
Automating Automated Reasoning

The Case of Two Generic Automated Reasoning Tools

Yoni Zohar1, Dmitry Tishkovsky2, Renate A. Schmidt2, and Anna Zamansky4

1 Computer Science Department, Stanford University, USA
2 School of Computer Science, University of Manchester, UK
3 Information Systems Department, University of Haifa, Israel

Abstract. The vision of automated support for the investigation of log-
ics, proposed decades ago, has been implemented in many forms, pro-
ducing numerous tools that analyze various logical properties (e.g., cut-
elimination, semantics, and more). However, full ‘automation of auto-
mated reasoning’ in the sense of automatic generation of efficient provers
has remained a ‘holy grail’ of the field. Creating a generic prover which
can efficiently reason in a given logic is challenging, as each logic may
be based on a different language, and involve different inference rules,
that require different implementation considerations to achieve efficiency,
or even tractability. Two recently introduced generic automated provers
apply different approaches to tackle this challenge. MetTeL, based on
the formalism of tableaux, automatically generates a prover for a given
tableau calculus, by implementing generic proof-search procedures with
optimizations applicable to many tableau calculi. Gen2sat, based on the
formalism of sequent calculi, shifts the burden of search to the realm of
off-the-shelf SAT solvers by applying a uniform reduction of derivabil-
ity in sequent calculi to SAT. This paper examines these two generic
provers, focusing in particular on criteria relevant for comparing their
performance and usability. To this end, we evaluate the performance of
the tools, and describe the results of a preliminary empirical study where
user experiences of expert logicians using the two tools are compared.

1 Introduction

The idea of automated support for the investigation of logics has been envisioned
more than twenty years ago by Ohlbach [49], who wrote: ‘not every designer of
an application program, which needs logic in some of its components, is a lo-
gician and can develop the optimal logic for his purposes, neither can he hire
a trained logician to do this for him. In this situation we could either resign
and live with non-optimal solutions, or we could try to give more or less auto-
mated support and guidance for developing new logics’. Ohlbach’s vision has been
successfully applied to the paradigm of ‘logic engineering’, a term coined by Are-
ces [3] to refer to approaches that systematically investigate and construct new
logical formalisms with specific desired properties (such as decidability, expres-
sive power, and effective reasoning methods), for a particular need or application.

2 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

Many tools that implement automated approaches for the investigation of large
families of proof systems have been introduced, including the linear logic-based
framework for specifying and reasoning about proof systems of [47,48,44], the
reformulation of paraconsistent and substructural logics in terms of analytic cal-
culi in [13,14], and the automatic production of sequent calculi for many-valued
logics [8]. Generic tools for correspondence theory include [50,20,16], that com-
pute frame conditions for modal axioms, from which it is then possible to obtain
corresponding tableau rules using the tableau synthesis method of [54,60]. Re-
lated forgetting tools [39,66] compute uniform interpolants and give users the
ability to decompose logical theories and ontologies.

While the mentioned tools offer useful automated support for studying logics
and building logic-based systems, they are not prover generators. Unlike clas-
sical logic, which has efficient provers that make use of state-of-the-art SAT
technologies, there has been insufficient work to create provers for the wide va-
riety of non-classical logics investigated in the literature that can enable their
easy integration in applications. This calls for generic provers, as well as tools
for automated generation of such provers.

The naive approach for generation of a prover for a given logic is associating
a basic proof-search algorithm for a given calculus, without considerations for
reducing the search space for this particular logic. This, however, yields imprac-
tical, non-efficient provers. Implementing an efficient prover from scratch is a
significant investment of time, and requires relevant expertise and experience of
the developer. Thus, realization of efficient provers has long remained the ‘holy
grail’ of automated support in line with Ohlbach [49].

There are many tools that approach this problem by focusing on a specific
family of logics, that have a shared syntax and structure of inference rules. Exam-
ples of such tools include the Logic WorkBench [30], the Tableau Workbench [1],
LoTREC [23], focusing on modal-like logics, and COOL [27], focusing on modal
and hybrid logics.

Two recently developed provers take different approaches to achieve con-
siderable genericity. The first approach is implemented in MetTeL [61,63,62]
(available at [35]). MetTeL is a powerful platform for automatically generating
provers from the definition of tableau calculi of very general forms. It achieves
efficiency by using strong, general heuristics and optimizations that are broad
enough to apply to a wide variety of inference rules on the one hand, and are
efficient and non-trivial on the other hand. Such generic techniques, when identi-
fied, can enhance any generated proof search algorithm, making it less naive and
more practical. MetTeL differs from the above mentioned tools mainly by being
completely logic and language independent, and the language and inference rules
are completely defined by the user.

The second approach is implemented in Gen2sat [68] (available in [67]).
Gen2sat is a platform which provides a method for deciding the derivability
of a sequent in a given sequent calculus, via a uniform polynomial reduction
to the classical satisfiability problem. Looking for specific heuristics for a given
calculus is bypassed in Gen2sat, by shifting the actual search to the realm of off-

Automating Automated Reasoning 3

the-shelf SAT solvers. Using (classical) SAT-solving for non-classical logics was
also employed, e.g., in [26,33,40,11] for various modal (and description) logics,
where the non-modal part was fixed to be classical.

While there are several papers discussing the theoretical aspects and imple-
mentation details of MetTeL and Gen2sat (developed by the second and first
authors) [62,54,68,41], this paper is concerned with comparing these two tools
with respect to criteria relating to their performance and usability.

To this end we carry out a performance analysis of the tools, as well as a
preliminary empirical study of usability, with five expert logicians providing user
feedback on both tools. While the former form of evaluation is rather standard
in the automated reasoning community, empirical studies with real users are
scarce. We discuss the insights received from our study participants which will
be instrumental for improving the tools.

The paper is structured as follows. Sections 2 and 3 describe the approaches
taken in the development of MetTeL and Gen2sat and provide a short overview
of each. Section 4 provides a comparison of the performance of the tools on a
collection of benchmarks. Section 5 discusses the tools from the users’ perspec-
tive, and presents the results of a preliminary empirical study on their usability.
Section 6 concludes with a summary and a discussion of several directions for
further research.

2 Generic Automated Reasoning with Tableau

In this section we describe the prover generator MetTeL, aimed at supporting
researchers and practitioners who use tableau calculi for the specification of log-
ics. MetTeL automatically generates and compiles Java code of a tableau prover
from specifications of the syntax of a logic and a set of tableau rules for the logic.
The specification language of MetTeL is designed to be as simple as possible for
the user on the one hand, and as expressive as the traditional notation used in
logic and automated reasoning textbooks, on the other hand.

2.1 Tableau synthesis

Of all the different forms of tableau calculi, semantic tableau calculi [58,21,7]
are widely used and widely taught in logic and computer science courses, be-
cause the rules of inference are easily explained and understood, and deductions
are carried out in a completely goal-directed way. In explicit semantic tableau
approaches the application of the inference rules is order independent (because
these approaches are proof confluent), which avoids the overhead and compli-
cation associated with handling don’t know non-determinism of non-invertible
rules in direct methods [1] (see also the discussion in [32]). Because semantic
tableau approaches construct and return (counter-)models, they are suitable for
error finding, which is useful for ontology development, theory creation and ap-
plications such as multi-agent systems.

4 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

MetTeL is an outcome of research on the systematic development of
explicit semantic tableau systems and automated generation of tableau
provers [54,60,61,63,62]. In line with the aims of logic engineering, the vision
of this research is to allow the steps of developing a tableau calculus and prover
to be automated as much as possible. The idea is that from the semantic defi-
nition of a logic a sound, complete and often terminating calculus is generated
that can then be input into MetTeL, which will produce a prover for the logic.
In the endeavour of finding systematic general ways of generating elegant, nat-
ural tableau systems, a lot of research went into finding ways to ensure the
systems produce smaller proofs and have smaller search space, both for the the-
oretical tableau synthesis framework and the provers generated by MetTeL. The
research involved generalising clever backtracking techniques such as backjump-
ing and dynamic backtracking to the tableau synthesis framework so that they
can be combined naturally with new systems. The research also involved find-
ing new, more powerful ways to do blocking in order to ensure termination of
tableau derivations for decidable logics. Refinement techniques were developed
to devise more effective deduction calculi and improve the way that deductions
are performed in tableau systems.

Having devised a calculus for a logic, the next step is the implementation
of a prover for it. To avoid the burden of developing a prover from scratch,
or extend and adapt an existing prover, the MetTeL system was developed to
automatically generate code of fully-functioning stand-alone provers specialised
for the user’s application. MetTeL takes as input a high-level specification of a
logic, or a theory, together with a set of deduction rules and then generates a
prover for this logic and calculus. Together with the tableau synthesis framework,
this provides a systematic and nearly fully automated methodology for obtaining
tableau provers for a logic.

