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Abstract. This work is a part of an ongoing effort to understand the relationships
between properties used in theory combination. We here focus on including two
properties that are related to shiny theories: the finite model property and stable
finiteness. For any combination of properties, we consider the question of whether
there exists a theory that exhibits it. When there is, we provide an example with
the simplest possible signature. One particular class of interest includes theories
with the finite model property that are not finitely witnessable. To construct such
theories, we utilize the Busy Beaver function.4
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1 Introduction

The story of this paper begins with [3], where it was shown that the theory of algebraic
datatypes, useful for modeling data structures like lists and trees, can be combined with
any other theory, using the polite combination method [5]. This combination method of-
fers a way to combine decisions procedures of two theories into a decision procedure for
the combined theory, with different assumptions than those of the earlier Nelson-Oppen
approach [6]. In particular, it was proven that the theory admits a technical property
concerning cardinalities of models, called strong politeness [2]. It was noted in [3] that
proving strong politeness for this theory seemed much harder than proving politeness,
a similar but simpler property. Therefore, the proof was split into three steps: (i) a class
of theories was identified in which politeness and strong politeness coincide; (ii) the
theory of algebraic datatypes was shown to be in this class; and (iii) this theory was
proven to be polite. This proof technique raised the following question: does polite-
ness imply strong politeness? An affirmative answer to this question would simplify
strong politeness proofs that follow such steps, as only the last step would be needed.
Unfortunately, the answer to this question was shown in [4] to be negative, in its most
general form. However, an affirmative answer was given for theories over one-sorted
empty signatures, where politeness and strong politeness do coincide.

4 Funded in part by NSF-BSF grant numbers 2110397 (NSF) and 2020704 (BSF) and ISF grant
number 619/21.
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Seeing that relationships between model-theoretic properties of theories (like polite-
ness and strong politeness) are non-trivial, and can have a big impact on proofs in the
field of theory combination, we have recently initiated a more general research plan:
to systematically determine the relationships between model-theoretic properties that
relate to theory combination. An analysis of such properties can, for example, simplify
proofs, in cases where a property follows from a combination of other properties.

In the first stage of this plan [10], we studied the relationships between all properties
that relate to either polite or Nelson-Oppen combination, namely: stable infiniteness,
smoothness, finite witnessability, strong finite witnessability, and convexity. The first
two properties relate to the ability to enlarge cardinalities of models, while the next two
require a computable witness function that restricts the models of a formula based on its
variables. The last property relies on the ability to deduce an equality from a disjunction
of equalities. The result of [10] was a comprehensive table: nearly every combination
of these properties (e.g., theories that are smooth and stably infinite but do not admit
the other properties) was either proved to be infeasible, or an example for it was given.

In this paper we continue with this plan by adding two properties: the finite model
property and stable finiteness, both related to shiny theories [1]. The former requires
finite models for satisfiable formulas, and the latter enforces bounds on them.

Of course, the theories from [10] can be reused. For these, one only needs to de-
termine if they admit the finite model property and/or stable finiteness. The results and
examples from [10] are, however, not enough. Given that the number of considered
combinations is doubled with the addition of each property, new theories need to be
introduced in order to exemplify the new possibilities, and new impossible combina-
tions can be found. Hence, in this paper we provide several impossibility results for the
aforementioned properties, as well as examples of theories for possible combinations.
The overall result is a new table which extends that of [10] with two new columns
corresponding to the finite model property and stable finiteness.5

The most interesting combinations that we study are theories that admit the finite
model property but not finite witnessability. While both properties deal with finite mod-
els, the latter has a computable element to it, namely the witness function. In separat-
ing these properties, we found it useful to define theories that are based on the Busy
Beaver function, a well known function from computability theory, that is not only
non-computable, but also grows eventually faster than any computable function.

Outline: Section 2 reviews many-sorted logics and theory combination properties.
Section 3 identifies combinations that are contradictory; Section 4 constructs the ex-
tended table of combinations, and describes the newly introduced theories. Section 5
gives final remarks and future directions this work can take. The proofs for the results
in this paper may be found in an appendix to a preprint version of this work, available
as [11].

5 While we use several results from [10], we do not assume here any familiarity with that paper.
All required results are mentioned here explicitly.
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2 Preliminary Notions

2.1 Many-sorted Logic

A many-sorted signature Σ is a triple (SΣ ,FΣ ,PΣ) where: SΣ is a countable set of
sorts; FΣ is a countable set of function symbols; and PΣ is a countable set of predicate
symbols containing, for each σ ∈ SΣ , an equality =σ . When σ is clear from the context,
we write =. Every function symbol has an arity of the form σ1 × · · · × σn → σ, and
every predicate symbol one of the form σ1 × · · · × σn, where σ1, . . . , σn, σ ∈ SΣ ;
equalities =σ have arity σ × σ.

A signature that has no functions and only the equalities as predicates is called
empty. Many-sorted signaturesΣ where SΣ has only one element are called one-sorted.

For any sort in SΣ we assume a countably infinite set of variables, and distinct sorts
have disjoint sets of variables; we then define first-order terms, formulas, and literals in
the usual way. The set of free variables of sort σ in a formula φ is denoted by varsσ(φ),
while vars(φ) will denote

⋃
σ∈SΣ

varsσ(φ).
Σ-Structures A are defined as usual, by interpreting sorts (denoted by σA), func-

tions (fA) and predicate symbols (PA), with the restrictions that equality symbols are
interpreted as identities. A Σ-interpretation A is an extension of a Σ-structure A with
interpretations to variables. If A is the underlying Σ-structure of a Σ-interpretation A,
we say that A is an interpretation on A. For simplicity, and because the use of struc-
tures is sparse in this paper, we will usually denote both structures and interpretations
by using the same font, A, B and so on. αA is the value taken by a Σ-term α in a
Σ-interpretation A, and if Γ is a set of terms, we simply write ΓA for {αA : α ∈ Γ}.

