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Abstract. The dominant state-of-the-art approach for solving bit-vector
formulas in Satisfiability Modulo Theories (SMT) is bit-blasting, an ea-
ger reduction to propositional logic. Bit-blasting is surprisingly efficient
in practice but does not generally scale well with increasing bit-widths,
especially when bit-vector arithmetic is present. In this paper, we present
a novel CEGAR-style abstraction-refinement procedure for the theory of
fixed-size bit-vectors that significantly improves the scalability of bit-
blasting. We provide lemma schemes for various arithmetic bit-vector
operators and an abduction-based framework for synthesizing refinement
lemmas. We extended the state-of-the-art SMT solver Bitwuzla with our
abstraction-refinement approach and show that it significantly improves
solver performance on a variety of benchmark sets, including industrial
benchmarks that arise from smart contract verification.

1 Introduction

Bit-precise reasoning as provided by Satisfiability Modulo Theories (SMT) for
the theory of fixed-size bit-vectors is a key requirement for many applications in
computer-aided verification. The dominant, state-of-the-art approach for solv-
ing bit-vector formulas is a technique called bit-blasting [24], an eager reduc-
tion of bit-vector constraints to a propositional satisfiability problem (SAT).
Bit-blasting is usually combined with aggressive simplifications of the input con-
straints prior to the actual reduction step. Even though this eager reduction may
come at the cost of significantly increasing the formula size, it is surprisingly ef-
ficient in practice—mainly due to the fact that state-of-the-art SAT solvers are
usually able to efficiently deal with complex formulas over millions of variables.
This size increase, however, is a potential bottleneck and the main reason why
bit-blasting does not generally scale well for large bit-widths. This is especially
true in the presence of arithmetic operators, which translate to large and com-
plex Boolean circuits on the bit-level. In practice, this scaling issue can already
occur with bit-widths as low as 32 bits, and it is especially severe for applica-
tions that reason over considerably larger bit-widths due to the nature of their
domain, e.g., 256 bits in the context of smart contract verification [15].
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In this paper, we propose a novel abstraction-refinement framework for the
theory of fixed-size bit-vectors that significantly improves the scalability of bit-
blasting on increasing bit-widths. Rather than providing an alternative to bit-
blasting, our approach is explicitly aimed at improving its performance via an
abstraction-refinement scheme based on the counterexample-guided abstraction
refinement (CEGAR) paradigm [16]. Constructs and operators that are poten-
tially expensive when translated to the bit-level are abstracted with fresh unin-
terpreted functions (UF), which corresponds to over-approximating the original
problem and translates to significantly smaller circuits on the bit-level. When
an abstraction is unsatisfiable, so is the original problem. However, when it is
satisfiable and inconsistent with the true semantics of the abstracted opera-
tors, it must be refined with lemmas to rule out spurious counterexamples. We
iteratively repeat the abstraction-refinement process until all abstractions are
consistent, and only fall back to bit-blasting an abstracted term when it cannot
be further refined, as a last resort. Thus, the main challenge is finding lemmas
for abstraction refinement that, ideally, allow to avoid bit-blasting of abstracted
terms, entirely. To this extent, this paper makes the following contributions:

– We present a modular and configurable CEGAR-style abstraction-refinement
framework for the theory of fixed-size bit-vectors, based on bit-blasting.

– We provide a set of refinement lemmas for a restricted but sufficient set of
arithmetic bit-vector operators (bvmul, bvudiv, bvurem). This set of lemmas
consists of a set of basic, hand-crafted lemmas (encoding core properties of
abstracted operators) and a set of lemmas synthesized via abduction.

– We provide a lemma scoring scheme and an abduction-based framework
for synthesizing lemmas, utilizing the syntax-restricted abduction reasoning
capabilities of the SMT solver cvc5 [7].

– We extend the open-source SMT solver Bitwuzla [29] with our approach and
show that it significantly improves performance on a wide range of bench-
marks, including industrial benchmarks from smart contract verification.

Related Work. Developing scalable approaches for solving bit-vector formulas
with large bit-widths is a long-standing challenge. Previous efforts to tackle this
challenge can be mainly divided into two categories: alternative approaches to
bit-blasting that primarily rely on word-level reasoning, and techniques based on
bit-blasting that try to reduce the size of the original problem on the bit-level.

Alternative approaches to bit-blasting include: translations to linear integer
arithmetic [11] and non-linear integer arithmetic (in combination with CEGAR-
style handling of bit-wise operators) [36]; layered CDCL(T )-style approaches
that rely on encoding fragments of the input problem into other theories before
resorting to bit-blasting [13,21]; instances of the model-constructing satisfiability
(mcSAT) calculus [20,35], a generalization of propositional conflict-driven clause
learning (CDCL) to SMT; and incomplete techniques such as local search [19,
28, 30], which are only able to determine satisfiability. All of these approaches
are generally not competitive with bit-blasting.



Techniques based on bit-blasting that aim at mitigating the impact of in-
creasing bit-widths on the bit-level are mainly based on some form of under-
approximation. Bryant et al. [14] proposed a combination of under-approximation
via restricting the value range of input variables with over-approximation of the
unsat core of the under-approximated problem. This over-approximation con-
sists of two strategies: eliminating if-then-else (ite) operations, and abstracting
bit-vector multiplication x · y with a partially interpreted function of the form
λx.λy.ite(x ≈ 0 ∨ y ≈ 0, 0, ite(x = 1, y, ite(y ≈ 1, x, f(x, y))) where f(x, y) is
a fresh uninterpreted function. An early version of Boolector [12] implemented
a refined version of the above under-approximation strategy in [14]. More re-
cently, in the context of quantified bit-vector reasoning, Jonás et al. proposed an
abstraction-based approach that reduces the size of the input problem via inter-
preting bits as don’t care bits [22], and an under-approximation-based framework
based on bit-width reduction [23] similar to [14].

2 Preliminaries

We assume and briefly review the usual notions and terminology of many-sorted
first-order logic with equality (see, e.g., [18,25]). Let S be a set of sort symbols,
and let Σ be a signature containing a set Σs⊆ S of sort symbols and a set Σf

of function symbols fσ1···σnσ with arity n ≥ 0 and σ1, ..., σn, σ ∈ Σs. We usually
omit the superscript from function symbols and refer to 0-arity function symbols
as constants. We assume that Σ includes a designated sort Bool, values ⊤ (true)
and ⊥ (false) of sort Bool, Boolean connectives {∧, ¬ } defined as usual, equality
and disequality symbols {≈, ̸≈} of sort σ × σ → Bool for every σ ∈ Σs, and an
if-then-else operator ite of sort Bool× σ × σ → σ for every σ ∈ Σs.

Let I be a Σ-interpretation that maps each σ ∈ Σs to a non-empty set
σI (the domain of I), with BoolI = {⊤,⊥}; and each fσ1···σnσ ∈ Σf to a
total function fI : σI

1 × ... × σI
n → σI if n > 0, and to an element in σI if

n = 0. The interpretation of Boolean connectives, Boolean values, equality sym-
bols and ite symbols is fixed and standard. We use the usual inductive definition
of the satisfiability relation |= between Σ-interpretations and Σ-formulas. We
write φ[x1, . . . , xn] to denote a Σ-formula φ defined over (a subset of) symbols
{x1, . . . , xn}. We further use φ[x1 7→ a1, . . . , xn 7→ an] for the formula obtained
from φ by simultaneously replacing each occurrence of xi with ai.