The rule specification language of MetTeL is based on a powerful many-
sorted first-order language designed to be as general as possible. The language
extends the meta-language of the tableau synthesis framework which enables
calculi obtained in the tableau synthesis framework to be implemented with
little effort in MetTeL. Concrete case studies undertaken with MetTeL include:

– Labelled, semantic tableau calculi for standard modal logics K, KT, S4 [60].
– Labelled, semantic tableau calculi for propositional intuitionistic logic [54].
– Tableau calculi for hybrid modal logic with counting quantifiers [37,65].
– Internalized tableau calculi for hybrid logics and description logics such as
SO, ALCO and SHOI [54,36]. Various specialisations of the blocking mech-
anism were defined and evaluated, and simulation of the standard blocking
techniques was shown. This work has evaluated the use of flexibly gener-
ated refined rules for ontology TBox axioms to reduce the search space and
improve performance.

– A terminating tableau calculus for the description logic ALBOid allowing
compound role expressions which gives it the same expressive power as the
two-variable fragment of first-order logic [55]. MetTeL was used to implement
a tableau decision procedure for this logic.

Automating Automated Reasoning 5

– Linear temporal logic with Boolean constraints [19]. A method of dealing
with fixpoints in the linear time temporal logic was developed and tested.

– Interrogative-epistemic logics for reasoning about questions and queries of
multiple agents [45].

– Logics and algebras of hypergraphs with relevance to image process-
ing [59,53]. MetTeL played an important role in the introduction and inves-
tigation of a novel bi-intuitionistic modal logic, called BISKT, and a related
modal tense logic and the development of tableau decision procedures for
these.

– The extension Km(¬) of the basic multi-modal logic Km with relational
negation, the modal logic of ‘some’, ‘all’ and ‘only’ [31], is used to illustrate
the atomic rule refinement techniques investigated [60].

– Unlabelled deduction calculi for Boolean logic and three-valued Lukasiewicz
logic (which we consider in Section 4), and a calculus for simple equational
reasoning about lists (given in Figure 1) [62].

These applications have shown it is easy to generate provers for a wide variety
of logics, including new logics. They have also shown the approach is especially
useful for systematic comparisons of different sets of tableaux rules for a specific
logic, different strategies, and techniques. This is useful for research purposes
but also in teaching and learning environments.

At present, MetTeL does not accommodate languages with first-order quan-
tifiers directly, although the syntax specification language of MetTeL has enough
expressive power to represent languages of first-order theories with a finite num-
ber of logical operators, predicate symbols and functional symbols.

2.2 MetTeL Features and Usage

First, an input file containing a definition of the syntax used in the tableau rules
and the definition of the tableau rules themselves needs to be prepared. Fig-
ure 1 shows the contents of an input file defining a simple ‘non-logical’ example
of a syntax and tableau calculus for describing and comparing lists. The line
specification lists defines lists to be the name of the user-defined logical
language. The syntax lists block consists of the declaration of the sorts and
definitions of logical operators. Here, three sorts are declared: formula, element
and list. For the sort element, no operators are defined, which means that
all element formulas are atomic. There are two operators for the sort list: a
nullary operator empty (to be used for the empty list) and a binary operator
composite (used to inductively define non-empty lists). The next two lines are
the formation rules for formulas of sort formula, namely inequalities between
elements and lists.

The tableau lists block defines the tableau rules of the calculus. In the
tableau rule specification language of MetTeL, the premises and conclusions of
a rule are separated by / and each rule is terminated by $;. Branching rules
can have two or more sets of conclusions which are separated by $|. Premises
and conclusions are formulas in the user-defined logical language specified in

6 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

specification lists;
syntax lists{

sort formula, element, list;
list empty = ’<>’ | composite = ’<’ element list ’>’;
formula elementInequality = ’[’ element ’!=’ element ’]’;
formula listInequality = ’{’ list ’!=’ list ’}’;

}
tableau lists{

[a != a] / priority 0 $;
{L != L} / priority 0 $;
{L0 != L1} / {L1 != L0} priority 1 $;
{<a L0> != <b L1>} / [a != b] $| {L0 != L1} priority 2 $;

}

Fig. 1: Input to MetTeL: A specification of syntax and tableau rules.

Input

{<a (<b L>)> != <a (<b L>)>}

Output

Unsatisfiable.
Contradiction:
[({(<a (<b L>)>) != (<a (<b L>)>)})]

Fig. 2: An unsatisfiable instance

Input

{<a (<b L0>)> != <a (<b L1>)>}

Output

Satisfiable.
Model:
[({(<a (<b L0>)>) != (<a (<b L1>)>)}),
({(<b L0>) != (<b L1>)}), ({L0 != L1})]

Fig. 3: A satisfiable instance

the previous block. As is illustrated, the rules can be annotated with priority
values, that determine the order by which the rules are applied. The default
priority value of any rule with unspecified priority is 0. The tableau lists

block includes two closure rules in which the right hand sides of / are empty,
reflecting that inequality is irreflexive, as well as additional rules for handling
inequalities.

Having prepared an input file named lists.s (say) MetTeL can be
run from the command line using: java -jar mettel2.jar -i lists.s. The
generated prover lists.jar can be run from the command line using:
java -jar lists.jar.

The generated provers return the answers Satisfiable or Unsatisfiable.
If the answer is Unsatisfiable and the prover is able to extract the input for-
mulas needed for deriving the contradiction, they are printed. If the answer is
Satisfiable then all the formulas within the completed open branch are out-
put as a model. For efficiency reasons MetTeL does not output proofs. Although
proofs are useful for the user, the overhead of outputting proofs is high because
tableau proofs for unsatisfiable problems may be very big. Additionally, the
backtracking techniques and the destructive nature of the rewriting for equal-
ity reasoning and blocking (described below), make the problem of generating
a human-readable proof harder. For some instances, however, MetTeL is able
to output the assumptions that are used to show unsatisfiability, and so some
information about such proofs is recovered.

Figures 2 and 3 present satisfiable and unsatisfiable runs of the generated
prover for the lists example. The list [a,b,L] is identical to itself, and thus the

Automating Automated Reasoning 7

MetTeL

Language & parsing

Language syntax

Tableau rules

Translation

Language parser code

Language-specific code

Generic tableau engine

Tableau manager

Tableau states

Tableau rules

Tableau strategies

MetTeL generated prover

Language & parsing

Expression manager

Random
expr. gen-
erator

Expression
analyser

Tableau inference process

Language-specific parts

Tableau prover class

Benchmarking class

Generic tableau engine

Tableau manager

Tableau states

Tableau rules

Tableau strategies

Fig. 4: Architecture of MetTeL and MetTeL generated provers

inequality in Figure 2 cannot be satisfied. On the other hand, the lists [a,b,L0]
and [a,b,L1] differ from one another, and so the inequality in Figure 3 is
satisfiable.

The online-version [35] of MetTeL consist of several screens and includes pre-
defined specifications for several tableau calculi, some of which are mentioned in
Section 2.1.

2.3 Under the MetTeL Hood and Features of the Generated
Provers

Along with easy use and efficiency of the generated provers, the goals and objec-
tives of the implementation of MetTeL included modularity of generated code
and a hierarchy of public JAVA classes and interfaces that can be extended and
integrated with other systems.

A top-level view of the architecture of MetTeL and MetTeL generated provers
is given in Figure 4. The user-defined syntax for formulas is parsed using the
ANTLR parser generator, and is internally represented as an abstract syntax tree
(AST). All generated Java classes for formula representation implement the basic
MettelExpression interface. At runtime, the creation of formula objects is done
according to the factory design pattern, via the interface MettelObjectFactory.
The two most important methods that formula classes implement are: (i) a
method that returns a substitution that matches the current object with the

8 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

formula object supplied as a parameter; and (ii) a method that returns an in-
stance of the current formula with respect to a given substitution.

Every tableau rule is applied within a tableau state. A sequence of formulas
from the set of active formulas associated with the tableau state is selected and
the formulas in the sequence are matched with the premises of the chosen rule.
All selected formulas are deleted from the set of active formulas associated with
the rule. If the selected formulas in the sequence match the premises of the rule,
the resulting substitution object is passed to the conclusions of the rule. The
final result of a rule application is a set of branches, which are sets of formulas
obtained by applying the substitution to the conclusions of the rule.

Important concerns in the creation of MetTeL were efficiency of the gener-
ated provers and providing decision procedures via generic blocking. MetTeL
includes two particular built-in optimizations for reducing the search space in
tableau derivations. The first is dynamic backtracking [25], that avoids repeating
the same rule applications in parallel branches. The second is conflict directed
backjumping [22,51], that derives conflict sets of formulas from a derivation, thus
causing branches with the same conflict sets to be discarded. Usually, these op-
timizations are designed for a particular tableau procedure with a fixed syntax,
while in MetTeL, they are both implemented in a logic-independent way.

