 4 to non-empty signatures.

Theorem 10. µ(T , ϕ) being well-defined and equal to 0 or 1 for every quantifier-
free T -satisfiable ϕ is necessary for T to be strongly finitely witnessable.

Example 21 shows tightness of Theorems 8 and 10: we can have a strongly
finitely witnessable,9 gentle10 theory T with two quantifier-free T -satisfiable for-
mulas that have densities 0 and 1. It also shows that the positivity in Theorem 7
9 The strong witness is wit(ϕ) = ϕ ∧ ¬(x = y), for fresh variables x and y.

10 From the fact it is strongly finitely witnessable and Lemma 2.
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Property Empty case Non-empty case
Stable Infiniteness Theorem 1 Theorem 7

Finite Model Property Theorem 1 Theorem 7
Gentleness Theorem 2 Theorem 8
Smoothness Theorem 3 Theorem 9

Strong Finite Witnessability Theorem 4 Theorem 10
Comp. of Min. Mod. Fun. Theorem 5 Theorem 11

Finite Witnessability Theorem 6 Theorem 12,Example 23

Table 2: Summary of main results.

cannot hold for only some quantifier-free T -satisfiable formulas ϕ, as the theory
shown is not stably infinite.

The following two theorems generalize, respectively, Theorems 5 and 6. For
Theorem 5, we need an alternative, non-empty version of Proposition 1. Iindeed,
it is not clear that if the sets Spec(T , ϕ) are all computable, T should have a
computable minimal model function; the reciprocal, however, is true.

Proposition 2. If T is a theory with a computable minimal model function,
then Spec(T , ϕ) is computable for all quantifier-free T -satisfiable formulas ϕ.

Theorem 11. If T is a theory with well-defined densities µ(T , ϕ), for all quan-
tifier-free T -satisfiable formulas ϕ, the fact that all µ(T , ϕ) are computable is a
necessary condition for T to have a computable minimal model function. Further-
more, for every computable number 0 ≤ r ≤ 1, there is a theory T that has a com-
putable minimal model function and a quantifier-free formula ϕ with µ(T , ϕ) = r.

Theorem 12. If T is a theory, and ϕ a quantifier-free T -satisfiable formula,
nothing can be said about µ(T , ϕ) if T is only known to be finitely witnessable;
that is, for every computable number 0 ≤ r ≤ 1, there exists a theory T , that is
finitely witnessable, and a quantifier-free formula ϕ with µ(T , ϕ) = r.

5 Related work and conclusion

We have studied connections between densities and model-theoretic properties.
Table 2 summarizes our main results. For each property, we refer to the theorems
that characterize its possible densities, both for empty and non-empty signatures.

We conclude by reviewing related work and sketching the next steps.

5.1 Related work

0-1-laws and densities. Studies on spectra and densities go back as far as [4,9,7].
While we consider only models of a theory, these results, including the famous
0-1 laws, concern random models, that is, any models. 0-1 laws remain powerful
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for theories with finite axiomatizations (as we can represent their axiomatiza-
tions using a conjunction), but here we consider also infinite axiomatizations.
Later studies, such as [5,3] considered densities with respect to a theory, or even
a (sufficiently well-behaved) class of models, but have not considered properties
associated with theory combination. We focus on theories, and on the relation-
ship between their combination properties and the behavior of their density.

Descriptive complexity. Note that we use slightly different definitions for the
spectrum of a theory than those found in descriptive complexity [11]: although
our definition of Spec(T , ϕ) is the usual one for the spectrum of a formula relative
to a theory, the spectrum of a theory T is more commonly understood as the map
from cardinals to cardinals which, given κ, returns the number of non-isomorphic
models of T of cardinality κ. But for the case of finite cardinalities in the empty
signature, there is this map would return either 0 or 1. Then, our definition
coincides with taking the pre-image of 1 in the more standard definition.

Theory combination properties. The current paper deals with, among other
topics, Boolean combinations of theory combination properties (especially in
Table 1), something comprehensively researched in [25,26,24]. While those papers
study the combinations of properties per se, here we focus on establishing these
properties (or lack of) through the analysis of a their density.

5.2 Future work: many-sorted densities

In this paper we only considered one-sorted theories, even though many-sorted
theories are commonly used in SMT. The main reason for that is that densities for
many-sorted theories would be defined on tuples rather than on numbers (i.e. on
the cardinalities of the domains rather than on that of the single domain), and it
is unclear how this generalization would materialize. We leave this investigation
for future work, and briefly describe concrete options for such a generalization.

What makes the natural density so natural is the fact that it calculates the
ratio of the number of elements in a set A to the number of elements in N by
doing that for numbers under a bound, and then letting said bound go to infinite.
But there is no single way of doing that in Nm, so we are forced to make a choice.
Once fixed a bound n, do we, for example:
(i) bound all coordinates simultaneously by n (i.e., µ(A) = limn→∞ ∣An∣/n

for An = A ∩ [n]m)? (ii) bound the distance of a tuple to the origin by n (i.e.,
An = A ∩Bd(n), where Bd(n) = {p ∈ Nm ∶ d(0,p) ≤ n}, for 0 the origin)? (iii)
If so, what metric do we use to calculate the distance? Do we use the taxicab
distance, where d1(p,q) = ∑n

i=1 ∣pi − qi∣, or the generalized euclidean distances
dm(p,q) = (∑n

i=1(pi − qi)m)1/m, or something entirely different?
There is a plurality of "natural densities" to explore. Even more, while

some generalizations will characterize properties w.r.t. the entire set of sorts
{σ1, . . . , σn}, others will characterize them with respect to some subset of sorts,
while others will offer no characterization whatsoever.

All of this is left to a future work, but we expect that the results from the
current paper will still be useful for many-sorted logic, as many of the potential
many-sorted densities would rely on the separate projections to each sort.
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A Useful Theorems

We briefly recall the Löwenheim-Skolem and compactness theorems (see, e.g.,
[10]).

Theorem 13. Given a first-order signature Σ, if a set Γ of Σ-formulas is sat-
isfiable by a Σ-interpretation with ∣dom(A)∣ ≥ ℵ0, then it is satisfied by an in-
terpretation B with ∣dom(B)∣ = ℵ0.

Theorem 14. Given a first-order signature Σ, a set Γ of Σ-formulas is satis-
fiable if, and only if, every finite subset Γ0 ⊆ Γ is satisfiable.

B Proof of Theorem 1

Lemma 3. Let T be a Σ1-theory. If ϕ is a quantifier-free Σ1-formula, and A and
B are T -interpretations such that B satisfies ϕ, and ∣dom(A)∣ ≥ ∣vars(ϕ)B ∣, then
there is a T -interpretation A′, differing from A at most on the value assigned
to vars(ϕ), that satisfies ϕ.