We write A ⊨ φ if the Σ-interpretation A satisfies the Σ-formula φ; φ is then
said to be satisfiable if it is satisfied by some interpretation A. The formulas found in
Figure 1 will be useful in the sequel. A Σ-interpretation A: satisfies ψσ

≥n iff |σA| ≥ n;
satisfies ψσ

≤n iff |σA| ≤ n; and satisfies ψσ
=n iff |σA| = n. For simplicity, when dealing

with one-sorted signatures, we may drop the sort σ from the cardinality formulas.

ψσ
≥n = ∃−→x .

∧
1≤i<j≤n

¬(xi = xj) ψσ
≤n = ∃−→x . ∀ y.

n∨
i=1

y = xi ψσ
=n = ψσ

≥n ∧ ψσ
≤n

Fig. 1: Cardinality Formulas. −→x stands for x1, . . . , xn, all variables of sort σ.

A Σ-theory T is a class of all Σ-interpretations (called T -interpretations) that sat-
isfy some set Ax(T ) of closed formulas called the axiomatization of T ; the structures
underlying these interpretations will be called the models of T .

A formula is T -satisfiable if it is satisfied by some T -interpretation and, analo-
gously, a set of formulas is T -satisfiable if there is a T -interpretation that satisfies all of
them simultaneously. Two formulas are T -equivalent when a T -interpretation satisfies
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the first iff it satisfies the second. We write |=T φ, and say that φ is T -valid if A ⊨ φ
for all T -interpretations A.

2.2 Theory Combination Properties

Let Σ be a signature, T a Σ-theory and S ⊆ SΣ . We define several properties T may
have with respect to S.
Convexity, Stable Infiniteness, and Smoothness T is convex with respect to S if for
any conjunction of Σ-literals ϕ and any finite set of variables {u1, v1, . . . , un, vn} of
sorts in S with |=T ϕ →

∨n
i=1 ui = vi, one has |=T ϕ → ui = vi for some i. T

is stably infinite with respect to S if for every T -satisfiable quantifier-free Σ-formula
there is a T -interpretation A satisfying it such that |σA| is infinite for each σ ∈ S. T
is smooth with respect to S if for every quantifier-free formula, T -interpretation A that
satisfies it, and function κ from S to the class of cardinals such that κ(σ) ≥ |σA| for
each σ ∈ S, there is a T -interpretation B that satisfies it with |σB| = κ(σ) for each
σ ∈ S.
(Strong) Finite witnessability For finite sets of variables Vσ of sort σ for each σ ∈ S,
and equivalence relations Eσ on Vσ , the arrangement on V =

⋃
σ∈S Vσ induced by

E =
⋃

σ∈S Eσ , denoted by δV or δEV , is the formula δV =
∧

σ∈S

[∧
xEσy

(x = y) ∧∧
xEσy

¬(x = y)
]
, where Eσ denotes the complement of the equivalence relation Eσ .

T is finitely witnessable with respect to S when there exists a computable function
wit, called a witness, from the quantifier-free Σ-formulas to themselves that satisfies,
for every ϕ: (i) ϕ and ∃−→w . wit(ϕ) are T -equivalent, for −→w = vars(wit(ϕ)) \ vars(ϕ);
and (ii) if wit(ϕ) is T -satisfiable, there exists a T -interpretation A satisfying wit(ϕ)
such that σA = varsσ(wit(ϕ))A for each σ ∈ S.

Strong finite witnessability is defined similarly to finite witnessability, replacing (ii)
by: (ii)′ given a finite set of variables V and an arrangement δV on V , if wit(ϕ) ∧ δV
is T -satisfiable, there exists a T -interpretation A that satisfies wit(ϕ) ∧ δV with σA =

varsσ(wit(ϕ) ∧ δV
)A

for all σ ∈ S. If T is smooth and (strongly) finitely witnessable
with respect to S, then it is (strongly) polite with respect to S.
Finite Model Property and Stable Finiteness T has the finite model property with
respect to S if for every quantifier-free T -satisfiable Σ-formula, there exists a T -
interpretation A that satisfies it with |σA| finite for each σ ∈ S. T is stably finite with
respect to S if, for every quantifier-free Σ-formula and T -interpretation A that satisfies
it, there exists a T -interpretation B that satisfies it with: |σB| finite for each σ ∈ S; and
|σB| ≤ |σA| for each σ ∈ S. Clearly, stable finiteness implies the finite model property:

Theorem 1. If T is stably finite w.r.t. S, then it has the finite model property w.r.t. S.

We shall write SI for stably infinite; SM for smooth; FW (SW) for (strong) finitely
witnessable; CV for convex; FM for the finite model property; and SF for stably finite.

3 Relationships between model-theoretic properties

In this section we study the connections between finiteness properties related to the-
ory combination: the finite model property, stable finiteness, finite witnessability, and
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strong finite witnessability. We show how these properties are related to one another. In
Section 3.1, we provide general results that hold for all signatures. Then, in Section 3.2,
we focus on empty signatures, in which we are able to find more connections.

3.1 General Signatures

Finite witnessability, as well as its strong variant, were introduced in the context of po-
lite theory combination. In contrast, the study of shiny theories utilizes the notions of
the finite model property, as well as stable finiteness. It was shown in [7] that for the-
ories with a decidable quantifier-free satisfiability problem, shiny theories and strongly
polite theories are one and the same. This already showed some connections between
the aforementioned finiteness properties. However, that analysis also relied on smooth-
ness, the decidability of the quantifier-free satisfiability problem of the studied theories,
as well as the computability of the mincard function, the function that computes the
minimal sizes of domains in models of a given formula in these theories.

Here we focus purely on the finiteness properties, and show that even without any
other assumptions, they are closely related. Considering finite witnessability and the
finite model property, notice that any witness ensures that some formulas always have
finite models. Using the equivalence of the existential closure of such formulas to the
formulas that are given to the witness, one gets the following result, according to which
finite witnessability implies the finite model property.