To achieve termination for semantic tableau approaches some form of block-
ing is usually necessary. Because of its generality and independence from the logic
or the tableau calculus, blocking in MetTeL generated provers use an equality-
based approach from the tableau synthesis framework [55]. The forms of blocking
available include unrestricted blocking, which is the strongest form of block-
ing, and predecessor blocking. They can be incorporated through inference rules
added to the calculus. In a semantic tables calculus for hybrid modal logic the
shape of unrestricted blocking is

@s P @t Q / [s=t] $| (not([s=t])) priority 9 $;

and predecessor blocking may look like this:

R(s,t) / [s=t] $| (not([s=t])) priority 9 $;

These rules use in-built equality to merge terms s and t in the right branch
which is selected first. This either leads to a model, or it does not, in which
case s and t cannot be equal. While in the second case the rule is only applied
if s is a predecessor of t in the R relation, in the first case the premises are
not really constraining, meaning the rule is potentially applied for all terms in
a derivation, for P and Q are matched with any modal formulas. We should note
that R is also matched with any relational formula, but here we are assuming
relational formulas can only be atomic as would be specified in the input file.
Unrestricted blocking rule can be used to achieve termination for logics with the
finite model property and finitely satisfiable formulas [55,54].

To realise blocking, the generated provers support equational rewriting of
terms with respect to congruence relations defined in the language specification.
In particular, if the definition of a rule involves equality as above then (ordered)

Automating Automated Reasoning 9

rewriting is triggered. Rewriting allows derivations to be simplified on the fly
and the search space to be reduced: for example when [f(i,P)=i] exhaustive
rewriting reduces the term f(f(f(i,P),P),P) to i. Refinements of equality
reasoning and equality-based blocking in semantic tableau-like approaches have
been studied in [36,53,56,9].

The default search strategy in the derivation process of the core
tableau engine of MetTeL is depth-first left-to-right search, which is im-
plemented as a MettelSimpleLIFOBranchSelectionStrategy request to the
MettelSimpleTableauManager. Breadth-first search is implemented as a
MettelSimpleFIFOBranchSelectionStrategy request and can be used by in-
troducing a small modification in the generated Java code. Users can also imple-
ment their own search strategy and pass it to MettelSimpleTableauManager.

The rule selection strategy can be controlled by specifying priority values
for the rules in the tableau calculus specification. The rule selection algorithm
checks the applicability of rules and returns a rule that can be applied to for-
mulas on the current branch according to the rule priority values. First, the
algorithm selects a group of rules with the same priority value. Selection within
a group with higher priority value is made only if no rules with smaller priority
values are applicable. Second, rules with the same priority values are checked
for applicability sequentially. To ensure fair treatment of rules within the same
priority group all rules within the group are checked for applicability an equal
number of times.

3 Generic Automated Reasoning with Sequent Calculi

In this section we describe Gen2sat, which, like MetTeL is a generic tool writ-
ten in Java. In contrast to MetTeL, Gen2sat aims to support researchers and
practitioners who use sequent calculi for the specification of logics. Sequent cal-
culi, introduced in [24], are a prominent proof-theoretic framework, suitable for a
wide variety of different logics (see, e.g., [6,64]). Unlike the usual method of proof
search that is common in decision procedures for sequent calculi [18], Gen2sat
employs a uniform reduction to SAT [41]. Shifting the intricacies of implemen-
tation and heuristic considerations to the realm of off-the-shelf SAT solvers, the
tool is lightweight and focuses solely on the transformation of derivability to
a SAT instance. As such, it also has the potential to serve as a tool that can
enhance learning and research of concepts related to proof theory and semantics
of non-classical logics, in particular those of sequent calculi.

3.1 Analytic Pure Sequent Calculi

We start by precisely defining the family of calculi for which Gen2sat is appli-
cable. An inference rule is called pure if it does not enforce any limitations on
the context formulas (following [5], the adjective pure stands for this require-
ment). For example, the right introduction rule of implication in classical logic

10 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

Γ,ϕ⇒ψ,∆
Γ⇒ϕ⊃ψ,∆ is pure, as it can be applied with any Γ and ∆. However, in intuition-

istic logic, the corresponding rule is Γ,ϕ⇒ψ
Γ⇒ϕ⊃ψ (in other words, ∆ must be empty).

Thus the latter rule is impure. A sequent calculus is called pure if it includes all
the standard structural rules:4 weakening, identity and cut; and all its inference
rules are pure.

For a finite set } of unary connectives, we say that a formula ϕ is a }-
subformula of a formula ψ if either ϕ is a subformula of ψ, or ϕ = ◦ψ′ for some
◦ ∈ } and proper subformula ψ′ of ψ. A pure calculus is }-analytic if whenever a
sequent s is derivable in it, s can be derived using only formulas from sub}(s), the
set of }-subformulas of s. We call a calculus analytic if it is }-analytic for some
set }. Note that ∅-analyticity amounts to the usual subformula property. Many
well-known logics can be represented by analytic pure sequent calculi, including
three and four-valued logics, various paraconsistent logics, and extensions of
primal infon logic ([41] presents several examples).

Gen2sat is capable of handling impure rules of the form (∗i)
Γ ⇒ ∆

∗Γ ⇒ ∗∆
for Next-

operators. (∗i) is the usual rule for Next in LTL (see, e.g., [34]). It is also used
as � (and ♦) in the modal logic KD! of functional Kripke frames (also known
as KF and KDalt1). In primal infon logic [17] Next operators play the role of
quotations.

3.2 Gen2sat Features and Usage

From the command line, Gen2sat is called by: java -jar gen2sat.jar <path>,
where path points to a property file with the following fields:

Connectives A comma separated list of connectives, each specified by its sym-
bol and arity, separated by a colon.

Next operators A comma separated list of the symbols for the next operators.
Rules Each rule is specified in a separate line that starts with rule:. The

rule itself has two parts separated by /: the premises, which is a semicolon
separated list of sequents, and the conclusion, which is a sequent.

Analyticity For the usual subformula property this field is left empty. For other
forms of analyticity, it contains a comma separated list of unary connectives.

Input sequent The sequent whose derivability should be decided.

If the sequent is unprovable, Gen2sat outputs a countermodel. If it is prov-
able, a full proof is unobtainable, due to the semantic approach Gen2sat un-
dertakes. However, in case the sequent is provable, Gen2sat is able to recover a
sub-calculus in which the sequent is already provable, that is, a subset of rules
that suffice to prove the sequent.

Figures 5 and 6 present examples for the usage of Gen2sat. In Figure 5, the
input contains a sequent calculus for the Dolev-Yao intruder model [15]. The
connectives E and P correspond to encryption and pairing. The sequent is prov-
able, meaning that given two messages m1 and m2 that are paired and encrypted

4 Here sequents are taken to be pairs of sets of formulas, and therefore exchange and
contraction are built in.

Automating Automated Reasoning 11

Input file

connectives: P:2, E:2
rule: =>a; =>b / =>aPb
rule: a=> / aPb=>
rule: b=> / aPb=>
rule: =>a; =>b / =>aEb
rule: =>b; a=> / aEb=>
analyticity:
inputSequent: (((m1 P m2) E k) E k),k=>m1

Output

provable
There’s a proof that uses only these rules:
[=>b; a=> / a E b=>, a=> / a P b=>]

Fig. 5: A provable instance

Input file

connectives: AND:2,OR:2,IMPLIES:2,TOP:0
nextOperators: q1 said, q2 said, q3 said
rule: =>p1; =>p2 / =>p1 AND p2
rule: p1,p2=> / p1 AND p2=>
rule: =>p1,p2 / =>p1 OR p2
rule: =>p2 / =>p1 IMPLIES p2
rule: =>p1; p2=> / p1 IMPLIES p2=>
rule: / => TOP
analyticity:
inputSequent: =>q1 said (p IMPLIES p)

Output

unprovable
Countermodel:
q1said p=false, q1said(p IMPLIES p)=false

Fig. 6: An unprovable instance

twice with k, the intruder can discover m1 if it knows k. In Figure 6, the in-
put file contains a sequent calculus for primal infon logic, where the implication
connective is not reflexive, and hence the input sequent is unprovable. Note that
the rules for the next operators are fixed, and therefore they are not included
in the input file. Both calculi are ∅-analytic, and hence the analyticity field is
left empty. In general, whenever the calculus is }-analytic, this field lists the
elements of }.

Gen2sat also includes an online version, in which the user fills a form that
corresponds to the input file of the command line version. When all the informa-
tion is filled, the user clicks the ‘submit’ button, and gets both an abbreviated
result and a detailed result. The web-based version includes predefined forms for
some propositional logics (e.g. classical logic, primal infon logic and more). In
addition, it allows the user to import sequent calculi from Paralyzer.5

3.3 Under the Gen2sat Hood

The core of Gen2sat is a reduction to SAT, thus it leaves the ‘hard work’ and
heuristic considerations of optimizations to state of the art SAT solvers, allowing
the user to focus solely on the logical considerations.

The theoretical background on which Gen2sat is based can be found in [41].
Below are the relevant results from that paper.