If A and B are T -interpretations with ∣dom(A)∣ = ∣dom(B)∣, then there is
a T -interpretation A′, differing from A at most on the values assigned to vari-
ables, such that A′ and B satisfy exactly the same, not necessarily quantifier-free,
formulas.

Proof. Take an injective function f ∶ vars(ϕ)B → dom(A) (bijective function
f ∶ dom(B) → dom(A) if ∣dom(A)∣ = ∣dom(B)∣), and define an interpretation A′
such that: dom(A′) = dom(A); xA′ = f(xB) if xB is in the domain of f ; and
xA

′ = xA otherwise. We now prove by structural induction that A′ satisfies ϕ;
in the case where ∣dom(A)∣ = ∣dom(B)∣ and f is bijective, we must perform the
proof simultaneously over all interpretations with the same cardinality as that
of A and B.

1. If ψ is an atomic subformula of ϕ, since our signature is empty it must equal
x = y, for some variables x and y; then B satisfies ψ iff xB = yB and, since
xA

′ = f(xB) and yA
′ = f(yB), that happens iff A′ satisfies ψ.

2. So, suppose B satisfies the subformulas ψ and ψi (for i ∈ {1,2}) of ϕ iff A′
satisfies the same formulas.
(a) We have that B satisfies ¬ψ iff it does not satisfy ψ, what in turn happens

iff A′ does not satisfy ψ, and so B satisfies ¬ψ iff A′ satisfies ¬ψ.
(b) Analogously, B satisfies ψ1 ∨ψ2 iff it satisfies ψ1 or ψ2, what happens iff
A′ satisfies ψ1 or ψ2, what in turn happens iff A′ satisfies ψ1 ∨ ψ2.

(c) For the case where ∣dom(A)∣ = ∣dom(B)∣, and ϕ is not necessarily quantifier-
free, suppose B satisfies ∃x. ψ, and so there exists an interpretation B∗,
differing from B at most on the value assigned to x, that satisfies ψ. We
then define an interpretation A′∗ differing from A′ at most on the value
assigned to x, where xA

′

∗ = f(xB∗), and from the strengthened form of
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the induction hypothesis we have A′∗ satisfies ψ, and thus A′ satisfies
∃x. ψ.
Reciprocally, if A′ satisfies ∃x. ψ, there is an interpretation A′∗ differing
from A′ at most on x, and we can then define an interpretation B∗,
differing of B at most on x where xB∗ = f−1(xA′∗), so that B∗ satisfies ψ
and thus B satisfies ∃x. ψ.

(d) The cases of ψ1∧ψ2 and ψ1 → ψ2 (and ∀x.ψ) can be derived from those,
and thus we are done.

That A′ is still a T -interpretation follows from the fact that to obtain A′ we
only (at most) changed the value assigned by A to some variables.

Lemma 4. If T is a Σ1-theory with an infinite interpretation, it is stably infi-
nite.

Proof. Let A be an infinite T -interpretation, ϕ a quantifier-free formula, and
B a T -interpretation that satisfies ϕ: since ∣dom(A)∣ ≥ ∣vars(ϕ)B ∣ we can thus
apply Lemma 3 to obtain an infinite T -interpretation A′ that satisfies ϕ.

Lemma 5. If T is a Σ1-theory that is not stably infinite, then there exists M ∈ N
such that ∣dom(A)∣ ≤M for all T -interpretations A.

Proof. Suppose that, for every n ∈ N, there exists a T -interpretation An with
∣dom(An)∣ ≥ n. If we define Γ = Ax(T ) ∪ {ψ≥m ∶ m ∈ N}, for any finite subset
Γ0 ⊆ Γ , take the maximum n of m such that ψ≥m occurs in Γ0. Of course,
An then satisfies Γ0; it satisfies Γ0 ∩ Ax(T ) as it is a T -interpretation; and it
satisfies any ψ≥m in Γ0, since it satisfies ψ≥n, and ψ≥n → ψ≥m is valid for all
m ≤ n. From Theorem 14, it follows that Γ is satisfiable, meaning there is an
infinite T -interpretation A. The result then follows from Lemma 4.

Lemma 6. If T is a Σ1-theory that does not have the finite model property,
then there exists M ∈ N such that ∣dom(A)∣ ≤M for all finite T -interpretations
A.

Proof. If T has only finite interpretations it already has the finite model prop-
erty, so take a quantifier-free formula ϕ that is satisfied by no finite T -interpre-
tations, and an infinite T -interpretation A that satisfies ϕ. Suppose that there
exists, for each n ∈ N, a finite T -interpretation An with ∣dom(An)∣ ≥ n: then,
for n = ∣vars(ϕ)A∣, Lemma 3 guarantees that by changing the value assigned to
variables in An we can make it satisfy ϕ, contradicting our hypothesis.

Theorem 1. If T is a Σ1-theory with a well-defined natural density, then the
positivity of µ(T ) is sufficient for T to: 1. be stably infinite; 2. have the finite
model property; and 3. be finitely witnessable.

Proof. The proofs for the first and second items are the same: assuming T is not
stably infinite, respectively does not have the finite model property, we have from
Lemma 5, respectively Lemma 6, that there is anM ∈ N such that, for all finite T -
interpretations A, ∣dom(A)∣ ≤M . This means that Specn(T ) ⊆ [1,M] for all n ≥
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1, and so ∣Specn(T )∣ ≤M in that case: therefore, µ(T ) = limn→∞ ∣Specn(T )∣/n ≤
limn→∞M/n = 0. Thus µ(T ) = 0, and by the contrapositive we have the desired
result.

For the third item, from the hypothesis in the theorem’s statement, µ(T ) is
well-defined; suppose, in addition, that µ(T ) > 0. Let {an}n∈N be the increasing
sequence of the elements of Spec(T ) (if this set were to be finite, it would be
bounded by some M ∈ N, and we would have µ(T ) ≤ limn→∞M/n = 0). There
are then two cases to consider: (1) there is a computable sequence {bn}n∈N such
that an ≤ bn for all n ∈ N; and (2) for all computable sequences {bn}n∈N and
all N0 ∈ N, there is an n ≥ N0 such that an > bn. Notice that the negation of
(2) implies (1), meaning these are indeed the only cases we need to consider: if
there is a computable sequence {bn}n∈N and an integer N0 such that bn ≥ an for
all n ≥ N0, we define the computable sequence {cn}n∈N by making cn = bN0 for
n ≤ N0, and cn = bn for n ≥ N0, which satisfies the conditions in case (1). We
will prove that case (1) implies T is finitely witnessable; and that (2) implies
µ(T ) = 0, contradicting our assumption.