A theory is a pair (Σ, I) where Σ is some signature, and I is a class of
Σ-interpretations. A Σ-formula is T -satisfiable (resp. T -unsatisfiable) if it is
satisfied by some (resp. no) interpretation in I; it is T -valid if it is satisfied
by all interpretations in I. We assume the usual definition of well-sorted terms,
literals, and formulas, and call Σ-formulas T -formulas and Σ-literals T -literals.

We focus on the theory of fixed-size bit-vectors TBV as defined by the SMT-
LIB 2 standard [8]. The theory of fixed-size bit-vectors TBV is defined as the
pair (ΣBV , IBV ). Signature ΣBV includes a unique sort σ[w] for each bit-width w,
function symbols overloaded for every σ[w], and all bit-vector values of sort σ[w]



for each w. The non-empty class of ΣBV -interpretations IBV (the models of
TBV ) interpret sort and function symbols as specified in SMT-LIB 2.

Without loss of generality, we consider ΣBV to contain a restricted, arbi-
trary set of bit-vector operators as listed in Table 1. This set is complete in the
sense that it suffices to express all bit-vector operators defined in SMT-LIB 2.
We further use logical connectives {∨, ⇒, ⇔ } and bit-vector operator − for
subtraction and negation as shorthand when convenient. In the context of this
paper it is important to note that both bit-vector subtraction and negation are
expressed in terms of bit-vector addition.

We denote a ΣBV -term (or bit-vector term) x of width w as x[w] when we
want to specify its bit-width explicitly, and will omit w from the notation when
it is clear from the context. The width of a bit-vector term is given by function κ,
e.g., κ(x[w]) = w. We refer to the bit at index i of x[w] as x[i] and represent a bit-
vector value v[w] as a bit-string of 0s and 1s, with the most significant bit (MSB)
as the left-most bit v[msb] at index msb = w − 1, and the least significant bit
(LSB) as the right-most bit v[lsb] at index lsb = 0. To simplify the notation, we
will sometimes represent a value v[w] as a natural number in {0, . . . , 2w−1}.

Symbol SMT-LIB Syntax Sort

<u, ≤u, >u, ≥u bvult, bvule, bvugt, bvuge σ[w] × σ[w] → Bool

∼ bvnot σ[w] → σ[w]

&, |, ⊕, <<, >> bvand, bvor, bvxor, bvshl, bvlshr σ[w] × σ[w] → σ[w]

+, ·, mod, ÷ bvadd, bvmul, bvurem, bvudiv σ[w] × σ[w] → σ[w]

◦ concat σ[w] × σ[m] → σ[w+m]

[u : l] extract ( l ≤ u < w) σ[w] → σ[u−l+1]

Table 1. Set of considered bit-vector operators.

3 Abstraction-Refinement Framework

Our abstraction-refinement framework is integrated into an SMT solver as a
CEGAR procedure that combines an abstraction module with the theory solver
that is responsible for reasoning about TBV -formulas (the bit-vector solver).
Since our main goal is to improve the scalability of bit-blasting, we assume that
the bit-vector solver implements bit-blasting as its main strategy. For simplic-
ity, we further assume that bit-blasting is its only strategy. However, this is
not a requirement. Our abstraction-refinement technique can be combined with
any complete technique for determining the satisfiability of TBV -formulas that
produces models for satisfiable formulas.

Algorithm 1 shows the main abstraction-refinement procedure of our ap-
proach. Given a set of bit-vector constraints A, the abstraction module (AM)
first generates an abstraction A′ of A (AM::abstract) by replacing abstracted



Algorithm 1 Abstraction-refinement loop around the TBV -solver.

1 function AbstractSolveBV(A)
2 result ← unknown, L ← ∅
3 A′ ← AM::abstract(A) ▷ generate abstraction

4 repeat

5 A′ ← A′ ∪ L ▷ refine abstraction

6 result,M← TBV ::solve(A′) ▷ query bit-vector solver

7 if result = unsat then break

8 L ← AM::check(M) ▷ check consistency

9 until L = ∅
10 return result

11 end function

terms with fresh constants. This abstraction is then iteratively refined with lem-
mas L, starting from an empty set. First, the bit-vector solver is queried for
a satisfiability result of the current abstraction A′ and a model M of A′ if it
is satisfiable (TBV ::solve). If A′ is unsatisfiable, the procedure concludes with
unsat . If A′ is satisfiable, the abstraction module checks the consistency of M
for all abstracted terms with respect to their true semantics (AM::check) as
follows. Starting from an empty set of refinement lemmas L, for each abstracted
term, function AM::check determines if the model value of its abstraction is
consistent. If it is inconsistent, we add a refinement lemma to L that rules out
the inconsistency. When the model values of all abstracted terms have been
checked for consistency, AM::check returns the set of refinement lemmas L,
which extends abstraction A′ in the next iteration. If model M is consistent for
all abstracted terms (i.e., L = ∅), the procedure concludes with sat .

Note that conceptually, our term abstractions are uninterpreted functions
that map bit-vector arguments to a term of bit-vector sort, e.g., mul32(x, s) of
sort σ[32] × σ[32] → σ[32] as abstraction of a bit-vector multiplication x[32] · s[32].
When combining bit-vector theory reasoning with UF theory reasoning, from
the point of view of the bit-vector solver, these UF are seen as fresh bit-vector
constants. However, by construction, our procedure ensures that term abstrac-
tions are refined until consistency. Thus, when the UF theory solver is invoked
after the bit-vector theory solver, additional UF theory reasoning is not required.
Hence, introducing uninterpreted functions is redundant—it is sufficient to in-
troduce a fresh constant of the same bit-vector sort as the abstracted term, e.g.,
mulx,s[32] for x[32] · s[32]. This allows the integration of our approach into any SMT

solver that supports bit-vector reasoning, even when UF reasoning is not sup-
ported. Preliminary experiments showed that in the context of integrating our
techniques in the SMT solver Bitwuzla, using UF as abstractions and scheduling
the UF theory solver prior to our abstraction-refinement loop introduced redun-
dant overhead and negatively impacted performance. Our approach, however,
allows to freely choose between introducing UF vs. fresh bit-vector constants,
depending on what is more beneficial for a specific solver architecture.



One of the main tasks of the abstraction module is consistency checking of
satisfying assignments of the current abstraction, and refining the abstraction
in case of inconsistency. This refinement is driven by a pre-defined refinement
scheme for each abstracted operator. A refinement scheme is a four-tiered set of
lemmas that is checked tier-wise, in ascending order, during consistency checking.
We describe the refinement scheme for each operator and their tiers in more
detail in Section 4.

4 Refinement Schemes

We define four-tiered refinement schemes for bit-vector operators ⋄ ∈ {·,÷,mod},
with tiers 1–2 as the main and predefined sets of refinement lemmas that describe
properties of the abstracted operators in the usual bit-vector semantics (notably,
with respect to overflow semantics). The first tier consists of hand-crafted lem-
mas that mostly encode basic properties (described in more detail in Section 4.1),
while the second tier is entirely comprised of lemmas that were synthesized via
our abduction-based lemma synthesis framework (see Section 4.3).

The third tier is not pre-defined but encodes so-called value instantiation
lemmas to rule out the current inconsistent model value as a limited fallback
strategy before we have to, as the fourth and final tier, resort to bit-blasting.
For example, for x[32] · s[32] with M = {x = 3, s = 6,mulx,s[32] = 1}, we add

(x = 3 ∧ s = 6) ⇒ mulx,s[32] = 18 as value instantiation lemma. Value instantia-

tion lemmas are only added if none of the lemmas in previous tiers were violated.
We further limit the number of value instantiation lemmas that are added for
an abstracted term since they each only rule out a single spurious model value
of the term abstraction (see Section 5). Lemmas in tiers 1–2 do not necessar-
ily fully capture all properties of an abstracted operator, and thus, inconsistent
assignments may remain uncovered. When this is the case and the number of
value instantiation lemmas to add is exhausted, we add a so-called bit-blasting
lemma, e.g., mulx,s[32] ≈ x · s, which enforces bit-blasting of the abstracted term.