Theorem 2. Any Σ-theory T finitely witnessable with respect to S ⊆ SΣ also has the
finite model property with respect to S.

Strong finite witnessability is a stronger property than finite witnessability, obtained
by requiring finite models in the presence of arrangements. This requirement allows one
to conclude stable finiteness for it, as the finer control on cardinalities that is required
for stable finiteness can be achieved with the aid of arrangements. The following result
is proved in Lemma 3.6 of [7], although under the assumption that the theory is smooth,
something that is not actually used in their proof.

Theorem 3. Any Σ-theory T strongly finitely witnessable with respect to S ⊆ SΣ is
also stably finite with respect to S.

Clearly, stable finiteness implies the finite model property (Theorem 1). The con-
verse does not generally hold, as we will see in Section 4. However, when these prop-
erties are considered with respect to a single sort, they actually coincide:

Theorem 4. If a Σ-theory T has the finite model property with respect to a set of sorts
S with |S| = 1, then T is also stably finite with respect to S.

Theorems 2 and 3 are visualized in the Venn diagram of Figure 2, where, for exam-
ple, theories that are strongly finitely witnessable are clearly inside the intersection of
finitely witnessable theories and stably finite theories.

When only one sort is considered, the picture is much simpler, and is described
in Figure 3. There, the finite model property and stable finiteness populate the same
region, as ensured by Theorem 4. Notice that the results depicted in Figure 3 hold for
one-sorted and many-sorted signatures. The key thing is that the properties are all w.r.t.
one of the sorts.
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SW FWSF

FM

Fig. 2: Finiteness properties: general case.

SW

FW

FM & SF

Fig. 3: Finiteness properties w.r.t. one sort.

3.2 Empty Signatures

Figures 2 and 3 show a complete picture of the relationships between the properties
studied in this section, for arbitrary signatures. However, when this generality is relaxed,
several other connections appear. For this section, we require that the signatures are
empty, and that they have a finite set of sorts. We further require that the properties in
question hold for the entire set of sorts, not for any subset of it.

Table 1 defines the 5 signatures that will be used in the examples found in Section 4,
and that will also appear in some of the results shown below: the empty signatures Σ1,
Σ2 and Σ3, with sets of sorts {σ}, {σ, σ2} and {σ, σ2, σ3}, respectively; and the signa-
tures Σs and Σ2

s with one function s of arity σ → σ, and sets of sorts {σ} and {σ, σ2},
respectively. Notice these are the simplest possible signatures when we order those by
establishing: first, that the signature with fewer sorts is simpler; and second, that if two
signatures have the same number of sorts, the one with fewer function symbols is sim-
pler. We are free not to consider predicates, as they are at least as expressive as functions
themselves; furthermore, we do not consider the problem of defining which of two sig-
natures with the same numbers of sorts and function symbols is simpler, choosing rather
to add only functions from a sort to itself.

Signature Sorts Function Symbols

Σ1 {σ} ∅

Σ2 {σ, σ2} ∅

Σ3 {σ, σ2, σ3} ∅

Σs {σ} {s : σ → σ}

Σ2
s {σ, σ2} {s : σ → σ}

Table 1: Signatures that will be used throughout the paper.

First, in such a setting, we have that the finite model property implies finite witness-
ability, in the presence of smoothness.
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SM

FW (SW)

FM (SF)

Fig. 4: Interplay between SM, FW (SW) and FM (SF) w.r.t. SΣ in an empty signature.

Theorem 5. If Σ is an empty signature with a finite set of sorts SΣ , and the Σ-theory
T has the finite model property and is smooth with respect to SΣ , then T is also finitely
witnessable with respect to SΣ .

Next, we show that stable finiteness and smoothness together, imply strong finite
witnessability.

Theorem 6. IfΣ is an empty signature with a finite set of sorts SΣ , and theΣ-theory T
is stably finite and smooth with respect to SΣ , then T is also strongly finitely witnessable
with respect to SΣ .

While Theorem 2 and Theorem 3 establish certain unconditional relations between
finite witnessability and the finite model property, and strong finite witnessability and
stable finiteness, the converses shown to hold in Theorem 5 and Theorem 6 demand
smoothness and that the properties hold with respect to the entire set of sorts. In that
case, the situation can be represented by the diagram found in Figure 4, showing clearly
that a smooth theory that also has the finite model property (respectively, is stably fi-
nite), cannot not be finitely witnessable (strongly finitely witnessable).

Lastly, regarding the empty signaturesΣ1,Σ2 andΣ3, the following theorem shows
that Σ3 is sometimes necessary.

Theorem 7. There are no Σ1 or Σ2-theories T that are, simultaneously, neither stably
infinite nor stably finite, but are convex and have the finite model property, with respect
to the entire set of their sorts.

Hence, to exhibit such theories, one has to consider three-sorted theories.

4 A taxonomy of examples

In [10], we have created a table, in which for every possible combinations of properties
from { SI, SM, FW, SW, CV } we either gave an example of a theory in this combi-
nation, or proved a theorem that shows there is no such example, with the exception of
theories that are stably infinite and strongly finitely witnessable but not smooth. Such
theories, referred to in [10] as Unicorn Theories (due to our conjecture that they do not
exist) were left for future work, and are still left for future work, as the focus of the
current paper is the integration of finiteness properties, namely FM and SF to the table.
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Empty Non-empty

SI SM FW SW CV FM SF One-sorted Many-sorted One-sorted Many-sorted No

T

T

T

T
T T T T≥n (T≥n)

2 (T≥n)s ((T≥n)
2)s 1

F T T [10] (T≥n)∨ ((T≥n)
2)∨ 2

F

T T
T Theorem 6 Tf (Tf )s 3

F Theorem 4 T2,3 Theorem 4 (T2,3)s 4

F T
T T s

f (T s
f )