1. Let xi be fresh variables, and define N(ϕ), for a quantifier-free formula ϕ, as
bn, for n = ∣vars(ϕ)∣. We define wit(ϕ) = ϕ ∧ ⋀N(ϕ)

i=1 xi = xi: this is obviously
a function from quantifier-free formulas into themselves, and is computable
given bn, and thus N(ϕ), are computable. Furthermore, ϕ and ∃Ð→x . wit(ϕ)
are clearly T -equivalent, given wit(ϕ) is the conjunction of ϕ and a tautology
and thus already equivalent to ϕ.
Finally, let ϕ be a quantifier-free formula, and A a T -interpretation that
satisfies wit(ϕ) (and thus ϕ, since the two are equivalent). Take again n =
∣vars(ϕ)∣, a set A with an − ∣vars(ϕ)A∣ elements (a non-negative quantity,
since {an}n∈N is increasing and therefore an ≥ n = ∣vars(ϕ)A∣), disjoint from
dom(A), and define an interpretation B by making: dom(B) = vars(ϕ)A ∪A
(so ∣dom(B)∣ = an, making B a T -interpretation, as there is only one T -
interpretation of a given size up to isomorphism by Lemma 3); xB = xA for
all x ∈ vars(ϕ) (so B satisfies ϕ);

xi ∈ {xi ∶ 1 ≤ i ≤ N(ϕ)} ↦ xBi ∈ dom(B)

a surjective map (what is possible, as N(ϕ) = bn ≥ an); and xB defined
arbitrarily for all other variables. Because {xi ∶ 1 ≤ i ≤ N(ϕ)} is contained
in vars(wit(ϕ)), and {xi ∶ 1 ≤ i ≤ N(ϕ)}B = dom(B), we have dom(B) =
vars(wit(ϕ))B (since obviously the former set at least contains the latter):
it then follows that wit is a witness.

2. Consider the computable sequence bn = n2: take m0 as the minimum of the
positive integersm such that am > bm and, inductively,mn+1 as the minimum
of the integers m > mn such that am > bm; this way, amn > bmn = m2

n

for all n ∈ N. Of course, for all n ∈ N one finds ∣Specamn
(T )∣ = mn, and

∣[1, amn]∣ = amn >m2
n, thus ∣Specamn

(T )∣/∣[1, amn]∣ < 1/mn. This means that
a subsequence of ∣Specn(T )∣/∣[1, n]∣ (which converges to µ(T ), as this value
was assumed in the theorem’s statement to be well-defined) converges to 0,
meaning µ(T ) = 0.
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C Proof of Theorem 2

Theorem 2. If T is a Σ1-theory, then µ(T ) being well-defined and equal to 0
or 1 is a necessary condition for T to be gentle.

Proof. If Spec(T ) is finite, there is an M such that ∣Specn(T )∣ ≤ ∣Spec(T )∣ ≤M ,
and therefore µ(T ) = limn→∞M/n = 0. If Spec(T ) is co-finite instead, there is
an M such that for all n > M one has ∣Specn(T )∣ ≥ n −M , and so µ(T ) ≥
limn→∞(n −M)/n = 1.

D Proof of Lemma 1

Lemma 1. If T is gentle, then T has a computable minimal model function and
the finite model property, and therefore is finitely witnessable as well.

Proof. Suppose T is gentle. From the definition of gentleness we get there must
exist a finite number in the spectrum of each T -satisfiable quantifier-free formula
ϕ; this means there is a finite T -interpretation that satisfies ϕ, so T indeed has
the finite model property.

Given a quantifier-free formula ϕ, we can decide whether Spec(T , ϕ) is finite,
and then computably calculate max(Spec(T , ϕ)), or co-finite, and in this case
calculate max(N∖Spec(T , ϕ)). Using that Spec(T , ϕ) is computable, we can also
algorithmically obtain min(Spec(T , ϕ)): if Spec(T , ϕ) is finite, we test which n ≤
max(Spec(T , ϕ)) are in Spec(T , ϕ) and take their minimum (if max(Spec(T , ϕ))
is 0, we just set min(Spec(T , ϕ)) to 0 as well, for simplicity); if Spec(T , ϕ) is
co-finite, we test which n ≤max(N∖Spec(T , ϕ))+1 are in Spec(T , ϕ), and again
take their minimum.

We state that minmodT (ϕ) = min(Spec(T , ϕ)) is a computable minimal
model function, being certainly computable. Assume then ϕ is T -satisfiable,
and so min(Spec(T , ϕ)) > 0. For the first direction, suppose there is a T -
interpretationA that satisfies ϕ with ∣dom(A)∣ <min(Spec(T , ϕ)); since ∣dom(A)∣
is in Spec(T , ϕ), this contradicts the fact min(Spec(T , ϕ)) is the minimum el-
ement of that set. Now, since min(Spec(T , ϕ)) is in Spec(T , ϕ), there is a T -
interpretation A that satisfies ϕ with ∣dom(A)∣ = min(Spec(T , ϕ)), and thus we
have proved min(Spec(T , ϕ)) is indeed a minimal model function.

Finite witnessability follows from [6, Theorem 4].

E Proof of Lemma 2

Lemma 7. A Σ1-theory is always decidable.

Proof. Take a Σ1-theory T . We divide the proof in two cases: for each of them we
find an algorithm to decide whether a quantifier-free formula ϕ is T -satisfiable;
notice, however, that there is no decision method with T as input that returns
which of the described algorithms is the correct one.
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1. Suppose T has a maximum model A, with ∣dom(A)∣ = M ; we state that ϕ
is T -satisfiable if and only if there is an interpretation B in equational logic
that satisfies ϕ with ∣dom(B)∣ ≤ M , meaning we are done since equational
logic is decidable. Indeed, if B is an interpretation in equational logic that
satisfies ϕ with ∣dom(B)∣ ≤ M , we can change the values assigned to the
variables in ϕ by A in order to obtain a T -interpretation A′ that satisfies
ϕ (see Lemma 3). And, if C is a T -interpretation that satisfies ϕ, given the
facts that ∣dom(C)∣ ≤ M and C is an interpretation in equational logic as
well, we are done.

2. If T doesn’t have a maximum model, we state that all quantifier-free formulas
satisfiable in equational logic are also T -satisfiable. Indeed, if ϕ is satisfied by
the interpretation B of equational logic, we know there is a T -interpretation
A with ∣dom(A)∣ ≥ B, and again by Lemma 3 we are done.

Lemma 2. Let T be a Σ1-theory: if T is not stably infinite, or if it is strongly
finitely witnessable, then T is gentle.