Note that of the considered arithmetic operators, addition is the only one
we do not abstract. Even though addition is more expensive when bit-blasting
compared to bit-wise operators, it is considerably cheaper than the operators we
abstract. Preliminary experiments showed that the trade-off between abstract-
ing the addition operator (which also occurs in our lemmas) versus bit-blasting
addition terms suggests that it is more beneficial to not abstract addition.

Table 2 lists all lemmas of tiers 1–2 for all three operators, with hand-crafted
lemmas marked with an asterisk. We use x for the left-hand operand, s for the
right-hand operand, and t for the constant introduced to abstract x ⋄ s. We
further indicate with a subscript on the lemma ID if there is a restriction on
the bit-widths for which the lemma is correct (see Section 4.4). Note that while
our abstraction approach does not generally restrict the bit-width of operators
to abstract, lemmas that are incorrect for certain bit-widths must be removed
from the lemma sets when terms of that size are abstracted. In practice, we
only abstract terms of bit-width 32 and above (see Section 5) and thus these



restrictions are not applicable. Further, note that in practice we consider both
commutative cases (when applicable) while Table 2 only gives one. In the fol-
lowing, we describe our set of hand-crafted lemmas, our lemma scoring scheme
and how we derive lemmas via abduction reasoning in more detail.

4.1 Hand-Crafted Lemmas

For each refinement scheme, our set of hand-crafted lemmas mostly contains
lemmas that cover basic properties of the abstracted operators (e.g., when one
of its operands is a special value). We also include lemmas that describe more
elaborate properties based on invertibility conditions [31], i.e., conditions that
exactly describe when operand x of operator ⋄ has a solution in literal x ⋄ s ≈ y.
More formally, an invertibility condition IC for a literal φ[x, s, y] is a formula
defined over s and y such that ∃x. φ ⇔ IC. In the following, we summarize the
properties encoded by each hand-crafted lemma.

Multiplication. Lemmas 1–2 capture the fact that multiplication by a power
of 2 (and its arithmetic negation) can be described as a left shift operation.
Lemma 3 states that the result of the multiplication must have at least as many
trailing zeros in its binary representation as one of its arguments and is de-
rived from the invertibility condition (−s | s) & y ≈ y for x · s ≈ y. The left-
to-right direction of ∃x. φ ⇔ IC gives us (after Skolemization) the implication
x · s ≈ y ⇒ (−s | s) & y ≈ y, of which lemma 3 is the right-hand side. Lemma
4 is a parity lemma that states that the result of a multiplication x · s must
be odd if both x and s are odd, and even otherwise. Note that properties re-
lated to multiplication by special values 1, −1 and 0 are subsumed by lemmas
1, 2 and 3, respectively. Further note that [31] also provides invertibility con-
ditions for literals defined over disequality and inequalities. We only consider
invertibility conditions for literals x ⋄ s ≈ y as this allows to instantiate y in the
corresponding lemma with term abstraction t. For literals over predicates other
than equality, e.g., x⋄s <u y, a good strategy for instantiating y in the resulting
lemma is not obvious and left to future work.

Division. Lemma 1 states that unsigned division by a power of 2 can be described
as a logical right shift operation. Lemmas 2–3 cover special cases: division by
itself and division by 0 (the latter is a defined case in SMT-LIB). Lemma 4
states that zero divided by a non-zero value is zero. Lemma 5 captures a natural
property of division by a non-zero value: its result is always less than its left-hand
argument. Lemma 6 describes the property that division by ∼0 (the maximum
unsigned value) yields zero if the dividend is less than ∼0. Note that for division,
we do not utilize the corresponding invertibility conditions from [31] since they
introduce new division terms that may not yet appear in the input constraints,
which may lead to non-termination of the abstraction procedure.

Remainder. Lemma 1 exploits the fact that unsigned division by a power of 2
can be described as a logical right shift operation: the resulting remainder cor-
responds to the value of the bits that are shifted out. Lemma 2 states that a



bvmul

1∗ s ≈ 2i ⇒ t ≈ x<< i 11>1 t ̸≈ (1 | ∼(x⊕ s))
2∗ s ≈ −2i ⇒ t ≈ −x<< i 12>1 t ̸≈ (∼1 | (x⊕ s))
3∗ ((−s | s) & t) ≈ t 13 x ̸≈ ((x<<(s+ t))− 1)
4∗ t[0] ≈ (x[0] & s[0]) 14 x ̸≈ (1− (x<<(s− t)))
5>1 s ̸≈ ∼(t | (1 & (x | s))) 15 s ̸≈ (1 + (s<<(t− x)))
6>1 (x & t) ̸≈ (s | ∼t) 16 s ̸≈ (1− (s<<(t− x)))
7>1 t ̸≈ ((s | 1)<<(t<<x)) 17 s ̸≈ (1 + (s<<(x− t)))
8 s ≈ (s<<(x & (1>>t))) 18>1 t ̸≈ (1 | (x+ s))
9̸=2 t ≥u (1 & ((x & s)>> 1)) 19 x ̸≈ ∼(x<<(s+ t))
10 x ̸≈ (1⊕ (x<<(s⊕ t)))

bvudiv

1∗ s ≈ 2i ⇒ t ≈ x>> i 19 (x>> t) ̸≈ (s | t)
2∗ (s ≈ x ∧ s ̸≈ 0) ⇒ t ≈ 1 20 s ̸≈ ∼(s>>(t>> 1))
3∗ s ≈ 0 ⇒ t ≈ ∼0 21>1 x ̸≈ ∼(x & (t<< 1))
4∗ (x ≈ 0 ∧ s ̸≈ 0) ⇒ t ≈ 0 22 t ≥u ((x<< 1)>>s)
5∗ s ̸≈ 0 ⇒ t ≤u x 23 x ≥u (s<<∼(x | t))
6∗ (s ≈ ∼0 ∧ x ̸≈ ∼0) ⇒ t ≈ 0 24 x ≥u (t<<∼(x | s))
7 x ≥u −(−s & −t) 25 x ≥u (t⊕ (t>>(s>> 1)))
8 −(s | 1) ≥u t 26 x ≥u (s⊕ (s>>(t>> 1)))
9 t ̸≈ −(s & ∼x) 27 x ≥u (s<<∼(x⊕ t))
10 (s | t) ̸≈ (x & ∼1) 28 x ≥u (t<<∼(x⊕ s))
11 (s | 1) ̸≈ (x & ∼t) 29 x ̸≈ (t+ (s | (x+ s)))
12 (x & −t) ≥u (s & t) 30>2 x ̸≈ (t+ (1 + (1<<x)))
13 s ≥u (x>> t) 31 s ≥u ((x+ t)>>t)
14 x ≥u ((s>>(s<< t))<< 1) 32>1 x ̸≈ (t+ (t+ (x | s)))
15 x ≥u ((t<< 1)>>(t<<s)) 33 (s⊕ (x | t)) ≥u (t⊕ 1)
16 t ≥u ((x>>s)<< 1) 34 t ≥u (x>>(s− 1))
17 x ≥u ((x | t) & (s<< 1)) 35 (s− 1) ≥u (x>> t)
18 x ≥u ((x | s) & (t<< 1)) 36̸=2 x ̸≈ (1− (x<<(x− t)))

bvurem

1∗ s ≈ 2i ⇒ t ≈ (0[κ(x)−i] ◦ x[i− 1 : 0]) 9 x ≥u (t | (x & s))
2∗ s ̸≈ 0 ⇒ t ≤u s 10 1 ̸≈ (t & ∼(x | s))
3∗ x ≈ 0 ⇒ t ≈ 0 11 t ̸≈ (∼x | −s)
4∗ s ≈ 0 ⇒ t ≈ x 12 (t & (x | s)) ≥u (t & 1)
5∗ s ≈ x ⇒ t ≈ 0 13>2 x ̸≈ (−x | −∼t)
6∗ x <u s ⇒ t ≈ x 14 (x+−s) ≥u t
7∗ ∼− s ≥u t 15 (−s⊕ (x | s)) ≥u t
8 x ≈ (x & (s | (t | −s)))