2 5

F
[10]

Theorem 4 (T2,3)∨ 6

F F

T
T

T T s
ς T =

ς 7

F
Theorem 5

Theorem 4 T 2
ς 8

F F T∞ (T∞)2 (T∞)s ((T∞)2)s 9

F
T

T T ∨
ς (T ∨

ς )2 10

F Theorem 4 T =
ς∨ 11

F F

[10]

(T∞)∨ ((T∞)2)∨ 12

F

T

T
T T T 13
F T T

Unicorn
14

F

T T
T T ∞

even (T ∞
even)

2 (T ∞
even)s ((T ∞

even)
2)s 15

F Theorem 4 T ∞ Theorem 4 (T ∞)s 16

F T
T (T ∞

even)∨ ((T ∞
even)

2)∨ 17

F
[10]

Theorem 4 (T ∞)∨ 18

F F

T
T

T Tς (Tς)
2 (Tς)s ((Tς)

2)s 19

F Theorem 4 T ∞
ς Theorem 4 (T ∞

ς )s 20

F F Tn,∞ (Tn,∞)2 (Tn,∞)s ((Tn,∞)2)s 21

F
T

T (Tς)∨ ((Tς)
2)∨ 22

F Theorem 4 (T ∞
ς )∨ 23

F F

[10]

(Tn,∞)∨ ((Tn,∞)2)∨ 24

F F

T

T
T T T T≤1 (T≤1)

2 (T≤1)s ((T≤1)
2)s 25

F T T T≤n (T≤n)
2 (T≤n)s ((T≤n)

2)s 26

F

T T
T [10] T odd

1 T ̸=
odd (T odd

1 )s 27

F Theorem 4 T 3
2,3 Theorem 4 T ∞

̸= 28

F T
T Tm,n (Tm,n)

2 (Tm,n)s ((Tm,n)
2)s 29

F Theorem 4 T ∞
m,n Theorem 4 (T ∞

m,n)s 30

F F

T
T

T T ς
1 T ̸=

ς,1 (T ς
1 )

2 31

F T ∞,3
ς Theorem 4 T ∞

ς ̸= 32

F F T ∞
1 T ̸=

1,∞ (T ∞
1 )s 33

F
T

T T ς
n T ̸=

ς (T ς
n )s 34

F T ς
m,n Theorem 4 (T ς

m,n)s 35

F F

[10]

T ∞
2 T ̸=

2,∞ (T ∞
2 )s 36

Table 2: Summary of all possible combinations of theory properties. Red cells represent
impossible combinations. In lines 26 and 34, n > 1; in lines 29, 30 and 35, m > 1,
n > 1 and |m− n| > 1.
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And indeed, the goal of this section is to add two columns to the table from [10]:
one for the finite model property and one for stable finiteness. The extended table is
Table 2. We do not assume familiarity with [10], and describe the entire resulting table
(though focusing on the new results).

This section is structured as follows: In Section 4.1 we describe the structure of
Table 2. In Sections 4.2 to 4.4 we provide details about the axiomatizations of theories
that populate it. Finally, in Section 4.5, we reuse operators from [10], prove that they
preserve the finite model property and stable finiteness, and show how they are used in
order to generate more theories for Table 2.

4.1 The Table

The columns left to the vertical double-line of Table 2 correspond to possible combina-
tions of properties. In them, T means that the property holds, while F means that it does
not. The first 5 columns correspond to properties already studied in [10], and the next
two columns correspond to FM and SF. The columns right to the vertical double-line
correspond to possible signatures: empty or non-empty, and one-sorted or many-sorted.
White cells correspond to cases where a theory with the combination of properties in-
duced by the row exists in a signature that is induced by the column. In such a case, the
name of the theory is written. The theories themselves are defined in Figures 5, 7 and 8,
axiomatically. Red cells correspond to the cases where there is no such theory. In such
a case, the theorem that excludes this possibility is written. If that theorem is from [10],
we simply write [10].

Example 1. Line 1 of Table 2 corresponds to theories that admit all studied properties.
We see that there is such a theory in each of the studied types of signatures (e.g., for
the empty one-sorted signature, the theory T≥n exhibits all properties). In contrast, line
3 corresponds to theories that admit all properties but strong finite witnessability. We
see that such theories exist in non-empty signatures, but not in empty signatures. This
is thanks to Theorem 6.

Section 3, as well as results from [10], make some potential rows of Table 2 com-
pletely red. To allow this table to fit a single page, we chose to erase such rows. For
example, by Theorem 1, there are no theories that are stably finite but do not have
the finite model property, in any signature. Thus, no rows that represent such theories
appear in the table.

In the remainder of this section, we describe the various theories that populate the
cells of the table. Fortunately, all theories from [10] can be reused to exhibit also the new
properties SF and FM, or their negations. These are described in Section 4.2. However,
the theories from [10] alone are not enough. Hence we introduce several new theo-
ries in Sections 4.3 and 4.4. Some of them are relatively simple, and are described in
Section 4.3. Most of them, however, are more complex, and rely on the Busy Beaver
function from theoretical computer science. We discuss these theories in Section 4.4.