Proof. If T is not stably infinite, by Lemma 5 T has a maximum interpretation
A, say with ∣dom(A)∣ = M . Spec(T , ϕ) is then always finite (see Lemma 3);
max(Spec(T , ϕ)) = M if ϕ is T -satisfiable (we use Lemma 7), and 0 otherwise;
and a cardinality is in Spec(T , ϕ) if it is both in Spec(T ) and larger than or
equal to the minimum cardinality of an interpretation in equational logic that
satisfies ϕ (Spec(T ) is a finite list, so it can be hardcoded). In summary, T is
gentle.

If T is strongly finitely witnessable but not stably infinite the previous rea-
soning already implies T is gentle, so assume T is strongly finitely witnessable
and stably infinite. T is then also smooth by [25, Theorem 7], and so Spec(T ) is
co-finite: let M be the maximum of N ∖ Spec(T ). Spec(T , ϕ) is then always
co-finite, by Lemma 3 and the fact that strong finite witnessability implies
the finite model property; max(N ∖ Spec(T , ϕ)) = 0 if ϕ is not T -satisfiable
(what can be decided from Lemma 7), and otherwise we make N the cardinal-
ity of the smallest interpretation in equational logic that satisfies ϕ, and then
max(N∖Spec(T , ϕ)) =max{M,N − 1}, both computable quantities; and finally,
n ∈ Spec(T , ϕ) iff n >max{M,N − 1}, meaning Spec(T , ϕ) is computable.

F Proof of Theorem 3

Theorem 3. If T is a Σ1-theory, µ(T ) being well-defined and equal to 1 is nec-
essary for T to simultaneously admit smoothness and the finite model property.

Proof. Let ϕ be any tautology, and from the fact that T has the finite model
property there exists a finite T -interpretation B that satisfies ϕ: from the fact T
is smooth it follows that for all n ≥M = ∣dom(B)∣ there exists a T -interpretation
An with ∣dom(An)∣ = n, so ∣Specn(T )∣ = ∣SpecM(T )∣ + (n −M) for all n ≥ M .
Thus we have µ(T ) = limn→∞ ∣Specn(T )∣/n ≥ limm→∞m/(m +M) = 1; therefore
µ(T ) = 1, as we wished to prove.
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G Proof of Theorem 4

Theorem 4. If T is a Σ1-theory, then µ(T ) being well-defined and equal to 0
or 1 is a necessary condition for T to be strongly finitely witnessable.

Proof. From [26, Theorem 2] we know strong finite witnessability implies the
final model property. From [25, Theorem 7], we know that if T is stably infinite,
then it is smooth, and so µ(T ) = 1 from Theorem 3; if T is not stably infinite,
Theorem 1 guarantees that µ(T ) = 0.

H Proof of Proposition 1

Proposition 1. T is a Σ1-theory with a computable minimal model function if,
and only if, Spec(T ) is computable.

Proof. For the right-to-left direction, suppose the spectrum Spec(T ) is com-
putable: if T does not have the finite model property, by Lemma 6 one gets that
there is a natural number M that bounds the cardinalities of all finite models
of T . Thus, a minimal model function can simply be obtained by checking for
all models up to M whether they satisfy the input formula, and stopping at the
first one (recall that since the signature is empty a model is uniquely determined
by its cardinality). If T is empty (has no models) then any computable function
is a minimal model function, as no formula is T -satisfiable.

We may then assume that T both has the finite model property and is not
contradictory (so Spec(T ) ≠ ∅) and take, if ϕ is not a contradiction (what can
be determined algorithmically in equational logic): the set of variables V in ϕ;
the set Eq(V ) of all the equivalences E on V ; M = sup(Spec(T )) (which equals
ℵ0 if Spec(T ) is infinite, and is otherwise always a positive natural number since
Spec(T ) ≠ ∅), M(ϕ) =min{∣V /E∣ ∶ δEV implies ϕ} (a quantity that is computable
since the problem may be reduced to one in equational logic), and we state that

minmodT (ϕ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ℵ0

if ϕ is contradictory,
or M(ϕ) >M ;

min{M(ϕ) ≤ k ≤M ∶ k ∈ Spec(T )} otherwise

is a computable minimal model function for T . Indeed, if ϕ is a contradiction,
what the decision procedure for equational logic can tell us, minmodT (ϕ) = ℵ0;
if ϕ is not a contradiction, but it is a T -contradiction, then M(ϕ) >M (indeed,
if M ≥M(ϕ) there is a T -interpretation A with ∣dom(A)∣ =M , by appealing to
Theorem 14 if necessary; and by Lemma 3 we get that ϕ is T -satisfiable), and
again minmodT (ϕ) = ℵ0. Finally, in the case that ϕ is T -satisfiable, since T
has the finite model property by assumption, there is a finite T -interpretation A
that satisfies ϕ and, of course, ∣dom(A)∣ ≥ M(ϕ) (because otherwise A induces
an equivalence δEV that implies ϕ with ∣V /E∣ <M(ϕ)): therefore the set {M(ϕ) ≤
k ≤ M ∶ k ∈ Spec(T )} is not empty (it contains at least ∣dom(A)∣), and finding
its minimum is easy.



24 Guilherme Toledo and Yoni Zohar

So assume ϕ is T -satisfiable, and take: an E ∈ Eq(V ) with ∣V /E∣ = M(ϕ)
(and necessarily M(ϕ) < ℵ0); the minimum n of M(ϕ) ≤ k ≤ M such that
k ∈ Spec(T ); and a set X with ∣X ∣ = n−M(ϕ) disjoint from V /E. We then create
an interpretation B with: dom(B) = (V /E) ∪X; xB = [x] for all x ∈ V , where
[x] is the equivalence class under E represented by x; and xB defined arbitrarily
for variables x not in V . Because ∣dom(B)∣ =M(ϕ) + (n −M(ϕ)) = n, we know
thanks to Lemma 3 that B is a T -interpretation; furthermore, B satisfies δEV
by definition, thus satisfying ϕ, so that we indeed have a T -interpretation that
satisfies ϕ with cardinality n.

Assume now that there is a T -interpretation C that satisfies ϕ with ∣dom(C)∣ =
m < n, and let F be the equivalence induced by C on V , implying that C satisfies
δFV . We then have that M(ϕ) ≤ ∣V /F ∣ ≤ m ≤ M , and that m ∈ Spec(T ), despite
the fact that m < n and n should be the minimum such element. So T indeed
has a computable minimal model function.