Table 2. Lemmas for terms x[w] ⋄ s[w] with ⋄ ∈ {·,÷, mod}. We use t for the constant
introduced to abstract x⋄s, hand-crafted lemmas are marked with ∗, and i ∈ [0, w−1].
Lemma ID subscripts indicate bit-width restrictions for correctness.



division by a non-zero divisor yields a remainder that cannot be greater than the
divisor. Lemmas 3–5 cover special cases: when one of the operands is zero, and
division by itself. Lemma 6 captures the fact that a division with a dividend that
is less than the divisor yields the dividend as the remainder. Lemma 7 is derived
from invertibility condition ∼ − s ≥u y for x mod s ≈ y from [31] in a similar
manner as the lemma derived from the invertibility condition for multiplication.

Powers of Two Lemmas. The powers of two lemmas for multiplication (lem-
mas 1–2), division (lemma 1), and remainder (lemma 1) use 2i to denote a
specific power of two. They do not symbolically encode whether a term s rep-
resents a power of two since this would require counting the number of trailing
zero bits i. Instead, if the current model value of s is a power of two, we in-
stantiate the corresponding lemma with this value. In the worst case, this will
add κ(s) instantiations of the lemma if all powers of two for bit-width κ(s) are
enumerated. However, this is rarely the case and the lemmas are cheap in terms
of bit-blasting.

4.2 Lemma Scoring Scheme

Compiling a set of lemmas to describe properties of an abstracted operator ⋄
requires careful consideration of several key aspects: (i) lemmas for ⋄ should not
introduce new terms that will be abstracted (introducing new terms with ⋄ may
lead to non-termination of the abstraction procedure and introducing terms with
abstracted operators other than ⋄ may yield potentially expensive abstractions
in case they have to be bit-blasted); (ii) lemmas should minimize introducing
new terms with potentially expensive operators that are not abstracted (e.g., bit-
vector addition); and (iii) possible candidate lemmas should be filtered based
on their quality to avoid adding redundant (subsumed) lemmas and to ensure
that included lemmas maximize the number of spurious models to rule out.

The former two impose syntax restrictions (see Section 4.3), and for the
purpose of addressing (iii), we define a scoring scheme that measures the quality
of a candidate lemma for operator ⋄ as follows.

Definition 1 (Lemma Score). Let x ⋄ s be the term to abstract, and let t be
the constant abstracting x⋄ s such that x⋄ s ≈ t. Given a lemma ℓ[x, s, t] defined
over {x, s, t} such that x ⋄ s ≈ t ⇒ ℓ. We define Score(ℓ, w), the score of ℓ for
a given bit-width w, as the number of triplets (vx, vs, vt) of bit-vector values of
bit-width w where ℓ[x 7→vx, s 7→vs, t 7→vt] evaluates to ⊤.

For a term x[4] ⋄s[4], the worst possible lemma score is the number of all possible
combinations of triplets (24 × 24 × 24 = 4096), and the best possible score is
the number of possible combinations of x and s (24 × 24 = 256). Thus, the
difference between the worst and best possible lemma score for any x ⋄ s is the
number of incorrect triplets, i.e., triplets for which vx ⋄ vs ̸≈ vt. Since lemmas
over-approximate literals x ⋄ s ≈ t, their score is a measure for the degree of
over-approximation: a lower score indicates higher quality of a lemma as a higher
number of incorrect triplets is ruled out.



For our hand-crafted lemmas for multiplication from Section 4.1, for bit-
width 4 we compute as scores: {1: 2416, 2: 2791, 3: 1961, 4: 2048}. This indicates
that they, individually, rule out 34–55% of incorrect triplets. Further, lemma 3,
the lemma derived via the invertibility condition for multiplication over equal-
ity, is the strongest lemma of the four. Similarly, our hand-crafted lemmas for
division and remainder rule out 6–50% of incorrect triplets for bit-width 4, with
lemma 5 the strongest lemma for division, and lemma 7, the lemma derived from
an invertibility condition, the strongest for remainder.

Individual lemma scores are a valuable measure of quality for a single lemma.
However, triplet coverage for individual lemmas may intersect. Thus, when con-
sidered as a set, in a refinement scheme, it is necessary to define a measure for
the quality of sets of lemmas to determine if extending the set with additional
lemmas improves the number of incorrect triplets that are ruled out.

Definition 2 (Score of Lemma Set). Given a set of lemmas L such that for
each ℓ[x, s, t] ∈ L, x ⋄ s ≈ t ⇒ ℓ. We define the score of L for a given bit-
width w Score(L, w) as the number of triplets (vx, vs, vt) of bit-vector values of
bit-width w where

∧
l∈L

ℓ[x 7→vx, s 7→vs, t 7→vt] = ⊤.

For example, for x[4] · s[4], the score of the set of hand-crafted lemmas is 704,
which indicates that it already rules out 88% of the incorrect triplets. Similarly,
for division and remainder, for bit-width 4 the sets of hand-crafted lemmas rule
out 71% and 91% of incorrect triplets. Note that extending a set of lemmas L
with a lemma ℓ ̸∈ L can improve but not worsen its score. If ℓ is subsumed by L,
Score(L, w) remains unchanged. While our sets of hand-crafted lemmas from
Section 4.1 already rule out a large number of incorrect triplets, their score also
indicates that a considerable number of incorrect triplets is still not covered. We
thus, in the following, propose an automated framework for synthesizing lemmas
with respect to our sets of hand-crafted lemmas via abductive reasoning.

4.3 Synthesizing Lemmas via Abduction

The lemmas from Section 4.1 describe basic properties of the abstracted oper-
ators and are hand-crafted but strong, as indicated by their score. However, a
considerable number of incorrect triplets is still uncovered for each set. Further,
manually crafting lemmas that are effective with respect to an already existing
set is challenging for arithmetic bit-vector operators, mainly due to overflow se-
mantics. In this section, we propose an automated way to synthesize lemmas with
respect to our sets of hand-crafted lemmas via syntax-restricted abductive reason-
ing [34] and focus on synthesizing lemmas for bit-vector operators {·,÷,mod}.
Our approach, however, can easily be generalized to other operators and theories.

Since we are over-approximating literals x ⋄ s ≈ t, we are trying to find lem-
mas ℓ[x, s, t] such that (x ⋄ s) ≈ t ⇒ ℓ. Further, as mentioned in Section 4.2,
we require that ℓ does not contain specific operators (the set of abstracted op-
erators, including ⋄ itself) and that the number of occurrences of more expen-
sive operators (such as bit-vector addition) is limited. The best possible over-
approximation of operator ⋄ would exactly describe the semantics of ⋄ without



including ⋄, which seems unattainable under the given constraints. The worst
possible over-approximation, on the other hand, is the formula ⊤. We are thus
looking for simple but non-trivial lemmas that improve the scores of our ini-
tial, hand-crafted lemma sets. We formulate this problem as an instance of the
general abduction problem, which is defined as follows.