4.2 Theories from [10]

For completeness, we include in Figure 5 the axiomatizations of all theories from [10]
that are used in Table 2 (Figure 6 includes the definitions of formulas that are abbrevi-
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Name Sig. Axiomatization

T≥n Σ1 {ψ≥n}

T ∞
even Σ1 {¬ψ=2k+1 : k ∈ N}

T∞ Σ1 {ψ≥k : k ∈ N}

Tn,∞ Σ1 {ψ=n ∨ ψ≥k : k ∈ N}

T≤n Σ1 {ψ≤n}

Tm,n Σ1 {ψ=m ∨ ψ=n}

Name Sig. Axiomatization

T2,3 Σ2 {(ψσ
=2 ∧ ψσ2

≥k) ∨ (ψσ
≥3 ∧ ψ

σ2
≥3) : k ∈ N}

T ∞
2 Σ2 {ψσ

=2} ∪ {ψσ2
≥k : k ∈ N}

T odd
1 Σ2 {ψσ

=1} ∪ {¬ψσ2
=2k : k ∈ N}

T ∞
1 Σ2 {ψσ

=1} ∪ {ψσ2
≥k : k ∈ N}

Name Sig. Axiomatization

Tf Σs {[ψ=
≥f1(k)

∧ ψ ̸=
≥f0(k)

] ∨
∨k

i=1[ψ
=
=f1(i)

∧ ψ ̸=
=f0(i)

] : k ∈ N \ {0}}

T s
f Σs Ax(Tf ) ∪ {ψ∨}

T ̸=
2,∞ Σs {[ψ=2 ∧ ∀x. p(x)] ∨ [ψ≥k ∧ ∀x. ¬p(x)] : k ∈ N}

T ̸=
odd Σs {ψ=1 ∨ [¬ψ=2k ∧ ∀x. ¬p(x)] : k ∈ N}

T ̸=
1,∞ Σs {ψ=1 ∨ [ψ≥k ∧ ∀x. ¬p(x)] : k ∈ N}

Fig. 5: Theories for Table 2 that were studied in [10]; p(x) stands for s(x) = x. In Tf , f
is any non-computable function from the positive integers to {0, 1}, such that for every
k ≥ 0, f maps half of the numbers between 0 and 2k to 1, and the other half to 0. In
[10], such a function was proven to exist.

ated in Figure 5, such as ψ=

≥n from the definition of Tf ). For lack of space, however,
we refrain from elaborating on these theories, and refer the reader to their detailed de-
scription in [10]. For the theories of Figure 5, whether they admit the properties from
{SI,SM,FW,SW,CV} or not was already established in [10]. For each of them, here,
we also check and prove whether they admit the new properties FM and SF.

For example, for each n, T≥n consists of all Σ1-structures that have at least n el-
ements. This theory was shown in [10] to be strongly finitely witnessable, and so by
Theorem 3 it is also stably finite. Then, by Theorem 1, it also admits the finite model
property.

It is worth mentioning that T2,3 was first introduced in [7], in the context of shiny
theories, where it was shown to have the finite model property, while not being stably
finite. An alternative proof of this fact goes as follows: it was proven in [4] that T2,3
is: (i) finitely witnessable; (ii) not strongly finitely witnessable; and (iii) smooth. By
Theorem 2 and (i), it also has the finite model property. But since it is over an empty
signature, by (ii), (iii) and Theorem 6, we have that it cannot be stably finite.
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ψ=

≥n = ∃−→x .
n∧

i=1

p(xi)∧ δn ψ=

=n = ∃−→x . [
n∧

i=1

p(xi)∧ δn ∧∀x. [p(x) →
n∨

i=1

x = xi]]

ψ ̸=
≥n = ∃−→x .

n∧
i=1

¬p(xi)∧δn ψ ̸=
=n = ∃−→x .[

n∧
i=1

¬p(xi)∧δn∧∀x.[¬p(x) →
n∨

i=1

x = xi]]

ψ∨ = ∀x.
[
(s(s(x)) = x) ∨ (s(s(x)) = s(x))

]

Fig. 6: Formulas for Σs-theories. −→x stands for x1, . . . , xn. δn stands for∧
1≤i<j≤n ¬(xi = xj), and p(x) stands for s(x) = x.

Name Signature Axiomatization

T ∞ Σ2 {(ψσ
=1 ∧ ψσ2

≥k) ∨ diag
σ,σ2(k + 2) : k ∈ N}

T ∞
m,n Σ2 {ψσ

=max{m,n} ∨ (ψσ
=min{m,n} ∧ ψσ2

≥k) : k ∈ N}

T ∞
̸= Σ2

s {(ψσ
=1 ∧ ψσ2

≥k) ∨ (diagσ,σ2(k + 2) ∧ ∀x. ¬p(x) : k ∈ N}

T 3
2,3 Σ3 {ψσ3

=1} ∪ {(ψσ
=2 ∧ ψσ2

≥k) ∨ (ψσ
≥3 ∧ ψ

σ2
≥3) : k ∈ N}

Fig. 7: Simple theories for Table 2. diagσ,σ2(k + 2), for any k ∈ N, stands for the
formula (ψσ

≥k+2 ∧ ψ
σ2

≥k+2) ∨
∨k+2

i=2 (ψ
σ
=i ∧ ψ

σ2
=i), and p(x) stands for s(x) = x.

4.3 New Theories: The Simple Cases

While the theories from Figure 5 suffice to populate many cells of Table 2, they are not
enough. Hence we describe new theories, not taken from [10]. The simplest theories
that we have added can be found in Figure 7, and are described below.

T ∞ is a theory with three distinct groups of models: its first group consists of mod-
els A that have |σA| = 1 and σA

2 infinite; its second group, of models A where both
σA and σA

2 are infinite; and its third group, of models A where |σA| = |σA
2 | is any

value k ≥ 2. In its axiomatization, one finds the formula diagσ,σ2(k + 2), equal to
(ψσ

≥k+2 ∧ ψ
σ2

≥k+2)∨
∨k+2

i=2 (ψ
σ
=i ∧ ψ

σ2
=i) for k ∈ N: that formula characterizes the mod-

els A of T ∞ that lie in the diagonal, that is, where |σA| = |σA
2 | (and this value is

greater than 1).
T ∞
m,n is a theory that depends on two distinct positive integersm and n, and without

loss of generality let us suppose m > n, when the theory has two types of models A:
in the first, |σA| equals m, while σA