For the reciprocal, the left-to-right direction, suppose that T has a com-
putable minimal model function minmodT , and we shall consider two cases:
one where Spec(T ) is finite, and one where it is infinite. If Spec(T ) is finite we
have nothing left to do, as it is enough to simply hardcode these values into
an algorithm that decides whether an element is in Spec(T ). If Spec(T ) is in-
stead infinite, the formulas ≠ (x1, . . . , xn) are T -satisfiable for all n ∈ N: indeed,
since Spec(T ) is infinite, we can always find m ∈ Spec(T ) such that m ≥ n,
and thus there exists a T -interpretation A with ∣dom(A)∣ = m; by changing at
most the values assigned to the variables x1, . . . , xn (assumed fresh), we get a T -
interpretation that satisfies ≠ (x1, . . . , xn). We then define f(0) =minmodT (x =
x) and, assuming f(m) defined, f(m+ 1) =minmodT (≠ (x1, . . . , xf(m)+1)); we
state that n ∈ Spec(T ) iff n ∈ {f(0), . . . , f(n)}.

That this results in a decision procedure follows from the fact that minmodT
is assumed to be computable and so is producing the formulas ≠ (x1, . . . , xf(m)+1);
we have left to prove that it is both sound and complete. If n ∈ {f(0), . . . , f(n)},
there exists an 0 ≤ m < n such that n =minmodT (≠ (x1, . . . , xf(m)+1)), and so
there is a T -interpretation A that satisfies ≠ (x1, . . . , xf(m)+1) with ∣dom(A)∣ = n;
of course A is a T -interpretation with ∣dom(A)∣ = n, so n ∈ Spec(T ) and indeed
the algorithm is sound. Reciprocally, if n ∈ Spec(T ), suppose that f(m) < n <
f(m+1) for some 0 ≤m < n (there is either such an element or n = f(m) and we
have nothing to prove, since f(m+1) ≥ f(m)+1): because n is in Spec(T ), there
is a T -interpretation A with ∣dom(A)∣ = n; but since n > f(m), n ≥ f(m) + 1,
and so A satisfies ≠ (x1, . . . , xf(m)+1). This, in combination with the fact that
f(m+1) > n, contradicts that f(m+1) =minmodT (≠ (x1, . . . , xf(m)+1)), prov-
ing that the algorithm is also complete and finishing the proof.
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I Proof of Theorem 5

Lemma 8. Given a sequence an/bn converging to a 0 < r < 1, the sequence of
partial mediants

{⋯, a0 +⋯ + an
b0 +⋯ + bn

,
a0 +⋯ + an + 1

b0 +⋯ + bn + 1
,⋯, a0 +⋯ + an + an+1

b0 +⋯ + bn + an+1
,
a0 +⋯ + an + an+1
b0 +⋯ + bn + an+1 + 1

,⋯}

also converges to r.

Proof. Because 0 < r < 1, we can assume that 0 < an < bn for all n ∈ N, what
makes the definition of the partial mediants consistent. If we write A(n) =
∑n

i=0 an, and analogously for B(n), and A(m,n) = ∑m
i=n+1 ai for m > n, and

the same for B(m,n), we see that the elements in our sequence of index B(n) ≤
i ≤ B(n)+an+1 lie between A(n)/B(n) and A(n+ 1)/(B(n)+an+1), while those
with index B(n) + an+1 ≤ i ≤ B(n + 1) lie between A(n + 1)/(B(n) + an+1)
and A(n + 1)/B(n + 1). So, it is enough to prove that both A(n)/B(n) and
A(n + 1)/(B(n) + an+1) converge to r in order to sandwich the whole sequence
of partial mediants into converging to r.

Take an ϵ > 0: because limn→∞ an/bn = r, there exists an n0 ∈ N such that
∣r − (an/bn)∣ ≤ ϵ/2 (and thus ∣rbn − an∣ ≤ bnϵ/2) for all n ≥ n0. Then, for n >m0 =
max{n0, k}, where k = ⌈2∣rB(n0) −A(n0)∣/ϵ⌉, we have

∣r − A(n)
B(n) ∣ = ∣r −

A(n0) +A(n,n0)
B(n0) +B(n,n0)

∣ =

∣rB(n0) + rB(n,n0) −A(n0) −A(n,n0)
B(n0) +B(n,n0)

∣ ≤

∣ rB(n0) −A(n0)
B(n0) +B(n,n0)

∣ + ∣rB(n,n0) −A(n,n0)
B(n0) +B(n,n0)

∣ =

∣rB(n0) −A(n0)
B(n) ∣ + ∣∑

n
i=n0+1 rbi − ai

B(n) ∣ ≤

1

n
∣rB(n0) −A(n0)∣ +

1

B(n)
n

∑
i=n0+1

∣rbi − ai∣ ≤

ϵ

2
+ 1

B(n)
n

∑
i=n0+1

biϵ

2
= ϵ
2
+ B(n,n0)ϵ

2B(n) ≤ ϵ
2
+ ϵ

2
= ϵ,

thus proving limn→∞A(n)/B(n) = r.11 The proof for the sequenceA(n+1)/(B(n)+
an+1) is similar, so we only highlight the differences. ϵ/2 must be replaced by ϵ/3
since we get an extra term an+1(1−r)/(B(n)+an+1), which again can be bounded
from the fact that B(n)+an+1 ≥ n+1: we just need to choose m0 =max{n0,K},
where K = ⌈3max{∣rB(n0) −A(n0)∣, an+1(1 − r)}/ϵ⌉.
11 Notice we have used that B(n) ≥ n.
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Lemma 9. If A is a computable set with a well-defined density, µ(A) is a com-
putable number.

Proof. Since we have an algorithm for deciding whether a non-negative integer
is in A or not, we also have one for the sequence an (where the input is n
and the output is an), such that a0 = 1 if 1 ∈ A, and a0 = 0 otherwise; and
an = an−1 + 1 if n + 1 ∈ A, and an = an−1 otherwise. Of course, the sequence
bn = n+1 is also computable. Now, by definition of an, an = ∣An+1∣, and therefore
µ(A) = limn→∞ ∣An∣/n = limn→∞ an−1/bn−1, so µ(A) is indeed computable.

Theorem 5. If T is a Σ1-theory with a well-defined density, the fact that µ(T )
is a computable number is a necessary condition for T to have a computable
minimal model function. Furthermore, for every computable number 0 ≤ r ≤ 1,
there exists a Σ1-theory T with µ(T ) = r that has a computable minimal model
function and the finite model property, but is not smooth.

Proof. The first part of the theorem follows from Proposition 1 and lemma 9.
If r = 0, we take the theory T=2i from Example 8, axiomatized by {ψ≥2n+1 ∨

⋁n
i=1 ψ=2n ∶ n ∈ N∗}; if r = 1, we take the theory T≠2i from Example 11, axiom-

atized by {¬ψ=2n ∶ n ∈ N∗}. We already know µ(T0) = 0 and µ(T1) = 1: since
their spectra are, respectively, the sets of power of two and non powers of two,
both computable, we have by Proposition 1 that both have computable minimal
model functions.