In order to decide derivability in sequent calculi, Gen2sat adopts a semantic
view of them. Thus, two-valued valuations functions (bivaluations), normally
defined over formulas, are extended to sequents in the following, natural way:
v(Γ ⇒ ∆) = 1 if v(ϕ) = 0 for some ϕ ∈ Γ or v(ψ) = 1 for some ψ ∈ ∆. This
extended semantics gives way for a semantic interpretation of pure rules:

5 Paralyzer is a tool that transforms Hilbert calculi of a certain general form into
equivalent analytic sequent calculi. It was described in [12] and can be found at
http://www.logic.at/people/lara/paralyzer.html.

http://www.logic.at/people/lara/paralyzer.html

12 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

xplain

specs

sa4j

SatInstance

Gen2sat

PartialBiValuation

Sequent

SequentCalculus DecisionProcedure

-sequentCalculus: SequentCalculus

+decide(s: Sequent)

Fig. 7: A partial class diagram of Gen2sat

Definition 1. Let G be a pure sequent calculus. A G-legal bivaluation is a
function v from some set of formulas to {0, 1} that respects each rule of G, that
is, for every instance of a rule, if v assigns 1 to all premises, it also assigns 1 to
the conclusion.

Example 1. If G is taken to be the Dolev-Yao calculus from Figure 5, then one
of the conditions for being G-legal is that if v(⇒ a) = 1 and v(⇒ b) = 1, then
also v(⇒ aEb) = 1.

Theorem 1 ([41]). Let } be a set of unary connectives, G a }-analytic pure
sequent calculus, and s a sequent. s is provable in G if and only if there is no
G-legal bivaluation v with domain sub}(s) such that v(s) = 0.

Thus, given a }-analytic calculus G and a sequent s as its input, Gen2sat
does not search for a proof. Instead, it searches for a countermodel of the sequent,
by encoding in a SAT instance the following properties of the countermodel:
(i) assigning 0 to s; and (ii) being G-legal with domain sub}(s). The addition
of Next-operators requires some adaptations of the above reduction, that are
described in [41].

Gen2sat is implemented in Java and uses sat4j [42] as its underlying SAT
solver. Since this approach is based on a ‘one-shot’ reduction to SAT, no changes
are needed in the SAT solver itself. In particular, sat4j can be easily replaced by
other available solvers. Figure 7 includes a partial class diagram of Gen2sat, that
shows the main modules of the tool. The two main modules of sat4j that are
used are specs, which provides the solver itself, and xplain, which searches for
an unsatisfiable core. The main class of Gen2sat is DecisionProcedure, that is
instantiated with a specific SequentCalculus. Its main method decide checks
whether the input sequent is provable. Given a Sequent s, decide generates a
SatInstance stating that s has a countermodel, by applying the rules of the
calculus on the relevant formulas, as described above. SatInstance is the only
class that uses sat4j directly, and thus it is the only class that will change if
another SAT solver is used.

For satisfiable instances, the specs module returns a satisfying assign-
ment, which is directly translated to a countermodel in the form of a
PartialBivaluation. For unsatisfiable instances, the xplain module generates
a subset of clauses that is itself unsatisfiable. Tracking back to the rules that
induced these clauses, it is possible to recover a smaller sequent calculus in which
s is already provable. For this purpose, a multi-map is maintained, that saves

Automating Automated Reasoning 13

for each clause of the SAT instance the set of sequent rules that induced it. Note
however, that the smaller calculus need not be analytic, and then the correct-
ness, that relies on Theorem 1 might fail. Nevertheless, correctness is preserved
in this case, as the ‘if’ part of Theorem 1 holds even for non-analytic calculi.
Thus, although Gen2sat does not provide a proof of the sequent, it does provide
useful information about the rules that were used in it.

4 Performance Evaluation

We describe an evaluation performed on Gen2sat and MetTeL. The goal of this
evaluation is two-fold: first, it shows that both tools are usable in practice.
Second, it sheds some light on the effect that the internal differences between
the tools and their underlying approaches (described in earlier sections) have on
actual benchmarks.

As a case study, we consider Lukasiewicz three-valued logic, denoted
by L3 [43]. This logic employs three truth values: t, f , and i, representing ‘true’,
‘false’, and ‘undetermined’, respectively, and is defined using the following three-
valued truth tables:

∧ t f i

t t f i
f f f f
i i f i

⊃ t f i

t t f i
f t t t
i t i t

∨ t f i

t t t t
f t f i
i t i i

p ¬p
t f
f t
i i

Valid formulas in L3 are the formulas that are always assigned the value t.
Its implication-free fragment is identical to Kleene’s three-valued logic [38]. As
a consequence, it does not have implication-free valid formulas. L3 is decidable,
like every propositional logic that is defined using a finite-valued logical matrix.

We start by describing the different implementations of this logic in both
tools. This is followed by a description of the problems (formulas) that were
tested. Then, we provide the actual results of this case study, and discuss the
various differences between the tools.

4.1 Calculi

The paper [29] presents a tableau calculus for L3 (henceforth denoted T), which
is available in the online version of MetTeL. The paper [6] presents a sequent
calculus for this logic (henceforth denoted S). As it is {¬}-analytic and pure,
it can be implemented easily in Gen2sat. The most straightforward comparison
would be between MetTeL’s implementation of the first calculus and Gen2sat’s
implementation of the second calculus. Since our goal is to compare the underly-
ing automated reasoning approaches rather than specific calculi, and in order to
avoid the comparison be obscured by differences in the calculi, it is important to

14 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

evaluate both frameworks on the same calculus. For this purpose, we have trans-
lated the sequent calculus S to a tableau calculus (henceforth denoted ST).6 To
summarize, we have considered three implementations of L3:

specification Lukasiewicz;
syntax Lukasiewicz{

sort valuation;
sort formula;
valuation true = ’T’ formula;
valuation unknown = ’U’ formula;
valuation false = ’F’ formula;
formula true = ’true’;
formula false = ’false’;
formula negation = ’~’ formula;
formula conjunction = formula ’&’ formula;
formula disjunction = formula ’|’ formula;
formula implication = formula ’->’ formula;

}
tableau Lukasiewicz{

T P F P / priority 0 $;
T P U P / priority 0 $;
U P F P / priority 0 $;
U P F P / priority 0 $;
T ~P / F P priority 1 $;
U ~P / U P priority 1 $;
F ~P / T P priority 1 $;
T (P & Q) / T P T Q priority 1 $;
F (P & Q) / F P $| F Q priority 2 $;
U (P & Q) / T P U Q $| U P T Q $| U P U Q priority 3 $;
T (P | Q) / T P $| T Q priority 2 $;
F (P | Q) / F P F Q priority 1 $;
U (P | Q) / F P U Q $| U P F Q $| U P U Q priority 3 $;
F (P -> Q) / T P F Q priority 1 $;
U (P -> Q) / U P F Q $| T P U Q priority 2 $;
T (P -> Q) / T Q $| F P $| U P U Q priority 3 $;
T false / priority 0 $;
U false / priority 0 $;
U true / priority 0 $;
F true / priority 0 $;

}

Fig. 8: Definition of T in MetTeL

T the tableau calculus from [29], implemented in MetTeL, specified in Figure 8.
S the sequent calculus from [6], implemented in Gen2sat, specified in Figure 9.
ST a translation of S as a tableau calculus, implemented in MetTeL, specified

in Figure 10.

The calculus T is three-valued (corresponding to the three values of L3).
This means that in order to check the validity of a given formula ϕ, one needs to
apply T both on F : ϕ and on U : ϕ. Only if both turn out to be unsatisfiable,
then the formula is valid. Obviously, once one of them is found satisfiable, there
is no need to check the second. In contrast, the calculus S is two-valued, and

6 Note that a translation of T to a sequent calculus is less obvious, as this is a three-
sided calculus, where Gen2sat employs ordinary two-sided sequents.

Automating Automated Reasoning 15

name: S
displayName: L3
connectives: &:2,|:2,->:2,!:1
rule: =>p1; =>p2 / => p1 & p2
rule: p1,p2=> / p1 & p2 =>
rule: =>p1,p2 / => p1 | p2
rule: p1=>; p2=> / p1 | p2 =>
rule: a=> / !! a=>
rule: =>a / => !! a
rule: !A, !B=> / !(A | B)=>
rule: =>!A; =>!B / => !(A | B)
rule: !A=>; !B=> / !(A & B)=>
rule: =>!A, !B / => !(A & B)
rule: /! A, A=>
rule: ! A => ; B =>; => A,! B / A -> B=>
rule: A=>B; ! B=>! A / => A -> B
rule: A, ! B=> / ! (A -> B)=>
rule: =>A; =>!B / => ! (A -> B)
analyticity: !
details: false

Fig. 9: Definition of S in Gen2sat

thus checking the validity of a formula ϕ amounts to applying the calculus once
on the sequent ⇒ ϕ.

In Gen2sat, the ability to provide a sub-calculus in which a given sequent is
provable is expensive, as it relies on finding unsatisfiable cores. Thus, for this
evaluation we have compiled a non-verbose version of the tool, that does not
provide this information.