2 can be anything; in the second, |σA| equals n, and
then σA

2 must be infinite.
The models A of the Σ2

s -theory T ∞
̸= have either: |σA| = 1, |σA

2 | ≥ ω and sA the
identity function; both σA and σA

2 infinite, and sA with no fixed points; or |σA| = |σA
2 |

equal to any number in N \ {0, 1}, and again sA with no fixed points.
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Name Signature Axiomatization

Tς Σ1 {ψ≥ς(k+2) ∨
∨k+2

i=2 ψ=ς(i) : k ∈ N}

T ∞
ς Σ2 {(ψσ

=1 ∧ ψσ2
≥k) ∨ diag

σ,σ2
ς (k + 2) : k ∈ N}

T ς
n Σ2 {ψσ

=n} ∪ {ψσ2
≥ς(k+2) ∨

∨k+2
i=2 ψ

σ2
=ς(i) : k ∈ N}

T ς
m,n Σ2 {(ψσ

n ∧ ψσ2
≥k) ∨ (ψσ

m ∧ ψσ2
≥ς(k+1)) ∨

∨k+1
i=1 (ψ

σ
m ∧ ψσ2

=ς(i)) : k ∈ N}

T s
ς Σs {(ψ≥k+1 ∧ ψ=

≥ς−1(k+1)) ∨
∨k+1

i=1 (ψ=i ∧ ψ=
=ς−1(i)) : k ∈ N}

T ̸=
ς Σs {(ψ=2 ∧ ∀x. ¬p(x)) ∨ ((ψ≥ς(k+2) ∨

∨k+2
i=2 ψ=ς(i)) ∧ ∀x. p(x)) : k ∈ N}

T ̸=
ς,1 Σs {ψ=1 ∨ ((ψ≥ς(k+2) ∨

∨k+2
i=2 ψ=ς(i)) ∧ ∀x. ¬p(x)) : k ∈ N}

T ∨
ς Σs {ψ∨} ∪ {(ψ≥k+1 ∧ ψ=

≥ς−1(k+1)) ∨
∨k+1

i=1 (ψ=i ∧ ψ=
=ς−1(i)) : k ∈ N}

T =
ς Σ2

s {ψ=
≥k+2 → ψσ2

≥ς(k+2) : k ∈ N}

T 2
ς Σ2

s {(ψσ
=1 ∧ ψσ2

≥k) ∨ (ψ=
≥k+2 → ψσ2

≥ς(k+2)) : k ∈ N}

T =
ς∨ Σ2

s {ψ∨} ∪ {(ψσ
=1 ∧ ψσ2

≥k) ∨ (ψ=
≥k+2 → ψσ2

≥ς(k+2)) : k ∈ N}

T ∞
ς ̸= Σ2

s {(ψσ
=1 ∧ ψσ2

≥k) ∨ (diagσ,σ2
ς (k + 2) ∧ ∀x. ¬p(x)) : k ∈ N}

T ∞,3
ς Σ3 {ψσ3

=1} ∪ {(ψσ
=1 ∧ ψσ2

≥k) ∨ diag
σ,σ2
ς (k + 2) : k ∈ N}

Fig. 8: Busy Beaver Theories for Table 2. diagσ,σ2
ς (k + 2) stands, for each k ∈ N, for

(ψσ
≥ς(k+2) ∧ ψ

σ2

≥ς(k+2)) ∨
∨k+2

i=2 (ψ
σ
=ς(i) ∧ ψ

σ2

=ς(i)), and p(x) for s(x) = x; in T ς
m,n, we

assume w.l.g. m ≥ n.

Finally, T 3
2,3 is made up of just the models A of T2,3 (see Figure 5) with an extra

domain associated to the new sort σ3 such that |σA
3 | = 1.

4.4 New Theories: The Busy Beaver

So far we have seen that the theories from [10], together with a small set of simple
new theories, can already get us quite far in filling Table 2. However, for several com-
binations, it seems that more complex theories are needed. For this purpose, we utilize
the well-known Busy Beaver function, and define various theories based on it. In this
section, we describe these theories. First, in Section 4.4, we review the Busy Beaver
function, and explain why it is useful in our context. Then, in Section 4.4, we describe
the theories that make use of it, separated according to their signatures.

On The Busy Beaver Function The Busy Beaver function, here denoted ς , is an old
acquaintance of theoretical computer scientists: essentially, given any n ∈ N, ς(n) is
the maximum number of 1’s a Turing machine with at most n states can write to it’s
tape when it halts, if the tape is initialized to be all 0’s. Somewhat confusingly, any
Turing machine that achieves that number is also called a Busy Beaver.



Finite Models and Busy Beavers 13

It is possible to prove that ς(n) ∈ N for any n ∈ N (see [12]), and so we may write
ς : N → N; furthermore, ς is increasing. But the very desirable property of ς is that it is
not only increasing, but actually very rapidly increasing.

More formally, Radó proved, in the seminal paper [12], that ς grows asymptotically
faster than any computable function (being, therefore, non-computable). That is, for
every computable function f : N → N, there exists N ∈ N such that ς(n) > f(n) for
all n ≥ N . Despite that, the Busy Beaver starts somewhat slowly: ς(0) = 0, ς(1) = 1,
ς(2) = 4, ς(3) = 6 and ς(4) = 13; the exact value of ς(5) (and actually ς(n) for any
n ≥ 5) is not known, but is at least 4098 ([13]).

The fact that ς grows eventually faster than any computable function is a great prop-
erty to have when constructing theories that admit the finite model property, while not
being finitely witnessable. Roughly speaking, if the cardinalities of models of a theory
are related to ς , this guarantees that it has models of sufficiently large finite size, while
not being finitely witnessable since its models grow too fast: by carefully choosing for-
mulas ϕn that hold only in the "n-th model" of the theory (when ordered by cardinality),
the number of variables of wit(ϕn) offers an upper bound to ς(n) and is therefore not
computable, leading to a contradiction with the fact that wit is supposed to be com-
putable. Notice that, despite the dependency of our theories on the Busy Beaver, the
function is not actually part of their signatures.