With these cases out of the way, we can assume that 0 < r < 1, and thus there
exist computable sequences (since r is computable) {an}n∈N in N, and {bn}n∈N
in N∗ such that r = limn→∞ an/bn with 0 < an < bn for all n ∈ N. We then take the
function f associated with {an}n∈N and {bn}n∈N, from Definition 2, and define
T to be axiomatized by {ψ≥f(n+1) ∨ ⋁n

i=1 ψ=f(i) ∶ n ∈ N∗}, from what it is clear
that Spec(T ) = {f(n) ∶ n ∈ N∗}. Since {an}n∈N and {bn}n∈N are computable, so is
f : indeed, the computability of {bn}n∈N implies M = ∑m

i=0 bi is computable; and
then the computability of {an}n∈N implies f(n) = n, for M + 1 ≤ n ≤ M + am,
and f(n) = n + am, for M + am + 1 ≤ n ≤ M + bm, are computable. Therefore
Spec(T ) is computable: indeed, as Spec(T ) is the image of the non-decreasing
function f , and f(1 + ∑m

i=0 bi) = 1 + ∑m
i=0 bi, it is enough, to test whether n ∈

Spec(T ), to check if n ∈ {f(1), . . . , f(1+∑n
i=0 bi)} (recall {bn}n∈N is a computable

sequence of positive numbers, so ∑n
i=0 bi ≥ n). From Proposition 1 we have T has

a computable minimal model function, and thus from [24, Theorem 4] we have
T is finitely witnessable. Finally, µ(T ) will equal the limit of partial mediants
as defined in Lemma 8, if the latter is well-defined, what the result further
shows it is and equals in turn r: indeed, assuming for an inductive argument
that ∣SpecMT ∣/M equals (a0 +⋯ + am)/(b0 +⋯ + bm) for M = b0 +⋯ + bm, since
f(n) = n for M + 1 ≤ n ≤M + am+1 we obtain

∣Specn(T )∣
n

= a0 +⋯ + am + (n −M)
n

= a0 +⋯ + am + (n −M)
b0 +⋯ + bm + (n −M)
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for these values; and for M + am+1 + 1 ≤ n ≤M + bm+1 we have f(n) = n+ am, so
for these values

∣Specn(T )∣
n

= a0 +⋯ + am + am+1
n

= a0 +⋯ + am + am+1
b0 +⋯ + bm + (n −M − am+1)

,

and in both cases we obtain the aforementioned partial mediants.

J Proof of Theorem 6

Theorem 6. If T is a Σ1-theory, nothing can be said about µ(T ) if T is only
known to be finitely witnessable; that is, for every number 0 ≤ r ≤ 1, there ex-
ists a Σ1-theory T with µ(T ) = r that is finitely witnessable yet doesn’t have a
computable minimal model function.

Proof. We divide the proof in two big cases: when r is not computable, and when
it is.

1. Of course 0 < r < 1, as both 0 and 1 are computable: because r can be written
in decimal notation as 0.0⋯0d0d1d2⋯, for digits di ∈ {0,1, . . . ,9} and d0 ≠ 0,
we can write r as the limit of an/bn, where an = d0⋯dn, bn = 10M+n, and M
is the number of zeros before d0 (including the one before the decimal dot);
this way, 0 < an < bn for all n ∈ N. By the fact that r is not computable, and
since {bn}n∈N is certainly computable, {an}n∈N cannot be so. We take the
function f associated with {an}n∈N and {bn}n∈N, as in Definition 2, and the
theory T axiomatized by {ψ≥f(n+1) ∨ ⋁n

i=1 ψ=f(i) ∶ n ∈ N∗}: the theory is not
strongly finitely witnessable because it is not smooth (see [25, Theorem 7]);
furthermore, since {bn}n∈N is computable but {an}n∈N is not, f is also not
computable, and since Spec(T ) = {f(n) ∶ n ∈ N∗}, we have that T does not
have a computable minimal model function (Proposition 1).
Is is clear that µ(T ) is the limit of the mediants (a0 +⋯+ an)/(b0 +⋯+ bn),
which from Lemma 8 is limn→∞ an/bn = r; so we only have left to prove that
T has a witness. For a quantifier-free formula ϕ, let N be the smallest n ≥M
such that 10N ≥ ∣vars(ϕ)∣, define N(ϕ) = ∑N

i=M 10i, and

wit(ϕ) = ϕ ∧
N(ϕ)
⋀
i=1

xi = xi

where the xi are fresh variables: we claim this function is a witness, ob-
viously mapping quantifier-free formulas into quantifier-free formulas, and
being computable, given that finding ∣vars(ϕ)∣ and N are both computable
procedures. Furthermore, for Ð→x = vars(wit(ϕ)) ∖ vars(ϕ), it is clear that
∃Ð→x . wit(ϕ) and ϕ are T -equivalent, given that in fact ϕ and wit(ϕ) are
themselves equivalent. Suppose then that A is a T -interpretation that satis-
fies ϕ, take a set X disjoint from dom(A) with cardinality N(ϕ)−∣vars(ϕ)A∣,
and we construct an interpretation B by making: dom(B) = vars(ϕ)A ∪X
(so ∣dom(B)∣ = N(ϕ), which is a cardinality in Spec(T )); xB = xA for all
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x ∈ vars(ϕ); x ∈ {xi ∶ 1 ≤ i ≤ N(ϕ)} ↦ xB an injective function; and xB

can be set arbitrarily for all other variables. Then it is true that B satisfies
wit(ϕ) and dom(B) = vars(wit(ϕ))B, finishing the proof.

2. Because 0 ≤ r ≤ 1 is computable, there are computable sequences {an}n∈N
and {bn}n∈N such that 0 < an < bn and limn→∞ an/bn = r. Now, take a non-
computable function g ∶ N∗ → {0,1}. We then define a function G ∶ N∗ →
{0,1} by induction.
(a) i. G(1) = g(1).

ii. G(n) = 0 for: 2 ≤ n ≤ 2(b0 − a0) (since b0 > a0, 2(b0 − a0) ≥ 2) if
g(1) = 0; and 2 ≤ n ≤ 2(b0 − a0) + 1 if g(1) = 1.

iii. G(n) = 1 for: 2(b0 − a0) + 1 ≤ n ≤ 2b0 if g(1) = 0; and 2(b0 − a0) + 2 ≤
n ≤ 2b0 (since b0 > a0, 2b0 ≥ 2(b0 − a0) + 2) if g(1) = 1.