Overall, the five implementations we consider are:

Sm the implementation of S in the non-verbose version of Gen2sat.
S the implementation of S in the usual (slower) version of Gen2sat.
ST the implementation of ST in MetTeL.
T -F the implementation of T in MetTeL, applied on inputs of the form F : ϕ.
T -U the implementation of T in MetTeL, applied on inputs of the form U : ϕ.

These implementations allow two interesting types of comparisons: the first is
comparing different implementations in the same tool: the first two for Gen2sat,
and the last three for MetTeL. The second is to compare the two tools, which is
best achieved by comparing either S or Sm against ST .

4.2 Benchmarks

As benchmark problems we used the four problem classes from [52]:

(1) (An ∨Bn) ⊃ (A ∨B)n (2) (A ∨B)n ⊃ (An ∨Bn)

(3) (n · (A ∧B)) ⊃ ((n ·A) ∧ (n ·B)) (4) ((n ·A) ∧ (n ·B)) ⊃ (n · (A ∧B))

where A0 = >, An+1 = A � An, 0 · A = ⊥, (n + 1) · A = A ⊕ (n · A),
A � B = ¬(¬A ⊕ ¬B) and A ⊕ B = ¬A ⊃ B. We only considered the lan-
guage {∧,∨,⊃,¬}, and so we defined > as p ⊃ p and ⊥ as ¬>. We produced
formulas for 0 ≤ n ≤ 300 of intervals of 5.

16 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

specification ST;
syntax ST{

sort valuation;
sort formula;
valuation true = ’T’ formula;
valuation false = ’F’ formula;
formula negation = ’!’ formula;
formula conjunction = formula ’&’ formula;
formula disjunction = formula ’|’ formula;
formula implication = formula ’->’ formula;

}
tableau ST{

T P F P / priority 0 $;
T (P & Q) / T P T Q priority 1 $;
F (P & Q) / F P $| F Q priority 2 $;
T (P | Q) / T P $| T Q priority 2 $;
F (P | Q) / F P F Q priority 1 $;
F (!(!(P))) / F P priority 1 $;
T (!(!(P))) / T P priority 1 $;
F !(P) / T P priority 1 $;
T (!(P | Q)) / T !P T !Q priority 1 $;
F (!(P | Q)) / F !P $| F !Q priority 2 $;
T (!(P & Q)) / T !P $| T !Q priority 2 $;
F (!(P & Q)) / F !P F !Q priority 1 $;
T (P->Q) / F P F !Q $| F P T !P $| T Q F !Q $| T Q T !P priority 3 $;
F (P->Q) / T P F Q F !P $| T !Q F Q F !P priority 2 $;
T !(P->Q) / T P T !Q priority 1 $;
F !(P->Q) / F P $| F !Q priority 2 $;

}

Fig. 10: Definition of ST in MetTeL

These problems were designed to test provers for infinite-valued Lukasiewicz
logic, and are all valid in it, as well as in L3. Non-valid formulas were obtained
by adding a negation. In [52], problems of the first and third class are considered
easy, while problems of the second and forth class are considered hard. There
are several explanations to this classification in [52] (e.g., hard problems require
cuts and branching proofs), that are backed by experimental results of several
implementations of calculi for infinite-valued Lukasiewicz logic.

4.3 Results

The experiments were made on a dedicated Linux machine with four dual-core
2.53 Ghz AMD Opteron 285 processors and 8GB RAM. The Java heap limit was
4GB. Figure 11 exhibits the main results. A timeout of 10000 ms was imposed
on all problems, and anything higher appears in these figures as ‘11000’. The
benchmarks themselves are available online.7

Figure 11 presents running times. In every problem class, both Gen2sat im-
plementations of S performed better than the MetTeL implementations of ST
and T .

Notably, there was a big difference between the performances of the ver-
bose and non-verbose versions of Gen2sat (S and Sm, respectively), but only on
provable instances. The reason is that on such instances, the largest amount of

7 https://github.com/yoni206/gen2satvsmettel

https://github.com/yoni206/gen2satvsmettel

Automating Automated Reasoning 17

100 200 300

5,000

10,000

N

ti
m

e
in

m
s

Provable – Class 1

Sm

S

ST

T -F

T -U

100 200 300

5,000

10,000

N

ti
m

e
in

m
s

Unprovable – Class 1

100 200 300

5,000

10,000

N

ti
m

e
in

m
s

Provable – Class 2

100 200 300
0

5,000

10,000

N

ti
m

e
in

m
s

Unprovable – Class 2

100 200 300
0

5,000

10,000

N

ti
m

e
in

m
s

Provable – Class 3

100 200 300
0

5,000

10,000

N

ti
m

e
in

m
s

Unprovable – Class 3

100 200 300
0

5,000

10,000

N

ti
m

e
in

m
s

Provable – Class 4

100 200 300
0

5,000

10,000

N

ti
m

e
in

m
s

Unprovable – Class 4

Fig. 11: Running times on provable and unprovable instances of classes 1–4 from
Rothenberg’s problems. N is the size of the Rothenberg problem. See top left
graph for the legend.

18 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

computation time is spent on calls to the xplain module of sat4j, which is used
only for S in order to produce unsatisfiable cores. On unprovable problems, for
which this module was never called, the difference between the two versions of
Gen2sat was negligible.

Comparing the different implementations of MetTeL between themselves, we
did not get consistent results. Focusing on T however, we did see that problems of
the form U : ϕ are processed slower than problems of the form F : ϕ, whenever ϕ
was not valid. In all these formulas, it was possible to assign F to the Rothenberg
formula, but not U . This is not surprising, as the rules for U in T involve three-
way branching, that significantly increases the search space for MetTeL. When ϕ
was valid, however, F -problems and U -problems either performed similarly, or
U -problems were processed faster. Thus, when using the prover generated by
MetTeL for T , it is better to first use it with an F -label and only if it was not
satisfiable, run it again with U .

On the other hand, almost all the rules in ST have one premise, which ex-
plains the better performance of this calculus over T . Moreover, few fine grained
priority values improved the performance for this calculus. For example, raising
the priority value of T (P->Q) from 3 to 4, and that of F (P->Q) from 2 to 3
resulted in some improvement in running times.

Both MetTeL and Gen2sat performed better on unprovable problems than
on provable ones. An exception is the non-verbose implementation Sm, whose
performance was the same on provable and unprovable problems.

Figure 12 shows that Rothenberg’s original classification [52] of hard vs.
easy problems does not hold for the provers MetTeL and Gen2sat generated for
 Lukasiewicz three-valued logic. In S, Sm and T -U, we have that classes 3 and 4
were easier than classes 1 and 2. In ST , the exact opposite was observed. Only
in T -F, the Rothenberg classification survived, and classes 1 and 3 were easier
than classes 2 and 4.

The fact that the original classification did not survive the transition from
infinite-valued Lukasiewicz logic to the three-valued one, is not surprising. First,
these are two different logics, and second, the calculi for them are much simpler
than the calculi for the infinite-valued version. For example, the sequent calculus
that we consider here is cut-free, while only hyper-sequent calculi that are cut-
free are known for the infinite case.

In the three-valued case, we however uncovered a different classification, ac-
cording to which classes 1 and 2 are harder than classes 3 and 4 (this was the
case for four out of five implementations of the calculi for L3). This is consistent
with the fact that the problems of classes 3 and 4 are less complex than those
of 1 and 2. At least in Gen2sat, where the complexity of the input has a big
effect on the parsing stage, this is to be expected.

5 Usability Evaluation

In this section we complement the performance evaluation of Gen2sat and
MetTeL with an evaluation of another important aspect of provers: usability. Us-

Automating Automated Reasoning 19

100 200 300

5,000

10,000

N

ti
m

e
in

m
s

S

100 200 300
0

5,000

10,000

N

ti
m

e
in

m
s

Sm

100 200 300

5,000

10,000

N

ti
m

e
in

m
s

ST

class 1

class 2

class 3

class 4

100 200 300

5,000

10,000

N

ti
m

e
in

m
s

T − F

100 200 300

5,000

10,000

N

ti
m

e
in

m
s

T -U

Fig. 12: Running times of provable instances of all classes from Rothenberg’s
problems. N is the size of the Rothenberg problem.

20 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

ability of software systems [46] is measured by evaluation of their user-interfaces.
Standard approaches for evaluating usability require some form of user involve-
ment: user testing, focus groups and other types of feedback collection from
users. Studies of usability in the field of automated reasoning are scarce, and
have mainly been carried out in the context of interactive theorem proving (see,
e.g., [4,2,10]).

According to [28], understanding who the users are and what are their tasks
is key in designing for usability. Some design and usability-related decisions ob-
viously had to be made while developing Gen2sat and MetTeL. For example,
using the online version of MetTeL, the user can download a standalone prover
and then use it locally, and also edit its source code. When using the online
version of Gen2sat, in contrast, the sequent calculus in question can be changed
throughout the working session of the user. Obviously, different users have dif-
ferent preferences regarding such issues, that are reflected in the data presented
below. While it is probably impossible to cater for every taste of users, prover
developers need to be very clear about their intended audience.