Definition 3 (TBV -Abduct). Given two quantifier-free TBV -formulas A and
B, a TBV -abduct is a quantifier-free formula C such that A ∧ C ⇒ B is TBV -
valid, and A ∧ C is TBV -satisfiable.

Definition 4 (Non-Trivial Lemma). Given a TBV -literal φ as x ⋄ s ≈ t, a
φ-lemma ℓ[x, s, t] is a quantifier-free T-formula defined over {x, s, t} such that
φ ⇒ ℓ is TBV -valid. Lemma ℓ is non-trivial if it is not TBV -valid.

Finding a non-trivial lemma ℓ for a given literal φ amounts to finding an
abduct ¬ℓ of the formulas ⊤ and ¬φ.

Lemma 1. Let φ be a TBV -literal as above. TBV -formula ℓ is a non-trivial φ-
lemma if and only if ¬ℓ is a TBV -abduct of the formulas ⊤ and ¬φ.

Proof. Suppose ¬ℓ is a TBV -abduct of ⊤ and ¬φ. In particular, ⊤ ∧ ¬ℓ ⇒ ¬φ,
and therefore φ ⇒ ℓ, and thus ℓ is a φ-lemma. And since, by Definition 3, ⊤∧ ¬ℓ
is TBV -satisfiable, we get that ℓ is not TBV -valid. For the converse, suppose ℓ is
a non-trivial φ-lemma. Then, φ ⇒ ℓ is TBV -valid. In particular, ⊤ ∧ ¬ℓ ⇒ ¬φ
is TBV -valid. Further, since ℓ is not TBV -valid, ⊤ ∧ ¬ℓ is TBV -satisfiable. ⊓⊔

Since we require certain syntactic restrictions for φ-lemmas, we base our
lemma synthesis framework on the syntax-restricted abductive reasoning frame-
work of [34] as implemented in the SMT solver cvc5 [7]. This abduction frame-
work is based on Syntax-Guided Synthesis (SyGuS) [6] and thus guided by a
user-defined grammar. Note that, alternatively, our lemma synthesis problem
could be directly expressed as a SyGuS problem. However, non-triviality of lem-
mas requires the introduction of quantifiers in the specification of the formula to
synthesize, whereas this quantification is implicit in the abduction formulation.

Our goal is to automatically extend a set of φ-lemmas L (may be empty)
for a given literal φ (as defined above) with a set of lemmas Γ such that each
lemma ℓ ∈ Γ improves the score of L. Algorithm 2 shows the main procedure
of our abduction-based lemma synthesis approach. Function SynthLem takes
as input a literal φ, the bit-width w for which φ is defined, a set of initial
lemmas I, a set G of grammars that define syntax restrictions for lemma con-
struction, and a limit n of number of lemmas to synthesize for each grammar.
The procedure constructs and returns a set of φ-lemmas L such that I ⊆ L and
I ⊂ L ⇒ Score(L, w) < Score(I, w) as follows. The resulting set of lemmas L
is initialized with the given set of initial lemmas I (in our case our hand-crafted
lemmas). Then, for each grammar γ ∈ G, in lines 5–9, first a set of at most n
lemmas Γ is generated via abductive reasoning (GetAbduct). From this set, in
lines 10–13, L is extended only with those lemmas ℓ that improve the score of L.
Lemmas are synthesized via an incremental abduction engine GetAbduct (in



Algorithm 2 Synthesizing lemmas. Function SynthLem assumes the availabil-
ity of an abduction reasoner GetAbduct. Function Score computes the score
of a set of lemmas w.r.t. a given bit-width w as in Definition 2.

1 function SynthLem(φ, w, I, G, n)
2 L ← I ▷ Populate with initial lemmas

3 for γ in G do

4 Γ ← ∅
5 for i in [1, n] do ▷ Synthesize lemmas via abduction

6 a ← GetAbduct(⊤, ¬φ, γ)
7 if a = ⊥ then break

8 Γ ← Γ ∪ {¬a}
9 end for

10 repeat ▷ Merge synthesized lemma with L
11 ℓmin ← some ℓ ∈ Γ that minimizes Score(L ∪ {ℓ}, w)

12 L ← L ∪ {ℓmin}, Γ ← Γ \ {ℓmin}
13 until ℓmin = ⊤ ∨ Γ = ∅
14 end for

15 return L
16 end function

our case cvc5) by iteratively asking for n new TBV -abducts of formulas ⊤ and ¬φ,
constructed from the operators in grammar γ. Function GetAbduct returns ⊥
if no more abducts are found (line 7), either because the search terminated or a
resource limit was reached. Note that we used n = 100 and a time limit of 100
seconds per call to GetAbduct. Both limits were found to be a good middle
ground between generating sufficiently many lemmas while not overwhelming
the solver with too many abduction queries.

In the context of synthesizing lemmas for TBV operators, the search for lem-
mas via abduction is limited to formulas where the bit-width of TBV -terms is
explicitly given. Consequently, the TBV -abducts determined via GetAbduct
(and thus the resulting lemmas) are only guaranteed to be correct for this spe-
cific bit-width. Further, abductive reasoning for theory TBV as in [34] is based
on a TBV -solver with the same limitations our abstraction-based approach aims
to address: it relies on bit-blasting and thus does not scale well for increasing
bit-widths. We thus chose a bit-width of 4 for x, s and t as a reasonable com-
promise to not overwhelm the abduction engine while avoiding the generation
of lemmas that are specific to very small bit-widths. To minimize the risk of in-
cluding bit-width specific lemmas in the set of synthesized lemmas L, in function
SynthLem, before adding lemma ℓ to L, we introduce an additional step where
we verify the correctness of ℓ for bit-widths 4–10. And finally, before incorpo-
rating synthesized lemmas in our refinement schemes, we verify each lemma up
to a certain, large bit-width (see Section 4.4). Note that while the additional
verification step during synthesis encountered lemmas that were only valid for
bit-width 4, no lemmas that passed this verification step failed verification for
larger bit-widths. Further note that bit-vector multiplication is commutative. As



an optimization we thus add the corresponding symmetric cases of hand-crafted
lemmas to the set of initial lemmas I when applicable.

Our abduction-based lemma synthesis procedure requires the definition of
a set of grammars G to describe syntax restrictions for constructing lemmas.
Since the search space for SyGuS-based abduction heavily depends on such an
input grammar, we opted for diversification via a set of grammars rather than
a single, larger grammar. Set G consists of the of grammars γ0 to γ6 defined via
a common grammar γc = {x, s, t,≈, ̸≈, <u,≤u, 0, 1} as follows:

γ0 = γc ∪ {∼ ,&, |,⊕} γ4 = γ3 ∪ {⊕}
γ1 = γc ∪ {−,∼ ,&, |} γ5 = γ4 ∪ {+}
γ2 = γ1 ∪ {⊕} γ6 = γc ∪ {−,+,−+, <<,>>}
γ3 = γ1 ∪ {<<,>>}

Note that in grammars γ0 to γ6 above, we use symbol ‘−’ for negation and
‘−+’ for subtraction to ensure that they are distinguishable. Further note that
we include bit-vector addition (and operators such as subtraction and negation
that can be rewritten as addition) even though it is an arithmetic operation
and thus one of the more expensive operators when bit-blasting. Preliminary
experiments showed that including addition, negation and subtraction in some
of the grammars is beneficial for finding useful lemmas.