(b) Now, assume G(n) has been defined for 1 ≤ n ≤ 2∑m
i=0 bi.

i. G(1 + 2∑m
i=0 bi) = g(m + 2);

ii. G(n) = 0 for: 2+2∑m
i=0 bi ≤ n ≤ 2(bm+1−am+1)+2∑m

i=0 bi if g(m+2) = 0;
and 2 + 2∑m

i=0 bi ≤ n ≤ 1 + 2(bm+1 − am+1) + 2∑m
i=0 bi if g(m + 2) = 1.

iii. G(n) = 1 for: 1+2(bm+1−am+1)+2∑m
i=0 bi ≤ n ≤ +2∑m+1

i=0 bi if g(m+2) =
0; and 2 + 2(bm+1 − am+1) + 2∑m

i=0 bi ≤ n ≤ +2∑m+1
i=0 bi if g(m + 2) = 1.

We see that G is not computable because: the function ρ ∶ N∗ → N∗ given
by ρ(1) = 1 and ρ(m) = 1 + 2∑m−1

i=0 bi, for m > 1, is computable, given that
{bn}n∈N is computable; and, despite that, G ○ ρ(m) = g(m), which is not
computable.
We can finally define the Σ1-theory by the axiomatization

{ψ≥f(n+1) ∨
n

⋁
i=1
ψ=f(i) ∶ n ∈ N∗},

where f ∶ N∗ → N∗ is defined as f(n) = min{m ≥ n ∶ G(m) = 1}, so that
Spec(T ) = {f(n) ∶ n ∈ N∗}, and ∣Specn(T )∣ = ∣{1 ≤ i ≤ n ∶ G(i) = 1}∣: this
means ∣Spec2∑m

i=0 bi(T )∣ = 2∑
m
i=0 ai, leading us again to partial mediants; from

Lemma 8 we get µ(T ) equals limn→∞ 2an/2bn, which is precisely r. From the
fact that G is not computable it follows that Spec(T ) is not computable, so
from Proposition 1 T does not have a computable minimal model function.
It only remains for us to show that T has a witness: so, for a quantifier-free
formula ϕ, let N(ϕ) be the minimum of 2∑m

i=0 bi greater than or equal to
∣vars(ϕ)∣; this value is computable given the sequences {an}n∈N and {bn}n∈N
are themselves computable. For xi fresh variables, we define

wit(ϕ) = ϕ ∧
N(ϕ)
⋀
i=1

xi = xi ∶

this obviously maps quantifier-free formulas into themselves, and is com-
putable given that finding N(ϕ) from ϕ can be done algorithmically. It is
also clear that ϕ and ∃Ð→x . wit(ϕ) are T -equivalent, for Ð→x = vars(wit(ϕ)) ∖
vars(ϕ), since wit(ϕ) is the conjunction of ϕ and a tautology. Finally, sup-
pose that A is a T -interpretation that satisfies ϕ, and take a set X disjoint
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from dom(A) with N(ϕ) − ∣vars(ϕ)A∣ elements. We define an interpreta-
tion B by making: dom(B) = vars(ϕ)A ∪X (so ∣dom(B)∣ = N(ϕ), and since
N(ϕ) = 2∑m

i=0 bi and G(2∑m
i=0 bi) = 1, we obtain B is a T -interpretation);

xB = xA for all x ∈ vars(ϕ); xi ∈ {xi ∶ 1 ≤ i ≤ N(ϕ)} ↦ xBi ∈ dom(B) an
injective map; and arbitrarily for all other variables. We then have that B is
a T -interpretation that satisfies ϕ, and dom(B) = vars(wit(ϕ))B.

K Proof of Theorem 7

Theorem 7. The positivity of µ(T , ϕ) for every T -satisfiable quantifier-free for-
mula ϕ is sufficient for T to be stably infinite and have the finite model property.

Proof. Suppose T is not stably infinite, and thus there exists a quantifier-free
formula ϕ such that no infinite T -interpretation satisfies ϕ. This means there
exists an M ∈ N such that no T -interpretation A that satisfies ϕ has ∣dom(A)∣ >
M : were that not true, we could obtain a sequence of T -interpretations An

that satisfy ϕ, with ∣dom(An)∣ ≥ n; since An satisfies the axiomatization of T ,
ϕ and {ψ≥1, . . . , ψ≥n}, we get by Theorem 14 that the axiomatization of T , ϕ
and {ψ≥n ∶ n ∈ N} are simultaneously satisfiable, leading to a contradiction. So
Specn(T , ϕ) = SpecM(T , ϕ) for n ≥M , giving us µ(T , ϕ) ≤ limn→∞M/n = 0, and
the result for stable infiniteness follows from the contrapositive.

If T does not have the finite model property, there exists a quantifier-free for-
mula ϕ such that no finite T -interpretation satisfies ϕ: that means Spec(T , ϕ) =
∅, and so µ(T , ϕ) = 0, the result for the finite model property easily following.

L Proof of Theorem 9

Theorem 9. Let T be a theory. µ(T , ϕ) being well-defined and equal to 1 for
all T -satisfiable quantifier-free formulas ϕ is then a necessary condition for T to
simultaneously be smooth and have the finite model property.

Proof. If T is smooth and has the finite model property, for every quantifier-
free T -satisfiable formula ϕ there exists M ∈ N such that for all n ≥ M there
exists a T -interpretation A that satisfies ϕ with ∣dom(A)∣ = n. That means
[1, n] ∖Specn(T , ϕ) ⊆ [1,M], for n ≥M , and so µ(T , ϕ) ≥ limn→∞(n−M)/n = 1.

M Proof of Theorem 10

The following technical lemma is a version of [25, Theorem 7], modified to hold
locally, that is, for every quantifier-free formula.

Lemma 10. If T is a strongly finitely witnessable theory, for all quantifier-free
formulas ϕ, we have that: either ϕ is not satisfied by any infinite T -interpreta-
tions; or there exists M ∈ N such that, for all cardinals M ≤ κ ≤ ℵ0, there is a
T -interpretation A that satisfies ϕ with ∣dom(A)∣ = κ.
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Proof. Suppose that ϕ is satisfied by an infinite T -interpretation A: We may
assume that ∣dom(A)∣ = ℵ0 by Theorem 13. Since ϕ and ∃Ð→x . wit(ϕ) are T -
equivalent, for Ð→x = vars(wit(ϕ))∖vars(ϕ), we may change the value assigned to
some variables by A in order to obtain a T -interpretation A′ that satisfies wit(ϕ)
which still has ∣dom(A′)∣ = ℵ0. Let U be vars(wit(ϕ)), and δU the arrangement
on U such that x is associated with y iff xA

′ = yA′ , meaning that A′ satisfies δU .
From that, A′ satisfies wit(ϕ)∧ δU , meaning there is a T -interpretation B (from
the fact that wit is a strong witness) that satisfies wit(ϕ)∧ δU , and thus ϕ, with
dom(B) = vars(wit(ϕ) ∧ δU)B = UB.