In what follows we describe a preliminary usability study we carried out,
aiming to better understand the impact of the different approaches taken in
Gen2sat and MetTeL on their usability. Our participants were five expert logi-
cians, carefully selected according to the following criteria: (i) published research
in the fields of proof theory and/or automated reasoning, and (ii) familiar with
both sequent and tableau formalisms. The participants received detailed instruc-
tions introducing the tools and asking them to perform various tasks using them
(the instructions are given in Figure 13). They then answered several questions
concerning their experiences using the tools. Below we provide a summary and
some quotes from their answers to open-ended questions, as well as some further
discussion on these results.

5.1 Results

Both tools received good reception from the users, that found them potentially
useful and convenient to use. Remarkably, even in our very focused group of
logicians working in proof theory and automated reasoning, we got a range of
different responses to the features of the tools, that can be used in future devel-
opments of the tools considered here, and also of new tools being developed.

The average satisfaction score (on a scale of 1–5) for MetTeL was 3.8, while
for Gen2sat it was 3.6. MetTeL was indeed pointed out as a more user-friendly
tool:

– It was easy to understand how to define the calculus looking at the predefined
systems.

– MetTeL is user-friendly when it comes to specifying the calculus, and the
fact that we can download a prover for the system is a big plus.

– I find the GUI of MetTeL more well-polished.

The main issues with Gen2sat were related to lack of documentation and cus-
tomizability:

Automating Automated Reasoning 21

In what follows you will investigate the logic P1 [57]. Its sequent calculus is ob-
tained from the calculus for classical logic by replacing the rule (¬ ⇒) with the
following four rules:

Γ ⇒ ¬A,∆
Γ,¬¬A⇒ ∆

Γ ⇒ A ∧B,∆
Γ,¬(A ∧B)⇒ ∆

Γ ⇒ A ∨B,∆
Γ,¬(A ∨B)⇒ ∆

Γ ⇒ A ⊃ B,∆
Γ,¬(A ⊃ B)⇒ ∆

Its tableau calculus is obtained from the calculus for classical logic by replacing
the rule (T¬) by the following rules:

T : ¬¬A
F : ¬A

T : ¬(A ∧B)

F : A ∧B
T : ¬(A ∨B)

F : A ∨B
T : ¬(A ⊃ B)

F : A ⊃ B

Step 1. Use Gen2sat to check the validity of the formula
X = (A ∧ ¬A) ⊃ (B ∧ ¬B) in P1. Please describe your experience in
a few sentences. Relate to difficulty of the task, user-friendliness of the tool,
comprehensibility of the result and other usability aspects.

Step 2. Use MetTeL to check the validity of the same formula X in P1. Please
describe your experience in a few sentences. Relate to difficulty of the task,
user-friendliness of the tool, comprehensibility of the result and other usability
aspects.

Step 3. You will now check the validity of the formula
Y = ((A ∧ A) ∧ (¬(A ∧ A))) ⊃ (B ∧ ¬B) in P1 using MetTeL. Please
describe your experience in a few sentences. Relate to difficulty of the
task, user-friendliness of the tool, comprehensibility of the result and other
usability aspects.

Step 4. You will now check the validity of the same formula Y in P1 using
Gen2sat. Please describe your experience in a few sentences. Relate to diffi-
culty of the task, user-friendliness of the tool, comprehensibility of the result
and other usability aspects.

Concluding Questions:

1. On a scale of 1–5 (where 1 is the least satisfied, and 5 the most satisfied),
how satisfied are you with MetTeL? Why did you choose this score?

2. On a scale of 1–5 (where 1 is the least satisfied, and 5 the most satisfied),
how satisfied are you with Gen2sat? Why did you choose this score?

3. Which of the two tools do you think would be more helpful for you in a study
of a specific logic (which has both a sequent and a tableaux representation)?
Why?

4. Which of the two tools do you think would be more helpful for you in a study of
a family of logics (which have both a sequent and a tableaux representation)?
Why?

5. In your own research, do you envision that Gen2sat and/or MetTeL could
be utilized? If so, describe how your research could benefit from these tools,
how you would utilize them, and which of them would be preferable. If your
answer is negative, please explain why.

6. Can you offer any further feedback on Gen2sat, MetTeL and the difference
between them? You can refer to pros and cons of each tool, relying on your
experience with them.

Fig. 13: User Questionnaire

22 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

– The system worked perfectly after I realized how to specify the proof system
in a suitable way. I think that some instruction about the format of rules
would be very helpful.

– At first appearance, the system seems a bit less customizable by the practi-
tioner.

– Specifying the system is a bit tricky, not having contexts for sequent calculi
seem strange.

– Some features were not fine-tuned for best user experience.

The preferences of the participants with respect to the two tools were mixed:

– Gen2Sat would be more helpful to me. Since I am more familiar with sequent
calculus, I would prefer it over MetTeL.

– I would prefer MetTeL if the family of logics were more naturally defined by
the models of the logics, but I would prefer Gen2Sat in case the class were
more naturally defined as a class of axiomatic systems.

– It depends on the (language of the) logic, I guess. If there is no need to play
around with fancy syntaxes, or if a sufficiently similar example is already
available to be modified, I would guess that Gen2Sat is a bit easier to work
with, at first. I think both are equally good to investigate a family of logics
(sharing syntax).

Most participants found the tools potentially useful for tasks performed by lo-
gician users:

– My work could definitely profit from the use of the provers. It is often useful
to have a way to find out whether a formula is a theorem, for example to
find examples or counterexample easily.

– I think that having a prover that is easy to use and available online can surely
help in playing with a new logic system, in order to get a feeling of what is
and what is not provable by it.

– I think they could be utilized if I was tweaking around with known logics, like
LK or LJ, and trying to understand what happens if this or that connective is
changed. . . playing around with them to figure out provable and non-provable
sequents may turn out to be useful.

– It is often helpful to check derivability of some statements, and doing it by
hand is tedious.

Two participants explicitly referred to the fact that the tools do not provide full
proofs:

– If the tool could actually give the proof (in some form) so that the user (or
another tool) can check it, it would be great.

– Having proofs exhibited in some form would be helpful.

Three participants pointed out that the tools are limited in their ability to reason
about meta-logical properties:

– As I am usually most interested in meta-results concerning such systems,
though, these tools would probably not be extremely useful.

Automating Automated Reasoning 23

– I am usually doing this to investigate the meta-properties of a calculus, which
is something both tools lack.

– I think both tools could be extended to check the consistency of the rules input
by the user.

Other interesting comments included:

– It is not obvious how the steps done in specifying a proof system in prover
A maps into a step in prover B.

– The use of ‘priority’ in MetTeL’s third step would seem to allow one to easily
define a proof strategy, which might be advantageous in some situations.

5.2 Discussion

The participants acknowledged the potential both tools have in logical research.
Indeed, it is useful to have an automated tool to mechanically check the validity
of certain formulas. Also, when studying the effect each inference rule in a given
system has, both tools can be of great help, as they allow for an easy specification
of calculi.

Two participants, however, noted that despite their usefulness in testing for-
mulas in a given logic, both Gen2sat and MetTeL lack the ability to reason on
the meta-logical level, and assist in proving properties about the investigated
proof systems. We note that some of these abilities can be recovered using the
tools, perhaps with the aid of other related tools. For example, in order to check
whether a sequent calculus is consistent, it often suffices to check for derivabil-
ity of the empty sequent. This can be done in Gen2sat. Moreover, many logics
include in their language a formula from which all formulas follow (e.g., ⊥).
Checking for derivability of this formula can be done in both tools.

Some participants noted that presenting the actual proofs of provable formu-
las would be very helpful, while neither of the tools provides this information.
This issue can be attributed in part for the genericity of the tools, as well as
efficiency considerations. In Gen2sat, the proofs are inherently unobtainable, as
they are lost in the translation to a SAT-instance, that goes through a semantic
representation of the sequent calculus. The correctness of this translation was
shown in [41] by usual non-constructive completeness arguments, from which one
cannot extract proofs. In MetTeL, sophisticated algorithms and heuristics are
employed in the search process, that sacrifice the possibility to output a tableau
proof for the sake of efficiency.

It is interesting to note that three participants scored satisfaction from
Gen2sat higher due to their personal preference of sequent calculi over tableaux
(while one participant noted these are equivalent due to their duality). This raises
the question of how generic provers should address user preferences of represen-
tations, and whether customization and personalization can be increased. Due
to the bias towards sequent calculi, we plan to address this issue in a follow-up
study by recruiting participants who have a preference towards tableaux.

The user interface and documentation of Gen2sat should be improved ac-
cording to the feedback above. For example, several participants found it odd

24 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

that they are not expected (and actually, are expected not) to provide the tool
with any structural rules, as Gen2sat automatically enforces their inclusion in
the background. Such hidden assumptions should be clearly stated.