Now we present the theories that are based on ς . These theories are axiomatized in
Figure 8.

A Σ1-Theory The most basic Busy Beaver theory is Tς . This is the Σ1-theory whose
models have cardinality ς(k), for some k ≥ 2, or are infinite: that is, Tς has models
with 4 elements, 6, 13 and so on. This theory forms the basis to all other theories of this
section, that are designed to admit various properties from Table 2.

By itself, Tς has the finite model property while not being (strongly) finitely wit-
nessable. It was in fact constructed precisely to exhibit this. As it turns out, it is also
not smooth, but does satisfy all other properties. To populate other rows in the table that
correspond to theories with other combinations of properties, more theories are needed,
with richer signatures.

Σ2-Theories To fill the rows that correspond to other combinations, we introduce
several Σ2 theories.

The Σ2-theory T ∞
ς is more complex. It has, essentially, three classes of models:

the first is made up of structures A where |σA| = 1 and σA
2 is infinite; the second, of

structures where both σA and σA
2 are infinite; and the third, of structures where |σA| =

|σA
2 | is a finite value that equals ς(k), for some k ≥ 2. The formula diagσ,σ2

ς (k + 2),
for k ≥ 2, in the axiomatization equals (ψσ

≥ς(k+2)∧ψ
σ2

≥ς(k+2))∨
∨k+2

i=2 (ψ
σ
=ς(i)∧ψ

σ2

=ς(i))

and is similar to diagσ,σ2(k + 2) from T ∞, characterizing the models A where |σA| =
|σA

2 | and that value, if it is not infinite, equals ς(k + 2).
For each n > 0, T ς

n has as interpretations those A with |σA| = n, and |σA
2 |either

infinite or equal to ς(k), for some k ≥ 2 (so (|σA|, |σA
2 |) may equal (n, 4), (n, 6),

(n, 13) and so on).
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T ς
m,n is a Σ2-theory that can be seen as some sort of combination of T ∞

m,n and
T ς
n , dependent on two distinct positive integers m and n. Consider the case where the

former is the greater of the two (the other cases are similar). In this case, we may divide
its interpretations A into three classes: those with |σA| = n and σA

2 infinite; those with
|σA| = m and σA

2 infinite; and those with |σA| = m and |σA
2 | equal to some ς(k), for

k ≥ 2.

Σs-Theories For some lines of Table 2, e.g. line 7, empty signatures are not enough
for presenting examples. Hence we also introduce Σs-theories.

We start with T s
ς , which is, arguably, the most confusing theory we here define: we

are forced to appeal not only to the special cardinality formulas found in Figure 6, but
also to the function ς−1, which is a left inverse of ς . More formally, ς−1 : N → N
is the only function such that ς−1(k) = min{l : ς(l + 1) > ς(k)}: so ς−1(0) = 0,
ς−1(1) = ς−1(2) = ς−1(3) = 1, ς−1(4) = ς−1(5) = 2, ς−1(6) = · · · = ς−1(12) = 3,
ς−1(13) = · · · = ς−1(4097) = 4, and further values of ς−1 are currently unknown.
From the definition of ς−1, we have that ς(ς−1(k)) ≤ k and ς−1(ς(k)) = k. ς−1 is
not computable given that, since ς−1(k) = min{l : ς(l + 1) > ς(k)} by definition,
ς−1(k+1) ̸= ς−1(k) iff k+1 is a value of ς: so, an algorithm to compute the values of
ς could be obtained by simply computing the values of ς−1 and checking where there
is a change.

T s
ς is then the Σs-theory with models A with any cardinality k + 1 ≥ 1, such that

sA(a) = a holds for precisely ς−1(k + 1) elements of A, and so sA(a) ̸= a holds
for k + 1 − ς−1(k + 1) elements, being the function k 7→ k + 1 − ς−1(k + 1) itself
non-decreasing, given that ς−1(k + 1) can equal either ς−1(k) or ς−1(k) + 1.

Example 2. We mention some T s
ς -structures as examples: a structure A with |σA| = 1

and sA the identity; a structure B with |σB| = 2 and sA a constant function; a struc-
ture C with |σC | = 3 (say σC = {a, b, c}) and sC the identity for only one of these
elements (e.g., sC can be a constant function, but now there are further possibilities
such as sC(a) = sC(b) = a and sC(c) = b); and a structure D with |σD| = 4 (say
σD = {a, b, c, d}) and sD the identity for only two of these elements (e.g., sD(a) =
sD(b) = sD(c) = a and sD(d) = d);

Next, we continue to describe other Σs theories.
T ̸=
ς has essentially two classes of models A: those with |σA| = 2 and sA never

the identity; and those with |σA| equal to ς(k) or infinite, for some k ≥ 2, and sA the
identity.

T ̸=
ς,1 is very similar to T ̸=

ς : the difference lies on where s will be the identity: while
in T ̸=

ς the function s is the identity for all interpretations A with |σA| > 2, s in T ̸=
ς,1 is

the identity only for the interpretations A with |σA| = 1. So, in T ̸=
ς,1, we have a model

A with |σA| = 1 and sA the identity, and then models A with |σA| = ς(k) for some
k ≥ 2 or infinite, and sA(a) anything but a.

The Σs-theory T ∨
ς is then just T s

ς , satisfying in addition the formula ψ∨ (see Fig-
ure 6). It has models A of any finite cardinality k + 1, as long as ς−1(k + 1) of these
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elements a satisfy sA(a) = a, or infinite cardinalities, as long as the number of ele-
ments a satisfying sA(a) = a is infinite; additionally, sA(sA(a)) must always equal
either sA(a) or a itself.

Σ2
s -Theories Now for theories in a many-sorted non-empty signature.