We state it is now possible to find a T -interpretation C that satisfies ϕ with
any cardinality κ between M = ∣dom(B)∣ and ℵ0. Indeed, if κ =M we are done.
Otherwise, take a fresh set of variables U ′ with cardinality κ−M , and define an
arrangement δV on V = U ∪ U ′ such that x is related to y according to δV iff
either x = y, or x, y ∈ U and xB = yB; notice we can write

δV = δU ∧ δU ′ ∧ ⋀
x∈U,y∈U ′

¬(x = y),

where δU ′ corresponds to the identity on U ′. Notice now that wit(ϕ) ∧ δV is T -
satisfiable: indeed, A′ satisfies wit(ϕ) ∧ δU , and by changing at most the values
assigned by A′ to the (fresh) variables in U ′, we get a T -interpretation A′′ that
satisfies wit(ϕ) ∧ δV .

This means, again from the fact that wit is a strong witness, that there
is a T -interpretation C that satisfies wit(ϕ) ∧ δV , with dom(C) = vars(wit(ϕ) ∧
δV )C = V C . Since C satisfies wit(ϕ), it satisfies ∃Ð→x .wit(ϕ) and thus ϕ. And since
dom(C) = V C , where UC must have M elements (since C satisfies δU ), and (U ′)C
must have another κ−M elements (since C satisfies δV ), we get ∣dom(C)∣ = κ, as
we wanted to show.

Theorem 10. µ(T , ϕ) being well-defined and equal to 0 or 1 for every quantifier-
free T -satisfiable ϕ is necessary for T to be strongly finitely witnessable.

Proof. By Lemma 10, either ϕ is not satisfied by an infinite T -interpretation,
or Spec(T , ϕ) contains all elements greater than or equal to some M : from the
second case it clearly follows that µ(T , ϕ) ≥ limn→∞(n−M +1)/n = 1. In the first,
we state Spec(T , ϕ) must be finite: otherwise we should be able to get an infinite
T -interpretation that satisfies ϕ by using Theorem 14. This way, Spec(T , ϕ)must
be bounded by some M , and so µ(T , ϕ) ≤ limn→∞M/n = 0.

N Proof of Proposition 2

Proposition 2. If T is a theory with a computable minimal model function,
then Spec(T , ϕ) is computable for all quantifier-free T -satisfiable formulas ϕ.

Proof. Suppose that T has a computable minimal model function minmodT ,
and we shall consider two cases: one where Spec(T , ϕ) is finite, and one where it is
infinite. If Spec(T , ϕ) is finite we have nothing left to do, as it is enough to simply
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hardcode these values into an algorithm that decides whether an element is in
Spec(T , ϕ). If Spec(T,ϕ) is instead infinite, ϕ is T -satisfiable (as Spec(T , ϕ) is
not empty) and, in addition, the formulas ϕ∧ ≠ (x1, . . . , xn) are T -satisfiable for
all n ∈ N: indeed, since Spec(T , ϕ) is infinite, we can always find m ∈ Spec(T , ϕ)
such that m ≥ n, and thus there exists a T -interpretation A that satisfies ϕ with
∣dom(A)∣ =m; by changing at most the value assigned to the variables x1, . . . , xn
(assumed fresh), we get a T -interpretation that satisfies ϕ∧ ≠ (x1, . . . , xn). Given
then n, we define f(0) =minmodT (ϕ), and assuming f(m) defined f(m+ 1) =
minmodT (ϕ∧ ≠ (x1, . . . , xf(m)+1)), and then we state that n ∈ Spec(T , ϕ) iff
n ∈ {f(0), . . . , f(n)}.

That this results in a decision procedure follows from the fact that minmodT
is assumed to be computable, and so is producing the formulas ≠ (x1, . . . , xf(m)+1);
we have left to prove that it is both sound and complete. If n ∈ {f(0), . . . , f(n)},
there exists an 0 ≤ m < n such that n = minmodT (ϕ∧ ≠ (x1, . . . , xf(m)+1)),
and so there is a T -interpretation A that satisfies ϕ∧ ≠ (x1, . . . , xf(m)+1) with
∣dom(A)∣ = n; of course A is a T -interpretation that satisfies ϕ with ∣dom(A)∣ =
n, so n ∈ Spec(T , ϕ) and indeed the algorithm is sound. Reciprocally, if n ∈
Spec(T , ϕ), suppose that f(m) < n < f(m + 1) for some 0 ≤ m < n (there
is either such an element or n = f(m) and we have nothing to prove, since
f(m + 1) ≥ f(m) + 1): because n is in Spec(T , ϕ), there is a T -interpretation
A that satisfies ϕ with ∣dom(A)∣ = n; but since n > f(m), n ≥ f(m) + 1, and
so A satisfies ϕ∧ ≠ (x1, . . . , xf(m)+1). This, in combination with the fact that
f(m + 1) > n, contradicts that f(m + 1) = minmodT (ϕ∧ ≠ (x1, . . . , xf(m)+1)),
proving that the algorithm is also complete and finishing the proof.

O Proof of Theorem 11

Theorem 11. If T is a theory with well-defined densities µ(T , ϕ), for all quan-
tifier-free T -satisfiable formulas ϕ, the fact that all µ(T , ϕ) are computable is a
necessary condition for T to have a computable minimal model function. Further-
more, for every computable number 0 ≤ r ≤ 1, there is a theory T that has a com-
putable minimal model function and a quantifier-free formula ϕ with µ(T , ϕ) = r.

Proof. If T has a minimal model function, Proposition 2 guarantees all Spec(T , ϕ)
are computable, and by Lemma 9 it follows that all µ(T , ϕ) are computable.

Finally, for every computable r, we get a theory T with a computable min-
imal model function and µ(T ) = r from Theorem 5, and it follows that for any
tautology ϕ it is true that µ(T , ϕ) = r.

P Proof of Theorem 12

Theorem 12. If T is a theory, and ϕ a quantifier-free T -satisfiable formula,
nothing can be said about µ(T , ϕ) if T is only known to be finitely witnessable;
that is, for every computable number 0 ≤ r ≤ 1, there exists a theory T , that is
finitely witnessable, and a quantifier-free formula ϕ with µ(T , ϕ) = r.



32 Guilherme Toledo and Yoni Zohar

Proof. Follows trivially from Theorem 6: taking, for any 0 ≤ r ≤ 1, a finitely
witnessable theory T (without a computable minimal model function) with
µ(T ) = r, and a tautology ϕ, µ(T , ϕ) = r.
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