General usability remarks on both tools, such as the ability to download
a prover with MetTeL, versus the ability to change the calculus instantly in
Gen2sat, can be easily addressed in each tool. One has to take into deeper
consideration, however, the identity of the users for each tool, in order to decide
which of these changes should be made.

6 Conclusion and Future Work

In this paper we compared two generic provers, MetTeL and Gen2sat with re-
spect to their performance and usability. Both tools aim at providing automated
support to researchers and practical users of non-classical logics, but take com-
pletely different approaches to achieve this goal. In this paper we scrutinized
the impact the chosen approaches have on the performance and usability of the
respective tools.

Our performance evaluation was performed on several implementations of
 Lukasiewicz three-valued logic in both tools. The results are encouraging: both
tools performed well, despite the fact that this particular logic has not been
investigated with either tools before. A future research direction in this respect
is to make the performance comparison between the tools wider, to include
more logics and more problems. Such comparisons may shed some light on the
strengths and weaknesses of each tool, and possibly yield a classification of logic
problems according to the tools that are best for each.

Some insights worth further exploring arise from considering the usability
of the two tools. While MetTeL got a better usability score mainly due to its
higher level of customizability, a polished user-interface and well-developed doc-
umentation, a preference towards Gen2sat was expressed mainly due to its sim-
plicity and also its use of the sequent formalism, which some participants found
more intuitive and familiar. This indicates a need to take user preference into
consideration when developing generic automated reasoning tools, and perhaps
considering providing the possibility to work with the formalism of the users’
choice when applicable.

While performance analysis is a standard approach for evaluating provers
and other automated reasoning tools, few empirical usability studies have been
undertaken in this domain (to the best of our knowledge, none of them were
in the realm of non-classical logics). We have found the feedback received from
our participants helpful in improving the user interface and documentation in
both tools and intend to expand the usability studies of the tools to a wider
range of participants. We also hope that this paper has further demonstrated
the potential of such studies in the field of automated reasoning in general, and
for generic provers in particular. The wide variety of feedback that we got from
our small sample of users stresses the significant value systematic user studies
may have for the development of new provers. It is our hope that this paper

Automating Automated Reasoning 25

will start a discourse towards a more user-centric development of automated
reasoning tools.

A desired capability that is currently missing in both tools is proof produc-
tion. The size of tableau-style proofs that are searched for in MetTeL makes it
difficult to store and produce them in an efficient manner. The issue is more
fundamental in Gen2sat, whose first step is to translate the derivability problem
to a semantic variant, which is in turn translated into a SAT-instance. An av-
enue for future work for both tools is overcoming these difficulties. Techniques for
minimizing and concisely storing tableau proofs could be considered for MetTeL,
while for Gen2sat, unsatisfiability proofs from SAT-solvers could be utilized in
order to certify solution for the translated semantic variant of the original proof-
theoretical problem.

Finally, a further research task that seems beneficial both from a perfor-
mance and usability point of view is to consider a combination between the
tools. For example, both provers can run in parallel for a given problem, thus
providing the faster performance between the two for each problem separately.
Also, exchanging information between the provers in runtime can be useful, both
for performance, and for providing the user with additional meaningful output.
Combining the tools into one suite could also help logicians and logic students
to use their preferred formalism for defining logic on the one hand, and get a
better understanding on the connection between these formalisms on the other
hand.

Acknowledgments

We thank Francesco Genco, Yotam Feldman, Roman Kuznets, Giselle Reis, João
Marcos, and Bruno Woltzenlogel Paleo for providing valuable feedback on both
tools. We also thank Mohammad Khodadadi for useful discussions and setting up
the MetTeL website. The research of the first and fourth authors was supported
by The Israel Science Foundation (grant no. 817-15). The research of the second
and third authors was supported by UK EPSRC research grant EP/H043748/1.

Last but not least, we extend our best wishes to Franz Baader on the occasion
of his 60th birthday. It is an immense privilege to have been asked to contribute
to this volume.

References

1. Abate, P., Goré, R.: The Tableau Workbench. Electronic Notes in Theoretical
Computer Science 231, 55–67 (2009)

2. Aitken, S., Melham, T.: An analysis of errors in interactive proof attempts. Inter-
acting with Computers 12(6), 565–586 (2000)

3. Areces, C.E.: Logic engineering: The case of description and hybrid logics. Ph.D.
thesis, University of Amsterdam (2000)

4. Asperti, A., Coen, C.S.: Some considerations on the usability of interactive provers.
In: S. Autexier, J. Calmet, D. Delahaye, P.D.F. Ion, L. Rideau, R. Rioboo, A.P. Sex-
ton (eds.) International Conference on Intelligent Computer Mathematics (AISC
2010), Lecture Notes in Computer Science, vol. 6167, pp. 147–156. Springer (2010)

26 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

5. Avron, A.: Simple consequence relations. Information and Computation 92(1),
105–139 (1991)

6. Avron, A.: Classical Gentzen-type methods in propositional many-valued logics. In:
M. Fitting, E. Or lowska (eds.) Beyond Two: Theory and Applications of Multiple-
Valued Logic, Studies in Fuzziness and Soft Computing, vol. 114, pp. 117–155.
Physica-Verlag (2003)

7. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69, 5–40 (2001)

8. Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: Multlog 1.0: Towards an expert
system for many-valued logics. In: M.A. McRobbie, J.K. Slaney (eds.) Automated
Deduction (CADE-13), pp. 226–230. Springer (1996)

9. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-
up model generation methods. Journal of Automated Reasoning pp. 1–27 (2019).
Online first

10. Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem
provers using focus groups. In: C. Canal, A. Idani (eds.) Software Engineering and
Formal Methods (SEFM 2014), Lecture Notes in Computer Science, vol. 8938, pp.
3–19. Springer (2015)

11. Caridroit, T., Lagniez, J.M., Le Berre, D., de Lima, T., Montmirail, V.: A SAT-
based approach for solving the modal logic S5-satisfiability problem. In: S.P. Singh,
S. Markovitch (eds.) Thirty-First AAAI Conference on Artificial Intelligence, pp.
3864–3870. AAAI Press (2017)

12. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Automated support for the
investigation of paraconsistent and other logics. In: S. Artemov, A. Nerode (eds.)
Logical Foundations of Computer Science, Lecture Notes in Computer Science, vol.
7734, pp. 119–133. Springer (2013)

13. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Taming paraconsistent
(and other) logics: An algorithmic approach. ACM Transactions of Computational
Logic 16(1), 5:1–5:23 (2014)

14. Ciabattoni, A., Spendier, L.: Tools for the investigation of substructural and para-
consistent logics. In: E. Fermé, J. Leite (eds.) Logics in Artificial Intelligence
(JELIA 2014), pp. 18–32. Springer (2014)

15. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and in-
security decision in presence of exclusive or. In: Logic in Computer Science (LICS
2003), pp. 271–280. IEEE Computer Society (2003)

16. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and com-
pleteness in modal logic I: The core algorithm SQEMA. Logical Methods in Com-
puter Science 2, 1–5 (2006)

17. Cotrini, C., Gurevich, Y.: Basic primal infon logic. Journal of Logic and Compu-
tation 26(1), 117 (2016)

18. Degtyarev, A., Voronkov, A.: The inverse method. In: J.A. Robinson, A. Voronkov
(eds.) Handbook of Automated Reasoning, pp. 179–272. MIT Press (2001)

19. Dixon, C., Konev, B., Schmidt, R.A., Tishkovsky, D.: Labelled tableaux for tem-
poral logic with cardinality constraints. In: Proceedings of the 14th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2012), pp. 111–118. IEEE Computer Society (2012)

20. Doherty, P., Lukaszewicz, W., Sza las, A.: Computing circumscription revisited: A
reduction algorithm. Journal of Automated Reasoning 18(3), 297–336 (1997)

21. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame Journal of
Formal Logic 13(2), 237–247 (1972)

Automating Automated Reasoning 27

22. Gaschnig., J.: Performance measurement and analysis of certain search algorithms.
Ph.D. thesis, Carnegie-Mellon University, (1979)

23. Gasquet, O., Herzig, A., Longin, D., Sahade, M.: Lotrec: Logical tableaux research
engineering companion. In: B. Beckert (ed.) Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX 2005), Lecture Notes in Computer
Science, vol. 3702, pp. 318–322. Springer (2005)

24. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische
Zeitschrift 39, 176–210 (1934)

25. Ginsberg, M.L., McAllester, D.A.: GSAT and dynamic backtracking. In: J. Doyle,
E. Sandewall, P. Torasso (eds.) Principles of Knowledge Representation and Rea-
soning (KR 1994), pp. 226–237. Morgan Kaufmann (1994)

26. Giunchiglia, E., Tacchella, A., Giunchiglia, F.: SAT-based decision procedures for
classical modal logics. Journal of Automated Reasoning 28(2), 143–171 (2002)