The Σ2
s -theory T =

ς appears simple, but is actually quite tricky: starting by the easy
case, if σA has infinitely many elements a satisfying sA(a) = a, σA

2 is also infinite.
If, however, the number of elements a ∈ σA satisfying sA(a) = a is finite (notice
that, even if this is the case, σA may still be infinite) and equal to some k + 2, then
σA
2 has at least ς(k + 2) elements. So, to give a better example, suppose σA has 2

elements satisfying sA(a) = a: then σA
2 has at least ς(2) = 4 elements, but may have

any cardinality up to, and including, infinite ones; notice that in this example σA may
be infinite as well, as long as only two of the elements satisfy sA(a) = a.

T 2
ς is the same as T =

ς , but with extra models A where |σA| = 1 and |σA
2 | ≥ ω (of

course, then we have that sA is the identity).
T =
ς∨ is then the same as T 2

ς , with the added validity of the formula ψ∨; So the models
of T =

ς∨ are just models of T 2
ς satisfying that sA(sA(a)) equals either sA(a) or a itself.

T ∞
ς ̸= is just the Σ2-theory T ∞

ς with the added function s such that, if |σA| = 1, sA

is the identity; and if |σA| > 1, sA(a) is anything but a.

A Σ3-Theory Finally, T ∞,3
ς is obtained by adding a sort with a single element to the

Σ2-theory T ∞
ς , similarly to the definition of T 3

2,3, that was based on the Σ2-theory T2,3
(see Section 4.3).

4.5 Theory Operators

There are two types of theories in Table 2: The first consists of base theories, such as
T≥n, that are axiomatized in Figures 5, 7 and 8. The second is obtained from the first,
by applying several operators on theories. For example, the theories (T≥n)

2, (T≥n)s,
((T≥n)

2)s, are all obtained from the base theory T≥n. So far we have only described
the theories of the first type. In this section we explain the theories of the second type.

The operators that are used in Table 2 were defined in [10], in order to be able
to systematically generate examples in various signatures. For example, if T is a Σ1-
theory, then (T )2 is a Σ2-theory with the same axiomatization as T , that is, the second
sort is completely free and is not axiomatized in any way. For completeness sake, we
include the definitions of these operators here:

Definition 1 (Theory Operators from [10]).

1. If T is a Σ1-theory, then (T )2 is the Σ2-theory axiomatized by Ax(T ).
2. Let Σn be an empty signature with sorts S = {σ1, . . . , σn}, and let T be a Σn-

theory. The signature Σn
s has sorts S and a single unary function symbol s of arity

σ1 → σ1, and (T )s is the Σn
s -theory axiomatized by Ax(T ) ∪ {∀x. [s(x) = x]},

where x is a variable of sort σ1.
3. Let T be a theory over an empty signature with sorts S = {σ1, . . . , σn}. Then

(T )∨ is the Σn
s -theory axiomatized by Ax(T ) ∪ {ψ∨} (see Figure 6.
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It was proven in [10] that these operators preserve the properties SI, SM, FW, SW,
CV, and the lack of them. Here we prove that the same holds for FM and SF as well.

Theorem 8. Let T be aΣ1-theory. Then: T is FM, or SF, w.r.t. {σ} if and only if (T )2

is, respectively, FM, or SF w.r.t. {σ, σ2}.

Theorem 9. If T is a theory over an empty signature Σn with sorts S = {σ1, . . . , σn},
then: T is FM, or SF, w.r.t. S if and only if (T )s is, respectively, FM, or SF, w.r.t. S.

Theorem 10. If T is a theory over an empty signatureΣn with sorts S = {σ1, . . . , σn},
then: T is FM, or SF, w.r.t. S if and only if (T )∨ is, respectively, FM, or SF, w.r.t. S.

Thus, in various cases, theories need not be invented from scratch, but can be gen-
erated from other theories. For example, the theory T≥n exhibits all studied properties,
but is defined in a one-sorted signature. Using the operators, we obtain variants of this
theory in all signature types, namely (T≥n)

2 for empty many-sorted signatures, (T≥n)s
for non-empty one-sorted signatures, and ((T≥n)

2)s for non-empty many-sorted signa-
tures. The properties of the theories generated using these operators are guaranteed by
Theorems 8 and 9, as well as the corresponding results from [10].

In two cases of theories defined using the Busy Beaver function, T ∨
ς and T =

ς∨, we
cannot obtain them by relying on Theorem 10 from, respectively, T s

ς and T =
ς , since the

signatures of the latter theories are not empty. Curiously, adding ψ∨ to their axiomati-
zations still has the desirable outcome, but we prove this separately, without relying on
Theorem 10. Extending Theorem 10 to non-empty signatures is left for future work.

The number of combinations of properties that we consider, together with the pos-
sible types of the signatures, adds up to 29 = 512. Our negative results from Section 3
guarantee that only ∼15% of the actual table can be filled with examples. The remain-
ing ∼85% are either colored in red or are excluded from the table for space considera-
tions. As for the examples that can be given, notice that there are in total an astonishing
number of 78 theories in our table. But, thanks to the theory operators of Definition 1,
only 33 of them (∼42%) had to be concretely axiomatized in Figures 5, 7 and 8. The
remaining 45 theories were defined using the operators.

5 Conclusion

We examined, in addition to all properties considered in [10], the finite model prop-
erty, and stable finiteness. Interesting restrictions for the combinations involving these
properties were established. We also found interesting theories to fill in our table of
combinations, most prominently those involving the Busy Beaver function as well as
its inverse.

One possible direction this research could take is reasonably clear: considering the
computability of the mincard function, what will, most probably, double the number
of theories to be taken into consideration. Further interesting properties that could be
considered include the decidability of the theory’s axiomatization, or even its finiteness,
and the satisfiability problem of the theory with respect to quantifier-free formulas.
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Second, some of the negative results in [10] and in the present paper only hold with
respect to the entire set of sorts SΣ . We plan to study if they hold also with respect to
proper subsets of sorts, and if they do not, to provide counterexamples to those gener-
alizations.
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