Extending our set of hand-crafted lemmas from Section 4.1 with the lemmas
synthesized via abduction as given in Table 2 improves the score for multiplica-
tion from 704 to 490, which corresponds to ruling out 94% of incorrect triplets
for our final set of tier 1 and tier 2 lemmas. Similarly, the score for division
improves from 1366 to 394 (96% coverage of incorrect triplets), and the score for
remainder improves from 616 to 400 (96% coverage of incorrect triplets).

Finally, it is important to note that we synthesized lemmas via abduction
in an offline manner, as opposed to during the solving process. That is, after
automatically generating the lemmas, they were incorporated into the solver
together with the hand-crafted lemmas. Thus, the set of incorporated tier 1 and
tier 2 lemmas is fixed and independent from the input problem.

4.4 Lemma Verification

We verified the correctness of lemmas ℓ from Table 2 for bit-widths from 1–256
by checking for literal x ⋄ s ≈ t if formula x ⋄ s ≈ t ∧ ¬ℓ is T -unsatisfiable.
Given that the lemmas based on powers of two are well-known and universally
valid properties of the corresponding bit-vector operators, we omit the additional
131,584 benchmarks required to check each instance of these lemmas up to bit-
width 256. For the remaining lemmas, we generated 16,896 benchmarks and used
the SMT solvers Bitwuzla [29], cvc5 [7], Yices [17], and Z3 [27] for verification. We
ran these verification tasks on a cluster of 22 machines with Intel(R) Xeon(R)
Gold 6348 CPUs. For each solver and benchmark pair, we used a CPU time
limit of 8 hours and a memory limit of 8GB. For a given bit-width, we consider



a lemma to be correct if at least one solver determined unsat , and as incorrect if
at least one solver determined sat . Overall, all solver-benchmark pairs required
1,112 days of CPU time. We did not encounter any disagreements between solvers
and were able to complete all verification tasks, with Yices individually solving
96.49%, Bitwuzla 96.47%, cvc5 96.29%, and Z3 95.05% of all tasks.

We were able to verify the correctness of all hand-crafted lemmas for bit-
widths 1–256, and of all synthesized lemmas for bit-widths 3–256. Synthesized
lemmas are correct by construction for bit-width 4, which is confirmed by this
experiment. However, some of the synthesized lemmas do not hold for very small
bit-widths, as indicated by the bit-width restrictions given in Table 2. As men-
tioned above, if terms of such a restricted size are abstracted, these lemmas
must not be considered for refinement. However, in the context of integrating
our abstraction approach into Bitwuzla, all lemmas are applicable since we only
abstract terms of size 32 and above (see Section 5).

Verification of the correctness of our lemmas up to bit-width 256 establishes
sufficient confidence of their correctness for bit-widths larger than 256. We leave
the task of formally proving their correctness for all bit-widths to future work. A
recent technique for reasoning over bit-vectors with parametric bit-width based
on a reduction to the quantified combination of the theories of uninterpreted
functions and non-linear arithmetic was proposed in [32]. However, preliminary
experiments showed that except for a small number of lemmas, verification of
our lemmas using this technique is not feasible.

5 Integration

We extended the state-of-the-art SMT solver Bitwuzla [29] with our proposed
framework. Bitwuzla supports quantified and quantifier-free bit-vector reasoning
in combination with arrays, floating-point arithmetic and uninterpreted func-
tions and was the best performing solver across supported logics in the SMT
competition in 2023 [5]. Further, Bitwuzla reduces floating-point arithmetic to
the theory of bit-vectors, which allows us to also apply our approach to floating-
point arithmetic problems that do not involve bit-vector constraints.

Bitwuzla implements a lazy, CEGAR-based SMT paradigm called lemmas
on demand [10, 26], but with a bit-vector abstraction (and thus a TBV -solver)
instead of a propositional abstraction at its core. In this bit-vector abstraction,
non-TBV -atoms are abstracted as Boolean constants and non-TBV -terms are
abstracted as bit-vector constants. These abstracted terms are then handled by
the corresponding theory solvers. This architecture allows an easy and seamless
integration of our abstraction module. The interaction between the TBV -solver
of Bitwuzla and our abstraction module AM is implemented as shown in Algo-
rithm 3. Prior to sending assertions to the TBV -solver, the abstraction module
processes each assertion and introduces abstractions for all relevant bit-vector
terms. After the TBV -solver determines that the set of abstracted assertions is
satisfiable, the abstraction module checks if all abstracted bit-vector terms are
consistent and adds refinement lemmas when needed.



Algorithm 3 The lemmas on demand loop of Bitwuzla with multiple theory
solvers, extended with our abstraction module AM (highlighted in blue).

1 function solve(A)
2 r ← Unknown, L ← ∅
3 repeat

4 A ← AM::abstract(A ∪ L)
5 r,M← TBV ::solve(A) ▷ Solve Bit-Vector Abstraction of A
6 if r = Unsat then break end if

7 if (L ← TFP ::check(M)) ̸= ∅ then continue end if ▷ FP Solver

8 if (L ← AM::check(M)) ̸= ∅ then continue end if

9 if (L ← TA::check(M)) ̸= ∅ then continue end if ▷ Arrays Solver

10 if (L ← TUF ::check(M)) ̸= ∅ then continue end if ▷ UF Solver

11 L ← TQ::check(M) ▷ Quantifiers Solver

12 until L = ∅
13 return r

14 end function

Note that the order in which the theory solvers and the abstraction module
are called is not arbitrary. The TFP -solver word-blasts floating-point constraints
to TBV and, thus, introduces new bit-vector terms. Hence, the abstraction mod-
ule is called after the TFP -solver to ensure that for pure TFP -formulas, the TFP -
solver first generates word-blasting lemmas so that the abstraction module has
bit-vector terms to abstract. For the arrays (TA) and UF (TUF ) theory solvers
and the quantifiers module (TQ), on the other hand, we have to ensure that
the bit-vector abstraction is consistent before checking the theory axioms based
on the current bit-vector abstraction model M. In preliminary experiments, the
abstraction module was called after the TA- and TUF -solvers, which resulted in
a degraded performance for problems involving these theories. This was a conse-
quence of the TA- and TUF -solvers generating substantially more lemmas due to
an inconsistent bit-vector abstraction. Similarly, when quantifiers are involved,
the quantifiers module is called last to ensure that the bit-vector abstraction of
all ground terms and formulas is consistent.

As an additional extension, we also implemented a more coarse-grained ab-
straction approach that abstracts assertions as fresh Boolean constants. This is
not a novel technique and has been proposed in earlier literature [24]. However,
it can be easily implemented in our proposed abstraction framework with a sim-
ple refinement scheme for assertions. The goal of this refinement scheme is to
incrementally add assertions as refinements that evaluate to ⊥ under the current
model of the bit-vector abstraction. This is combined with our main approach of
term abstraction in an interleaved manner by limiting the number of assertion
refinements added per refinement iteration. When adding assertions as refine-
ment, the abstraction module abstracts all relevant bit-vector terms occurring
in these assertions, and before new assertions are added, it ensures that the cur-
rent set of term abstractions is consistent. Only when all currently abstracted
terms are consistent, more assertions may be added as refinement. The termina-



tion criteria are the same as with term abstraction only. If all of the remaining
assertions evaluate to ⊤ under the current model, we conclude with sat . If a
subset of the added assertions is already unsatisfiable, we found an unsat core
and conclude with unsat .