27. Goŕın, D., Pattinson, D., Schröder, L., Widmann, F., Wißmann, T.: COOL: A
generic reasoner for coalgebraic hybrid logics (system description). In: S. Demri,
D. Kapur, C. Weidenbach (eds.) Automated Reasoning (IJCAR 2014), Lecture
Notes in Computer Science, vol. 8562, pp. 396–402. Springer (2014)

28. Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers
think. Communications of the ACM 28(3), 300–311 (1985)

29. Hähnle, R.: Tableaux and related methods. In: J.A. Robinson, A. Voronkov (eds.)
Handbook of Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)

30. Heuerding, A., Jäger, G., Schwendimann, S., Seyfried, M.: The Logics Workbench
LWB: A snapshot. Euromath Bulletin 2(1), 177–186 (1996)

31. Humberstone, I.L.: The modal logic of ‘all and only’. Notre Dame Journal of
Formal Logic 28(2), 177–188 (1987)

32. Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau. In:
H. de Swart (ed.) Automated Reasoning with Analytic Tableaux and Related Meth-
ods, International Conference, TABLEAUX’98, Oisterwijk, The Netherlands, Pro-
ceedings, Lecture Notes in Artificial Intelligence, vol. 1397, pp. 187–201. Springer
(1998)

33. Kaminski, M., Tebbi, T.: InKreSAT: Modal reasoning via incremental reduction
to SAT. In: M.P. Bonacina (ed.) Automated Deduction (CADE-24), Lecture Notes
in Computer Science, vol. 7898, pp. 436–442. Springer (2013)

34. Kawai, H.: Sequential calculus for a first order infinitary temporal logic. Mathe-
matical Logic Quarterly 33(5), 423–432 (1987)

35. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: MetTeL website. http://www.

mettel-prover.org
36. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: A refined tableau calculus with

controlled blocking for the description logic SHOI. In: D. Galmiche, D. Larchey-
Wendling (eds.) Automated Reasoning with Analytic Tableaux and Related Meth-
ods (TABLEAUX 2013), Lecture Notes in Computer Science, vol. 8123, pp. 188–
202. Springer (2013)

37. Khodadadi, M., Schmidt, R.A., Tishkovsky, D., Zawidzki, M.: Terminating tableau
calculi for modal logic K with global counting operators. Manuscript, http://www.
mettel-prover.org/papers/KEn12.pdf (2012)

38. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand (1950)
39. Koopmann, P., Schmidt, R.A.: LETHE: Saturation-based reasoning for non-

standard reasoning tasks. In: M. Dumontier, B. Glimm, R.S. Gonccalves, M. Hor-
ridge, E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia, G.B. Stamou, G. Stoilos (eds.)
OWL Reasoner Evaluation (ORE-2015), CEUR Workshop Proceedings, vol. 1387,
pp. 23–30 (2015)

http://www.mettel-prover.org
http://www.mettel-prover.org
http://www.mettel-prover.org/papers/KEn12.pdf
http://www.mettel-prover.org/papers/KEn12.pdf

28 Yoni Zohar, Dmitry Tishkovsky, Renate A. Schmidt, and Anna Zamansky

40. Lagniez, J.M., Le Berre, D., de Lima, T., Montmirail, V.: On checking Kripke
models for modal logic K. In: P. Fontaine, S. Schulz, J. Urban (eds.) Practical
Aspects of Automated Reasoning (PAAR 2016), CEUR Workshop Proceedings,
vol. 1635, pp. 69–81 (2016)

41. Lahav, O., Zohar, Y.: SAT-based decision procedure for analytic pure sequent cal-
culi. In: S. Demri, D. Kapur, C. Weidenbach (eds.) Automated Reasoning (IJCAR
2014), Lecture Notes in Computer Science, vol. 8562, pp. 76–90. Springer (2014).
DOI 10.1007/978-3-319-08587-6 6

42. Le Berre, D., Parrain, A.: The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (2010)

43. Lukasiewicz, J., Tarski, A.: Investigations into the sentential calculus. Borkowski
12, 131–152 (1956)

44. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof
systems. Theoretical Computer Science 474, 98–116 (2013)

45. Minica, S., Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: Synthesising and im-
plementing tableau calculi for interrogative epistemic logics. In: P. Fontaine, R.A.
Schmidt, S. Schulz (eds.) Practical Aspects of Automated Reasoning (PAAR-2012),
EPiC Series in Computing, vol. 21, pp. 109–123. EasyChair (2012)

46. Nielsen, J.: Usability inspection methods. In: C. Plaisant (ed.) Conference on
human factors in computing systems (CHI 1994), pp. 413–414. ACM (1994)

47. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and
reasoning about proof systems. Journal of Logic and Computation pp. 539–576
(2014)

48. Nigam, V., Reis, G., Lima, L.: Quati: An automated tool for proving permutation
lemmas. In: S. Demri, D. Kapur, C. Weidenbach (eds.) Automated Reasoning
(IJCAR 2014), pp. 255–261. Springer (2014)

49. Ohlbach, H.J.: Computer support for the development and investigation of logics.
Logic Journal of IGPL 4(1), 109–127 (1996)

50. Ohlbach, H.J.: SCAN: Elimination of predicate quantifiers. In: M.A. McRobbie,
J.K. Slaney (eds.) Automated Deduction (CADE-13), Lecture Notes in Artificial
Intelligence, vol. 1104, pp. 161–165. Springer (1996)

51. Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence 9, 268–299 (1993)

52. Rothenberg, R.: A class of theorems in Lukasiewicz logic for benchmarking au-
tomated theorem provers. In: TABLEAUX, Automated Reasoning with Analytic
Tableaux and Related Methods, Position Papers, vol. 7, pp. 101–111 (2007)

53. Schmidt, R.A., Stell, J.G., Rydeheard, D.: Axiomatic and tableau-based reasoning
for Kt(H,R). In: R. Goré, B. Kooi, A. Kurucz (eds.) Advances in Modal Logic,
Volume 10, pp. 478–497. College Publications (2014)

54. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Logical
Methods in Computer Science 7(2) (2011)

55. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with
full role negation and identity. ACM Transactions on Computational Logic 15(1),
7:1–7:31 (2014)

56. Schmidt, R.A., Waldmann, U.: Modal tableau systems with blocking and congru-
ence closure. In: H. De Nivelle (ed.) Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX 2015), Lecture Notes in Computer Science, vol.
9323, pp. 38–53. Springer (2015)

57. Sette, A.M.: On the propositional calculus P1. Mathematica Japonicae 18(13),
173–180 (1973)

Automating Automated Reasoning 29

58. Smullyan, R.M.: First Order Logic. Springer, Berlin (1971)
59. Stell, J.G., Schmidt, R.A., Rydeheard, D.E.: A bi-intuitionistic modal logic: Foun-

dations and automation. Journal of Logical and Algebraic Methods in Program-
ming 85(4), 500–519 (2016)

60. Tishkovsky, D., Schmidt, R.A.: Rule refinement for semantic tableau calculi. In:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX
2017), Lecture Notes in Artificial Intelligence, vol. 10501, pp. 228–244. Springer
(2017)

61. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL: A tableau prover with
logic-independent inference engine. In: K. Brünnler, G. Metcalfe (eds.) Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2011), Lec-
ture Notes in Artificial Intelligence, vol. 6793, pp. 242–247. Springer (2011)

62. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL2: Towards a tableau
prover generation platform. In: P. Fontaine, R.A. Schmidt, S. Schulz (eds.) Prac-
tical Aspects of Automated Reasoning (PAAR-2012), EPiC Series in Computing,
vol. 21, pp. 149–162. EasyChair (2012)

63. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator Met-
TeL2. In: L.F. del Cerro, A. Herzig, J. Mengin (eds.) European Conference on
Logics in Artificial Intelligence (JELIA 2012), Lecture Notes in Computer Science,
vol. 7519, pp. 492–495. Springer (2012)

64. Wansing, H.: Sequent systems for modal logics. In: D.M. Gabbay, F. Guenthner
(eds.) Handbook of Philosophical Logic, vol. 8, pp. 61–145. Springer (2002)

65. Zawidzki, M.: Deductive systems and decidability problem for hybrid logics. Ph.D.
thesis, Faculty of Philosophy and History, University of Lodz (2013)

66. Zhao, Y., Schmidt, R.A.: Forgetting concept and role symbols in
ALCOIHµ+(∇,u)-ontologies. In: S. Kambhampati (ed.) International Joint Con-
ference on Artificial Intelligence (IJCAI’16), pp. 1345–1352. AAAI Press/IJCAI
(2016)

67. Zohar, Y.: Gen2sat website. http://www.cs.tau.ac.il/research/yoni.zohar/

gen2sat.html

68. Zohar, Y., Zamansky, A.: Gen2sat: An automated tool for deciding derivability in
analytic pure sequent calculi. In: N. Olivetti, A. Tiwari (eds.) Automated Reason-
ing (IJCAR 2016), pp. 487–495. Springer (2016)

http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html
http://www.cs.tau.ac.il/research/yoni.zohar/gen2sat.html

	Automating Automated Reasoning