Configuration. The number of assertion refinements per iteration is configurable
and set to 100 refinements per iteration. Similarly, the minimum bit-width of
terms defined over {·, ÷, mod } that we abstract is configurable and limited
to terms of size 32 and above. Further, since value instantiation lemmas only
rule out one spurious model, our implementation limits the number of value
instantiations per abstraction t based on its bit-width to κ(t)/8 instantiations.
For example, for an abstracted term t of bit-width 32, we add at most four value
instantiations before we add a bit-blasting lemma as final refinement for t.

6 Evaluation

We evaluate the performance of our bit-vector abstraction approach as inte-
grated in Bitwuzla on five different benchmark sets: certora (1,988 benchmarks),
ethereum (3,173 benchmarks), syrew (15,000 benchmarks), ff (1,224 bench-
marks), and smtlib (155,269 benchmarks). Benchmark sets certora and ethereum
are industrial benchmarks that arise from smart contract verification applica-
tions [15], provided by Certora [1] and the Ethereum Foundation [3]. The certora
set consists of SMT queries generated by the Certora Prover [2] and is split into
sets certora1 and certora2. The ethereum set contains benchmarks generated
by hevm [4], a symbolic execution engine for the Ethereum virtual machine.
Benchmarks in these sets are specifically encoded over bit-vectors of size 256, in
combination with arrays, uninterpreted functions, and quantifiers.

Benchmark set syrew serves as a more controlled and balanced set to specif-
ically evaluate the effectiveness of our abstraction approach for each abstracted
operator. We generated three sets of equivalence checks, each only involving one
of the abstracted operators. For that purpose, we enumerated TBV -terms and
TBV -formulas that are equivalent for bit-width 4 with the SyGuS-solver of cvc5.
For each set, we enumerated 500 equivalence checks using as SyGuS grammar
{0, 1, x, s, t,≈, ̸≈, <u,≤u,∼ ,&, <<,>>}, extended with only one of {·,÷,mod}.
The resulting 1,500 benchmarks were then instantiated for bit-widths 2i with
i ∈ [4, 13] yielding 15,000 benchmarks in total, the majority unsatisfiable.

The ff benchmark set originates from [33] and consists of translation vali-
dation problems of zero-knowledge proof compilers in two sets: an encoding in
the theory of finite fields TFF and a translation to TBV that exclusively uses
arithmetic bit-vector operators {+, ·,mod} over bit-vectors of size 510.

Benchmark set smtlib contains all non-incremental benchmarks of all logics
in the SMT-LIB [9] benchmark library supported by Bitwuzla. This includes all
quantified and quantifier-free logics involving the theories of bit-vectors, arrays,
floating-point arithmetic and uninterpreted functions (24 in total). Note that
this also includes floating-point arithmetic logics that do not involve the theory
of bit-vectors since Bitwuzla word-blasts floating-point terms to bit-vector terms.



We implemented our novel term abstraction technique in our main configura-
tion Abstr-t. We additionally distinguish two configurations that enable asser-
tion abstraction as described in Section 5: configuration Abstr-a, which enables
assertion abstraction only, and configurationAbstr-ta, which enables both term
and assertion abstraction. We evaluate these configurations against Bitwuzla
version 0.3.2, cvc5 version 1.1.0, and Z3 version 4.12.4 (in their default config-
uration, using bit-blasting for TBV ). Both cvc5 and Z3 are industrial-strength
SMT solvers that support a wide range of theories, including the theories sup-
ported by Bitwuzla. We further compare against cvc5-ib, a configuration of cvc5
that reduces bit-vector problems to non-linear integer arithmetic problems via
int-blasting [36]. Note that on the ff benchmark set, we evaluate these configu-
rations only on the TBV subset, and additionally compare against a dedicated
TFF -solver implementation of cvc5 (cvc5-ff) on the TFF subset.

We ran all experiments on a cluster of 25 machines with Intel(R) Xeon E5-
2620 v4 CPUs. For each solver and benchmark pair, we allocated one CPU core
and 8GB of memory with a time limit of 1200 seconds. In case that a solver
terminated with an error or ran into the memory limit on a specific benchmark,
we counted its runtime on that benchmark as 1200 seconds as a penalty.

Table 3 summarizes the results for each solver grouped by benchmark set
and ordered by number of solved benchmarks. Overall, Abstr-t significantly
outperforms all other bit-blasting solvers and the int-blasting solver cvc5-ib on
all benchmark sets. Our abstraction approach considerably reduces the memory
usage across all sets, solving more benchmarks with a lower number of memory
outs. Only on the certora sets, cvc5-ib has a smaller memory footprint, which is
due to the more memory-efficient translation of bit-vector to integer arithmetic.

The certora set is divided into the certora1 and certora2 subsets, which cor-
respond to the use of two different encodings arising from the same applica-
tion. Both sets rely on 256-bit bit-vectors and uninterpreted functions and make
heavy use of arithmetic operators. Set certora1 is a proprietary and more di-
verse set of benchmarks and is sampled from a different (and more diverse)
set of smart contracts than certora2. It uses an older, less optimized encoding
that involves quantifiers and overflow predicates, while certora2 does not rely
on quantifiers and was successfully optimized for existing bit-blasting solvers,
which struggled on the older encoding. This can be seen in Table 3, where the
best non-abstraction-based bit-blasting configuration (Bitwuzla) solves only 13%
of certora1 but 74% of certora2. Benchmarks in the certora1 set usually contain
a large number of assertions (15k on average, up to 100k) and are thus good
candidates for evaluating assertion abstraction in combination with term ab-
straction. Benchmarks in the certora2 set, on the other hand, usually contain a
significantly smaller number of assertions (less than 1k per benchmark). Hence,
on the certora benchmark sets, in addition to configuration Abstr-t, we also
evaluate the two configurations Abstr-a and Abstr-ta that enable assertion
abstraction. On both sets, Abstr-t considerably improves over bit-blasting. On
the certora1 set, Abstr-a outperforms Abstr-t, and combining assertion and
term abstraction (Abstr-ta) significantly outperforms either, both in terms of



Benchmarks Solver Solved TO MO T [s] M [GB] Tc [s]

certora1
(10/850)

Abstr-ta 573 231 46 448k 2,492 234
Abstr-a 386 140 324 681k 5,201 963
Abstr-t 258 155 437 760k 4,807 83
cvc5-ib 147 674 0 879k 667 52
Bitwuzla 111 86 653 915k 6,182 192
cvc5 90 113 610 923k 6,064 341
Z3 30 447 373 989k 4,944 484

certora2
(227/1,138)

Abstr-ta 866 264 8 370k 1,024 11k
Abstr-t 866 263 9 384k 1,402 17k
Abstr-a 844 269 25 433k 2,661 19k
Bitwuzla 843 266 29 439k 2,944 23k
cvc5 705 223 210 603k 4,027 22k
cvc5-ib 666 472 0 643k 106 15k
Z3 612 492 34 679k 1,866 24k

ethereum
(3,138/3,173)

Abstr-t 3,173 0 0 407 11 102
Bitwuzla 3,173 0 0 720 29 228
Z3 3,169 4 0 6k 107 679
cvc5 3,158 0 1 18k 36 377
cvc5-ib 3,141 20 0 39k 21 128

syrew
(5,528/15,000)

Abstr-t 14,142 583 276 1,225k 4,409 2k
Bitwuzla 11,961 744 2,296 3,955k 23,483 24k
Z3 9,992 833 4,175 6,198k 39,506 78k
cvc5 9,003 797 5,200 7,498k 48,421 109k
cvc5-ib 7,974 5,137 1,632 8,836k 19,850 180k

ff
(12/1,224)

cvc5-ff 973 129 122 313k 1,364 0
Abstr-t 480 729 15 913k 2,762 0
cvc5-ib 304 822 98 1,104k 1,074 0
Bitwuzla 223 71 930 1,211k 8,360 277
Z3 145 56 1,023 1,299k 8,893 3
cvc5 40 0 1,184 1,422k 9,523 589

smtlib
(125,037/155,269)

Abstr-t 148,554 1,944 152 8,770k 8,566 64k
Bitwuzla 148,492 1,966 193 8,748k 8,953 64k
Z3 145,121 4,846 565 13,528k 18,278 693k
cvc5 144,829 3,775 285 13,513k 11,029 213k
cvc5-ib 127,144 24,479 194 39,647k 15,233 5,666k

Table 3. Number of solved benchmarks (Solved), timeouts (TO), memory outs (MO),
penalized runtime (T), memory usage of all benchmarks (M), and runtime Tc on com-
monly solved benchmarks, grouped by benchmark set and solvers. Note that the num-
ber (x/y) for each benchmark set indicates the number of commonly solved instances
x and the total number of benchmarks y in the set.

solved benchmarks and memory usage. We observed that in the majority of cases
where Abstr-ta improves over Abstr-t, the benchmark is unsatisfiable and
the size of the unsatisfiable core is only a small fraction of the overall number
of assertions. On the certora2 set, however, Abstr-a is less effective since these
benchmarks contain a significantly smaller number of assertions. Configuration
Abstr-ta still improves over Abstr-t in terms of overall memory usage.



Note that for the benchmark sets ethereum, ff and syrew , enabling assertion
abstraction was not applicable for a majority of the benchmarks due to the
low number of assertions (less than 100 per benchmark). On benchmark set
smtlib, the effects of assertion abstraction were overall inconclusive. Thus, due
to space constraints, for the remaining sets, we exclude configurations Abstr-a
and Abstr-ta from the evaluation.

On the ethereum set, both Abstr-t and Bitwuzla solve all benchmarks.
However, Abstr-t is more than 40% faster and requires 60% less memory. On
the commonly 3,138 solved benchmarks, Abstr-t is the fastest solver, closely
followed by cvc5-ib. Both outperform the other bit-blasting solvers. Note that on
this benchmark set, cvc5 and cvc5-ib returned with errors due to unsupported
cases of equality over constant arrays on 14 and 12 benchmarks, respectively.

On the syrew set, Abstr-t significantly outperforms all other solvers and is
more than 3× faster with a 5× lower memory usage compared to the second best
solver Bitwuzla. On the commonly solved 5,528 benchmarks, Abstr-t is 12–90×
faster than the competition. The int-blasting configuration cvc5-ib comes in last,
mainly due to the occurrence of bit-wise operations. Bit-wise operators do not
have a direct translation to integers and require cvc5-ib to resort to abstraction
schemes, which is more expensive than the direct translation via bit-blasting.

On the ff benchmark set, as expected, the native finite field solver cvc5-ff
solves the most benchmarks overall. However, Abstr-t significantly improves
over bit-blasting (Bitwuzla) and int-blasting (cvc5-ib) with the least number of
memory outs overall. Surprisingly, Abstr-t is able to solve 36 benchmarks that
cvc5-ff cannot. None of the other solvers solves benchmarks that cvc5-ff cannot.

On the smtlib set, Abstr-t improves over Bitwuzla in 10 out of the 24 logics
in terms of number of solved benchmarks, with 6 of them being floating-point
arithmetic logics. Most notably, Abstr-t was able to improve the number of
solved instances X and runtime in percent Y on commonly solved instances
(X, Y%) over Bitwuzla in logics FP (+5, −16%), BVFP (0, −45%), QF ABVFP (+1,
−33%), QF ABVFPLRA (0, −23%), QF BVFP (+1, −45%), QF BVFPLRA (+9, −46%),
QF FP (+23, −13%), and QF FPLRA (+1, -7%).

The only significant loss of -13 benchmarks is in the QF BV logic, which is also
the only logic where Abstr-t is significantly slower (33%) on commonly solved
instances compared to Bitwuzla. This slowdown can be primarily attributed
to the two benchmark families Sage2 and uclid. On these two families, on the
commonly solved instances, Abstr-t is slower by 40% and 4,100%, respectively.
This slowdown is unexpected and needs further investigation. Nevertheless, in
logic QF BV, Abstr-t is able to solve more unsatisfiable benchmarks with less
memory outs compared to Bitwuzla and outperforms cvc5, cvc5-ib and Z3 by a
significant margin (more than 1,400 solved benchmarks).

We further performed an analysis of term abstractions and abstraction re-
finements for all benchmarks solved by Abstr-t in all benchmark sets. Ta-
ble 4 summarizes our findings, grouped by refinement tier and abstracted op-
erator. Overall, Abstr-t abstracted 367,101 multiplication terms, 55,461 un-
signed division terms, and 62,328 unsigned remainder terms. Out of these, only



Terms Refinement Tier
Operator Abstracted 1 2 3 4 Total

· 367,101 579,369 67,221 650,086 134,525 1,431,201
÷ 55,461 126,223 109,137 73,019 7,024 315,403

mod 62,328 161,270 5,614 30,350 1,326 198,560

Table 4. Number of overall abstracted terms and abstraction refinements on solved
benchmarks grouped by abstracted operator and refinement tier (1: hand-crafted, 2: ab-
duction, 3: value instantiation, 4: bit-blasting).

134,525 (37%) multiplications, 7,024 (13%) divisions, and 1,326 (2%) remain-
ders were bit-blasted as last resort via adding tier-4 lemmas. For the remaining
63%/87%/98% of multiplication/division/remainder terms, refinement with tier
1–3 lemmas only was sufficient to solve the benchmarks. Out of the solved bench-
marks where Abstr-t abstracted any bit-vector terms, 80% were solved without
bit-blasting any of the abstracted terms. For the remaining 20% of solved bench-
marks, 78% of abstracted terms were bit-blasted.

For the benchmarks solved with abstraction, Abstr-t required on average 37
refinement iterations (median 4). Further, all lemmas except bvudiv lemma 21
and bvurem lemma 11 from Table 2 were used for solving these instances. Tier-
1/2/3/4 lemmas were used in 76%/27%/30%/20% of solved instances.

We further evaluated the usefulness of the abduction-based lemmas (tier 2)
by disabling these lemmas on the syrew benchmark set. Without these lem-
mas, Abstr-t solves 336 less benchmarks, has 2× more memory outs, and is
23% slower on commonly solved instances while consuming 61% more mem-
ory. Without tier-3 lemmas the number of solved instances for benchmark sets
certora1/certora2/syrew/ff /smtlib change by -12%/-1%/-1%/-6%/+0.01%.

The artifact of this paper is archived and available in the Zenodo open-access
repository at https://zenodo.org/record/10913320.

7 Conclusion

We have presented a novel abstraction-refinement approach to improve the scala-
bility of bit-blasting arithmetic terms with large bit-widths. We have introduced
a lemma scoring scheme and an abduction-based framework for synthesizing re-
finement lemmas, which we include in our four-tiered refinement schemes. We
have extended the state-of-the-art SMT solver Bitwuzla with our techniques and
showed that this significantly improves solver performance on a diverse set of
benchmarks coming from a variety of applications, including smart contract ver-
ification and zero-knowledge proofs. Incorporating existing under-approximation
techniques with our approach is an interesting direction for future work.

https://zenodo.org/record/10913320
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